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Abstract

Let G be a nontrivial connected graph of order n, and k an integer with 2 <
k < n. For a set S of k vertices of G, let k(S) denote the maximum number ¢ of
edge-disjoint trees T4,T5,...,Ty in G such that V(T;) N V(T;) = S for every pair
i,j of distinct integers with 1 < 4,5 < ¢. Chartrand et al. generalized the concept
of connectivity as follows: The k-connectivity, denoted by ki(G), of G is defined
by ki(G) =min{k(S)}, where the minimum is taken over all k-subsets S of V(G).
Thus k2(G) = k(G), where k(G) is the connectivity of G. Moreover, k,(G) is the
maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs K, .

First, we obtain the number of edge-disjoint spanning trees of K, j, which is L#bb_lj ,

ab
a+b—1

result, we get the k-connectivity of K, for all 2 < k < a+b. Namely, if & > b—a+2
and a—b+Fk is odd then ki (Kqp) = “+b§k+1 + L(a—b+k;(1k)(_b1—)a+k_1)J, ithk>b—a+2
and a — b+ k is even then (K, ) = “52=K 4 L(a_bzgggbl_)wrk)j, and if k <b—a+2
then k(K p) = a.

and specifically give the | | edge-disjoint spanning trees. Then based on this
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1 Introduction

We follow the terminology and notation of [I]. As usual, denote by K,; the complete
bipartite graph with bipartition of sizes a and b. The connectivity k(G) of a graph
G is defined as the minimum cardinality of a set () of vertices of G such that G — @)
is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent
definition of the connectivity. For each 2-subset S = {u, v} of vertices of G, let x(.5) denote
the maximum number of internally disjoint uv-paths in G. Then k(G) =min{x(S)}, where

the minimum is taken over all 2-subsets S of V(G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial
connected graph of order n, and k an integer with 2 < k < n. For a set S of k vertices of
G, let k(5) denote the maximum number ¢ of edge-disjoint trees 17,75, ..., T, in G such
that V(T;) NV (1) = S for every pair 4, j of distinct integers with 1 <, j < ¢ (Note that
the trees are vertex-disjoint in G\S). A collection {T%,T5,...,T;} of trees in G with this
property is called an internally disjoint set of trees connecting S. The k-connectivity,
denoted by k(G), of G is then defined as ki(G) =min{x(S5)}, where the minimum is
taken over all k-subsets S of V(G). Thus, ko(G) = k(G) and k,(G) is the maximum

number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of x3(G) and mainly studied the rela-
tionship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp
upper and lower bounds for k3(G) for general graphs G, and showed that if G is a con-
nected planar graph, then x(G) — 1 < k3(G) < k(G). Moreover, they studied the algo-
rithmic aspects for k3(G) and gave an algorithm to determine k3(G) for a general graph

G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph K345, then
k3(G) = 6. They also gave a general result for the complete graph K,:

Theorem 1.1. For every two integers n and k with 2 < k < n,
k(Ky) =n— [k/2].

In this paper, we turn to complete bipartite graphs K, ;. First, we give the number of

edge-disjoint spanning trees of K, namely fqp(Kop)-

Theorem 1.2. For every two integers a and b,

ab

Fats(Kap) = Lm

|.

Actually, we specifically give the |- +“bb_1J edge-disjoint spanning trees of K,;. Then

based on Theorem [I.2, we obtain the k-connectivity of K, for all 2 <k < a+ 0.
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2 Proof of Theorem 1.2

Since K,; contains ab edges and a spanning tree needs a + b — 1 edges, the number

of edge-disjoint spanning trees of K, is at most |- +“bb_lj, namely, Kq5(Kap) < [ +‘Zb_1j.

Thus, it suffices to prove that k,p(Kap) > La+“bb_1j. To this end, we want to find all the

Lafbb_lj edge-disjoint spanning trees.

Let X = {x1,29,...,2,} and Y = {y1, 42, ..., ys} be the bipartition of K,;. Without

loss of generality, we may assume that a < b.

We will express the spanning trees by adjacency-degree lists. To be specific, the fist

spanning tree T} we find can be represented by an adjacency-degree list as follows:

vertex | neighbors degree
x Y, Y2, -5 Yy da
T Ydir Ydi+1s -+ Yditda—1 dy
x3 Ydi+do—15 Ydi+dys - -5 Ydi+dot+ds—2 d3
T Ydi+dot-Adj—1—(j—2)s Ydi+dot+dj_1—(G—2)+1s -1 Ydi+dot-td;—(5—1) dj
Zq Ydy +dotAda—1—(a—2) Ydy+dot-tda1—(a—2)+1s > Ydytdot-tda—(a—1) | da

where d; denotes the degree of z; in T3, and dy +dy +--- +d, =a+b— 1.

