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Abstract

We consider two models of random diffusion in random environment in two
dimensions. The first example is the self-repelling Brownian polymer, this describes
a diffusion pushed by the negative gradient of its own occupation time measure
(local time). The second example is a diffusion in a fixed random environment

given by the curl of massless Gaussian free field.
In both cases we show that the process is superdiffusive: the variance grows

faster than linearly with time. We give lower and upper bounds of the order of
t log log t, respectively, t log t. We also present computations for an anisotropic ver-
sion of the self-repelling Brownian polymer where we give lower and upper bounds
of t(log t)1/2, respectively, t log t. The bounds are given in the sense of Laplace
transforms, the proofs rely on the resolvent method.

The true order of the variance for these processes is expected to be t(log t)1/2 for
the isotropic and t(log t)2/3 for the non-isotropic case. In the appendix we present
a non-rigorous derivation of these scaling exponents.

MSC2010: 60K37, 60K40, 60F05, 60J55

Key words and phrases: self-repelling random motion, diffusion in random
environment, super-diffusivity, Gaussian free field

1 Introduction

We consider two models of random motion in random environment in d = 2:

• self-repelling Brownian polymer process, abbreviated in the sequel as SRBP, re-
spectively,

• diffusion in the curl of massless Gaussian free field, abbreviated in the sequel as
DCGF.
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In both cases the critical dimension of the model-class is d = 2: for d ≥ 3 the displace-
ments are diffusive (i.e. the variance grows linearly in time) and for d = 2 multiplicative
logarithmic corrections are expected. We provide a rigorous proof for the superdiffusivity:
we give lower and upper bounds of order t log log t, respectively, t log t on the variance
of the displacement in the sense of Laplace transforms. The lower bounds are the more
interesting, the upper bound being almost straightforward.

The SRBP model is continuous space-time counterpart of the so called true self-
avoiding random walk (TSAW). The class of models has a long history. It first appeared
in the theoretical physics literature where the models were formulated, and based on
scaling and renormalization group arguments dimension dependent scaling behavior was
conjectured. See [3], [14], [15]. Shortly later and seemingly totally independently of
the physics papers mentioned, similar questions arose in the probabilistic literature. See
[13], [4] where further conjectures and partial results appeared. For a concise historical
account of the models, conjectures and results we refer the reader to the survey [21] and
the introduction of the more recent paper [6]. Our present result completes the picture
in the sense that after the d = 1 and d ≥ 3 behaviour being more-or-less clarified in [20],
[23], [22], [19], respectively, in [6], we now settle the question of superdiffusivity in d = 2.
However, note that our bounds are still far from being sharp. There is plenty of room
left for improvements.

The DCGF model belongs to the class of random walks and diffusions in random
environment. The drift field, being the curl of a scalar field in 2d, is divergence free and
hence the environment seen by the random walker is a priori stationary. There are too
many papers on this topics to list here. An instructive and rich survey, though not the
most recent one, is [10]. For a more recent survey see chapter 11 of [8]. It turns out
that the model considered here, where the drift field is the curl of 2d massless Gaussian
free field (mollified by convolving with a smooth approximate delta-function) is just
on the boundary between diffusive and superdiffusive asymptotics. The more robustly
superdiffusive cases were considered in [9]. Our results complete the picture presented in
[9] in the sense of proving superdiffusivity in this borderline case.

The expected order of the diffusivity for both of these models is t(log t)1/2 and it
is conjectured that this is universal among a wide class of two-dimensional isotropic
models. (See [11] for another example.) In the appendix (Section 4) we present a non-
rigorous, nevertheless very instructive scaling argument which explains this conjecture.
The argument dates back to the late sixties, cf. [1], [2], [5]. In our opinion this sheds
sharp light on the origins of superdiffusivity in tracer diffusion models. The argument
shows that the isotropy of the model is important: in particular for non-isotropic two-
dimensional models the argument gives t(log t)2/3 for the diffusivity. This was rigorously
proved for the diffusivity of a second class particle for finite range asymmetric exclusion
models by Yau [24] building on the results of [12]. To illustrate the difference we also
consider a non-isotropic version of SRBP, for this model we give lower and upper bounds
on the diffusivity of order t(log t)1/2 respectively t log t.

The structure of the paper is the following. In the remaining parts of the Introduction
we fix notation (subsection 1.1), formulate the models in rigorous mathematical terms
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(subsection 1.2), describe the picture of the environment as seen by the random walker
(subsection 1.3) and formulate the main result of the paper (subsection 1.4). In section 2
the relevant Fock space and the relevant operators therein are presented (subsection 2.1)
and the variational problem is explicitly formulated (subsection 2.2). Section 3 contains
the computational parts of the proof: we give upper bounds on the nontrivial term in the
variational problem (subsection 3.1) and prove the main lemmas needed for completing
the proof of the main result (subsection 3.2). Subsection 3.3 contains the computational
parts of the proof for the non-isotropic model. Finally, section 4 is an appendix which
contains the mentioned non-rigorous scaling argument.

