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Abstract

Let G be a nontrivial connected graph of order n, and k an integer with 2 ≤

k ≤ n. For a set S of k vertices of G, let κ(S) denote the maximum number ℓ of

edge-disjoint trees T1, T2, . . . , Tℓ in G such that V (Ti) ∩ V (Tj) = S for every pair

i, j of distinct integers with 1 ≤ i, j ≤ ℓ. Chartrand et al. generalized the concept

of connectivity as follows: The k-connectivity, denoted by κk(G), of G is defined

by κk(G) =min{κ(S)}, where the minimum is taken over all k-subsets S of V (G).

Thus κ2(G) = κ(G), where κ(G) is the connectivity of G. Moreover, κn(G) is the

maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs Ka,b.

First, we obtain the number of edge-disjoint spanning trees ofKa,b, which is ⌊ ab
a+b−1⌋,

and specifically give the ⌊ ab
a+b−1⌋ edge-disjoint spanning trees. Then based on this

result, we get the k-connectivity of Ka,b for all 2 ≤ k ≤ a+b. Namely, if k > b−a+2

and a−b+k is odd then κk(Ka,b) =
a+b−k+1

2 +⌊ (a−b+k−1)(b−a+k−1)
4(k−1) ⌋, if k > b−a+2

and a− b+ k is even then κk(Ka,b) =
a+b−k

2 + ⌊ (a−b+k)(b−a+k)
4(k−1) ⌋, and if k ≤ b− a+2

then κk(Ka,b) = a.

Keywords: k-connectivity, complete bipartite graph, edge-disjoint spanning trees

AMS Subject Classification 2010: 05C40, 05C05.

∗Supported by NSFC.

1

http://arxiv.org/abs/1012.5710v1


1 Introduction

We follow the terminology and notation of [1]. As usual, denote by Ka,b the complete

bipartite graph with bipartition of sizes a and b. The connectivity κ(G) of a graph

G is defined as the minimum cardinality of a set Q of vertices of G such that G − Q

is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent

definition of the connectivity. For each 2-subset S = {u, v} of vertices ofG, let κ(S) denote

the maximum number of internally disjoint uv-paths inG. Then κ(G) =min{κ(S)}, where

the minimum is taken over all 2-subsets S of V (G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial

connected graph of order n, and k an integer with 2 ≤ k ≤ n. For a set S of k vertices of

G, let κ(S) denote the maximum number ℓ of edge-disjoint trees T1, T2, . . . , Tℓ in G such

that V (Ti)∩ V (Tj) = S for every pair i, j of distinct integers with 1 ≤ i, j ≤ ℓ (Note that

the trees are vertex-disjoint in G\S). A collection {T1, T2, . . . , Tℓ} of trees in G with this

property is called an internally disjoint set of trees connecting S. The k-connectivity,

denoted by κk(G), of G is then defined as κk(G) =min{κ(S)}, where the minimum is

taken over all k-subsets S of V (G). Thus, κ2(G) = κ(G) and κn(G) is the maximum

number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of κ3(G) and mainly studied the rela-

tionship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp

upper and lower bounds for κ3(G) for general graphs G, and showed that if G is a con-

nected planar graph, then κ(G) − 1 ≤ κ3(G) ≤ κ(G). Moreover, they studied the algo-

rithmic aspects for κ3(G) and gave an algorithm to determine κ3(G) for a general graph

G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph K3,4,5, then

κ3(G) = 6. They also gave a general result for the complete graph Kn:

Theorem 1.1. For every two integers n and k with 2 ≤ k ≤ n,

κk(Kn) = n− ⌈k/2⌉.

In this paper, we turn to complete bipartite graphs Ka,b. First, we give the number of

edge-disjoint spanning trees of Ka,b, namely κa+b(Ka,b).

Theorem 1.2. For every two integers a and b,

κa+b(Ka,b) = ⌊
ab

a + b− 1
⌋.

Actually, we specifically give the ⌊ ab
a+b−1

⌋ edge-disjoint spanning trees of Ka,b. Then

based on Theorem 1.2, we obtain the k-connectivity of Ka,b for all 2 ≤ k ≤ a+ b.
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2 Proof of Theorem 1.2

Since Ka,b contains ab edges and a spanning tree needs a + b − 1 edges, the number

of edge-disjoint spanning trees of Ka,b is at most ⌊ ab
a+b−1

⌋, namely, κa+b(Ka,b) ≤ ⌊ ab
a+b−1

⌋.

Thus, it suffices to prove that κa+b(Ka,b) ≥ ⌊ ab
a+b−1

⌋. To this end, we want to find all the

⌊ ab
a+b−1

⌋ edge-disjoint spanning trees.

Let X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} be the bipartition of Ka,b. Without

loss of generality, we may assume that a ≤ b.

We will express the spanning trees by adjacency-degree lists. To be specific, the fist

spanning tree T1 we find can be represented by an adjacency-degree list as follows:

vertex neighbors degree

x1 y1, y2, . . . , yd1 d1

x2 yd1 , yd1+1, . . . , yd1+d2−1 d2

x3 yd1+d2−1, yd1+d2 , . . . , yd1+d2+d3−2 d3

. . . . . . . . .

xj yd1+d2+···+dj−1−(j−2), yd1+d2+···+dj−1−(j−2)+1, . . . , yd1+d2+···+dj−(j−1) dj

. . . . . . . . .

xa yd1+d2+···+da−1−(a−2), yd1+d2+···+da−1−(a−2)+1, . . . , yd1+d2+···+da−(a−1) da

where dj denotes the degree of xj in T1, and d1 + d2 + · · ·+ da = a + b− 1.