To simplify the subscript, we denote iy = 1, ty = di, i = di +da — 1, ..., i =
di+do+---+dj—(j—1), ...,0 =dy+dy+---+d, — (a — 1) = b. Note that,
t; —tj_1 = d; — 1. So the adjacency-degree list of T} can be simplified as follows:

vertex | neighbors degree
€1 Yigy Yig+1s -y Yiy dl
T2 Yirs Y+l -5 Yig do
T, 3 Yizr Yio+1, ---5 Yig ds
ZTj Yij_1s Yij_q+15 -+ Yy dj
Lq Yie—1r Yig_1+1y -5 Yig dll

Then we can list the second spanning trees we find. Here and in what follows, for a

vertex y;, if 7 > b, y; denotes y; 4, for a subscript i;, if j > a, y;, denotes y;,_,, and for

—a?

degree d;, if j > a, d; denotes d;_,.



vertex | neighbors degree
T1 Yir+1s Yir+2s -y Yig+1 da

) Yis+1, Yio+25 -+ Yig+1 d3

€3 Yis+1, Yig+25 -+ Yig+1 d4

Z;j yij—l—l’ yij+27 ceey yij+1+1 dj+1
Lq Yie+1s Yie+25 -5 Yigq dl

From the lists, we can see that T, and T are edge-disjoint, if and only if for every

vertex x;, d;j + djp1 < b. If T, and T} are edge-disjoint, then we continue to list T5.
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vertex | neighbors degree
T1 Yio+25 Yig+3, -5 Yiz42 ds

T2 Yig+2> Yig+3s - > Yigt2 dy

T3 Yig+25 Yig+35 -+ -5 Yis42 ds

T Yij1+2> Yijo1+3s -5 Yijia42 dj+2
La Yier1+2) Yiar1+35 -+ Yigpo+l d2

From the lists, we can see that T3 and T}, T, are edge-disjoint, if and only if for every

vertex x;, d;j + dji1 + djio < b. If T3 and T3, T5 are edge-disjoint, then we continue to

list T;. Continuing the procedure, our goal is to find the maximum ¢, such that 7, and

11,1, ..

T,

., Ty are edge-disjoint.

vertex | neighbors degree
T Yig14+t=1)y Yiz_1+ty -+ Yig+(t—1) dt

T2 Yig+-t=1) Yirt+ts -5 Yipp1+(-1) dit1
3 Yiepr+(t—1)s Yiepa+ts -+ Yigpotr(t-1) diyo
ZTj Yijrrot@=1)s Yijipotty -y Yijpe14+(t-1) diyj1
Lq, Yigyr—ot(t=1)y Yigyi—otts -y Yigp1+(t-2) dt—l

That is, we want to find the maximum ¢, such that d; + d;41 + - -+ + dj;4—1 < b, for any
I1<j<a.

Let D} = dj +dj1 + -+ dji—1. It can be observed that D} = D7, if and only if
d; = d;+. Consider the numbers 1,24 1,2t +1,..., (a — 1)t + 1, where addition is carried

out by modula a.

Case 1. 1,t+ 1,2t +1,...,(a — 1)t + 1 are pairwise distinct.



Then we can assign the values to d; as follows:

Let a+b—1 = ka + ¢, where k, c are integers, and 0 < c<a—1. Thena+b—1=
(k+1)c+k(a—c). Ifc=0,letd; =k, forall 1 <j <a. Ifc#0,let dyyy =k+1, for
all 0 <7 <c—1, and let other d; = k.

Case 2. Some of the numbers 1,¢+ 1,2t +1,...,(a — 1)t + 1 are equal.

Without loss of generality, suppose jt + 1 is the first number that equals a number
it+1 before it, namely, jt+1 = it+1 (mod a), where j > i. Then (j—i)t+1 =1 (mod a).
Since jt + 1 is the first number that equals a number before it, we can get ¢ = 0. Thus,
Lt+1,2t+1,...,(j — 1)t + 1 are pairwise distinct.

Claim 1. it + 1 # 2 (mod a), for any integer i.

If it +1 =2 (mod a), then we have it = 1 (mod a). Thus we have

(mod a)
(mod a)

[\
~
~
+ +
—_
W N

So there are a distinct numbers in {1,it + 1,2t + 1,...,(a — 1)it + 1}. On the other
hand, since jt +1 = 1 (mod a), there are at most j < a — 1 distinct numbers in {ut +
1,u is an integer} D {1,it +1,2it + 1,..., (a — 1)it + 1}, a contradiction. Thus, it + 1 #

2 (mod a) for any integer i.
Claim 2. 2,t+2,2t+2,...,(j — 1)t + 2 are pairwise distinct.
If j1t+2 = jot +2 (mod a), where 0 < j; < jo < j—1, then jit+1 = jot + 1 (mod a).

But 1,t 4+ 1,2t +1,...,(j — 1)t + 1 are pairwise distinct, a contradiction. Thus, 2,t +
2,2t+2,...,(j — 1)t + 2 are pairwise distinct.

Claim 3. {1,t+1,2t+1,...,(j — )t+1}N{2,t+2,2t+2,...,(j — Dt +2} = 0.

If i1t + 1 = ist + 2 (mod a), then (i — i)t + 1 =2 (mod a), but it + 1 # 2 (mod a)
for any integer i, a contradiction by Claim 1. Thus, 1,¢ +1,2¢+1,...,(j — Dt +1,2,t+
2,2t +2,...,(j — 1)t + 2 are pairwise distinct.

