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Abstract

For two solutions of the WDVV equations that are related by the

inversion symmetry, we show that the associated principal hierarchies

of integrable systems are related by a reciprocal transformation, and

the tau functions of the hierarchies are related by a Legendre type

transformation. We also consider relationships between the Virasoro

constraints and the topological deformations of the principal hierar-

chies.

1 Introduction

The Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations, which arise in
the study of 2D topological field theory (TFT) in the beginning of 90’s of
the last century, are given by the following system of PDEs for an analytic
function F = F (v1, . . . , vn):

i) The variable v1 is specified so that

ηαβ :=
∂3F

∂v1∂vα∂vβ
= constant, det(ηαβ) 6= 0; (1.1)

ii) The functions cαβγ := ηανcνβγ with

cαβγ =
∂3F

∂vα∂vβ∂vγ
, (ηαβ) = (ηαβ)

−1 (1.2)
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yield the structure constants of an associative algebra for any fixed
v = (v1, . . . , vn), i.e, they satisfy

cλαβc
ν
λγ = cλγβc

ν
λα, for any 1 ≤ α, β, γ, ν ≤ n. (1.3)

Here and in what follows summation with respect to repeated upper
and lower indices is assumed.

In [6, 7] Dubrovin formulated the WDVV equations with an additional quasi-
homogeneity condition on F , we will recall this condition in Sec. 4 and
call a solution of (1.1)–(1.3) satisfying the quasi-homogeneous condition a
conformal solution of the WDVV equations. These equations together with
the quasi-homogeneity condition are satisfied by the primary free energy
F of the matter sector of a 2D TFT with n primary fields as a function
of the coupling constants [3, 4, 30]. In [6, 7] Dubrovin reformulated these
equations in a coordinate free form by introducing the notion of Frobenius
manifold structure on the space of the parameters v1, . . . , vn and revealed
significantly rich geometric structures of the WDVV equations, which have
become important in the study of several different areas of mathematical
research, including the theory of Gromov - Witten invariants, singularity
theory and nonlinear integrable systems, see [7, 11, 12, 14] and references
therein. In particular, such geometrical structures enable one to associate a
solution of the WDVV equations with a hierarchy of bihamiltonian integrable
systems of hydrodynamic type which is called the principal hierarchy in [14].
This hierarchy of integrable systems plays important role in the procedure
of reconstructing a 2D TFT from its primary free energy as a solution of the
WDVV equations. In this construction, the tau function that corresponds
to a particular solution of the principal hierarchy serves as the genus zero
partition function, and the full genera partition function of the 2D TFT is
a particular tau function of an integrable hierarchy of evolutionary PDEs
of KdV type which is certain deformation of the principal hierarchy, such a
deformation of the principal hierarchy is call the topological deformation [14].

In this paper we are to interpret certain discrete symmetry of the WDVV
equations in term of the associated principal hierarchy and its tau function.
The discrete symmetry we consider here was given by Dubrovin in Appendix
B of [7] and is called the inversion symmetry. This symmetry is obtained
from a special Schlesinger transformation of the system of linear ODEs with
rational coefficients associated to the deformed flat connection of the Frobe-
nius manifolds (see Remark 4.2 of [8] for details). It turns out that in terms
of the principal hierarchy and its tau function the inversion symmetry has a
simple interpretation. On the principal hierarchy it acts as certain recipro-
cal transformation, and on the associated tau function it acts as a Legendre
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type transformation. In Appendix B of [7] there is given another class of dis-
crete symmetries of the WDVV equations which are called the Legendre-type
transformations, the relation of such symmetries with the principal hierar-
chy and its tau function is given in [14]. Besides these discrete symmetries,
the WDVV equations also possess continuous symmetries whose Lie algebra
of infinitesimal generators (without the quasi-homogeneity condition) was
studied in [2, 21, 16, 19, 20].

Recall [7] that a symmetry of the WDVV equations is given by a trans-
formation

vα 7→ v̂α, ηαβ 7→ η̂αβ , F 7→ F̂ (1.4)

that preserves the WDVV equations. The inversion symmetry given in [7]
has the following form:

v̂1 =
1

2

ηαβv
αvβ

vn
, v̂i =

vi

vn
(i = 2, . . . , n− 1), v̂n = −

1

vn
,

η̂αβ = ηαβ , F̂ (v̂) = (vn)−2

(

F (v)−
1

2
ηαβv

1vαvβ
)

.

(1.5)

Here we assume that η11 = 0 and the coordinates v1, . . . , vn are normalized
such that the constants ηαβ take the values

ηαβ = δα+β,n+1. (1.6)

This can always be achieved by performing an invertible linear transformation

v1 7→ ṽ1 = v1 +
n
∑

i=2

biv
i, vj 7→ ṽj =

n
∑

i=2

a
j
iv

i (j = 2, . . . , n),

where bi, a
j
i ∈ C. We call the solution F̂ (v̂) of the WDVV equations (1.1)–

(1.3) the inversion of the solution F (v).
We arrange the content of the paper as follows. We first recall in Sec.

2 the definition of the principal hierarchy and its tau functions associated
to a calibrated solution of the WDVV equations. We then show in Sec. 3
that the action of the inversion symmetry of the WDVV equations on prin-
cipal hierarchies is given by certain reciprocal transformation, and we give
the transformation rule of the associated tau functions, see Propositions 3.2
and 3.3. In Sec. 4 we impose the conformal condition on the solution of
the WDVV equations and consider the transformation rule of the inversion
symmetry on principal hierarchies and their bihamiltonian structures. These
results will be used when we study the topological deformations of princi-
pal hierarchies. In Sec. 5 we consider transformation rule of the Virasoro
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constraints for tau functions of a principal hierarchy. In Sec. 6 we consider
the action of the inversion symmetry on the topological deformations of the
principal hierarchies and their tau functions.

The present paper is a rewritten of an early preprint [28]. We omit
the content on the type I symmetries of the WDVV equations, and refine
presentations of the results there. The main new content is the proof of
Conjecture 6.1 of [28].

2 Calibrations, Principal Hierarchies, and

Tau Functions

The notion of calibrations of a solution of the WDVV equations (or a Frobe-
nius manifold) corresponds to the choice of a system of deformed flat coor-
dinates on a Frobenius manifold [7], it was first introduced in [18] and then
modified in [2]. In what follows we use the modified one.