1.1 Some general notation

Throughout this paper we are in two dimensions. V : R2 → R will denote a (fixed)
approximate delta-function, that is a smooth (C∞), spherically symmetric function with
sufficiently fast decay at infinity (exponential decay certainly suffices). We also impose
the condition of positive definiteness of V :

V̂ (p) =

∫

R2

eip·xV (x)dx ≥ 0.

Occasionally we will also use the notation U : R2 → R for the unique positive definite
function which yields

V = U ∗ U, Û(p) =

√

V̂ (p).

A particular choice could be

V (x) =
e−| x |2/(2σ2)

2πσ2
, U(x) =

e−|x |2/σ2

πσ2
,

but the choice of the concrete function V is of no importance.
Partial derivatives (with respect to space coordinates) will be denoted ∂i, i = 1, 2.

The gradient and curl of a smooth scalar field A : R2 → R are the vector fields

gradA = (∂1A, ∂2A), curlA = (∂2A,−∂1A).

The divergence and rotation of a smooth vector field A : R2 → R
2 are the scalar fields

divA(x) = ∂1A1 + ∂2A2, rotA(x) = ∂2A1 − ∂1A2.

Given a vectorial expression b = (b1, b2) we will denote

b̃ = (b̃1, b̃2) = (b2,−b1).

t 7→ B(t) will always denote a two-dimensional standard Brownian motion.
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1.2 The displacement processes considered

The self-repelling Brownian polymer process (SRBP)

Let x 7→ F (x) be a smooth gradient (that is rotation free) vector field on R
2 with slow

increase at infinity. We define the stochastic process t 7→ X(t) ∈ R
2 as the solution of

the following SDE:

dX(t) =

(

F (X(t))−
∫ t

0

gradV (X(t)−X(u))du

)

dt+
√
2 dB(t). (1)

Introducing the occupation time measure (also called local time in this paper)

ℓ(t, A) = | {0 < s ≤ t : X(s) ∈ A} |

where A ⊂ R
2 is any measurable domain, we can rewrite the previous SDE as follows:

dX(t) =
(

F − gradV ∗ ℓ(t, ·)
)

(X(t))dt+
√
2 dB(t). (2)

The form (2) of the driving mechanism, shows explicitly the phenomenological meaning
of the law of the process: it is pushed by the negative gradient of its own local time
towards domains less visited in the past.

The non-isotropic SRBP
Let now F1 : R

2 → R be a smooth scalar field on R
2 with slow increase at infinity. The

process is again defined as a solution of an SDE similar to (1), but instead of grad we
use the operator (∂1, 0):

dX1(t) =

(

F1(X(t))−
∫ t

0

∂1V (X(t)−X(u))du

)

dt+
√
2 dB1(t), dX2(t) =

√
2 dB2(t).

Or, expressed in terms of gradient of local time:

dX1(t) =
(

F1 − ∂1V ∗ ℓ(t, ·)
)

(X(t))dt+
√
2 dB1(t), dX2(t) =

√
2 dB2(t).

Now, only the first coordinate of the displacement is pushed by the corresponding negative
gradient component of mollified local time. The second coordinate moves as memoryless
Brownian motion.

Diffusion in the curl of Gaussian free field (DCGF)

Now let x 7→ F (x) be a smooth curl (that is divergence free) vector field on R
2 with slow

increase at infinity. We define the stochastic process t 7→ X(t) ∈ R
2 as the solution of

the SDE
dX(t) = F (X(t))dt+

√
2 dB(t). (3)

This is a diffusion in the drift field F .
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1.3 The environment seen from the moving point

SRBP

The environment profile appearing on the right-hand side of (2), as seen in a moving
coordinate frame tied to the current position of the displacement process is t 7→ η(t, ·):

η(t, x) =
(

F − gradV ∗ ℓ(t, ·)
)

(X(t) + x)

with initial value
η(0, x) = F (x).

t 7→ η(t, ·) is a Markov process with continuous sample paths in the Fréchet space

Ω =
{

ω ∈ C∞(R2 → R
2) : rotω ≡ 0, ‖ω ‖k,m,r <∞

}

where ‖ω ‖k,m,r are the seminorms

‖ω ‖k,m,r = sup
x∈Rd

(

1 + |x |
)−1/r ∣

∣ ∂|m |
m1,...,md

ωk(x)
∣

∣ (4)

defined for k = 1, 2, multiindices m = (m1, . . . , md), mj ≥ 0, and r ≥ 1.
Let π be the Gaussian measure on Ω defined by the covariances

∫

Ω

ωk(x)dπ(ω) = 0, Kkl(x− y) =

∫

Ω

ωk(x)ωl(y)dπ(ω) = V ∗ gkl(x− y)

where

gkl(x) = −∂2kl log |x | =
x̃kx̃l

|x |−3 .

