The generalized connectivity of complete bipartite graphs*

Shasha Li, Wei Li, Xueliang Li
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China.
Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq$ $k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by $\kappa_{k}(G)$, of G is defined by $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$. Thus $\kappa_{2}(G)=\kappa(G)$, where $\kappa(G)$ is the connectivity of G. Moreover, $\kappa_{n}(G)$ is the maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs $K_{a, b}$. First, we obtain the number of edge-disjoint spanning trees of $K_{a, b}$, which is $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$, and specifically give the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees. Then based on this result, we get the k-connectivity of $K_{a, b}$ for all $2 \leq k \leq a+b$. Namely, if $k>b-a+2$ and $a-b+k$ is odd then $\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor$, if $k>b-a+2$ and $a-b+k$ is even then $\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor$, and if $k \leq b-a+2$ then $\kappa_{k}\left(K_{a, b}\right)=a$.

Keywords: k-connectivity, complete bipartite graph, edge-disjoint spanning trees
AMS Subject Classification 2010: 05C40, 05C05.

[^0]
1 Introduction

We follow the terminology and notation of [1]. As usual, denote by $K_{a, b}$ the complete bipartite graph with bipartition of sizes a and b. The connectivity $\kappa(G)$ of a graph G is defined as the minimum cardinality of a set Q of vertices of G such that $G-Q$ is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent definition of the connectivity. For each 2-subset $S=\{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint $u v$-paths in G. Then $\kappa(G)=\min \{\kappa(S)\}$, where the minimum is taken over all 2-subsets S of $V(G)$.

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{\ell}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$ (Note that the trees are vertex-disjoint in $G \backslash S$). A collection $\left\{T_{1}, T_{2}, \ldots, T_{\ell}\right\}$ of trees in G with this property is called an internally disjoint set of trees connecting S. The k-connectivity, denoted by $\kappa_{k}(G)$, of G is then defined as $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-subsets S of $V(G)$. Thus, $\kappa_{2}(G)=\kappa(G)$ and $\kappa_{n}(G)$ is the maximum number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of $\kappa_{3}(G)$ and mainly studied the relationship between the 2 -connectivity and the 3 -connectivity of a graph. They gave sharp upper and lower bounds for $\kappa_{3}(G)$ for general graphs G, and showed that if G is a connected planar graph, then $\kappa(G)-1 \leq \kappa_{3}(G) \leq \kappa(G)$. Moreover, they studied the algorithmic aspects for $\kappa_{3}(G)$ and gave an algorithm to determine $\kappa_{3}(G)$ for a general graph G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph $K_{3,4,5}$, then $\kappa_{3}(G)=6$. They also gave a general result for the complete graph K_{n} :

Theorem 1.1. For every two integers n and k with $2 \leq k \leq n$,

$$
\kappa_{k}\left(K_{n}\right)=n-\lceil k / 2\rceil .
$$

In this paper, we turn to complete bipartite graphs $K_{a, b}$. First, we give the number of edge-disjoint spanning trees of $K_{a, b}$, namely $\kappa_{a+b}\left(K_{a, b}\right)$.

Theorem 1.2. For every two integers a and b,

$$
\kappa_{a+b}\left(K_{a, b}\right)=\left\lfloor\frac{a b}{a+b-1}\right\rfloor .
$$

Actually, we specifically give the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees of $K_{a, b}$. Then based on Theorem 1.2, we obtain the k-connectivity of $K_{a, b}$ for all $2 \leq k \leq a+b$.

2 Proof of Theorem 1.2

Since $K_{a, b}$ contains $a b$ edges and a spanning tree needs $a+b-1$ edges, the number of edge-disjoint spanning trees of $K_{a, b}$ is at most $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$, namely, $\kappa_{a+b}\left(K_{a, b}\right) \leq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. Thus, it suffices to prove that $\kappa_{a+b}\left(K_{a, b}\right) \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. To this end, we want to find all the $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$ be the bipartition of $K_{a, b}$. Without loss of generality, we may assume that $a \leq b$.

We will express the spanning trees by adjacency-degree lists. To be specific, the fist spanning tree T_{1} we find can be represented by an adjacency-degree list as follows:

vertex	neighbors	degree
x_{1}	$y_{1}, y_{2}, \ldots, y_{d_{1}}$	d_{1}
x_{2}	$y_{d_{1}}, y_{d_{1}+1}, \ldots, y_{d_{1}+d_{2}-1}$	d_{2}
x_{3}	$y_{d_{1}+d_{2}-1}, y_{d_{1}+d_{2}}, \ldots, y_{d_{1}+d_{2}+d_{3}-2}$	d_{3}
\ldots	\cdots	\ldots
x_{j}	$y_{d_{1}+d_{2}+\cdots+d_{j-1}-(j-2)}, y_{d_{1}+d_{2}+\cdots+d_{j-1}-(j-2)+1}, \ldots, y_{d_{1}+d_{2}+\cdots+d_{j}-(j-1)}$	d_{j}
\ldots	\cdots	\cdots
x_{a}	$y_{d_{1}+d_{2}+\cdots+d_{a-1}-(a-2)}, y_{d_{1}+d_{2}+\cdots+d_{a-1}-(a-2)+1}, \ldots, y_{d_{1}+d_{2}+\cdots+d_{a}-(a-1)}$	d_{a}