Definition 2.1 Let F (v) be a solution of the WDVV equations, a family of
functions

{θα,p(v) | α = 1, . . . , n; p = 0, 1, 2, . . .}

is called a calibration of F (v), if their generating functions

θα(z) =
∑

p≥0

θα,p(v)z
p

satisfy the equations

∂α∂βθν(z) = z c
γ
αβ∂γθν(z), ∂α =

∂

∂vα
, α, β, ν = 1, . . . , n, (2.1)

and the normalization conditions

θα(0) = vα := ηαβv
β, (2.2)

∂µθα(z) η
µν ∂νθβ(−z) = ηαβ, (2.3)

θα,1(v) =
∂F

∂vα
, (2.4)

∂1θα(z) = z θα(z) + η1α. (2.5)

The solution F (v) together with a calibration {θα,p(v)} is called a calibrated
solution of the WDVV equations.
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Let (F (v), {θα,p(v)}) be a calibrated solution of the WDVV equations, we
introduce a hierarchy of evolutionary PDEs of hydrodynamic type:

∂vγ

∂tα,p
= ηγβ

∂

∂x

(

∂θα,p+1

∂vβ

)

, α, γ = 1, . . . , n, p ≥ 0. (2.6)

It is easy to see that
∂vγ

∂t1,0
=

∂vγ

∂x
,

so in what follows we identify t1,0 with x. By using the WDVV equations
one can prove the following results:

i) Each flow ∂α,p possesses a Hamiltonian formulism with the Hamil-

tonian operator P1 = (P αβ
1 ) = ηαβ∂x and Hamiltonian Hα,p[v] =

∫

θα,p+1(v) dx;

ii) {Hα,p, Hβ,q}1 = 0, where { , }1 is the Poisson bracket defined by P1

{H1, H2}1 =

∫

δH1

δvα
P

αβ
1

(

δH2

δvβ

)

dx; (2.7)

iii) Denote by ∂α,p :=
∂

∂tα,p , then ∂β,qθα,p(v) = ∂α,pθβ,q(v).

The second property ii) also implies

[∂α,p, ∂β,q] = 0, ∂α,pHβ,q = 0,

which are easy corollaries of the properties of Poisson brackets.

Definition 2.2 The hierarchy (2.6) of integrable evolutionary PDEs is called
the principal hierarchy associated to the calibration {θα,p(v)}.

Remark 2.3 The notion of principal hierarchy was introduced in [14] for
Frobenius manifolds associated to conformal solutions of the WDVV equa-
tions, in this case calibrations are given by the deformed flat coordinates of
the Frobenius manifolds [7], see Sec. 4 below.

Now we are to define tau functions of the principal hierarchy as it is done
in [7, 14]. First we recall the definition [7] of the family of functions

{Ωα,p;β,q(v) | α, β = 1, . . . , n; p, q = 0, 1, 2, . . .}

by the following generating functions

∑

p,q≥0

Ωα,p;β,q(v) z
pwq =

∂µθα(z) η
µν ∂νθβ(w)− ηαβ

z + w
. (2.8)
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Then one can prove that

Ωα,p;β,q = Ωβ,q;α,p, ∂γ,sΩα,p;β,q = ∂α,pΩγ,s;β,q, (2.9)

which imply that if vα(t) is a solution of the principal hierarchy associated
to certain calibration, then there exists a function f(t) such that

Ωα,p;β,q(v(t)) = ∂α,p∂β,qf(t).

In particular, we have θα,p(v(t)) = Ω1,0;α,p(v(t)) = ∂1,0∂α,pf(t).

Definition 2.4 Let (F (v), {θα,p(v)}) be a calibrated solution of the WDVV
equations, {∂α,p} be the associated principal hierarchy. A function τ(t) is
called a tau function of the principal hierarchy if

Ωα,p;β,q(v(t)) = ∂α,p∂β,q log τ(t), (2.10)

where vα(t) = ηαβ∂1,0∂β,0 log τ(t).

Note that if τ(t) is a tau function of the principal hierarchy, then vα(t) =
ηαβ∂1,0∂β,0 log τ(t) is a solution of the principal hierarchy. Indeed, by using
the property of the following property of the functions Ωα,p;β,q [7]

∂ξΩα,p;β,q =
∂θα,p

∂vσ
∂θβ,q

∂vλ
cσλξ , cσλξ = ησγcλγξ (2.11)

we have

∂vα(t)

∂tβ,q
= ηαγ∂1,0∂γ,0∂β,q log τ(t) = ηαγ∂1,0Ωγ,0;β,q(v(t))

= ηαγ
∂Ωγ,0;β,q

∂vξ
vξx(t) = ηαγ

∂θβ,q

∂vλ
cλγξv

ξ
x(t)

= ηαγ∂x
∂θβ,q+1

∂vγ
.

On the other hand, the above argument shows that a solution of the principal
hierarchy also defines a tau function.

3 The Actions of the Inversion Symmetry

In this section, we study the actions of the inversion symmetry on calibra-
tions, principal hierarchies, and tau functions of a solution of the WDVV
equations. We fix a pair of solutions F (v), F̂ (v̂) of the WDVV equations
that are related by the transformation (1.5).
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Proposition 3.1 Let {θα,p(v)} be a calibration of F (v), then the following
functions

θ̂1,0(v̂) = −
1

vn
, θ̂1,p(v̂) = −

θn,p−1(v)

vn
, p ≥ 1,

θ̂i,p(v̂) =
θi,p(v)

vn
, 2 ≤ i ≤ n− 1, p ≥ 0, (3.1)

θ̂n,p(v̂) =
θ1,p+1(v)

vn
, p ≥ 0,

give a calibration {θ̂α,p(v̂)} of F̂ (v̂).

Proof It was shown in [7] that

ĉαβγ(v̂) =
∂3F̂ (v̂)

∂v̂α∂v̂β v̂γ
= (vn)−2 ∂v

λ

∂v̂α
∂vµ

∂v̂β
∂vν

∂v̂γ
cλµν(v).

One can also prove that

vnδnα
∂vµ

∂v̂β
+ vnδnβ

∂vµ

∂v̂α
=

∂2vµ

∂v̂α∂v̂β
+ ηαβv

nδ
µ
1 .