The Fourier transform of the correlations is

K̂kl(p) =
pkpl

| p |2
V̂ (p).

It is clear that ω distributed according to π the gradient of the massless Gaussian free
field smeared out by convolution with U .

It has been proved in [6] that the Gaussian probability measure π is stationary and
ergodic for the Markov process ηt. That is: if the initial vector field F is sampled from
this distribution, then the vector field profile seen from the position of the moving particle
will have the same distribution at any later time. (Although [6] deals with the d ≥ 3
case the same proof applies for d = 2. See also [19] for the 1d case.) The process will
be considered in this stationary regime. That is, the initial profile η0 = F is distributed
according to the stationary measure π.

Non-isotropic SRBP
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The situation is similar to the previous case, but our environmental profile will be the
scalar field ξ : R2 → R

ξ(t, x) =
(

F − ∂1V ∗ ℓ(t, ·)
)

(X(t) + x).

This will be now a Markov process with continuous sample paths on

Ω =
{

ω ∈ C∞(R2 → R) : ‖ω ‖m,r <∞
}

and the seminorms ‖ω ‖m,r are defined very similarly to (4).
Computations very similar to those in [19] and [6] show that the Gaussian measure

π defined by the expectations and covariances

∫

Ω

ω(x)dπ(ω) = 0, K(x− y) =

∫

Ω

ω(x)ω(y)dπ(ω) = V (x− y)

is stationary and ergodic for this Markov process.
In order to keep unified and consistent notation, in the anisotropic case we will still

use vectorial notation for the scalar field ω, as follows:

ω1(x) = ω(x), ω2(x) ≡ 0.

In this case the probability measure π will be denoted as Gaussian distribution of a two
component vector field with covariances

Kkl(x− y) = V (x− y)δk,1δl,1.

DCGF

The environment seen by the moving point is now t 7→ η(t, ·) defined as:

η(t, x) = F (X(t) + x).

Now, t 7→ η(t, ·) is again a Markov process with continuous sample paths in the Fréchet
space

Ω =
{

ω ∈ C∞(R2 → R
2) : div ω ≡ 0, ‖ω ‖k,m,r <∞

}

where the seminorms ‖ω ‖k,m,r are formally defined as in (4).
Let now π be the Gaussian probability measure on Ω defined by the expectations and

covariances
∫

Ω

ωk(x)dπ(ω) = 0, Kkl(x− y) :=

∫

Ω

ωk(x)ωl(y)dπ(ω) = V ∗ gkl(x− y),

where now
gkl(x) = −∂̃2kl log |x | =

xkxl

|x |−3 .
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The Fourier transform of the correlations is now

K̂kl(p) =
p̃kp̃l

| p |2
V̂ (p).

The random vector field ωkl(x) is now the curl of the massless Gaussian free field smeared
out by convolution with U .

It is a well known fact that the the process η(t) of a diffusion (3) in any translation
invariant and ergodic divergence free vector field F is (time) stationary and ergodic (see
e.g. [10], or chapter 11 of [8]). In particular, this holds if the drift field F is sampled
from the distribution π.

1.4 Superdiffusive bounds

For both processes considered we denote

E(t) = E
(

|X(t) |2
)

, Ê(λ) =

∫ ∞

0

E(s)e−λsds.

The main result of the present paper is the superdiffusive lower bound stated in the
following theorem, which is valid for both processes.

Theorem 1. Let X(t) be either one of the (isotropic) processes SRBP or DCGF started
with initial environment profile sampled from the respective stationary distributions. There
exist constants 0 < C1, C2 <∞ such that for 0 < λ < 1 the following bounds hold

C1λ
−2 log | log λ | ≤ Ê(λ) ≤ C2λ

−2 | log λ | . (5)

Remarks: (1) Modulo Tauberian inversion, these bounds mean in real time

C3t log log t ≤ E
(

|X(t) |2
)

≤ C4t log t,

with 0 < C3, C4 <∞ and for t sufficiently large.
(2) Based on the Alder-Wainwright argument sketched in the Appendix (Section 4) the
expected true order is E

(

|X(t) |2
)

≍ t(log t)1/2.

The proof of Theorem 1 follows the main lines of [12]. However on the computational
level there are some notable differences. The bounds exploited in [12] which rely inter alia
on a clever application of Schwarz’s inequality don’t yield superdiffusive lower bounds
in our case. This is due to the isotropy of our model as opposed to the anisotropy of
the asymmetric simple exclusion models. From the Alder-Wainwright scaling argument
it follows (see the Appendix) that for anisotropic models E

(

|X(t) |2
)

≍ t(log t)2/3, while

for isotropic models E
(

|X(t) |2
)

≍ t(log t)1/2 is naturally expected. Thus, the isotropic
models are less superdiffusive than the anisotropic ones. This phenomenon manifests also
on computational level: proof of superdiffusive lower bound for isotropic models exhibits
some subtle a priori extra difficulty.