where d_{j} denotes the degree of x_{j} in T_{1}, and $d_{1}+d_{2}+\cdots+d_{a}=a+b-1$.
To simplify the subscript, we denote $i_{0}=1, i_{1}=d_{1}, i_{2}=d_{1}+d_{2}-1, \ldots, i_{j}=$ $d_{1}+d_{2}+\cdots+d_{j}-(j-1), \ldots, i_{a}=d_{1}+d_{2}+\cdots+d_{a}-(a-1)=b$. Note that, $i_{j}-i_{j-1}=d_{j}-1$. So the adjacency-degree list of T_{1} can be simplified as follows:

vertex	neighbors	degree
x_{1}	$y_{i_{0}}, y_{i_{0}+1}, \ldots, y_{i_{1}}$	d_{1}
x_{2}	$y_{i_{1}}, y_{i_{1}+1}, \ldots, y_{i_{2}}$	d_{2}
T_{1}	$y_{i_{2}}, y_{i_{2}+1}, \ldots, y_{i_{3}}$	d_{3}
\ldots	\ldots	\ldots
x_{j}	$y_{i_{j-1}}, y_{i_{j-1}+1}, \ldots, y_{i_{j}}$	d_{j}
\ldots	\ldots	\ldots
x_{a}	$y_{i_{a-1}}, y_{i_{a-1}+1}, \ldots, y_{i_{a}}$	d_{a}

Then we can list the second spanning trees we find. Here and in what follows, for a vertex y_{j}, if $j>b, y_{j}$ denotes y_{j-b}, for a subscript i_{j}, if $j>a, y_{i_{j}}$ denotes $y_{i_{j-a}}$, and for degree d_{j}, if $j>a, d_{j}$ denotes d_{j-a}.

$$
\begin{array}{l|l|l}
\text { vertex } & \text { neighbors } & \text { degree } \\
\hline x_{1} & y_{i_{1}+1}, y_{i_{1}+2}, \ldots, y_{i_{2}+1} & d_{2} \\
x_{2} & y_{i_{2}+1}, y_{i_{2}+2}, \ldots, y_{i_{3}+1} & d_{3} \\
x_{2} & y_{i_{3}+1}, y_{i_{3}+2}, \ldots, y_{i_{4}+1} & d_{4} \\
\ldots & \ldots & \ldots \\
& \ldots & y_{i_{j}+1}, y_{i_{j}+2}, \ldots, y_{i_{j+1}+1} \\
\ldots & \ldots & d_{j+1} \\
& \ldots & \ldots \\
x_{a} & y_{i_{a}+1}, y_{i_{a}+2}, \ldots, y_{i_{a+1}} & d_{1}
\end{array}
$$

From the lists, we can see that T_{2} and T_{1} are edge-disjoint, if and only if for every vertex $x_{j}, d_{j}+d_{j+1} \leq b$. If T_{2} and T_{1} are edge-disjoint, then we continue to list T_{3}.

$$
\begin{array}{l|l|l|l}
& \text { vertex } & \text { neighbors } & \text { degree } \\
\hline & T_{1} & y_{i_{2}+2}, y_{i_{2}+3}, \ldots, y_{i_{3}+2} & d_{3} \\
T_{3} & y_{i_{3}+2}, y_{i_{3}+3}, \ldots, y, y_{i_{4}+2} & d_{4} \\
x_{3} & y_{i_{4}+2}, y_{i_{4}+3}, \ldots, y_{i_{5}+2} & d_{5} \\
& \ldots & \ldots & \ldots \\
& x_{j} & y_{i_{j+1}+2}, y_{i_{j+1}+3}, \ldots, y_{i_{j+2}+2} & d_{j+2} \\
\ldots & \ldots & \ldots \\
& x_{a} & y_{i_{a+1}+2}, y_{i_{a+1}+3}, \ldots, y_{i_{a+2}+1} & d_{2}
\end{array}
$$

From the lists, we can see that T_{3} and T_{1}, T_{2} are edge-disjoint, if and only if for every vertex $x_{j}, d_{j}+d_{j+1}+d_{j+2} \leq b$. If T_{3} and T_{1}, T_{2} are edge-disjoint, then we continue to list T_{4}. Continuing the procedure, our goal is to find the maximum t, such that T_{t} and $T_{1}, T_{2}, \ldots, T_{t-1}$ are edge-disjoint.