By using these identities, the proposition is proved straightforwardly. �

Proposition 3.2 Let {∂α,p} be the principal hierarchy associated to a cali-
bration {θα,p(v)} of F (v). Introduce the following reciprocal transformation

dx̂ =

n
∑

α=1

∑

p≥0

θα,p(v)dt
α,p, (3.2)

t̂1,0 = x̂, t̂1,p = −tn,p−1, p ≥ 1,

t̂n,p = t1,p+1 (p ≥ 0), t̂i,p = ti,p, 2 ≤ i ≤ n, p ≥ 0,
(3.3)

and denote ∂̂α,p :=
∂

∂t̂α,p , then we have

∂v̂β

∂t̂α,p
= η̂βγ

∂

∂x̂

(

∂θ̂α,p+1(v̂)

∂v̂γ

)

, α, β = 1, . . . , n, p ≥ 0, (3.4)

i.e. {∂̂α,p} is the principal hierarchy of F̂ (v̂) with calibration {θ̂α,p(v)}.
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Proof From the definition of the reciprocal transformation we have

∂

∂x̂
=

1

vn
∂

∂x
,

∂

∂t̂1,p
= −

∂

∂tn,p−1
+

θn,p−1(v)

vn
∂

∂x
, p ≥ 1,

∂

∂t̂i,p
=

∂

∂ti,p
−

θi,p(v)

vn
∂

∂x
, 2 ≤ i ≤ n, p ≥ 0,

∂

∂t̂n,p
=

∂

∂t1,p+1
−

θ1,p+1(v)

vn
∂

∂x
, p ≥ 0.

(3.5)

The proposition can be proved by direct calculation. �

Proposition 3.3 Let τ(t) be a tau function of the principal hierarchy asso-
ciated to a calibration {θα,p(v)} of F (v). Define

log τ̂(t̂) = log τ(t)− x
∂ log τ(t)

∂x
, (3.6)

then τ̂(t̂) is a tau function of the principal hierarchy associated to {θ̂α,p(v̂)}.

Proof By definition the functions Ω̂α,p;β,q(v̂) are given by (2.8) in terms of

the functions {θ̂α,p(v̂)}. From the relation (1.5), (3.1) it follows that

Ω̂α,p;β,q(v̂) =(−1)δ
1
α+δ1β

(

Ωα+(n−1)δ(α),p−δ(α);β+(n−1)δ(β),q−δ(β)(v)

−
1

vn
θα+(n−1)δ(α),p−δ(α)(v) θβ+(n−1)δ(β),q−δ(β)(v)

)

, (3.7)

where δ(α) = δ1α−δnα, and we assume that θn,−1 = 1, Ωα,p;n,−1 = Ωn,−1;β,q = 0
when (α, p), (β, q) 6= (1, 0). Then one can verify, by using (1.5), (3.1) and
(2.10), that

Ω̂α,p;β,q(v̂(t̂)) = ∂̂α,p∂̂β,q log τ̂ (t̂),

where v̂α(t̂) = ηαβ∂̂1,0∂̂β,0 log τ̂ (t̂). The proposition is proved. �

Let τ(t) be a tau function of a principal hierarchy, then the reciprocal
transformation (3.2) can be written as

dx̂ = d

(

∂

∂x
log τ(t)

)

.

It follows that up to the addition of a constant we have

x̂ =
∂

∂x
log τ(t). (3.8)
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The constant can be absorbed by a translation of x̂ in the definition of the
reciprocal transformation, so we will assume from now on the validity of
(3.8). Thus in terms of a given tau function, the reciprocal transformation
(3.2), (3.3) can be represented by (3.3), (3.6) and (3.8).

We note that the inverse of the transformation (3.3), (3.8), (3.6) is given
by (3.3) and

x = −
∂

∂x̂
log τ̂(t̂), log τ(t) = log τ̂(t̂)− x̂

∂ log τ̂(t̂)

∂x̂
. (3.9)

They are transformations of Legendre type.

4 Conformal Case

In this section we are to include the quasi-homogeneity condition into the
WDVV equations as it is formulated in [7].

Definition 4.1 A solution F (v) of the WDVV equations is called conformal
if there exists a vector field E, called the Euler vector field, of the form

E =
n
∑

α=1

(

qαβv
β + rα

)

∂α, qαβ , r
α ∈ C,

and some constants d, Aαβ, Bα, C ∈ C such that

E(F ) = (3− d)F +
1

2
Aαβv

αvβ +Bαv
α + C.

It is often assumed that the matrix Q = (qαβ ) is diagnolizable and q11 = 1.
The coordinates v1, . . . , vn are normalized so that

E =

n
∑

α=1

(dαv
α + rα) ∂α, d1 = 1,

and rα = 0 if dα 6= 0. In this paper, we assume that

r1 = · · · = rn = 0.

This assumption ensures that the solution F̂ (v̂) of the WDVV equations
obtained from F (v) by the action of the inversion symmetry also has a diag-
nolizable Euler vector field, while this is not always true without the above
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assumption, see [7] and Lemma 4.2. Then the Euler vector field can be
written in the following form:

E =

n
∑

α=1

(

1−
d

2
− µα

)

vα ∂α, µ1 = −
d

2
,

where the constants d and {µα} are called the charge and the spectum of
F (v) respectively [7].

Note that the WDVV equations only involve the third order derivatives
of F (v), so we can add certain quadratic functions of v1, . . . , vn to F (v) such
that the constants Aαβ, Bα, C satisfy the following normalizing conditions

Aαβ 6= 0 only if µα + µβ = −1,

Bα 6= 0 only if µα =
d

2
− 2,

C 6= 0 only if d = 3.

Further more, our assumption on η11 and rα implies that

A1α = 0, B1 = 0.

The following lemma is proved in [7].