To simplify the subscript, we denote i0 = 1, i1 = d1, i2 = d1 + d2 − 1, . . ., ij =

d1 + d2 + · · · + dj − (j − 1), . . ., ia = d1 + d2 + · · · + da − (a − 1) = b. Note that,

ij − ij−1 = dj − 1. So the adjacency-degree list of T1 can be simplified as follows:

T1

vertex neighbors degree

x1 yi0, yi0+1, . . . , yi1 d1

x2 yi1, yi1+1, . . . , yi2 d2

x3 yi2, yi2+1, . . . , yi3 d3

. . . . . . . . .

xj yij−1
, yij−1+1, . . . , yij dj

. . . . . . . . .

xa yia−1
, yia−1+1, . . . , yia da

Then we can list the second spanning trees we find. Here and in what follows, for a

vertex yj, if j > b, yj denotes yj−b, for a subscript ij , if j > a, yij denotes yij−a
, and for

degree dj, if j > a, dj denotes dj−a.
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T2

vertex neighbors degree

x1 yi1+1, yi1+2, . . . , yi2+1 d2

x2 yi2+1, yi2+2, . . . , yi3+1 d3

x3 yi3+1, yi3+2, . . . , yi4+1 d4

. . . . . . . . .

xj yij+1, yij+2, . . . , yij+1+1 dj+1

. . . . . . . . .

xa yia+1, yia+2, . . . , yia+1
d1

From the lists, we can see that T2 and T1 are edge-disjoint, if and only if for every

vertex xj , dj + dj+1 ≤ b. If T2 and T1 are edge-disjoint, then we continue to list T3.

T3

vertex neighbors degree

x1 yi2+2, yi2+3, . . . , yi3+2 d3

x2 yi3+2, yi3+3, . . . , yi4+2 d4

x3 yi4+2, yi4+3, . . . , yi5+2 d5

. . . . . . . . .

xj yij+1+2, yij+1+3, . . . , yij+2+2 dj+2

. . . . . . . . .

xa yia+1+2, yia+1+3, . . . , yia+2+1 d2

From the lists, we can see that T3 and T1, T2 are edge-disjoint, if and only if for every

vertex xj , dj + dj+1 + dj+2 ≤ b. If T3 and T1, T2 are edge-disjoint, then we continue to

list T4. Continuing the procedure, our goal is to find the maximum t, such that Tt and

T1, T2, . . . , Tt−1 are edge-disjoint.

Tt

vertex neighbors degree

x1 yit−1+(t−1), yit−1+t, . . . , yit+(t−1) dt

x2 yit+(t−1), yit+t, . . . , yit+1+(t−1) dt+1

x3 yit+1+(t−1), yit+1+t, . . . , yit+2+(t−1) dt+2

. . . . . .

xj yij+t−2+(t−1), yij+t−2+t, . . . , yij+t−1+(t−1) dt+j−1

. . . . . .

xa yia+t−2+(t−1), yia+t−2+t, . . . , yia+t−1+(t−2) dt−1

That is, we want to find the maximum t, such that dj + dj+1 + · · ·+ dj+t−1 ≤ b, for any

1 ≤ j ≤ a.

Let Dt
j = dj + dj+1 + · · ·+ dj+t−1. It can be observed that Dt

j = Dt
j+1 if and only if

dj = dj+t. Consider the numbers 1, t+1, 2t+1, . . . , (a− 1)t+1, where addition is carried

out by modula a.

Case 1. 1, t+ 1, 2t+ 1, . . . , (a− 1)t + 1 are pairwise distinct.
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Then we can assign the values to dj as follows:

Let a + b− 1 = ka + c, where k, c are integers, and 0 ≤ c ≤ a− 1. Then a + b− 1 =

(k + 1)c + k(a− c). If c = 0, let dj = k, for all 1 ≤ j ≤ a. If c 6= 0, let dit+1 = k + 1, for

all 0 ≤ i ≤ c− 1, and let other dj = k.

Case 2. Some of the numbers 1, t+ 1, 2t+ 1, . . . , (a− 1)t+ 1 are equal.

Without loss of generality, suppose jt + 1 is the first number that equals a number

it+1 before it, namely, jt+1 = it+1 (mod a), where j > i. Then (j−i)t+1 = 1 (mod a).

Since jt + 1 is the first number that equals a number before it, we can get i = 0. Thus,

1, t+ 1, 2t+ 1, . . . , (j − 1)t+ 1 are pairwise distinct.

Claim 1. it + 1 6= 2 (mod a), for any integer i.

If it+ 1 = 2 (mod a), then we have it = 1 (mod a). Thus we have

it + 1 = 2 (mod a)

2it + 1 = 3 (mod a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a− 1)it + 1 = a (mod a)

So there are a distinct numbers in {1, it + 1, 2it + 1, . . . , (a − 1)it + 1}. On the other

hand, since jt + 1 = 1 (mod a), there are at most j ≤ a − 1 distinct numbers in {ut +

1, u is an integer} ⊃ {1, it+ 1, 2it+ 1, . . . , (a− 1)it+ 1}, a contradiction. Thus, it+ 1 6=

2 (mod a) for any integer i.

Claim 2. 2, t+ 2, 2t+ 2, . . . , (j − 1)t+ 2 are pairwise distinct.

If j1t+2 = j2t+2 (mod a), where 0 ≤ j1 < j2 ≤ j− 1, then j1t+1 = j2t+1 (mod a).

But 1, t + 1, 2t + 1, . . . , (j − 1)t + 1 are pairwise distinct, a contradiction. Thus, 2, t +

2, 2t+ 2, . . . , (j − 1)t+ 2 are pairwise distinct.

Claim 3. {1, t+ 1, 2t+ 1, . . . , (j − 1)t+ 1} ∩ {2, t+ 2, 2t+ 2, . . . , (j − 1)t+ 2} = ∅.

If i1t + 1 = i2t + 2 (mod a), then (i1 − i2)t + 1 = 2 (mod a), but it + 1 6= 2 (mod a)

for any integer i, a contradiction by Claim 1. Thus, 1, t+ 1, 2t+ 1, . . . , (j − 1)t+ 1, 2, t+

2, 2t+ 2, . . . , (j − 1)t+ 2 are pairwise distinct.

Now, if 2 = a
j
, then we have already ordered all numbers of {1, . . . , a}. Else if 2 < a

j
,

we will prove that 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a) for any integer i.

Claim 4. If 2 < a
j
, then 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a) for any integer i.