For the non-isotropic model we have the following bounds:
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Theorem 2. If X(t) is the non-isotropic SRBP then we get the bounds

C1λ
−2 | log λ |1/2 ≤ Ê(λ) ≤ C2λ

−2 | log λ | . (6)

Remark: Modulo Tauberian inversion, these bounds mean in real time

C3t(log t)
1/2 ≤ E

(

|X(t) |2
)

≤ C4t log t,

with 0 < C3, C4 <∞ and for t sufficiently large.

2 Fock space computations

2.1 Spaces and operators

For basics of Gaussian Hilbert spaces (that is: Fock spaces) see [17] or [7]. Let (Ω, π) be
either one of the probability spaces identified in subsection 1.3. The Gaussian Hilbert
space H = L2(Ω, π) is naturally graded

H =

∞
⊕

n=0

Hn

where
Hn = span{:ωl1(x1) . . . ωln(xn): : l1, . . . , ln = 1, 2, x1, . . . , xn ∈ R

2}.
Here and in the sequel :Z1 . . . Zn : denotes the Wick monomial formed by the jointly
Gaussian random variables Z1, . . . , Zn.

The operators ∇k, k = 1, 2, and ∆ are the usual ones. Their action on Wick mono-
mials is

∇k :ωl1(x1) . . . ωln(xn): =

n
∑

m=1

:ωl1(y1) . . . ∂kωlm(xm) . . . ωln(yn): ,

∆ =

2
∑

k=1

∇2
k.

They are defined as unbounded operators on H by graph closure. We will also need
the following creation and annihilation operators. Again, we give their action on Wick
monomials:

a∗k :ωl1(x1) . . . ωln(xn): =:ωk(0)ωl1(x1) . . . ωln(xn):

ak :ωl1(x1) . . . ωln(xn): =

n
∑

m=1

Kklm(xm) :ωl1(y1) . . .��
�
��ωlm(xm) . . . ωln(yn): .

Note that the creation and annihilation operators defined in the context of the different
models models are not unitary equivalent.
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In both isotropic cases (SRBP and DCGF) the infinitesimal generators of the semi-
groups of the stationary Markov process ηt, acting on L2(Ω, π), is expressed as

G = −S + A+ + A−,

S = −∆, A+ =
2
∑

k=1

a∗k∇k, A− =
2
∑

k=1

∇kak.

This follows from standard computations in the case of DCGF. For the SRBP process
it relies on somewhat more complex considerations with some involvement of Malliavin
calculus. For details see [6]. Note, that the infinitesimal generators of the two processes,
although formally similarly expressed, are not unitary equivalent.

For the non-isotropic SRBP, since ω2(x) ≡ 0, a∗2 = a2 = 0, the asymmetric part of
the generator is slightly modified:

A+ = a∗1∇1, A− = ∇1a1.

2.2 The variational formula

We write the displacement as sum of a martingale and compensator term. In each of the
cases we will concentrate on the first coordinate component.

X1(t) = B1(t) +

∫ t

0

ϕ(ηs)ds, (7)

where
ϕ : Ω → R, ϕ(ω) = ω1(0).

Note, that actually ϕ ∈ H1.
The martingale term is diffusive, so in order to prove superdiffusive bounds we have

to focus on the integral on the right hand side of (7). Laplace transformation yields:

∫ ∞

0

e−λtE

(

(
∫ t

0

ϕ(ηs)ds

)2
)

dt = λ−2(ϕ,Rλϕ), (8)

where

Rλ =

∫ ∞

0

e−λtetG = (λI −G)−1,

is the resolvent of the infinitesimal generator G. We are going to prove bounds for the
right hand side of (8).

The following variational formula is straightforward, see e.g. [12]:

(ϕ,Rλϕ) = sup
ψ∈H

{

2(ϕ, ψ)− (ψ, (λ+ S)ψ)− (Aψ, (λ+ S)−1Aψ)
}

The upper bounds in (5), (6) drop out essentially for free:

(ϕ,Rλϕ) ≤ sup
ψ∈H

{

2(ϕ, ψ)− (ψ, (λ+ S)ψ)
}

= (ϕ, (λI −∆)−1ϕ) ≤ C log λ.
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The last bound follows from straightforward computations on so-called diffusion in ran-
dom scenery, and proves the upper bound in both Theorem 1 and 2.