Now, if 2 = %, then we have already ordered all numbers of {1, ..., a}. Elseif 2 < %,

we will prove that 1 + it # 3 (mod a) and 2 + it # 3 (mod a) for any integer 7.
Claim 4. If 2 < &, then 1+t # 3 (mod a) and 2 + it # 3 (mod a) for any integer «.

If 2+ it = 3 (mod a), then 1+ it = 2 (mod a), a contradiction by Claim 1. If



1+ it =3 (mod a), then we have it = 2 (mod a). Thus we have

it + 1 = 3 (mod a)

it o+ 2 = 4 (mod a)

2t + 1 = 5 (mod a)

2it + 2 = 6 (mod a)
“2it + 1 = a—1 (moda) (for a even)
3t + 2 = a—1 (mod a) (for a odd)
“2it + 2 = a  (moda) (for a even)
“lit + 1 = a  (moda) (for a odd)

So there are at least a distinct numbers in {1,4t + 1,2it +1,...,[§]it + 1,2,4t + 2,24t +
2,...,[5]it +2}. On the other hand, since jt +1 =1 (mod a) and j < a — 1, there are
at most 2j < a distinct numbers in {ut + 1, u is an integer} U {vt + 2, v is an integer} D
{Lit+1,2it +1,..., [§]it +1,2,it +2,2it +2,...,[§]it +2}, a contradiction. Hence, if
2 <, then 1+t # 3 (mod a) and 2 + it # 3 (mod a) for any integer i.

Similarly, we can prove that r 4+ it # s (mod a) for 1 <r < s < % Thus we can get

the following claim:

Claim 5. 1,t+1,2t+1,...,(j—1)t+1,2,t+2,2t+2,...,(j—l)t+2,...,%,t+%,2t+
2,...,(J = 1)t + % are pairwise distinct. And hence {1,t+1,2¢t+1,...,(j — 1)t +1} U
{2t +2,2t42,..., (-t +2U- - U{St+ 520+ 5, (- Dt+ 5 ={12,...,a}.

The proof is similar to those of Claims 2, 3 and 4. We thus have ordered {1,2,...,a} by
L] 2641, (=D)L, 2,042, 2042, (= 1)E42, .., 8 642 2042 (j—1)t+2,
Let a +b—1 = ka + ¢, where k, c are integers, and 0 < ¢ < a—1. Thena+b0—-1 =
(k+1)c+k(a—c).

Now, we can assign the values of d; as follows: If ¢ =0, let d; = k for all 1 < j < a.
If ¢ # 0, for the first ¢ numbers of our ordering, if d; uses one of them as subscript, then
dj =k+1, elsed; = k.

Next, we will show that, in either case, | D! — D; |< 1 for any integers 1 < 4,7 < a
and t > 0.

If c=0,d; =k forall<j<a,then D! = D;- for any integers 1 < ¢,j < a. The
assertion is certainly true. So we may assume that ¢ # 0. For Case 1, we construct a
weighted cycle: C' = v1vy... 0,01 and w(v;) = d—1)e+1, Where v; corresponds to vertex

Ti—ney1, 1 <1< a.
According to the assignment,

w(vy) =w(vy) =+ =w.) =k+1,
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and
W(Ver1) = W(Veq2) = -+ = w(v,) = k.
Since Dj = Dj,, if and only if d; = djy, then D;_,,,,
w(v;) = w(v1). Similarly, Df;_yy.00 = Di;_yp404 + 1 if and only if w(v;) = w(vigr) + 1,
and Di; ),y = Di;_1yp414q — 1 if and only if w(v;) = w(vi1) — 1. We know that w(v,) =
w(ver1) + 1 and w(v,) = w(vy) — 1. For simplicity, let (¢ — 1)t + 1 = «a (mod a),

= D{;_1)114, if and only if

(a—1)t+1=p (mod a), that is, v. corresponds to z, and v, corresponds to g, and by
the hypothesis, a # f.

If a < 3, then
Di=Dy=---=D\ =D +1=D! ,+1="-- =Df3+1=D2+1=D2+2:---=D2.
If a > (3, then
Di=Di=---=DYy=D4 —1=Dy—1=--=D—1=Dl, =D == DL

In any case, we have | Dj — D! |< 1 for any integers 1 <4, < a and t > 0.

For Case 2, we construct % weighted cycles. C; = vy,v;, ... 0505, 1 <0 < %, and
w(v;,) = d(r—1yt4i, Where v; corresponds to vertex z(_1)i4;, 1 <7 < j. By the assignment,
there is at most one cycle in which the vertices have two distinct weights. If such cycle
does not exist, clearly, we have D} = Di = ... = D!. So we may assume that for some
cycle C, w(vs,) = w(vs,,,) + 1 and w(v,,) = w(v,,) — 1. Similar to the proof of Case 1,
we can get that | Dj — D} [< 1 for any integers 1 <4i,j < a and t > 0.