If 2 + it = 3 (mod a), then 1 + it = 2 (mod a), a contradiction by Claim 1. If
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1 + it = 3 (mod a), then we have it = 2 (mod a). Thus we have

it + 1 = 3 (mod a)

it + 2 = 4 (mod a)

2it + 1 = 5 (mod a)

2it + 2 = 6 (mod a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a−2
2
it + 1 = a− 1 (mod a) (for a even)

a−3
2
it + 2 = a− 1 (mod a) (for a odd)

a−2
2
it + 2 = a (mod a) (for a even)

a−1
2
it + 1 = a (mod a) (for a odd)

So there are at least a distinct numbers in {1, it+ 1, 2it+ 1, . . . , ⌈a
2
⌉it + 1, 2, it+ 2, 2it+

2, . . . , ⌈a
2
⌉it + 2}. On the other hand, since jt + 1 = 1 (mod a) and j ≤ a − 1, there are

at most 2j < a distinct numbers in {ut+ 1, u is an integer} ∪ {vt + 2, v is an integer} ⊃

{1, it+ 1, 2it+ 1, . . . , ⌈a
2
⌉it+ 1, 2, it+ 2, 2it+ 2, . . . , ⌈a

2
⌉it+ 2}, a contradiction. Hence, if

2 < a
j
, then 1 + it 6= 3 (mod a) and 2 + it 6= 3 (mod a) for any integer i.

Similarly, we can prove that r + it 6= s (mod a) for 1 ≤ r < s ≤ a
j
. Thus we can get

the following claim:

Claim 5. 1, t+1, 2t+1, . . . , (j−1)t+1, 2, t+2, 2t+2, . . . , (j−1)t+2, . . . , a
j
, t+ a

j
, 2t+

a
j
, . . . , (j − 1)t + a

j
are pairwise distinct. And hence {1, t + 1, 2t + 1, . . . , (j − 1)t + 1} ∪

{2, t+2, 2t+ 2, . . . , (j − 1)t+2} ∪ · · · ∪ {a
j
, t+ a

j
, 2t+ a

j
, . . . , (j − 1)t+ a

j
} = {1, 2, . . . , a}.

The proof is similar to those of Claims 2, 3 and 4. We thus have ordered {1, 2, . . . , a} by

1, t+1, 2t+1, . . . , (j−1)t+1, 2, t+2, 2t+2, . . . , (j−1)t+2, . . . , a
j
, t+ a

j
, 2t+ a

j
, . . . , (j−1)t+ a

j
.

Let a + b − 1 = ka + c, where k, c are integers, and 0 ≤ c ≤ a − 1. Then a + b − 1 =

(k + 1)c+ k(a− c).

Now, we can assign the values of dj as follows: If c = 0, let dj = k for all 1 ≤ j ≤ a.

If c 6= 0, for the first c numbers of our ordering, if dj uses one of them as subscript, then

dj = k + 1, else dj = k.

Next, we will show that, in either case, | Dt
i − Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a

and t > 0.

If c = 0, dj = k for all 1 ≤ j ≤ a, then Dt
i = Dt

j for any integers 1 ≤ i, j ≤ a. The

assertion is certainly true. So we may assume that c 6= 0. For Case 1, we construct a

weighted cycle: C = v1v2 . . . vav1 and w(vi) = d(i−1)t+1, where vi corresponds to vertex

x(i−1)t+1, 1 ≤ i ≤ a.

According to the assignment,

w(v1) = w(v2) = · · · = w(vc) = k + 1,
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and

w(vc+1) = w(vc+2) = · · · = w(va) = k.

Since Dt
i = Dt

i+1 if and only if di = di+t, then Dt
(i−1)t+1 = Dt

(i−1)t+1+1 if and only if

w(vi) = w(vi+1). Similarly, Dt
(i−1)t+1 = Dt

(i−1)t+1+1 + 1 if and only if w(vi) = w(vi+1) + 1,

and Dt
(i−1)t+1 = Dt

(i−1)t+1+1 − 1 if and only if w(vi) = w(vi+1)− 1. We know that w(vc) =

w(vc+1) + 1 and w(va) = w(v1) − 1. For simplicity, let (c − 1)t + 1 = α (mod a),

(a− 1)t+ 1 = β (mod a), that is, vc corresponds to xα and va corresponds to xβ , and by

the hypothesis, α 6= β.

If α < β, then

Dt
1 = Dt

2 = · · · = Dt
α = Dt

α+1+1 = Dt
α+2+1 = · · · = Dt

β +1 = Dt
β+1 = Dt

β+2 = · · · = Dt
a.

If α > β, then

Dt
1 = Dt

2 = · · · = Dt
β = Dt

β+1−1 = Dt
β+2−1 = · · · = Dt

α−1 = Dt
α+1 = Dt

α+2 = · · · = Dt
a.

In any case, we have | Dt
i −Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a and t > 0.

For Case 2, we construct a
j
weighted cycles. Ci = vi1vi2 . . . vijvi1 , 1 ≤ i ≤ a

j
, and

w(vir) = d(r−1)t+i, where vir corresponds to vertex x(r−1)t+i, 1 ≤ r ≤ j. By the assignment,

there is at most one cycle in which the vertices have two distinct weights. If such cycle

does not exist, clearly, we have Dt
1 = Dt

2 = · · · = Dt
a. So we may assume that for some

cycle Cs, w(vsγ) = w(vsγ+1
) + 1 and w(vsj) = w(vs1)− 1. Similar to the proof of Case 1,

we can get that | Dt
i −Dt

j |≤ 1 for any integers 1 ≤ i, j ≤ a and t > 0.

Then, we can show that, with the assignment we can get t ≥ ⌊ ab
a+b−1

⌋.

Let t′ = ⌊ ab
a+b−1

⌋. And let

Dt′

1 = d1 + d2 + · · · + dt′

Dt′

2 = d2 + d3 + · · · + dt′+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dt′

j = dj + dj+1 + · · · + dj+t′−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dt′

a = da + d1 + · · · + dt′−1

we have Dt′

1 +Dt′

2 + · · ·+Dt′

a = t′(d1 + d2 + · · ·+ da) = t′(a+ b− 1)

It follows from | Dt
i −Dt

j |≤ 1, for any integers 1 ≤ i, j ≤ a and t > 0, that

Dt′

j ≤ ⌈
t′(a+ b− 1)

a
⌉ <

t′(a+ b− 1)

a
+ 1 ≤

ab

a+ b− 1

a+ b− 1

a
+ 1 = b+ 1

The third inequality holds since t′ = ⌊ ab
a+b−1

⌋ ≤ ab
a+b−1

. Since Dt′

j is an integer, we

have Dt′

j ≤ b for all 1 ≤ j ≤ a. Since t is the maximum integer such that Dt
j =

7



dj + dj+1 + · · ·+ dj+t−1 ≤ b for any 1 ≤ j ≤ a, then t ≥ t′ = ⌊ ab
a+b−1

⌋. So we can find at

least ⌊ ab
a+b−1

⌋ edge-disjoint spanning trees of Ka,b. And hence κa+b(Ka,b) ≥ ⌊ ab
a+b−1

⌋. So

we have proved that κa+b(Ka,b) = ⌊ ab
a+b−1

⌋.