In order to get the more interesting lower bound we write first

(ϕ,Rλϕ) ≥ sup
ψ∈H1

{

2(ϕ, ψ)− (ψ, (λ+ S)ψ)− (Aψ, (λ+ S)−1Aψ)
}

= sup
ψ∈H1

{

2(ϕ, ψ)− (ψ, (λ+ S)ψ)− (A+ψ, (λ+ S)−1A+ψ)
}

. (9)

Note that for any ψ ∈ H1, A−ψ = 0.
We will treat the isotropic SRBP and DCGF processes and the anisotropic SRBP

separately.

Isotropic SRBP and DCGF models:

We write the variational test function ψ ∈ H1 as

ψ(ω) =

2
∑

l=1

∫

R2

ul(x)ωl(x)dx,

where u : R2 → R
2 is such that, u(−x) = u(x), (and thus û : R2 → R

2), and

SRBP : p× û(p) ≡ 0,

∫

R2

V̂ (p) (p · û(p))2 dp <∞,

DCGF : p · û(p) ≡ 0,

∫

R2

V̂ (p) (p× û(p))2 dp <∞.

We define v : R2 → iR be

SRBP : v = i div u, v̂(p) = p · û(p),
DCGF : v = i rot u, v̂(p) = p× û(p).

Then, in both cases v̂ : R2 → R and

v̂(−p) = −v̂(p), and

∫

R2

V̂ (p)

| p |2
v̂(p)2dp <∞. (10)

The first two terms on the right hand side of the variational lower bound (9) are
computed directly.

SRBP : (ϕ, ψ) =

∫

R2

V̂ (p)
p1

| p |2
v̂(p)dp =: J1(v̂) (11)

DCGF : (ϕ, ψ) =

∫

R2

V̂ (p)
p2

| p |2
v̂(p)dp =: J1(v̂) (12)

SRBP&DCGF : (ψ, (λ+ S)ψ) =

∫

R2

V̂ (p)
λ+ | p |2

| p |2
v̂(p)2dp =: J2(v̂). (13)
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In order to compute the third term on the right hand side of (9) we first consider the
SRBP case. We have

A+ψ = −
2
∑

k,l=1

∫

R2

∂kul(x) :ωk(0)ωl(x): dx,

and hence

(A+ψ, (λ+ S)−1A+ψ) = (14)
2
∑

k,l=1

2
∑

m,n=1

∫

R2

∫

R2

∫

R2

∂mun(y)∂kul(x)gλ(z)E (:ωm(0)ωn(y): :ωk(z)ωl(x+ z): ) dxdydz.

Here gλ(z) is the integral kernel of the operator (λ−∆)−1 in R
2, with Fourier transform

ĝλ(p) =
1

λ + | p |2
.

For the DCGF case one finds very similar formulas, with ∂k replaced by ∂̃k.
The expectation inside the integral in (14) is computed by exploiting the fact that the

fields ω are Gaussian and hence the four point functions arising are expressed in terms
of the covariances. After some straightforward computations, eventually we get:

SRBP : (A+ψ, (λ+ S)−1A+ψ) = (15)
∫

R2

∫

R2

V̂ (p)V̂ (q)
(p · q)2
| p |2 | q |2

1

λ+ | p− q |2
(v̂(p)− v̂(q))2 dqdp =: J3(v̂),

DCGF : (A+ψ, (λ+ S)−1A+ψ) =
∫

R2

∫

R2

V̂ (p)V̂ (q)
(p× q)2

| p |2 | q |2
1

λ+ | p− q |2
(v̂(p)− v̂(q))2 dqdp =: J3(v̂).

And the variational problem (9) becomes

(ϕ,Rλϕ) ≥ sup
v̂

(

2J1(v̂)− J2(v̂)− J3(v̂)
)

, (16)

with supremum taken over functions v̂ : R2 → R satisfying conditions (10).
Given the explicit expressions (11), (12) and (13) for J1(v̂) and J2(v̂), in order to

prove the superdiffusive lower bound in (5) we need to prove efficient upper bounds on
J3(v̂).

Anisotropic SBRP case:

The test function ψ ∈ H1 is written in the form

ψ(ω) =

∫

R2

u(x)ω(x)dx

11



with u : R2 → R, u(x) = u(−x). Then

(ϕ, ψ) =

∫

R2

û(p)V̂ (p)dp =: J1(û),

(ψ, (λ+ S)ψ) =

∫

R2

V̂ (p)(λ+ | p |2)û(p)2dp =: J2(û)

(A+ψ, (λ+ S)−1A+ψ) =

∫

R2

∫

R2

V̂ (p)V̂ (q)(p1û(p)− q1û(q))
2dpdq =: J3(û).

3 Computations

The following three subsections contain the computational parts of the proofs for the
isotropic cases (subsections 3.1 and 3.2), respectively the anisotropic case (subsection
3.3).