Lemma 4.2 ([7]) Let F (v) be a conformal solution of the WDVV equations
with charge d and spectrum {µα}, and F̂ (v̂) be its inversion, then F̂ (v̂) is
also conformal, whose charge d̂ and spectrum {µ̂α} read

d̂ = 2− d, µ̂1 = µn − 1, µ̂n = µ1 + 1, µ̂i = µi (2 ≤ i ≤ n− 1). (4.1)

Definition 4.3 Let F (v) be a conformal solution of the WDVV equations
with spectrum {µα}, a calibration {θα,p(v)} is called conformal if there exist
constant matrices R1, R2, . . . such that

E (∂βθα,p(v)) = (p+ µα + µβ) ∂βθα,p(v) +

p
∑

k=1

∂βθγ,p−k(v) (Rk)
γ

α , (4.2)

and

(Rk)
α
β 6= 0 only if µα − µβ = k, (4.3)

ηαγ(Rk)
γ
β + (−1)kηβγ(Rk)

γ
α = 0. (4.4)
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The property (4.3) implies that there is only finitely many nonzero matri-
ces Rk. These matrices and the metric (ηαβ), the spectrum {µα} form a
representative of the monodromy data of F (v) at z = 0, and

vα(z) =
∑

p≥0

θγ,p(v)
(

zµzR
)γ

α
, α = 1, . . . , n

form a system of flat coordinates for the deformed flat connection of the
Frobenius manifold associated to the conformal solution F of the WDVV
equations. Here R = R1 + R2 + . . . and µ = diag(µ1, . . . , µn). See [7, 8] for
details.

Proposition 4.4 Let (F (v), {θα,p(v)}) be a calibrated conformal solution of

the WDVV equations, then the calibration {θ̂α,p(v̂)} of F̂ (v̂) is also conformal.

Proof We only need to compute Ê
(

∂̂β θ̂α,p(v̂)
)

, then the matrices R̂1, R̂2, . . .

for F̂ (v̂) can be obtained

(R̂k)
α
β = (−1)δ

α
1
+δ1β
(

Rk+δ(α)−δ(β))

)α+(n−1)δ(α)

β+(n−1)δ(β)
, k = 1, 2, . . . .

The proposition is proved. �

The principal hierarchy associated to a conformal calibtation has a very
important additional structure – the bihamiltonian structure. We already
know from Sec. 2 that the principal hierarchy has one Hamiltonian structure
P1. When the calibrated solution (F (v), {θα,p(v)}) is conformal, we have the
following results.

Lemma 4.5 ([7]) Define a matrix differential operator P2 = (P αβ
2 ), where

P
αβ
2 = gαβ(v)∂x + Γαβ

γ (v) vγx, (4.5)

gαβ(v) =

(

1−
d

2
− µγ

)

vγcαβγ (v), Γαβ
γ (v) =

(

1

2
− µβ

)

cαβγ (v), (4.6)

then P2 is a Hamiltonian operator which is compatible with P1. Furthermore,
for any conformal calibration {θα,p(v)} of F (v), we have

{· , Hα,p−1}2 =

(

p+ µα +
1

2

)

{· , Hα,p}1 +

p
∑

k=0

(Rk)
β

α {· , Hβ,p−k}1, (4.7)

where { , }2 is the Poisson bracket defined by P2, see (2.7).

It has been shown in Proposition 3.2 that the inversion symmetry pre-
serves the first Hamiltonian structure P1, then it is natural to ask: does it
also preserve the second Hamiltonian structure P2?
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Proposition 4.6 Let F (v), F̂ (v̂) be a pair of solutions of the WDVV equa-
tions that are related by the inversion symmetry, and Pi, P̂i (i = 1, 2) be the
corresponding Hamiltonian structures. Denote by Φ the reciprocal transfor-
mation (3.2) and (3.3), then we have

Φ(P1) = P̂1, Φ(P2) = P̂2.

We note that the action of reciprocal transformations of the form (3.2)
and (3.3) on evolutionary PDEs of hydrodynamic type and their Hamilto-
nian structures of the form (4.5) was first investigated by Ferapontov and
Pavlov in [17]. After the action of a reciprocal transformation a Hamilto-
nian operator of the form (4.5) becomes nonlocal in general, the nonlocal
Hamiltonian operator is given by a differential operator of the form (4.5)
plus an integral operator, in this case the metric (gαβ) is no longer flat. In
[1] Abenda considered the conditions under which such a reciprocal transfor-
mation preserves the locality of a Hamiltonian structures of hydrodynamic
type. In [23] we studied a general class of nonlocal Hamiltonian structures in
terms of infinite dimensional Jacobi structures and gave the transformation
rule of such Hamiltonian structures under certain reciprocal transformations,
a criterion on whether a reciprocal transformation preserves the locality of a
Hamiltonian structure was also given in [23].

Proof of Proposition 4.6 According to the general results of [23] (c.f. [17]),
Φ(Pi) (i = 1, 2) are Jacobi structures of hydrodynamic type. To prove the
proposition, one need to show that they are both local, and their metrics
coincide with the ones of P̂i (i = 1, 2).

The locality problem is well studied in Sec. 3.2 of [23]. We now give the
proof of the locality of Φ(P2) by using the criterion given in [23]. The proof
of locality for Φ(P1) is easier and we omit it here.

Let us denote Λ =
∫

vn dx. We first need to show that

[P2,Λ] = 0, (4.8)

which is equivalent to say that there exists a constant c such that

∇i∇k (v
n) = c δik,

where ∇ is the Levi-Civita connection of the metric (gαβ) = (gαβ)−1 (see
(4.6)). By a straightforward calculation one can obtain that c = 1−d

2
, thus

(4.8) holds true.
We then need to compute the nonlocal charge z(P2, v

n) defined in [23] by

z(P2, v
n) =

1

2
gαβ∇α(v

n)∇β(v
n)− c vn. (4.9)
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It is equal to
1

2
gnn −

1− d

2
vn = 0.

This fact together with (4.8) implies the locality of Φ(P2), see Theorem 3.2.4
of [23].