3 The k-connectivity of complete bipartite graphs

Next, we will calculate κk(Ka,b), for 2 ≤ k ≤ a + b.

Recall that κk(G) = min{κ(S)}, where the minimum is taken over all k-element

subsets S of V (G). Denote by Ka, b a complete bipartite graph with bipartition X =

{x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb}, where a ≤ b. Actually, all vertices in X are

equivalent and all vertices in Y are equivalent. So instead of considering all k-element

subsets S of V (G), we can restrict our attention to the subsets Si, for 0 ≤ i ≤ k,

where Si is an k-element subsets of V (G) such that Si ∩X = {x1, x2, . . . , xi}, Si ∩ Y =

{y1, y2, . . . , yk−i}, 1 ≤ i ≤ k and S0 ∩ X = ∅, S0 ∩ Y = {y1, y2, . . . , yk}. Notice that, if

i > a or k− i > b then Si does not exist, and if k > b then S0 does not exist. So, we need

only to consider Si for max{0, k − b} ≤ i ≤ min{a, k}.

Now, let A be a maximum set of internally disjoint trees connecting Si. Let A0 be the

set of trees connecting Si whose vertex set is Si, let A1 be the set of trees connecting Si

whose vertex set is Si ∪ {u}, where u /∈ Si and let A2 be the set of trees connecting Si

whose vertex set is Si ∪ {u, v}, where u, v /∈ Si and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting Si. Then we

can always find a set A′ of internally disjoint trees connecting Si, such that | A |=| A′ |

and A′ ⊂ A0 ∪ A1 ∪ A2.

Proof. If there is a tree T 0 in A whose vertex set V (T 0) ⊇ {u1, u2}, where u1, u2 /∈ Si and

u1, u2 belong to the same partition, then we can connect all neighbors of u2 to u1 by some

new edges and delete u2 and the multiple edges (if exist). Obviously, the new graph we

obtain is still a tree T ′ that connect Si. Since V (Tm) ∩ V (Tn) = Si for every pair of trees

in A, other trees in A will not contain u1, including the edges incident with u1. So for

all trees Tn in A other than T 0, V (T ′) ∩ V (Tn) = Si and E(T ′) ∩ E(Tn) = ∅. Moreover,

T ′ has less vertices which are not in Si than T 0. Repeat this process, until we get a tree

T ∈ A0 ∪ A1 ∪ A2. Replace A by A1 = A \ {T 0} ∪ {T}, and then A1 contains less trees

that are not in A0 ∪ A1 ∪ A2 than A. Repeating the process, we can get a series of sets

A0, A1, . . . , At, such that A0 = A, At = A′, and Aj contains less trees not in A0 ∪A1 ∪A2

than Aj−1 for 1 ≤ j ≤ t, where all As are sets of internally disjoint trees connecting Si

for 0 ≤ s ≤ t, and | A0 |= · · · =| At |. So we finally get the set A′ ⊂ A0 ∪ A1 ∪ A2 which

has the same cardinality as A.
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So, we can assume that the maximum set A of internally disjoint trees connecting Si

is contained in A0 ∪ A1 ∪ A2.

Next, we will define the standard structure of trees in A0, A1 and A2, respectively.

Every tree in A0 is of standard structure. A tree T in A1 with vertex set V (T ) =

Si ∪ {u}, where u ∈ X \ Si, is of standard structure, if u is adjacent to every vertex

in Si ∩ Y , and every vertex in Si ∩ X has degree 1. A tree T in A1 with vertex set

V (T ) = Si ∪ {v}, where v ∈ Y \ Si, is of standard structure, if v is adjacent to every

vertex in Si ∩ X , and every vertex in Si ∩ Y has degree 1. A tree T in A2 with vertex

set V (T ) = Si ∪ {u, v}, where u ∈ X \ Si and v ∈ Y \ Si, is of standard structure, if u is

adjacent to every vertex in Si∩Y and v is adjacent to every vertex in Si∩X , particularly,

we denote the tree by Tu,v. Denote the set of trees in A0 with the standard structure by

A0, clearly, A0 = A0. Similarly, denote the set of trees in A1 and A2 with the standard

structure by A0 and A2, respectively.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting Si, A ⊂

A0 ∪A1 ∪A2. Then we can always find a set A′′ of internally disjoint trees connecting Si,

such that | A |=| A′′ | and A′′ ⊂ A0 ∪ A1 ∪ A2.

Proof. Suppose there is a tree T 0 in A such that T 0 ∈ A1 but T 0 /∈ A1, and V (T 0) =

Si ∪ {u0}, where u0 ∈ X \ Si. Note that the case u0 ∈ Y \ Si is similar. Since T 0 /∈ A1,

there are some vertices in Si∩Y , say yi1, . . . , yit, not adjacent to u0. Then we can connect

yi1 to u0 by a new edge. It will produce a unique cycle. Delete the other edge incident

with yi1 on the cycle. The graph remains a tree. Do the operation to yi2 , . . . , yit in turn.