3.1 Upper bound on J3, isotropic models

Since the DCGF model is somewhat simpler than the SRBP, we will treat them in this
order.

DCGF:

Denote

D(λ, | p |) = 4

∫

R2

V̂ (q)
(p× q)2

| p |2 | q |2
1

λ+ | p− q |2
dq.

When estimating the function D(λ, | p |) (see Lemma 1 below and its proof) the vectorial
product p × q will help substantially. As we shall see later this is not the case for the
SRBP model.

By Schwarz’s inequality we get

J3(v̂) ≤
∫

R2

V̂ (p)D(λ, | p |)v̂(p)2dp.

and the variational problem (16) is readily solved by

v̂∗(p) =
p2

λ+ (1 +D(λ, | p |)) | p |2
,

which eventually yields the lower bound

(ϕ,Rλϕ) ≥
∫

R2

V̂ (p)
(

λ+ (1 +D(λ, | p |)) | p |2
)−1

dp. (17)

Thus, a suitable upper bound on D(λ, | p |) will provide a good lower bound on (ϕ,Rλϕ).
In subsection 3.2 we will prove the following

12



Lemma 1. In the DCGF case, for λ < 1 and | p | ≤ 1 we have

D(λ, | p |) ≤ C
∣

∣ log(λ+ | p |2)
∣

∣ . (18)

Inserting (18) into (17) we readily obtain

(ϕ,Rλϕ) ≥
∫

R2

11{| p |<1}V̂ (p)
(

λ+
(

1 + C
∣

∣ log(λ+ | p |2)
∣

∣

)

| p |2
)−1

dp > C log | log λ | .

which proves the lower bound in Theorem 1 for the DCGF.

SRBP:

Applying a similar argument to the SRBP process will not yield super diffusive lower
bound: the bound corresponding to (18) would be

D(λ, | p |) ≤ C | log λ |

and this is simply not sufficient for superdiffusivity.
In order to get the true superdiffusive lower bound we have to split the integral on the

right hand side of (15) according whether | p− q | is small or large and apply Schwarz’s
inequality only in the latter part. Let

J31(v̂) :=

∫

R2

∫

R2

V̂ (p)V̂ (q)
1

λ+ | p− q |2
(v̂(p)− v̂(q))2 11{| p−q |≥| p |/3}dqdp

J32(v̂) =

∫

R2

∫

R2

V̂ (p)V̂ (q)
1

λ+ | p− q |2
(v̂(p)− v̂(q))2 11{| p−q |≤| p |/3}dqdp

J3(v̂) ≤ J31(v̂) + J32(v̂).

Then, by applying Schwarz’s inequality

J31(v̂) ≤ 2

∫

R2

∫

R2

V̂ (p)V̂ (q)
1

λ+ | p− q |2
(

v̂(p)2 + v̂(q)2
)

11{| p−q |≤| p |/3}dqdp

≤
∫

R2

V̂ (p)D(λ, | p |)v̂(p)2dp,

where now

D(λ, | p |) = 4

∫

R2

V̂ (q)
1

λ+ | p− q |2
11{| p−q |≥| p |/3}dq.

In subsection 3.2 we prove the following

Lemma 2. In the isotropic SRBP case, for λ < 1 and | p | ≤ 1 we have

D(λ, | p |) ≤ C
∣

∣ log(λ+ | p |2 /9)
∣

∣ .

13



Now, we give upper bound on J32:

J32 ≤
∫

R2

∫

R2

V̂ (p)V̂ (q)
1

λ+ | p− q |2
((p− q) · ∇v̂(r(p, q)))2 11{| p−q |≤| p |/3}dqdp

≤ 1

4

∫

R2

V̂ (p) | p |2 sup
r:| r−p |<| p |/3

| ∇v̂(r) |2 dp =: J ′
32(v̂)

We choose the variational function

v̂∗(p) := cp1h(λ+ |p|2), h(x) :=
1

x log(x+ x−1)
. (19)

Then at one hand, for c sufficiently small we get

J1(v̂
∗)− J2(v̂

∗)− J31(v̂
∗) ≥ C log | log λ | . (20)

On the other hand, in the next subsection we also prove

Lemma 3. With the choice (19) of the variational function we have

J ′
32(v̂

∗) ≤ C. (21)

Finally, from (20) and (21) it follows that

(ϕ,Rλϕ) > C log | log λ |
which gives the lower bound Theorem 1 for the SRBP.