Next, we need to show the coincidence of the metrics of Φ(Pi) and of P̂i,
i = 1, 2, this follows from the following identities

(vn)2η̂αβ dv̂
αdv̂β = ηαβ dv

αdvβ,

(vn)2ĝαβ(v̂) dv̂
αdv̂β = gαβ(v) dv

αdvβ,

and the transformation rule of the metrics of hydrodynamic Jacobi structures
[17, 23]. The proposition is proved. �

5 Virasoro Constraints of the Tau Functions

There is an important class of solutions of the principal hierarchy (2.6) which
can be obtained by solving the following system of equations [7, 14]:

∑

t̃α,p
∂θα,p(v)

∂vγ
= 0, γ = 1, . . . , n, (5.1)

where t̃α,p = tα,p − cα,p and cα,p are some constants which are assumed to be
zero except for finitely many of them. These constants are required to satisfy
the genericity conditions that there exist constants v10, . . . , v

n
0 such that

∑

cα,p∂γθα,p(v)|v=v0 = 0,

and the matrix
(Aσ

γ) = (
∑

α,p

cα,p∂σ∂γθα,p(v0))

is invertible. Here ∂γ = ∂
∂vγ

and ∂σ =
∑

ξ η
σξ∂ξ. One can obtain in this

way a dense subset of the set of analytic monotone solutions of the principal
hierarchy (2.6), see Sec. 3.6.4 of [14] for details. The tau function for the
solution v1(t), . . . , vn(t) satisfying (5.1) can be chosen to be

log τ(t) =
1

2

∑

α,β,p,q

t̃α,p t̃β,q Ωα,p;β,q(v(t)). (5.2)

The validity of the defining relation (2.10) follows from (5.1) and the identity
(2.11) for the functions Ωα,p;β,q.
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Proposition 5.1 Let v(t) = (v1(t), . . . , vn(t)) be a solution of the principal
hierarchy (2.6) given by (5.1), and v̂(t̂) = (v̂1(t̂), . . . , v̂n(t̂)) be the solution of
the principal hierarchy (3.4) defined via (1.5), (3.2), (3.3). Then v̂(t̂) satisfies
the equations

∑

˜̂tα,p
∂θ̂α,p(v)

∂v̂γ
= 0, γ = 1, . . . , n, (5.3)

where ˜̂tα,p = t̂α,p − ĉα,p with

ĉ1,0 = 0, ĉ1,p+1 = −cn,p, ĉi,p = ci,p, ĉn,p = c1,p+1

for i 6= 1, n, p ≥ 0, and θ̂α,p are defined in (3.1). The associated tau function

log τ̂(t̂) =
1

2

∑

α,β,p,q

˜̂tα,p ˜̂tβ,q Ω̂α,p;β,q(v̂(t̂)) (5.4)

satisfies (3.6).

Proof To prove the validity of (5.3) let us consider the case when γ = n,
the proof for other cases is similar. By using (1.5), (3.1) and (3.3) we have

∑

˜̂tα,p
∂θ̂α,p(v̂)

∂v̂n

=
∑

˜̂tα,p

(

−
1

2

∑

σ 6=1,n

vσv
σ ∂

∂v1
+
∑

σ 6=1,n

vσvn
∂

∂vσ
+ (vn)2

∂

∂vn

)

θ̂α,p

=−
1

2vn

∑

σ 6=1,n

vσv
σ
∑

α,p

t̃α,p
∂θα,p

∂v1
+
∑

σ 6=1,n

vσ
∑

α,p

t̃α,p
∂θα,p

∂vσ

+ vn
∑

α,p

t̃α,p
∂θα,p

∂vn
−
∑

α,p

t̃α,pθα,p + t̂1,0 − ĉ1,0

=−
∑

α,p

t̃α,pθα,p + t̂1,0 = −
∂ log τ

∂x
+ x̂ = 0.

Here we used the relation (3.8) and the fact that

∂ log τ(t)

∂x
=
∑

α,p

(tα,p − cα,p)θα,p(v(t)) (5.5)

which follows from (2.11), (5.1) and (5.2). The validity of the relation (3.6)
follows from (3.3), (3.7), (5.2) and (5.5). The proposition is proved. �
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In the case when the solution F (v) of the WDVV equations is conformal,
the tau function (5.2) satisfies the Virasoro constraints [13, 15, 24]

∑

aα,p;β,qm

∂ log τ

∂tα,p
∂ log τ

∂tβ,q
+
∑

bβ,qm;α,pt̃
α,p∂ log τ

∂tβ,q
+
∑

cm;α,p;β,q t̃
α,pt̃β,q = 0,

(5.6)
where m ≥ −1, and the coefficients that appear in the above expressions
are some constants determined by the monodromy data of the Frobenius
manifold of F (v), they define a set of linear differential operators

Lm =
∑

aα,p;β,qm

∂2

∂tα,p∂tβ,q
+
∑

bβ,qm;α,pt
α,p ∂

∂tβ,q

+
∑

cm;α,p;β,qt
α,ptβ,q + δm,0 c (5.7)

which give a representation of the half branch of the Virasoro algebra

[Li, Lj ] = (i− j)Li+j + n
i3 − i

12
δi+j,0, i, j ≥ −1. (5.8)

The first two Virasoro operators have the expressions

L−1 =
∑

p≥1

tα,p
∂

∂tα,p−1
+

1

2
ηαβt

α,0tβ,0,

L0 =
∑

p≥0

(p+
1

2
+ µα)t

α,p ∂

∂tα,p
+
∑

p≥1

p
∑

r=1

(Rr)
β
α t

α,p ∂

∂tβ,p−r

+
1

2

∑

p,q≥0

(−1)q (Rp+q+1)
ξ
α ηξβ t

α,p tβ,q +
1

4

∑

α

(

1

4
− µ2

α

)

. (5.9)

See [14, 13] for the explicit expressions of Lm, m ≥ 2. From Proposition 5.1
it follows that the tau function of the principal hierarchy (3.4) obtained from
the tau function (5.2) of (2.6) via the action of the inversion symmetry of
the WDVV equations satisfies the Virasoro constraints

∑

âα,p;β,qm

∂ log τ̂

∂t̂α,p
∂ log τ̂

∂t̂β,q
+
∑

b̂β,qm;α,p
˜̂tα,p

∂ log τ̂

∂t̂β,q
+
∑

ĉm;α,p;β,q
˜̂tα,p˜̂tβ,q = 0

(5.10)
associated to the solution F̂ (v̂) of the WDVV equations.

15



6 The Topological Deformations

The principal hierarchy (2.6) possesses the following Virasoro symmetries
[13]

∂τ

∂sm
=
∑

aα,p;β,qm

1

τ

∂τ

∂tα,p
∂τ

∂tβ,q
+
∑

bβ,qm;α,pt
α,p ∂τ

∂tβ,q
+
∑

cm;α,p;β,qt
α,ptβ,qτ,

(6.1)
where m ≥ −1. Note that these symmetries are nonlinear in τ .