vertex	neighbors	degree
x_{1}	$y_{i_{t-1}+(t-1)}, y_{i_{t-1}+t}, \ldots, y_{i_{t+(t-1)}}$	d_{t}
x_{2}	$y_{i_{t}+(t-1)}, y_{i_{t}+t}, \ldots, y_{i_{t+1}+(t-1)}$	d_{t+1}
x_{3}	$y_{i_{t+1}+(t-1)}, y_{i_{t+1}+t}, \ldots, y_{i_{t+2}+(t-1)}$	d_{t+2}
\ldots	\ldots	
x_{j}	$y_{i_{j+t-2}+(t-1)}, y_{i_{j+t-2}+t}, \ldots, y_{i_{j+t-1}+(t-1)}$	d_{t+j-1}
\ldots	\ldots	
x_{a}	$y_{i_{a+t-2}+(t-1)}, y_{i_{a+t-2}+t}, \ldots, y_{i_{a+t-1+(t-2)}}$	d_{t-1}

That is, we want to find the maximum t, such that $d_{j}+d_{j+1}+\cdots+d_{j+t-1} \leq b$, for any $1 \leq j \leq a$.

Let $D_{j}^{t}=d_{j}+d_{j+1}+\cdots+d_{j+t-1}$. It can be observed that $D_{j}^{t}=D_{j+1}^{t}$ if and only if $d_{j}=d_{j+t}$. Consider the numbers $1, t+1,2 t+1, \ldots,(a-1) t+1$, where addition is carried out by modula a.

Case 1. $1, t+1,2 t+1, \ldots,(a-1) t+1$ are pairwise distinct.

Then we can assign the values to d_{j} as follows:
Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=$ $(k+1) c+k(a-c)$. If $c=0$, let $d_{j}=k$, for all $1 \leq j \leq a$. If $c \neq 0$, let $d_{i t+1}=k+1$, for all $0 \leq i \leq c-1$, and let other $d_{j}=k$.

Case 2. Some of the numbers $1, t+1,2 t+1, \ldots,(a-1) t+1$ are equal.
Without loss of generality, suppose $j t+1$ is the first number that equals a number $i t+1$ before it, namely, $j t+1=i t+1(\bmod a)$, where $j>i$. Then $(j-i) t+1=1(\bmod a)$. Since $j t+1$ is the first number that equals a number before it, we can get $i=0$. Thus, $1, t+1,2 t+1, \ldots,(j-1) t+1$ are pairwise distinct.

Claim 1. it $+1 \neq 2(\bmod a)$, for any integer i.
If it $+1=2(\bmod a)$, then we have $i t=1(\bmod a)$. Thus we have

$$
\begin{aligned}
& \text { it }+1=2(\bmod a) \\
& 2 i t+1=3(\bmod a) \\
& (a-1) i t+1=a(\bmod a)
\end{aligned}
$$

So there are a distinct numbers in $\{1$, it $+1,2 i t+1, \ldots,(a-1) i t+1\}$. On the other hand, since $j t+1=1(\bmod a)$, there are at most $j \leq a-1$ distinct numbers in $\{u t+$ $1, u$ is an integer $\} \supset\{1, i t+1,2 i t+1, \ldots,(a-1) i t+1\}$, a contradiction. Thus, it $+1 \neq$ $2(\bmod a)$ for any integer i.

Claim 2. $2, t+2,2 t+2, \ldots,(j-1) t+2$ are pairwise distinct.
If $j_{1} t+2=j_{2} t+2(\bmod a)$, where $0 \leq j_{1}<j_{2} \leq j-1$, then $j_{1} t+1=j_{2} t+1(\bmod a)$. But $1, t+1,2 t+1, \ldots,(j-1) t+1$ are pairwise distinct, a contradiction. Thus, $2, t+$ $2,2 t+2, \ldots,(j-1) t+2$ are pairwise distinct.

Claim 3. $\{1, t+1,2 t+1, \ldots,(j-1) t+1\} \cap\{2, t+2,2 t+2, \ldots,(j-1) t+2\}=\emptyset$.
If $i_{1} t+1=i_{2} t+2(\bmod a)$, then $\left(i_{1}-i_{2}\right) t+1=2(\bmod a)$, but $i t+1 \neq 2(\bmod a)$ for any integer i, a contradiction by Claim 1 . Thus, $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+$ $2,2 t+2, \ldots,(j-1) t+2$ are pairwise distinct.

Now, if $2=\frac{a}{j}$, then we have already ordered all numbers of $\{1, \ldots, a\}$. Else if $2<\frac{a}{j}$, we will prove that $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i.