3.2 Proof of Lemma 1, 2 and 3

Proof of Lemma 1. By the rotational symmetry we may assume that p > 0 is real. Using
the decay of V̂ the integral on |q| > 2 is bounded by a fixed constant. Since V̂ is bounded
it is enough to bound

∫

|q|≤2

(p× q)2

| p |2 | q |2
1

λ+ | p− q |2
dq. (22)

Let q = (r cos(t), r sin(t)) then we may rewrite (22) as
∫ 2

0

∫ 2π

0

p2r2 sin2(t)

p2r2
1

λ+ | p− reit |2
rdtdr =

∫ 2

0

∫ 2π

0

sin2(t)

λ+ r2 + p2 − 2pr cos(t)
rdtdr. (23)

If A ≥ B ≥ 0 then

sin2(t)

A+B cos(t)
+

sin2(π + t)

A+B cos(π + t)
=

2A sin2(t)

A2 − B2 cos2(t)
≤ 2

A

which shows that after integrating in t in (23):
∫ 2

0

∫ 2π

0

sin2(t)

λ+ r2 + p2 − 2pr cos(t)
rdtdr ≤

∫ 2

0

2π

λ+ r2 + p2
rdr = log(λ+p2+4)−log(λ+p2).

Collecting all our estimates and using λ < 1, |p| ≤ 1 the statement of the lemma follows.
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Proof of Lemma 2. By the decay of V̂ the integral on |p− q| > 2 is bounded by a fixed
constant. Thus we only need to bound

∫

|p−q|≤2

V̂ (q)
1

λ+ | p− q |2
11{| p−q |≥| p |/3}dq =

∫ 2

|p|/3

1

λ+ x2
xdx.

The last integral is log(λ+ 2)− log(λ+ |p|2/9) from which the lemma follows.

Proof of Lemma 3. Recall the definition of the variational function v̂∗ from (19). In order
to avoid heavy notation we will drop the ∗ from v̂∗ in the subsequent computations. We
have

∇v̂(p) =
(

h(λ+ | p |2) + 2p21h
′(λ+ | p |2), 2p1p2h′(λ+ | p |2)

)

and hence

|∇v̂(p) |2 ≤ 2h(λ+ | p |2)2 + 8|p|4h′(λ+ | p |2)2

≤ 2h(λ+ | p |2)2 + 8(λ+ | p |2)2h′(λ+ | p |2)2. (24)

From the explicit form of h:

|h′(x)x | =
∣

∣

∣

∣

∣

1− x2

x(1 + x2) log2
(

1
x
+ x
) − 1

x log
(

1
x
+ x
)

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

1

x log
(

1
x
+ x
)

∣

∣

∣

∣

∣

= 2 |h(x) |

which together with (24) yields

| ∇v̂(p) |2 ≤ 34h(λ+ | p |2)2.

Thus it is enough to bound
∫

R2

V̂ (p) | p |2 sup
r:| r−p |<| p |/3

h(λ + | r |2)2dp.

Note that from the definition of h(x) (see (19)) we have

| p |2 sup
r:| r−p |≤| p |/3

h(λ + | r |2)2 ≤ 81
1

| p |2 log2(| p |2 /9 + 9 | p |−2)
. (25)

The lemma now follows from the fact that V̂ (p) is bounded and the function on the right
hand side (25) is locally integrable near | p | = 0 in R

2.

3.3 The non-isotropic SRBP

The proof of the lower bound is considerably simpler in that case. We use the same
strategy as before, setting

D(λ, |p|) = 4

∫

R2

V̂ (p)
1

λ+ |p− q|2dq

15



by Schwarz’s inequality we get

J3(û) ≤
∫

R2

V̂ (p)D(λ, |p|)p21û(p)2dp.

As in the DCGF case we have that if λ < 1 and |p| ≤ 1 then

D(λ, |p|) ≤ C
∣

∣ log(λ+ p2)
∣

∣ .

Using the same arguments as before we get the following lower bound for sufficiently
small λ:

(ϕ,Rλϕ) ≥
∫

R2

11{| p |<1}V̂ (p)
1

λ+ |p|2 + Cp21
∣

∣ log(λ+ | p |2)
∣

∣

dp.

≥
∫

R2

11{| p |<1/2}V̂ (p)
1

λ+ |p|2 + Cp21 | log(λ) |
dp.

Changing to polar coordinates and using that V̂ (p) > C ′ > 0 for |p| small enough we
have the lower bound

C ′

∫ ǫ

0

∫ 2π

0

r

λ+ r2 + C| logλ|r2 cos2 αdαdr = C ′

∫ ǫ

0

2πr
√

(r2 + λ) (C| log λ|r2 + r2 + λ)
dr

≥ C ′′
√

| log λ|.

This proves Theorem 2.

4 Appendix: The Alder-Wainwright scaling argument

for superdiffusivity of tracer motion

We reproduce the nonrigorous, nevertheless very instructive scaling argument due to B.J.
Alder and T.E. Wainwright, respectively, to D. Forster, D. Nelson and M. Stephen, which
sheds sharp light on the origins of superdiffusivity in tracer particle motions. The original
papers are [1], [2], [5], see also [18].