It is proved in [14] that, for a calibrated semisimple conformal solution
F (v) of the WDVV equations, there exists a unique deformation of the prin-
cipal hierarchy such that

• The deformed hierarchy possesses tau functions;

• The Virasoro symmetries (6.1) is deformed to the following one

∂τ

∂sm
= Lmτ, m = −1, 0, 1, . . . .

which is linear in τ .

The tau function of the deformed hierarchy that is specified by the Vira-
soro constraints

Lm|tα,p→tα,p−δα
1
δ
p
1

τ(t) = 0, m = −1, 0, 1, . . . .

corresponds to the partition function of a 2D TFT if the solution F (v) of the
WDVV equations is given by the primary free energy of the matter sector
of the 2D TFT. Such a deformation of the principal hierarchy is called the
topological deformation, it has the form

∂wα

∂tβ,q
= ηαγ∂x

(

∂θβ,q+1(w)

∂wγ

)

+
∑

g≥1

ε2gKα
β,q;g(w;wx, . . . , w

(2g+1)). (6.2)

Here α, β = 1, . . . , n, Kα
β,q;g are differential polynomials of w1, . . . , wn, i.e.

polynomials of the x-derivatives of w1, . . . , wn whose coefficients depend
smoothly on w1, . . . , wn.

In this section, we will study the relation between the topological defor-
mations of the principal hierarchies of calibrated conformal solutions of the
WDVV equations that are related by the inversion symmetry.

We redenote the Hamiltonian structures Pi, { , }i, Hα,p, . . . of the prin-

cipal hierarchy (2.6) that appeare in the previous sections by P
[0]
i , { , }

[0]
i ,

H
[0]
α,p, . . . respectively. Then the topological deformation (6.2) of the principal

hierarchy also possesses a Hamiltonian structure given by the following data:
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i) A Hamiltonian operator P1 with leading term P
[0]
1

P1 = P
[0]
1 + ǫ2 P

[1]
1 + ǫ4 P

[2]
1 + · · · ,

where P
[k]
1 (k ≥ 1) are matrix differential operators whose coefficients

are differential polynomials of w1, . . . , wn with degP
[k]
1 = 2k + 1;

ii) A set of differential polynomials {hα,p(w,wx, . . . )} of the form

hα,p(w,wx, . . . ) = θα,p(w)+ǫ2 h[1]
α,p(w,wx, wxx)+ǫ4 h[2]

α,p(w,wx, . . . )+· · · ,

where h
[k]
α,p (k ≥ 1) are differential polynomials of degree 2k.

They define respectively the deformed Poisson bracket

{H1, H2}1 =

∫

δH1

δvα
P

αβ
1

(

δH2

δvβ

)

dx = {H1, H2}
[0]
1 + ǫ2 {H1, H2}

[1]
1 + · · ·

and the deformed Hamiltonians

Hα,p =

∫

hα,p+1 dx = H [0]
α,p + ǫ2 H [1]

α,p + · · · .

In particular, the densities hα,0 are given by (c.f. (2.2))

hα,0 = ηαγw
γ, α,= 1, . . . , n.

Then the deformed hierarchy (6.1) has the expression

∂wβ

∂tα,p
= {wβ, Hα,p}1 = P

βγ
1

δHα,p

δwγ
, α, β = 1, . . . , n, p ≥ 0.

We also denote ∂α,p =
∂

∂tα,p . This hierarchy has the following properties:

i) ∂1,0 = ∂x;

ii) {Hα,p, Hβ,q}1 = 0, {Hα,−1, ·}1 = 0, ∂α,pHβ,q = 0, [∂α,p, ∂β,q] = 0;

iii) ∂α,phβ,q = ∂β,qhα,p;

The property iii), which is called the tau symmetry condition, implies that for
any pair of indices (α, p), (β, q) there exists a differential polynomial Ωα,p;β,q

such that

Ωα,p;β,q = Ω
[0]
α,p;β,q + ǫ2Ω

[1]
α,p;β,q + · · · , ∂xΩα,p;β,q = ∂α,phβ,q.
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They are related to the tau function of the topological deformation of the
principal hierarchy by

Ωα,p;β,q(w(t), wx(t), . . . ) = ǫ2∂α,p∂β,q log τ(t)

where wα(t) = ǫ2 ηαβ∂1,0∂β,0 log τ(t). It follows from the definition of tau
function τ [0](t) for the principal hierarchy that

F(t) = ǫ−2F0(t) + F1(t) + ǫ2F2(t) + · · · , (6.3)

where the free energy F(t) = log τ(t), F0(t) = log τ [0](t).
The topological deformation of the principal hierarchy is constructed in

[14] by using the fact that the free energy F(t) can be determined by the
requirement of the linearization of the Virasoro symemtries via the genus
zero free energy F0. Namely, it can be represented in the form

F(t) = log τ = ǫ−2F0(t) + ∆F (v, vx, . . . )|vα=vα(t). (6.4)

Here

∆F = F1(v, vx) + ǫ2F2(v, . . . , v
(4)) + · · ·+ ǫ2g−2Fg(v, . . . , v

(3g−2)) + · · ·

with the functions Fg determined by the loop equation give in [14], and

vα(t) = ηαγ
∂2F0(t)

∂x∂tγ,0
, α = 1, . . . , n

satisfy the principal hierarchy. The topological deformation of the principal
hierarchy is then obtained by the following coordinates transformation

wα = vα + ǫ2ηαβ∂1,0∂β,0∆F. (6.5)

This transformations is a particular quasi-Miura transformation. In general,
a quasi-Miura transformation will transform objects (like Hamiltonian, vector
field, Hamiltonian structures, . . . ) with differential polynomial coefficients
to objects with coefficients being rational functions of the jet variables. In
[14] the above mentioned Hamiltonian structure of the deformed hierarchy is
obtained from the first Hamiltonian structure of the principal hierarchy via
the quasi-Miura transformation (6.5). A proof of the polynomiality of the
topological deformation of the principal hierarchy and of the Hamiltonian
operator P1, the densities hα,p of the Hamiltonians are given in [26]. For
the second Hamiltonian structure of the principal hierarchy, the following
conjecture is given in [14].
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Conjecture 6.1 ([14]) The quasi-Miura transformation (6.5) transforms

the second Hamiltonian structure P
[0]
2 of the principal hierarchy to a Hamil-

tonian structure P2 with differential polynomial coefficients.