Then, we can show that, with the assignment we can get t > | -2 |.

a+b—1
Let t' = | -5 |. And let
DY di + dy + +  dy
DY = dy + ds + + dya
Df = dj + dj + + djpra
DY = d, + d + +  dyy

we have DY + DY + ...+ DY =t/ (dy +dy+---+d,) =t'(a+b—1)

It follows from | D} — D% |< 1, for any integers 1 <4, j < a and t > 0, that

/ t b—1 t b—1 b b—1
pt < ffletb=by Hlatb=1) o ab a¥b=l .\ 4y
J a a a+b—-1 a
The third inequality holds since ¢’ = |- +“bb_1j < - fbb_l. Since D;-' is an integer, we

have D;f < bforall 1 < 5 < a. Since t is the maximum integer such that D; =
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dj+djs1+--+djpe—g <bforany 1 <j<a,thent >t =| ab |. So we can find at

a+b—1
least |- +“bb_1j edge-disjoint spanning trees of K. And hence kay5(Kqp) > |- ﬁb_lj. So
we have proved that r,4p(Kyp) = Laﬁb_lj. i

3 The k-connectivity of complete bipartite graphs

Next, we will calculate ki (K,p), for 2 <k <a+b.

Recall that xx(G) = min{x(S)}, where the minimum is taken over all k-element
subsets S of V(G). Denote by K, , a complete bipartite graph with bipartition X =
{z1,29,...,2.} and Y = {y1,y2,..., %}, where a < b. Actually, all vertices in X are
equivalent and all vertices in Y are equivalent. So instead of considering all k-element
subsets S of V(G), we can restrict our attention to the subsets S;, for 0 < i < k,
where S; is an k-element subsets of V(G) such that S; N X = {z1,29,...,2;}, S;NY =
{y1, 92, i}, 1 <i<kand SN X =0, SoNY = {y1,vs,...,yr}. Notice that, if
1> a or k—1 > bthen S; does not exist, and if & > b then Sy does not exist. So, we need
only to consider S; for max{0, k£ — b} <i < min{a, k}.

Now, let A be a maximum set of internally disjoint trees connecting S;. Let 2(y be the
set of trees connecting S; whose vertex set is S;, let 2; be the set of trees connecting .S;
whose vertex set is S; U {u}, where u ¢ S; and let 2y be the set of trees connecting S;

whose vertex set is S; U {u, v}, where u,v ¢ S; and they belong to distinct partitions.

Lemma 3.1. Let A be a mazimum set of internally disjoint trees connecting S;. Then we
can always find a set A" of internally disjoint trees connecting S;, such that | A |=| A" |
and A’ C Ao U A UAs.

Proof. If there is a tree TY in A whose vertex set V(T°) D {u1, us}, where uy, uy ¢ S; and
u1, ug belong to the same partition, then we can connect all neighbors of us to u; by some
new edges and delete uy and the multiple edges (if exist). Obviously, the new graph we
obtain is still a tree 7" that connect S;. Since V(T,,) NV (T,,) = S; for every pair of trees
in A, other trees in A will not contain u;, including the edges incident with u;. So for
all trees T, in A other than T° V(T") NV (T,) = S; and E(T") N E(T,,) = 0. Moreover,
T" has less vertices which are not in S; than T°. Repeat this process, until we get a tree
T € Ao UA; UAy. Replace A by A' = A\ {T°} U {T'}, and then A' contains less trees
that are not in Ay U%2A; U A, than A. Repeating the process, we can get a series of sets
AV AL A such that A = A, A' = A’, and A7 contains less trees not in Ay U A, U2y
than A’~! for 1 < j < t, where all A® are sets of internally disjoint trees connecting S;
for 0 < s <t and | A% |=---=| A" |. So we finally get the set A" C 2y U2A; ULy which

has the same cardinality as A. |



So, we can assume that the maximum set A of internally disjoint trees connecting S;
is contained in Ay U Ay U As.

Next, we will define the standard structure of trees in 2y, 21y and s, respectively.

Every tree in 2y is of standard structure. A tree T in 2; with vertex set V(T') =
S; U {u}, where u € X \ S;, is of standard structure, if u is adjacent to every vertex
in S; NY, and every vertex in S; N X has degree 1. A tree T in 2; with vertex set
V(T) = S; U{v}, where v € Y \ S, is of standard structure, if v is adjacent to every
vertex in S; N X, and every vertex in S; N'Y has degree 1. A tree T in 205 with vertex
set V(T') = S; U{u,v}, where u € X \ S; and v € Y\ 5;, is of standard structure, if u is
adjacent to every vertex in S;NY and v is adjacent to every vertex in S; N X, particularly,
we denote the tree by T, ,. Denote the set of trees in 2, with the standard structure by
Ay, clearly, Ay = 2y. Similarly, denote the set of trees in 21; and 2A; with the standard
structure by Ag and A,, respectively.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting S;, A C
Ao UA; URAy. Then we can always find a set A” of internally disjoint trees connecting S;,
such that | A |=| A” | and A” C Ay U A; U As.