4.1 General formal setup and notation

Let t 7→ X(t) ∈ R
d be a random motion of a tracer particle, with stationary and ergodic

increments. The motion is performed in some random environment which also evolves in
time. The time evolution of the tracer particle and that of the background environment
may mutually influence one another.

Usually we decompose the random motion as sum of a martingale and its compensator:

X(t) =M(t) +

∫ t

0

V (s)ds, (26)

16



where M(t) is a square integrable martingale with stationary and ergodic increments and
the compensator V (t) is a stationary and ergodic process which is also square integrable.
We’ll call V (t) the instantaneous velocity of the tracer. We are interested in understand-
ing the origins of the possibly superdiffusive behaviour of X(t). Since M(t) is anyway
diffusive, we don’t care much about it. The main contribution to the superdiffusive be-
haviour anyway comes from the compensator (integral term) on the right hand side of
(26).

It is assumed that the instantaneous velocity comes from some background velocity
field U(t, x) as follows:

V (t) = U(t, X(t)). (27)

It is important to note that we think about a joint random dynamics t 7→
(

X(t), U(t, ·)
)

.
The process of the velocity field t 7→ U(t, ·) is usually not stationary while the instanta-
neous velocity of the tracer given in (27) is.

We will consider here only the isotropic case. The results of similar considerations
applied to non-isotropic cases will be also summarized at the end of this appendix.

The correlations of the velocity field :

K(t, x) := E (U(0, 0) · U(t, x)) .

The velocity autocorrelation function:

C(t) := E (V (0) · V (t))

Mind that the velocity process V (t) is assumed stationary (and ergodic), thus

E (V (s) · V (t)) = C(t− s).

The variance of the displacement is:

E(t) := E |X(t) |2 , Ẽ(t) := E

∣

∣

∣

∣

∫ t

0

V (s)

∣

∣

∣

∣

2

.

Since the martingale part in (26) is anyway diffusive, in case of superdiffusive behaviour

E(t) ≍ Ẽ(t).

By stationarity of V (t)

Ẽ(t) = 2

∫ t

0

(t− s)C(s)ds,

and hence

Ẽ(t) ≍ t

∫ t

0

C(s)ds. (28)

We shall refer to (28) as the asymptotic form of the Green-Kubo formula.

17



4.2 Scaling assumptions and computation

Scaling of the displacement: We assume that X(t) is of order

α(t) = tν(log t)γ.

More explicitly, assume that

P (X(t) ∈ dx) ≍ α(t)−dϕ(α(t)−1x)dx, (29)

where ϕ : Rd → R+ is a density, which is regular at x = 0 and decays fast at |x | → ∞.

Scaling of the velocity field: We also assume that the correlations of the velocity field
U(t, x) scale as

K(t, x) ≍ β(t)−dψ(β(t)−1x).

Note that under this assumption
∫

Rd

K(t, x)dx ≍ const.

This corresponds to some kind of conservation of momentum carried by the velocity field.

Main scaling assumptions: We make two important assumptions

1. Regularity of ψ and ϕ: The following regularity conditions hold:
∫

Rd

|ψ(x) | dx <∞, ψ̂(0) > 0. (30)

2. Displacement scales on faster order than the velocity-field correlations:

β(t) = O(α(t)). (31)

Next we compute the velocity autocorrelation function:

C(t) = E (V (0) · V (t)) = E (U(0, 0) · U(t, X(t)))

≈
∫

Rd

K(t, x)P (X(t) ∈ dx) decoupling

≍
∫

Rd

β(t)−dψ(β(t)−1x)α(t)−dϕ(α(t)−1x)dx scaling

= α(t)−d
∫

Rd

ψ(x)ϕ(β(t)α(t)−1x)dx

≍ α(t)−d (32)

Of course, the second step (decoupling) is the shaky one. In the last step we used the
main scaling asumptions (30) and (31). Regularity of ϕ at x = 0 was also assumed.
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4.3 Conclusions

From the scaling assumption (29) it follows that

Ẽ(t) ≍ α(t)2. (33)

On the other hand, using the Green-Kubo formula (28) and the computations in (32) we
get

Ẽ(t) ≍ t

∫ t

α(s)−dds. (34)

The only choices of the scaling function α(t) consistent with both (33) and (34), are

d = 1 : ν =
2

3
, γ = 0, E(t) ≍ t4/3,

d = 2 : ν =
1

2
, γ =

1

4
, E(t) ≍ t(log t)1/2,

d = 3 : ν =
1

2
, γ = 0, E(t) ≍ t.

If d = 2 and the system is non-isotropic in the sense that X2(t) is assumed diffusive
and X1(t) possibly superdiffusive, very similar considerations and computations lead to
the following conclusion:

d = 2 : ν =
1

2
, γ =

1

3
, E(t) ≍ t(log t)2/3.
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