We assume its validity in the remaining part of the present section, and call
the bihamiltonian structure (P1, P2) that is induced from (P

[0]
1 , P

[0]
2 ) via the

quasi-Miura transformation (6.5) the topological deformation of the bihamil-

tonian structure (P
[0]
1 , P

[0]
2 ).

Let (F (v), {θα,p(v)}) and (F̂ (v̂), {θ̂α,p(v̂)}) be two fixed calibrated confor-
mal solutions of the WDVV equations which are related by the inversion
symmetry, and denote the topological deformations of the corresponding
principal hierarchies by

∂α,pw
β = P

αβ
1

(

δHα,p

δwβ

)

, ∂̂α,pŵ
β = P̂

αβ
1

(

δĤα,p

δŵβ

)

respectively. Introduce the following reciprocal transformation Φ:

dx̃ =

n
∑

α=1

∑

p≥0

hα,pdt
α,p, (6.6)

t̃1,0 = x̃, t̃1,p = −tn,p−1, p ≥ 1,

t̃n,p = t1,p+1 (p ≥ 0), t̃i,p = ti,p, 2 ≤ i ≤ n, p ≥ 0,
(6.7)

and the new coordinates w̃α = ηαβh̃β,0, where

h̃1,0 = −
1

h1,0
, h̃1,p = −

hn,p−1

h1,0
, p ≥ 1,

h̃α,p =
hα,p

h1,0
, 2 ≤ α ≤ n− 1, p ≥ 0, (6.8)

h̃n,p =
h1,p+1

h1,0
, p ≥ 0.

Denote the components of Φ(P1) in the coordinates system (w̃1, . . . , w̃n) by
P̃

αβ
1 , then we have (see [23])

∂̃α,pw̃
β = P̃

αβ
1

(

δH̃α,p

δw̃β

)

, ∂̃α,p =
∂

∂t̃α,p
. (6.9)

It is easy to see that P̃1, {H̃α,p} have the same leading terms with P̂1, {Ĥα,p}
respectively but their deformed parts are different.
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Theorem 6.2 There exists a Miura type transformation such that the hi-
erarchy (6.9) is transformed to the topological deformation {∂̂α,pŵ

β} of the

principal hierarchy for F̂ (v̂).

Lemma 6.3 Under the reciprocal transformation (6.6), (6.7) the bihamilto-
nian structure (P1, P2) of the topological deformation of the principal hierar-
chy is transformed to a local bihamiltonian structure of (6.9).

Proof We are to use the results of Sec. 3.2 of [23] again. Denote by
Λ =

∫

h1,0 dx, we need to show that

[Pi,Λ] = 0, z(Pi, h1,0) = 0.

Here the function z is defined as in (4.9). The first equality is a consequence
of the quasi-triviality of the bihamiltonian structure (P1, P2) (see [9]), since

we have proved [P
[0]
i ,Λ[0]] = 0. The second equality is verified in the proof

of Proposition 4.6. The lemma is proved. �

Proof of Theorem 6.2 From the above lemma it follows that both the hierar-
chy (6.9) and the topological deformation {∂̂α,pŵ

β} of the principal hierarchy

for F̂ (v̂) possess local bihamiltonian structures, these bihamiltonian struc-
tures have the same leading terms which form a semisimple bihamiltonian
structure of hydrodynamic type.

From Theorem 2.5.7 of [23] it follows that Miura type transformations
preserve Schouten brackets, so if two bihamiltonian structures are related
by a Miura type transformations, then this transformation transforms a bi-
hamiltonian vector field to a bihamiltonian vector field. By using this fact
and the result of Corollary 1.9 of [9] we know that in order to prove the equiv-
alence of two hierarchies under Miura type transformations, we only need to
show that their bihamiltonian structures are equivalent. According to the
general results of [22, 9], two bihamiltonian structures of the type considered
here with same leading terms are equivalent if and only if their central in-
variants coincide. It is proved in [10] that the topological deformation of the
bihamiltonian structure of a principal hierarchy has central invariants 1

24
, so

we have

ci(P1, P2) =
1

24
, ci(P̂1, P̂2) =

1

24
, i = 1, . . . , n.

On the other hand, it is shown in [23] that if a reciprocal transformation
transforms a local bi-Jacobi (i.e. bihamiltonian) structure to a local one,
then it preserves the central invaraints, which implies

ci(P1, P2) = ci(P̃1, P̃2), i = 1, . . . , n,
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so ci(P̃1, P̃2) = ci(P̂1, P̂2), i = 1, . . . , n. The theorem is proved. �

The above theorem only ensures the existence of the Miura type transfor-
mation relating the two integrable hierarchies. We now consider the explicit
form of this transformation.

Note that the reciprocal transformation (6.6)-(6.8) is defined in the same
way as in the dispersionless case, so we have the following proposition.

Proposition 6.4 Let τ(t) be a tau function of the topological deformation
(6.2) of the principal hierarchy associated to a calibration {θα,p(v)} of F (v).
Define

log τ̃(t̃) = log τ(t)− x
∂ log τ(t)

∂x
, (6.10)

then τ̃ (t̃) is a tau function of the hierarchy (6.9). It satisfies

Ω̃α,p;β,q(w̃(t̃)) = ∂̃α,p∂̃β,q log τ̃ (t̃),

where w̃α(t̃) = ηαβ ∂̃1,0∂̃β,0 log τ̃ (t̃), and Ω̃α,p;β,q(w) are defined as in (3.7) with
θα,p(v) replaced by hα,p(w).

We denote F̃(t̃) = log τ̃ (t̃), and

F̃(t̃) = ǫ−2F̃0(t̃) + F̃1(t̃) + ǫ2F̃2(t̃) + · · · .

It is easy to see that F̃0 = log τ̂ [0], which is the tau function of the principal
hierarchy {∂̂α,pv̂

β} given in Proposition 3.3. In what follows, we are to show
that the functions F̃g (g ≥ 1) can be obtained from Fg (g ≥ 1), and they are
in fact differential polynomials of v̂1, . . . , v̂n.