Proof. Suppose there is a tree T in A such that 7° € 2; but T° ¢ Ay, and V(T°) =
S; U {ug}, where ug € X \ S;. Note that the case ug € Y \ S; is similar. Since T° ¢ Aj,
there are some vertices in S;NY, say v, ..., ¥;, not adjacent to ug. Then we can connect
Yi, to ug by a new edge. It will produce a unique cycle. Delete the other edge incident
with y;, on the cycle. The graph remains a tree. Do the operation to y,, ..., y; in turn.
Finally we get a tree T whose vertex set is S; U {ugp} and uq is adjacent to every vertex
in S; NY, that is, T is of standard structure. For each tree T,, € A\ {T°}, clearly T,
does not contain wug, including the edges incident with uo. So V(T') NV (T,,) = S; and
E(T)N E(T,) = 0. Replace A by Al = A\ {T°} U {T}, and then A' contains less trees
not in Ay U A; U A, than A. Suppose that there is a tree T' in A such that T € A,
but Tt ¢ Ay and V(T') = S; U {uy,v1}, where uy € X \'S; and v; € Y\ S;. Ty,
is the tree in A, whose vertex set is S; U {u;,v1}. Then for each tree T, € A\ {T"},
V(Ty,0,)NV(T,) = S; and E(T,, ,,) NE(T,) = 0. Replace A by A' = A\{T'}U{T,, ., }-
Then A! contains less trees not in Ay U A; U A, than A. Repeating the process, we can
get a series of sets A%, A!, ..., A’ such that A = A, A = A” and A’ contains less trees
not in Ay U A; U Ay than A7~1 for 1 < j < t, where all A° are sets of internally disjoint
trees connecting S;, A° C Ao UA; U™Ay, for 0 < s < t,and | A% |=--- =| A' |. So we
finally get the set A” C Ay U A; U Ay which has the same cardinality as A. |

So, we can assume that the maximum set A of internally disjoint trees connecting S;

is contained in Ay U A; U A,. Namely, all trees in A are of standard structure.



For simplicity, we denote the union of the vertex sets of all trees in set A by V(A)
and the union of the edge sets of all trees in set A by F(A). Let A be a set of internally
disjoint trees connecting S;. Let Ag := AN Ay, Ay := AN A; and Ay := AN Ay. Then
A=AgUA UA,. Let U(A) :=V(G)\ V(A).

Lemma 3.3. Let A C Ay U A; U Ay be a maximum set of internally disjoint trees con-
necting S;, A= AgU Ay U Ay and U(A) :=V(G)\ V(A). Then either U(A)NX =0 or
UA)NY = 0.

Proof. T U(A)NX # Qand UA)NY # 0, let x € UA)NX and y € U(A)NY.
Then the tree T}, € Ay with vertex set S; U {z, y} is a tree that connects S;. Moreover,
V(T)NV(A) = S; and for any tree 7" € A, T and T are edge-disjoint. So, AU {T'} is
also a set of internally disjoint trees connecting S;, contradicting to the maximality of A.

|

So we conclude that if A is a maximum set of internally disjoint trees connecting .S;,
then U(A) C X or U(A) C Y.

Lemma 3.4. Let A C Ay U A; U Ay be a maximum set of internally disjoint trees con-
necting S;, A= AgU A1 U Ay and U(A) .=V (G)\V(A). IfU(A) # 0 and Ay # 0, then
we can find a set A" = Ay U A} U A, of internally disjoint trees connecting S;, such that
4] = [Ao] — 1, |45] = [ 4s] +1, Ay = A and |U(A)] = [U(4)] - 1.

Proof. Let uw € U(A) and T' € Ag. Without loss of generality, suppose u € X. Then we
can connect u to y; by a new edge, and the new graph becomes a tree 17" € 2l;. Using the
method in Lemma B.2] we can transform 7" into a tree T” with the standard structure.
Then T" € A;. Let Aj := Ag\ T, A} :== Ay U{T"} and A}, = A,. It is easy to see that
A= A U AU A, is a set of internally disjoint trees connecting S;. Since |Aj| = |Ao| — 1,
|Al] = |A1] 4+ 1, and A} = Ay, A" is a maximum set of internally disjoint trees connecting

S, and [U(A")| = [U(A)| — 1. "

So, we can assume that for the maximum set A of internally disjoint trees connecting
S;, either U(A) = 0 or Ay = (). Moreover, if A" is a set of internally disjoint trees
connecting \S; which we find currently, U(A’) # 0 and the edges in E(G[S;]) \ E(A’) can
form a tree T' in Ag, then we will add to A’ the tree T” in Lemma [B.4] rather than the
tree T

Lemma 3.5. Let A C AgUA;UAy be a mazimum set of internally disjoint trees connect-
ing S;;, A=AgUALUAy and U(A) .=V (G)\ V(A). If there is a verter x € U(A) C X
and a tree T € Ay with vertex set S; U {y}, where y € Y \ S;. Then we can find a
set A\ = Ay U AL U AL of internally disjoint trees connecting S;, such that Ay = Ao,
A = [ A1) — 1, [ 4] = [As] + 1 and [U(4)] = [U(4)] - 1.
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Proof. Let T, , be the tree in Ay whose vertex set is S; U{x,y}. Then A" = A\TU{T,,}

is just the set we want. |

The case that there is a vertex y € U(A) C Y and a tree ' € A; with vertex set
S;U{x}, where x € X \ S;, is similar. So we can assume that, for the maximum set A of

internally disjoint trees connecting S;, A satisfies one of the following properties:
(1) U(A) =0
()0 #AU(A) Cc X and V(A)\ S;C X
B)0AU(A) CY and V(A4A;)\S; CY

Now, we can see that if U(A) # (), then all vertices in V(A;) \ S; belong to the same
partition. Next, we will show that we can always find a set A of internally disjoint trees
connecting S;, such that no matter whether U(A) is empty, all vertices in V(A;) \ S;

belong to the same partition. To show this, we need the following lemma.