Finally we get a tree T whose vertex set is Si ∪ {u0} and u0 is adjacent to every vertex

in Si ∩ Y , that is, T is of standard structure. For each tree Tn ∈ A \ {T 0}, clearly Tn

does not contain u0, including the edges incident with u0. So V (T ) ∩ V (Tn) = Si and

E(T ) ∩ E(Tn) = ∅. Replace A by A1 = A \ {T 0} ∪ {T}, and then A1 contains less trees

not in A0 ∪ A1 ∪ A2 than A. Suppose that there is a tree T 1 in A such that T 1 ∈ A2

but T 1 /∈ A2 and V (T 1) = Si ∪ {u1, v1}, where u1 ∈ X \ Si and v1 ∈ Y \ Si. Tu1,v1

is the tree in A2 whose vertex set is Si ∪ {u1, v1}. Then for each tree Tn ∈ A \ {T 1},

V (Tu1,v1)∩V (Tn) = Si and E(Tu1,v1)∩E(Tn) = ∅. Replace A by A1 = A\{T 1}∪{Tu1,v1}.

Then A1 contains less trees not in A0 ∪ A1 ∪ A2 than A. Repeating the process, we can

get a series of sets A0, A1, . . . , At, such that A0 = A, At = A′′, and Aj contains less trees

not in A0 ∪ A1 ∪ A2 than Aj−1, for 1 ≤ j ≤ t, where all As are sets of internally disjoint

trees connecting Si, A
s ⊂ A0 ∪ A1 ∪ A2, for 0 ≤ s ≤ t, and | A0 |= · · · =| At |. So we

finally get the set A′′ ⊂ A0 ∪A1 ∪ A2 which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting Si

is contained in A0 ∪ A1 ∪ A2. Namely, all trees in A are of standard structure.
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For simplicity, we denote the union of the vertex sets of all trees in set A by V (A)

and the union of the edge sets of all trees in set A by E(A). Let A be a set of internally

disjoint trees connecting Si. Let A0 := A ∩ A0, A1 := A ∩ A1 and A2 := A ∩ A2. Then

A = A0 ∪A1 ∪ A2. Let U(A) := V (G) \ V (A).

Lemma 3.3. Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees con-

necting Si, A = A0 ∪ A1 ∪ A2 and U(A) := V (G) \ V (A). Then either U(A) ∩X = ∅ or

U(A) ∩ Y = ∅.

Proof. If U(A) ∩ X 6= ∅ and U(A) ∩ Y 6= ∅, let x ∈ U(A) ∩ X and y ∈ U(A) ∩ Y .

Then the tree Tx,y ∈ A2 with vertex set Si ∪ {x, y} is a tree that connects Si. Moreover,

V (T ) ∩ V (A) = Si and for any tree T ′ ∈ A, T and T ′ are edge-disjoint. So, A ∪ {T} is

also a set of internally disjoint trees connecting Si, contradicting to the maximality of A.

So we conclude that if A is a maximum set of internally disjoint trees connecting Si,

then U(A) ⊂ X or U(A) ⊂ Y .

Lemma 3.4. Let A ⊂ A0 ∪ A1 ∪ A2 be a maximum set of internally disjoint trees con-

necting Si, A = A0 ∪ A1 ∪ A2 and U(A) := V (G) \ V (A). If U(A) 6= ∅ and A0 6= ∅, then

we can find a set A′ = A′
0 ∪ A′

1 ∪ A′
2 of internally disjoint trees connecting Si, such that

|A′
0| = |A0| − 1, |A′

1| = |A1|+ 1, A′
2 = A2 and |U(A′)| = |U(A)| − 1.

Proof. Let u ∈ U(A) and T ∈ A0. Without loss of generality, suppose u ∈ X . Then we

can connect u to y1 by a new edge, and the new graph becomes a tree T ′ ∈ A1. Using the

method in Lemma 3.2, we can transform T ′ into a tree T ′′ with the standard structure.

Then T ′′ ∈ A1. Let A′
0 := A0 \ T , A

′
1 := A1 ∪ {T ′′} and A′

2 = A2. It is easy to see that

A′ = A′
0 ∪A′

1 ∪A′
2 is a set of internally disjoint trees connecting Si. Since |A

′
0| = |A0| − 1,

|A′
1| = |A1|+ 1, and A′

2 = A2, A
′ is a maximum set of internally disjoint trees connecting

Si and |U(A′)| = |U(A)| − 1.

So, we can assume that for the maximum set A of internally disjoint trees connecting

Si, either U(A) = ∅ or A0 = ∅. Moreover, if A′ is a set of internally disjoint trees

connecting Si which we find currently, U(A′) 6= ∅ and the edges in E(G[Si]) \ E(A′) can

form a tree T in A0, then we will add to A′ the tree T ′′ in Lemma 3.4 rather than the

tree T .

Lemma 3.5. Let A ⊂ A0∪A1∪A2 be a maximum set of internally disjoint trees connect-

ing Si, A = A0 ∪ A1 ∪ A2 and U(A) := V (G) \ V (A). If there is a vertex x ∈ U(A) ⊂ X

and a tree T ∈ A1 with vertex set Si ∪ {y}, where y ∈ Y \ Si. Then we can find a

set A′ = A′
0 ∪ A′

1 ∪ A′
2 of internally disjoint trees connecting Si, such that A′

0 = A0,

|A′
1| = |A1| − 1, |A′

2| = |A2|+ 1 and |U(A′)| = |U(A)| − 1.
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Proof. Let Tx,y be the tree in A2 whose vertex set is Si∪{x, y}. Then A′ = A\T ∪{Tx,y}

is just the set we want.

The case that there is a vertex y ∈ U(A) ⊂ Y and a tree T ∈ A1 with vertex set

Si ∪ {x}, where x ∈ X \ Si, is similar. So we can assume that, for the maximum set A of

internally disjoint trees connecting Si, A satisfies one of the following properties:

(1) U(A) = ∅

(2) ∅ 6= U(A) ⊂ X and V (A1) \ Si ⊂ X

(3) ∅ 6= U(A) ⊂ Y and V (A1) \ Si ⊂ Y

Now, we can see that if U(A) 6= ∅, then all vertices in V (A1) \ Si belong to the same

partition. Next, we will show that we can always find a set A of internally disjoint trees

connecting Si, such that no matter whether U(A) is empty, all vertices in V (A1) \ Si

belong to the same partition. To show this, we need the following lemma.