We regard the two sides of (6.10) as power series in ǫ with coefficients
being functions of t, then compare their Laurent coefficients. By using (6.4)
we know that the reciprocal transformation (6.6) can be represented in terms
of tau function by

x̃ =
∂ log τ(t)

∂x
=

∂F0(t)

∂x
+ ǫ2

∂∆F(t)

∂x
= x̂+ ǫ2

∂∆F(t)

∂x
, (6.11)

where ∆F(t) =
∑

g≥1 ǫ
2g−2Fg(t), so we have

F̃g(t̃) = eǫ
2 ∂∆F

∂x
∂
∂x̂ F̃g(t̂) =

∑

k≥0

1

k!

(

ǫ2
∂∆F

∂x

)k
∂kF̃g(t̂)

∂x̂k
. (6.12)
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Then the left hand side of (6.10) reads

log τ̃ =
∑

g≥0

ǫ2g−2F̃g(t̃)

=ǫ−2eǫ
2 ∂∆F

∂x
∂
∂x̂ F̃0(t̂) +

∑

g≥1

ǫ2g−2F̃g(t̃)

=ǫ−2F̃0(t̂) +
∂∆F

∂x

∂F̃0(t̂)

∂x̂
+
∑

k≥2

1

k!

(

ǫ2
∂∆F

∂x

)k
∂kF̃0(t̂)

∂x̂k
+
∑

g≥1

ǫ2g−2F̃g(t̃)

= log τ̃ −∆F +
∑

k≥2

1

k!

(

ǫ2
∂∆F

∂x

)k
∂kF̃0(t̂)

∂x̂k
+
∑

g≥1

ǫ2g−2F̃g(t̃),

by using (6.12) again, we obtain

∑

g≥1

ǫ2g−2
∑

k≥0

1

k!

(

ǫ2
∂∆F

∂x

)k
∂kF̃g(t̂)

∂x̂k
= ∆F −

∑

k≥2

1

k!

(

ǫ2
∂∆F

∂x

)k
∂kF̃0(t̂)

∂x̂k
,

(6.13)
from which one can obtain F̃g(t̂) one by one:

F̃1(t̂) =F1(t), (6.14)

F̃2(t̂) =F2(t)−
∂F̃1(t̂)

∂x̂

∂F1(t)

∂x
−

1

2

∂2F̃0(t̂)

∂x̂2

(

∂F1(t)

∂x

)2

=F2(t)−
1

2vn

(

∂F1(t)

∂x

)2

, . . . . (6.15)

Here we used the relations

∂F̃1(t̂)

∂x̂
=

∂F1(t)

∂x

∂x

∂x̂
= −

∂F1(t)

∂x

∂2F̃0(t̂)

∂x̂2

and
∂2F̃0(t̂)

∂x̂2
= v̂n = −

1

vn
.

Note that the summation on the left hand side of (6.13) starts from k = 2,
so we can use the fact

∂kF̃0(t̂)

∂x̂k
=

∂k−2v̂n(t̂)

∂x̂k−2
,

then every F̃g(t̂) is a differential polynomial of vn,F1, . . . ,Fg−1.
Now let us denote by

log τ̂(t̂) = F̂(t̂) = ǫ−2F̂0(t̂) +
∑

g≥0

ǫ2g−2F̂g(t̂)
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the free energy of the topological deformation of the principal hierarchy as-
sociated to F̂ (v̂). Then as in (6.4) we can represent F̂g(t̂) in the form

F̂g(t̂) = F̂g(v̂(t̂), . . . , ∂
3g−2
x̂ v̂(t̂)),

where v̂1(t̂), . . . v̂n(t̂) is solution of the principal hierarchy of F̂ (v̂).
We are to compare F̂g and F̃g (g ≥ 1). When g = 1, from (6.14) and the

expression of the genus one free energy [12] it follows that

F̃1(t̂) = F1(t) =
1

24
det (cαβγ(v(t))v

γ
x(t)) +G(v(t))).

Here G(v) is the G-function associated to F (v), see [12]. By using the follow-
ing relation between the G-functions for F (v) and its inversion F̂ (v̂) given in
[27]:

Ĝ(v̂) = G(v) + (
n

24
−

1

2
) log vn

and the identity

1

24
log det(ĉαβγ(v̂)v̂

γ
x̂0
) =

1

24
log det(cαβγ(v)v

γ
x)−

n

24
log vn,

we have

F̃1(t̂) = F̂1(t̂)−
1

2
log v̂n(t̂) +

1

2
log(−1).

For higher genera, we present the following conjecture.

Conjecture 6.5 The difference G =
∑

g≥1

ǫ2g−2
(

F̃g − F̂g

)

can be represented

as
G = G1(ŵ

n) + ǫ2G2(ŵ
n) + ǫ4G3(ŵ

n) + · · · ,

where Gk(ŵ
n) are differential polynomials of ŵn. Moreover, the differen-

tial polynomials Gg do not dependent on the particular solution F (v) of the
WDVV equations.

We have shown above that the conjecture holds true at the genus one
approximation with

G1 = −
1

2
log ŵn +

1

2
log(−1).

At the genus two approximation, we have verified the validity of the conjec-
ture for solutions of the WDVV equations that are associated to the Coxeter
groups of type I2(k) and A3 with

G2 =
ŵn

x̂x̂

8(ŵn)2
−

(ŵn
x̂)

2

12(ŵn)3
.
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For the higher genera corrections Gg (g ≥ 3) we do not know their explicit
expressions at the moment. It is interesting to give an interpretation for the
expressions of these functions.

Under the assumption of validity of the above conjecture, the Miura type
transformation between the hierarchy (6.9) and the topological deformation
{ ∂ŵα

∂t̂β,q } of the principal hierarchy for F̂ (v̂) is given by

w̃α = ŵα + ηαβ∂x̂∂t̂β,0

[

−
ǫ2

2
log ŵn + ǫ4

(

ŵn
x̂x̂

8(ŵn)2
−

(ŵn
x̂)

2

12(ŵn)3

)]

+ . . . .

Here ηαβ∂t̂β,0ŵn = ŵα
x̂ . We note that after the above Miura type transforma-

tion the flows ∂ŵα

∂t̂β,q are transformed to the evolutionary PDEs

∂w̃α

∂t̂β,q
= Kα

β,q(w̃, w̃x̂, w̃x̂x̂, . . . ), α, β = 1, . . . .n, q ≥ 0,

then the hierarchy (6.9) is obtained by redenoting the spatial variable x̂ and
the time variables t̂β,q by x̃ and t̃β,q respectively.
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