Lemma 3.6. Let p, q be two nonnegative integers. If p(k—1)+qi < i(k—1), and there are
q vertices uy, U, . .., uy € X\ S;, then we can always find p trees Ty, Ty, ..., T, in Ay and q
trees Tpi1, Tpio, - ..y Tprg in Ay, such that V(1) = S; for 1 < j <p, V(Tpim) = SiU{un}
for1 < m < q, and T, and T, are edge-disjoint for 1 < r < s < p+ q. Similarly, if
p(k — 1)+ q(k — i) < i(k —1), and there are q vertices v1,vs,...,v, € Y \ S;, then we
can always find p trees 11,Ts, ..., T, in Ay and q trees Tyi1,Tpio, ..., Tprq in A1, such
that V(1;) = S; for 1 < j <p, V(Tpim) = SiU{vy} for 1 <m <gq, and T, and Ty are
edge-disjoint for 1 <r < s <p+q.

Proof. T p(k —1)+qi < i(k—1), then p(k—1) < i(k —i), namely p < | ¥ | Then with

the method which we used to find edge-disjoint spanning trees in the proof of Theorem

.2l we can find p edge-disjoint trees T3, T5,...,T, in Ay, just by taking a =i, b=k — i
and t = p. Moreover, let D? denote the number of edges incident with x in all of the
p trees, then according to the method, |D? — DY| < 1 for 1 < s,¢ < i. Now, denote by
B? the number of edges incident with xy which we have not used in the p trees. Then
|BP — BY| < 1for1l<s,t<i. Since Bi+By+---+Bf =i(k—i)—p(k—1) > qi, B? > q.
Because for each tree in A; with vertex set S; U {u}, where u € X \ S;, the vertices in
S;NX all have degree 1, we can find ¢ edge-disjoint trees 1)1, T2, ..., Tp+q in A;. Since
the edges in T,41,Tpt2, ..., Tpq are not used in 11, 75,..., T, for 1 <r <s <p-+gq, T,

and Ty are edge-disjoint. The proof of the second half of the lemma is similar. |
Lemma 3.7. Let A C AgUA1UA; be a maximum set of internally disjoint trees connect-
ing S;;, A= AgUA1UAy and U(A) :=V(G)\V (A). If there are s trees 11, Ty, ..., Ts € Ay
with vertex set S; U {u'}, S; U {u?}, ..., S; U {u®} respectively, where v’ € X \ S; for
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1 <j<s, andt trees Typ1,Toro,...,Toys € Ay with vertex set S; U {v'}, S; U {v?},
.., S; U o} respectively, where v/ € Y \'S; for 1 < j < t. Then we can find a set
A" = Ay U AL U A, of internally disjoint trees connecting S;, such that |A| = |A'| and all

vertices in V(A}) \ S; belong to the same partition.

Proof. Let |Ag] = p. Since A is a set of internally disjoint trees connecting S;, we
have p(k — 1) + si + t(k — i) < i(k — i), where si denote the si edges incident with
21, .., x;in Ty, Ty, ..., Ty, and t(k — i) denote the t(k —1i) edges incident with y1, ..., yx_;
in Tyi1, Toqay ..., Topy. If s < t, then p(k — 1) +si +s(k— i)+ (t — s)(k — i) <i(k—1),
and hence (p+ s)(k — 1) + (t — s)(k — i) < i(k — ). Obviously, there are t — s vertices
vt s t2 ot € Y\ Sy, and therefore by Lemma 3.6, we can find p + s trees in Ay
and t — s trees in A4, such that all these trees are internally disjoint trees connecting S;.
Now let Af, be the set of the p + s trees in Ay, A} be the set of the ¢ — s trees in .4, and
Al = Ay U{Tyi i, 1 < j <s}. Then A" = AjU A} U A} is just the set we want. The case

that s > ¢ is similar. |

From Lemmas and 3.7, we can see that, if A’ is a set of internally disjoint trees
connecting S; which we find currently, U(A)NX # () and U(A')NY # (), then no matter
how many edges are there in E(G[S;]) \ E(A’), we always add to A’ the trees in A, rather
than the trees in A;.

Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers a and b, let K, denote a complete bi-
partite graph with a bipartition of sizes a and b, respectively. Then we have the following
results: if k >b—a+2 and a — b+ k is odd then

a+b—k+1 (a=b+k—-1)b—a+k—-1)
7 Tl 2k —1) J;

ke (Kap) =

ifk>b—a+2 and a—b+ k is even then

a—l—b—k:_l_ (a—b+Ek)(b—a+k)

Fr(Kap) = —— I = 1) Ik

and if k < b—a+ 2 then
Iik(Ka’b) = a.