Lemma 3.6. Let p, q be two nonnegative integers. If p(k−1)+qi ≤ i(k−i), and there are

q vertices u1, u2, . . . , uq ∈ X \Si, then we can always find p trees T1, T2, . . . , Tp in A0 and q

trees Tp+1, Tp+2, . . . , Tp+q in A1, such that V (Tj) = Si for 1 ≤ j ≤ p, V (Tp+m) = Si∪{um}

for 1 ≤ m ≤ q, and Tr and Ts are edge-disjoint for 1 ≤ r < s ≤ p + q. Similarly, if

p(k − 1) + q(k − i) ≤ i(k − i), and there are q vertices v1, v2, . . . , vq ∈ Y \ Si, then we

can always find p trees T1, T2, . . . , Tp in A0 and q trees Tp+1, Tp+2, . . . , Tp+q in A1, such

that V (Tj) = Si for 1 ≤ j ≤ p, V (Tp+m) = Si ∪ {vm} for 1 ≤ m ≤ q, and Tr and Ts are

edge-disjoint for 1 ≤ r < s ≤ p+ q.

Proof. If p(k−1)+ qi ≤ i(k− i), then p(k−1) ≤ i(k− i), namely p ≤ ⌊ i(k−i)
k−1

⌋. Then with

the method which we used to find edge-disjoint spanning trees in the proof of Theorem

1.2, we can find p edge-disjoint trees T1, T2, . . . , Tp in A0, just by taking a = i, b = k − i

and t = p. Moreover, let Dp
s denote the number of edges incident with xs in all of the

p trees, then according to the method, |Dp
s − Dp

t | ≤ 1 for 1 ≤ s, t ≤ i. Now, denote by

Bp
s the number of edges incident with xs which we have not used in the p trees. Then

|Bp
s −Bp

t | ≤ 1 for 1 ≤ s, t ≤ i. Since Bp
1 +Bp

2 + · · ·+Bp
i = i(k− i)−p(k−1) ≥ qi, Bp

s ≥ q.

Because for each tree in A1 with vertex set Si ∪ {u}, where u ∈ X \ Si, the vertices in

Si∩X all have degree 1, we can find q edge-disjoint trees Tp+1, Tp+2, . . . , Tp+q in A1. Since

the edges in Tp+1, Tp+2, . . . , Tp+q are not used in T1, T2, . . . , Tp for 1 ≤ r < s ≤ p + q, Tr

and Ts are edge-disjoint. The proof of the second half of the lemma is similar.

Lemma 3.7. Let A ⊂ A0∪A1∪A2 be a maximum set of internally disjoint trees connect-

ing Si, A = A0∪A1∪A2 and U(A) := V (G)\V (A). If there are s trees T1, T2, . . . , Ts ∈ A1

with vertex set Si ∪ {u1}, Si ∪ {u2}, . . ., Si ∪ {us} respectively, where uj ∈ X \ Si for
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1 ≤ j ≤ s, and t trees Ts+1, Ts+2, . . . , Ts+t ∈ A1 with vertex set Si ∪ {v1}, Si ∪ {v2},

. . ., Si ∪ {vt} respectively, where vj ∈ Y \ Si for 1 ≤ j ≤ t. Then we can find a set

A′ = A′
0 ∪ A′

1 ∪ A′
2 of internally disjoint trees connecting Si, such that |A| = |A′| and all

vertices in V (A′
1) \ Si belong to the same partition.

Proof. Let |A0| = p. Since A is a set of internally disjoint trees connecting Si, we

have p(k − 1) + si + t(k − i) ≤ i(k − i), where si denote the si edges incident with

x1, . . . , xi in T1, T2, . . . , Ts, and t(k− i) denote the t(k− i) edges incident with y1, . . . , yk−i

in Ts+1, Ts+2, . . . , Ts+t. If s ≤ t, then p(k − 1) + si+ s(k − i) + (t− s)(k − i) ≤ i(k − i),

and hence (p + s)(k − 1) + (t − s)(k − i) ≤ i(k − i). Obviously, there are t − s vertices

vs+1, vs+2, . . . , vt ∈ Y \ Si, and therefore by Lemma 3.6, we can find p + s trees in A0

and t− s trees in A1, such that all these trees are internally disjoint trees connecting Si.

Now let A′
0 be the set of the p+ s trees in A0, A

′
1 be the set of the t− s trees in A1 and

A′
2 := A2 ∪ {Tuj ,vj , 1 ≤ j ≤ s}. Then A′ = A′

0 ∪A′
1 ∪A′

2 is just the set we want. The case

that s > t is similar.

From Lemmas 3.5 and 3.7, we can see that, if A′ is a set of internally disjoint trees

connecting Si which we find currently, U(A′)∩X 6= ∅ and U(A′)∩Y 6= ∅, then no matter

how many edges are there in E(G[Si]) \E(A′), we always add to A′ the trees in A2 rather

than the trees in A1.

Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers a and b, let Ka,b denote a complete bi-

partite graph with a bipartition of sizes a and b, respectively. Then we have the following

results: if k > b− a+ 2 and a− b+ k is odd then

κk(Ka,b) =
a+ b− k + 1

2
+ ⌊

(a− b+ k − 1)(b− a + k − 1)

4(k − 1)
⌋;

if k > b− a+ 2 and a− b+ k is even then

κk(Ka,b) =
a+ b− k

2
+ ⌊

(a− b+ k)(b− a+ k)

4(k − 1)
⌋;

and if k ≤ b− a+ 2 then

κk(Ka,b) = a.

Proof. Recall that κk(G) = min{κ(S)}, where the minimum is taken over all k-element

subsets S of V (G). Let X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} be the bipartition

of Ka,b, where a ≤ b. As we have mentioned, all vertices in X are equivalent and all

vertices in Y are equivalent. So instead of considering all k-element subsets S of V (G),

we can restrict our attention to the subsets Si, for 0 ≤ i ≤ k, where Si is an k-element

12



subsets of V (G) such that Si∩X = {x1, x2, . . . , xi}, Si∩Y = {y1, y2, . . . , yk−i}, 1 ≤ i ≤ k

and S0 ∩ X = ∅, S0 ∩ Y = {y1, y2, . . . , yk}. Notice that, if i > a or k − i > b then Si

does not exist, and if k > b then S0 does not exist. So, we need only to consider Si for

max{0, k − b} ≤ i ≤ min{a, k}.