Proof. Recall that x;(G) = min{x(S)}, where the minimum is taken over all k-element
subsets S of V(G). Let X = {z1,29,...,2,} and Y = {y1,¥2,...,yp} be the bipartition
of K,p, where a < b. As we have mentioned, all vertices in X are equivalent and all
vertices in Y are equivalent. So instead of considering all k-element subsets S of V(G),

we can restrict our attention to the subsets \5;, for 0 < 7 < k, where S; is an k-element
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subsets of V(G) such that S;NX = {xy,xo, ..., 2}, SiNY ={y1, 90, ..., yk—i}, 1 <i < k
and SoNX =0, SoNY = {y1,99,...,yx}. Notice that, if i > a or k — i > b then S;
does not exist, and if £ > b then Sy does not exist. So, we need only to consider 5; for
max{0, k — b} <i < min{a, k}.

From the above lemmas, we can decide our principle to find the maximum set of
internally disjoint trees connecting S;. Namely, first we find as many trees in A, as
possible, next we find as many trees in 4; as possible, and finally we find as many trees

in Ay as possible.

For a set S; = {x1,z2, ..., T, Y1,Y2, .-, Yk—i}, let A be the maximum set of internally

disjoint trees connecting S; we find with our principle. We now compute |A|.
Casel. k<b—a-+2
Obviously, x(Sy) = a.

For Sy, since k < b — a + 2, then
b—(k—1)=b—k+1>a—-2+1=a—-1.

So, |[Asl=a—1. Ifb—k+1=a—1,then |A| =0, |[Ag|=1. Ifb—k+1>a—1, then
|A1] = 1, |Ag| = 0. No matter which case happens, we have x(S1) = |As|+|A1|+]Ao| = a.

For S;, i > 2, since k < b — a + 2, then
b—(k—i)=b—k+i>a—2+i>a—1i.
So, |[As] =a—i. Sinceb—k+i—(a—i)=b—a—k+2i > —2+2i > i, then |A;| =
and |Ao| = 0. Thus x(S;) = |Az] + |A1] + |Ao| = a.
In summary, if £ <b—a+ 2, then ki (G) = a.
Case 2. k>b—a+2

First, let us compare £(S;) with £(Sj_;), for 0 < i < [£]. If a = b, clearly, &(S;) =

k(Sk—i). So we may assume that a < b.
For i =0, k(Sp) = a < b= K(Sk).
For 1 <i < [£], we will give the expressions of £(S;) and £(Sk—;).

First for S;, since every pair of vertices u € X \ S; and v € Y\ S; can form a tree T, ,,
then |Ay| = min{a —i,b — (k —4)}. Namely,

a—i if §> btk
‘AQ‘: L . a—b+k
b—k+ if i <=
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Next, since every tree T in A; has a vertex in V' \ (S; U V(Asz)), we have

_ (a—) if 5> azbtk .
|A1|§{b k+i—(a—i) if i> 9=,

a—i—(b—k+i) if i <=L

On the other hand, if the tree T' has vertex set S; U {u}, where u € X \ S;, then every
vertex in S; N X is incident with one edge in E(S;), where E(S;) denotes the set of edges
whose ends are both in S;. And if the tree T" has vertex set S; U {v}, where v € Y\ S;,
then every vertex in S;NY is incident with one edge in £(S;). Since every vertex in S;N.X

is incident with & — ¢ edges in E(S;) and every vertex in S; N'Y is incident with i edges

in E(S;), we have
i if P> a—b+k .
|Al| S .. ._ g k ’
k—i if i< % )

Combining the two inequalities, we get

|A1‘:{min{b—a—k‘+2i,z’} if > azbtk
min{a — b+ k — 2i, k —i} if i < =2k
Thus
i if i>a—b+k;
A=< b—a—k+2i if “Br<i<a—b+k;
a—b+k—2i if i< =t

2
Finally, by Lemma [B.6] we have

i(k—i)—|A1|(k—1) | :p - a—btk .
‘Ao‘:{L k=1 L 2 0

Lz(k—;)_—l\AﬂZJ if i< a—g—l—k )
Thus
0 if i>a—b+k;
|Ag| = | EEmec ME2OIE0) | abik < < g — by ko
L[k—i—(“k—_bf‘k—%)]q if i< a—123+k )
And hence
a if i>a—0b+k;
R(Si) = Q b= kit [FEmg2UED | if ek < <a— btk ;
a—i+ L[k_l_(ak__bj—k_m)}lj if i< a—l27+k )

Notice that ¢ > 1, and hence k —i < k — 1.
If#§i<a—b+k, then

fi= (b —a—k+20)k 1)
k1

|<i—(b-—a—k+2i))=a—-b+k—1i.
So, k(S;) <b—k+i+a—-b+k—i=a.
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Ifi < &5 thena—b+k—2i >0, k—i—(a—b+k—2i) <k—i < k—1, and hence

k—i—(a—b+k—20)i
L k-1 I=i

So, k(S;) <a—i+i=ua
Thus k(S;) < a, for i > 1.

Next, considering Sy_;, similarly, we have

|As| = min{a — (k —1),b —i}.

Since a < band i < [4] < [E] <k —4d,thenb—i>a— (k—1). So |4 =a—k+iand

|Ay| = min{b—i— (a — k+1),k —i}. Hence

Ay = k—1 if i<b—a;
"l b—a+ k-2 if i>b—a.
Moreover,
Al — 0 if i1<b—a;
So,
a if i<b—a;
w(S )= . T - ’
( k ) { b—i+ L[k_l_(b]:;—k_m)hj fisb—a.

Now, we can compare £(S;) with x(Sk—;). For i < b —a, k(Sk—;) = a > k(5;).

1> b— a, there must be b—a < k — i, thatis, i <a—b+ k.

If#§i<a—b+k, then

W(Sko) = K(S) = b—i+|

k—i—(b—a+k—2i)]i

k-1
—{b—k:+z’+L[Z

—(b—a—k+20)](k —1)

k1
(k —20)(b—a— k)

> (k-2 +] 1
> (k204 (20020,
> (k- 2i) — (k- 2i) = 0.

SO, K(Sk_i) Z H(SZ)

Ifi < #, then

H(Sk_i) — K(SZ) = b—1 -+ L

k—i—(b—a+k— 20l

E—1

[k —i—(a—b+k—20)

—{a—i+|

(2i)(a —b)

> (b—a)+| P ].
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Since i < 2= then 2i < k — 1, and hence % > a—0b. So, k(Sk—;) — Kk(S;) >
b—a+a—0b=0. Thus, kK(Sk_;) > k(S;).

In summary, £(Sk—;) > £(S;), for 0 < i < |4]. So, in order to get xy(G), it is enough
to consider k(S;), for 0 <i < ng

Next, let us compare £(9;) with £(S;41), for 0 <i < |£] —1. Fori =0, x(S;) = a >
K(Si1). For 1 <i < [E]—1,

a if i>a—b+Fk;
R(S) = 4 b= ki 2D | i acbih < ca— btk
a—i+ L[k—z—(ak—_b;-k—Zz)}ZJ if i< a—l27+k )
and
a if i>a—b+k—1;
K(Siv1) =4 b—k+i+ 14 |HECoeb 2Dl l) | g azbek ) <jcq—bt+ k-1
a—i—1+ L[k—i—l—(a—l;g—tkl—Zi—2)}(H—l)J if i< a—l2)+k 1.
SO, K'(Sa—b—i-k) = K'(Sa—b—i-k—i-l) == '%(Smin{a,k}) = a.

Ifi<%—1,then

k—i—(a—b+k— 20

K(Si) — K(Sip1) = a—i+| 1 |
_{a_z-_HL[k—z'—l—(a—kb_+1k—2¢—2)]z'+1”
. 1+L(a—l;€—_21i—1)J
> 1+L]1€;_I;J
> 1-1=0.

So, k(S;) > k(S;+1). Namely, if a — b+ k is odd, we have
K(So) 2 K(Sl) 2 Z /{(Safbgkf.%) 2 K(Safb;kfl).
and if a — b+ k is even, we have

H(So) > H(Sl) >l > K(SafbérkaL) > H(Sa—b;k—2).

If i = 9=k 1 (S = etk gy | CoethBlabiken) |

C a—bik— atb— b—at+k—1)(a—b+k—1
If i = Sl g(S;) = atbokel 4 | Goath )bk l) |

Ifi = #7 K(SZ) = a+g_k + L(b_a1?2£a1;b+k)J'

. a— a+b— b—a+k—1)(a—b+k—1
If § = S=bghel () = abbghil 4| Doatho e bt ) |
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If a — b+ k is even, since
a—b+k)b—a+k)—(b—a+k—-2)(a—b+k—2)

(
(@—b+k)b—atk)—[(a—b+k)b—a+k) —20—a+k) —2a—b+k—2)

then we have K(Saflzﬂrk_l) = H(Safl21+k). If @ — b+ k is odd, we have H(Sa—b;k—l) =

K,(SafbérkJﬁl).
If% <i<a—b+k—1, then

i+1—(b—a—k+2i+2)(k—i—1)

K(Si1) —R(S) = b—k4+i+1+] p— ]
_%_k+i+up-@—a;ﬁT%mk—w”
(b—a—2k+2i+1)
> 1+ 1 ]
> L+%EEJ
> 1-1=0.

So, k(Siy1) > K(S;). Namely, if a — b+ k is odd, we have

F(Sozppier ) < K(Samppres) <o < K(Samppk-1) < K(Sabrk) = @,
and if a — b+ k is even, we have

%(Sa}ﬂ) < KJ(S%) <o < R(Sacbik—1) < K(Saprk) = a.

Thus, if Kk >b—a+ 2 and a — b+ k is odd,

a+b—k+1 (a—b+k—-1)(b—a+k—1)
7t ik —1) J

F(Kap) = K(Sambinor) =

and if k >b—a+2and a — b+ k is even,

a+b—k (a—b+k)(b—a+k)
- ey

Iﬁk(Ka,b) = K(SafTbJﬁk) =
The proof is complete. |

Notice that, when k& = a + b, the result coincides with Theorem [I.2
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