From the above lemmas, we can decide our principle to find the maximum set of

internally disjoint trees connecting Si. Namely, first we find as many trees in A2 as

possible, next we find as many trees in A1 as possible, and finally we find as many trees

in A0 as possible.

For a set Si = {x1, x2, . . . , xi, y1, y2, . . . , yk−i}, let A be the maximum set of internally

disjoint trees connecting Si we find with our principle. We now compute |A|.

Case 1. k ≤ b− a+ 2

Obviously, κ(S0) = a.

For S1, since k ≤ b− a+ 2, then

b− (k − 1) = b− k + 1 ≥ a− 2 + 1 = a− 1.

So, |A2| = a− 1. If b− k + 1 = a− 1, then |A1| = 0, |A0| = 1. If b− k + 1 > a− 1, then

|A1| = 1, |A0| = 0. No matter which case happens, we have κ(S1) = |A2|+ |A1|+ |A0| = a.

For Si, i ≥ 2, since k ≤ b− a + 2, then

b− (k − i) = b− k + i ≥ a− 2 + i > a− i.

So, |A2| = a − i. Since b− k + i − (a− i) = b− a− k + 2i ≥ −2 + 2i ≥ i, then |A1| = i

and |A0| = 0. Thus κ(Si) = |A2|+ |A1|+ |A0| = a.

In summary, if k ≤ b− a+ 2, then κk(G) = a.

Case 2. k > b− a + 2

First, let us compare κ(Si) with κ(Sk−i), for 0 ≤ i ≤ ⌊k
2
⌋. If a = b, clearly, κ(Si) =

κ(Sk−i). So we may assume that a < b.

For i = 0, κ(S0) = a < b = κ(Sk).

For 1 ≤ i ≤ ⌊k
2
⌋, we will give the expressions of κ(Si) and κ(Sk−i).

First for Si, since every pair of vertices u ∈ X \Si and v ∈ Y \Si can form a tree Tu,v,

then |A2| = min{a− i, b− (k − i)}. Namely,

|A2| =

{

a− i if i ≥ a−b+k
2

;

b− k + i if i < a−b+k
2

.
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Next, since every tree T in A1 has a vertex in V \ (Si ∪ V (A2)), we have

|A1| ≤

{

b− k + i− (a− i) if i ≥ a−b+k
2

;

a− i− (b− k + i) if i < a−b+k
2

.

On the other hand, if the tree T has vertex set Si ∪ {u}, where u ∈ X \ Si, then every

vertex in Si ∩X is incident with one edge in E(Si), where E(Si) denotes the set of edges

whose ends are both in Si. And if the tree T has vertex set Si ∪ {v}, where v ∈ Y \ Si,

then every vertex in Si∩Y is incident with one edge in E(Si). Since every vertex in Si∩X

is incident with k − i edges in E(Si) and every vertex in Si ∩ Y is incident with i edges

in E(Si), we have

|A1| ≤

{

i if i ≥ a−b+k
2

;

k − i if i < a−b+k
2

.

Combining the two inequalities, we get

|A1| =

{

min{b− a− k + 2i, i} if i ≥ a−b+k
2

;

min{a− b+ k − 2i, k − i} if i < a−b+k
2

.

Thus

|A1| =











i if i ≥ a− b+ k ;

b− a− k + 2i if a−b+k
2

≤ i < a− b+ k ;

a− b+ k − 2i if i < a−b+k
2

.

Finally, by Lemma 3.6 we have

|A0| =

{

⌊ i(k−i)−|A1|(k−i)
k−1

⌋ if i ≥ a−b+k
2

;

⌊ i(k−i)−|A1|i
k−1

⌋ if i < a−b+k
2

.

Thus

|A0| =











0 if i ≥ a− b+ k ;

⌊ [i−(b−a−k+2i)](k−i)
k−1

⌋ if a−b+k
2

≤ i < a− b+ k ;

⌊ [k−i−(a−b+k−2i)]i
k−1

⌋ if i < a−b+k
2

.

And hence

κ(Si) =











a if i ≥ a− b+ k ;

b− k + i+ ⌊ [i−(b−a−k+2i)](k−i)
k−1

⌋ if a−b+k
2

≤ i < a− b+ k ;

a− i+ ⌊ [k−i−(a−b+k−2i)]i
k−1

⌋ if i < a−b+k
2

.

Notice that i ≥ 1, and hence k − i ≤ k − 1.

If a−b+k
2

≤ i < a− b+ k, then

⌊
[i− (b− a− k + 2i)](k − i)

k − 1
⌋ ≤ i− (b− a− k + 2i) = a− b+ k − i.

So, κ(Si) ≤ b− k + i+ a− b+ k − i = a.
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If i < a−b+k
2

, then a− b+k−2i > 0, k− i− (a− b+k−2i) < k− i ≤ k−1, and hence

⌊
[k − i− (a− b+ k − 2i)]i

k − 1
⌋ ≤ i.

So, κ(Si) ≤ a− i+ i = a

Thus κ(Si) ≤ a, for i ≥ 1.

Next, considering Sk−i, similarly, we have

|A2| = min{a− (k − i), b− i}.

Since a < b and i ≤ ⌊k
2
⌋ ≤ ⌈k

2
⌉ ≤ k − i, then b− i > a− (k − i). So |A2| = a− k + i and

|A1| = min{b− i− (a− k + i), k − i}. Hence

|A1| =

{

k − i if i ≤ b− a ;

b− a+ k − 2i if i > b− a .

Moreover,

|A0| =

{

0 if i ≤ b− a ;

⌊ [k−i−(b−a+k−2i)]i
k−1

⌋ if i > b− a .

So,

κ(Sk−i) =

{

a if i ≤ b− a ;

b− i+ ⌊ [k−i−(b−a+k−2i)]i
k−1

⌋ if i > b− a .

Now, we can compare κ(Si) with κ(Sk−i). For i ≤ b − a, κ(Sk−i) = a ≥ κ(Si). For

i > b− a, there must be b− a < k − i, that is, i < a− b+ k.

If a−b+k
2

≤ i < a− b+ k, then

κ(Sk−i)− κ(Si) = b− i+ ⌊
[k − i− (b− a+ k − 2i)]i

k − 1
⌋

−{b− k + i+ ⌊
[i− (b− a− k + 2i)](k − i)

k − 1
⌋}

≥ (k − 2i) + ⌊
(k − 2i)(b− a− k)

k − 1
⌋

≥ (k − 2i) + ⌊
(k − 2i)(1− k)

k − 1
⌋

≥ (k − 2i)− (k − 2i) = 0.

So, κ(Sk−i) ≥ κ(Si).

If i < a−b+k
2

, then

κ(Sk−i)− κ(Si) = b− i+ ⌊
[k − i− (b− a+ k − 2i)]i

k − 1
⌋

−{a− i+ ⌊
[k − i− (a− b+ k − 2i)]i

k − 1
⌋}

≥ (b− a) + ⌊
(2i)(a− b)

k − 1
⌋.
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Since i < a−b+k
2

, then 2i ≤ k − 1, and hence (2i)(a−b)
k−1

≥ a − b. So, κ(Sk−i) − κ(Si) ≥

b− a+ a− b = 0. Thus, κ(Sk−i) ≥ κ(Si).

In summary, κ(Sk−i) ≥ κ(Si), for 0 ≤ i ≤ ⌊k
2
⌋. So, in order to get κk(G), it is enough

to consider κ(Si), for 0 ≤ i ≤ ⌊k
2
⌋.

Next, let us compare κ(Si) with κ(Si+1), for 0 ≤ i ≤ ⌊k
2
⌋ − 1. For i = 0, κ(Si) = a ≥

κ(Si+1). For 1 ≤ i ≤ ⌊k
2
⌋ − 1,

κ(Si) =











a if i ≥ a− b+ k ;

b− k + i+ ⌊ [i−(b−a−k+2i)](k−i)
k−1

⌋ if a−b+k
2

≤ i < a− b+ k ;

a− i+ ⌊ [k−i−(a−b+k−2i)]i
k−1

⌋ if i < a−b+k
2

.

and

κ(Si+1) =











a if i ≥ a− b+ k − 1 ;

b− k + i+ 1 + ⌊ [i+1−(b−a−k+2i+2)](k−i−1)
k−1

⌋ if a−b+k
2

− 1 ≤ i < a− b+ k − 1 ;

a− i− 1 + ⌊ [k−i−1−(a−b+k−2i−2)](i+1)
k−1

⌋ if i < a−b+k
2

− 1 .

So, κ(Sa−b+k) = κ(Sa−b+k+1) = · · · = κ(Smin{a,k}) = a.

If i < a−b+k
2

− 1, then

κ(Si)− κ(Si+1) = a− i+ ⌊
[k − i− (a− b+ k − 2i)]i

k − 1
⌋

−{a− i− 1 + ⌊
[k − i− 1− (a− b+ k − 2i− 2)]i+ 1

k − 1
⌋}

≥ 1 + ⌊
(a− b− 2i− 1)

k − 1
⌋

≥ 1 + ⌊
1− k

k − 1
⌋

≥ 1− 1 = 0.

So, κ(Si) ≥ κ(Si+1). Namely, if a− b+ k is odd, we have

κ(S0) ≥ κ(S1) ≥ · · · ≥ κ(Sa−b+k−3

2

) ≥ κ(Sa−b+k−1

2

).

and if a− b+ k is even, we have

κ(S0) ≥ κ(S1) ≥ · · · ≥ κ(Sa−b+k−4

2

) ≥ κ(Sa−b+k−2

2

).

If i = a−b+k
2

− 1, κ(Si) =
a+b−k

2
+ 1 + ⌊ (b−a+k−2)(a−b+k−2)

4(k−1)
⌋.

If i = a−b+k−1
2

, κ(Si) =
a+b−k+1

2
+ ⌊ (b−a+k−1)(a−b+k−1)

4(k−1)
⌋.

If i = a−b+k
2

, κ(Si) =
a+b−k

2
+ ⌊ (b−a+k)(a−b+k)

4(k−1)
⌋.

If i = a−b+k+1
2

, κ(Si) =
a+b−k+1

2
+ ⌊ (b−a+k−1)(a−b+k−1)

4(k−1)
⌋.
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If a− b+ k is even, since

(a− b+ k)(b− a+ k)− (b− a+ k − 2)(a− b+ k − 2)

= (a− b+ k)(b− a+ k)− [(a− b+ k)(b− a+ k)− 2(b− a+ k)− 2(a− b+ k − 2)]

= 4(k − 1),

then we have κ(Sa−b+k
2

−1) = κ(Sa−b+k
2

). If a − b + k is odd, we have κ(Sa−b+k−1

2

) =

κ(Sa−b+k+1

2

).

If a−b+k
2

≤ i ≤ a− b+ k − 1, then

κ(Si+1)− κ(Si) = b− k + i+ 1 + ⌊
[i+ 1− (b− a− k + 2i+ 2)](k − i− 1)

k − 1
⌋

−{b− k + i+ ⌊
[i− (b− a− k + 2i)](k − i)

k − 1
⌋}

≥ 1 + ⌊
(b− a− 2k + 2i+ 1)

k − 1
⌋

≥ 1 + ⌊
1− k

k − 1
⌋

≥ 1− 1 = 0.

So, κ(Si+1) ≥ κ(Si). Namely, if a− b+ k is odd, we have

κ(Sa−b+k+1

2

) ≤ κ(Sa−b+k+3

2

) ≤ · · · ≤ κ(Sa−b+k−1) ≤ κ(Sa−b+k) = a,

and if a− b+ k is even, we have

κ(Sa−b+k
2

) ≤ κ(Sa−b+k+2

2

) ≤ · · · ≤ κ(Sa−b+k−1) ≤ κ(Sa−b+k) = a.

Thus, if k > b− a+ 2 and a− b+ k is odd,

κk(Ka,b) = κ(Sa−b+k−1

2

) =
a+ b− k + 1

2
+ ⌊

(a− b+ k − 1)(b− a+ k − 1)

4(k − 1)
⌋,

and if k > b− a + 2 and a− b+ k is even,

κk(Ka,b) = κ(Sa−b+k
2

) =
a + b− k

2
+ ⌊

(a− b+ k)(b− a+ k)

4(k − 1)
⌋.

The proof is complete.

Notice that, when k = a+ b, the result coincides with Theorem 1.2.
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