Claim 4. If $2<\frac{a}{j}$, then $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i. If $2+i t=3(\bmod a)$, then $1+i t=2(\bmod a)$, a contradiction by Claim 1 . If
$1+i t=3(\bmod a)$, then we have $i t=2(\bmod a)$. Thus we have

$i t+1$	$=3$	$(\bmod a)$
$i t+2$	$=4$	$(\bmod a)$
$2 i t+1$	$=5$	$(\bmod a)$
$2 i t+2$	$=6$	$(\bmod a)$
$\ldots \ldots \ldots$		
$\frac{a-2}{2} i t+1$	$=a-1$	$(\bmod a)($ for a even $)$
$\frac{a-3}{2} i t+2$	$=a-1$	$(\bmod a)($ for $a \operatorname{odd})$
$\frac{a-2}{2} i t+2$	$=a$	$(\bmod a)($ for a even $)$
$\frac{a-1}{2} i t+1$	$=a$	$(\bmod a)($ for a odd $)$

So there are at least a distinct numbers in $\left\{1, i t+1,2 i t+1, \ldots,\left\lceil\frac{a}{2}\right\rceil i t+1,2, i t+2,2 i t+\right.$ $\left.2, \ldots,\left\lceil\frac{a}{2}\right\rceil i t+2\right\}$. On the other hand, since $j t+1=1(\bmod a)$ and $j \leq a-1$, there are at most $2 j<a$ distinct numbers in $\{u t+1, u$ is an integer $\} \cup\{v t+2, v$ is an integer $\} \supset$ $\left\{1, i t+1,2 i t+1, \ldots,\left\lceil\frac{a}{2}\right\rceil i t+1,2, i t+2,2 i t+2, \ldots,\left\lceil\frac{a}{2}\right\rceil i t+2\right\}$, a contradiction. Hence, if $2<\frac{a}{j}$, then $1+i t \neq 3(\bmod a)$ and $2+i t \neq 3(\bmod a)$ for any integer i.

Similarly, we can prove that $r+i t \neq s(\bmod a)$ for $1 \leq r<s \leq \frac{a}{j}$. Thus we can get the following claim:

Claim 5. $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-1) t+2, \ldots, \frac{a}{j}, t+\frac{a}{j}, 2 t+$ $\frac{a}{j}, \ldots,(j-1) t+\frac{a}{j}$ are pairwise distinct. And hence $\{1, t+1,2 t+1, \ldots,(j-1) t+1\} \cup$ $\{2, t+2,2 t+2, \ldots,(j-1) t+2\} \cup \cdots \cup\left\{\frac{a}{j}, t+\frac{a}{j}, 2 t+\frac{a}{j}, \ldots,(j-1) t+\frac{a}{j}\right\}=\{1,2, \ldots, a\}$.

The proof is similar to those of Claims 2,3 and 4 . We thus have ordered $\{1,2, \ldots, a\}$ by $1, t+1,2 t+1, \ldots,(j-1) t+1,2, t+2,2 t+2, \ldots,(j-1) t+2, \ldots, \frac{a}{j}, t+\frac{a}{j}, 2 t+\frac{a}{j}, \ldots,(j-1) t+\frac{a}{j}$. Let $a+b-1=k a+c$, where k, c are integers, and $0 \leq c \leq a-1$. Then $a+b-1=$ $(k+1) c+k(a-c)$.

Now, we can assign the values of d_{j} as follows: If $c=0$, let $d_{j}=k$ for all $1 \leq j \leq a$. If $c \neq 0$, for the first c numbers of our ordering, if d_{j} uses one of them as subscript, then $d_{j}=k+1$, else $d_{j}=k$.

Next, we will show that, in either case, $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$ and $t>0$.

If $c=0, d_{j}=k$ for all $1 \leq j \leq a$, then $D_{i}^{t}=D_{j}^{t}$ for any integers $1 \leq i, j \leq a$. The assertion is certainly true. So we may assume that $c \neq 0$. For Case 1 , we construct a weighted cycle: $C=v_{1} v_{2} \ldots v_{a} v_{1}$ and $w\left(v_{i}\right)=d_{(i-1) t+1}$, where v_{i} corresponds to vertex $x_{(i-1) t+1}, 1 \leq i \leq a$.

According to the assignment,

$$
w\left(v_{1}\right)=w\left(v_{2}\right)=\cdots=w\left(v_{c}\right)=k+1,
$$

and

$$
w\left(v_{c+1}\right)=w\left(v_{c+2}\right)=\cdots=w\left(v_{a}\right)=k .
$$

Since $D_{i}^{t}=D_{i+1}^{t}$ if and only if $d_{i}=d_{i+t}$, then $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}$ if and only if $w\left(v_{i}\right)=w\left(v_{i+1}\right)$. Similarly, $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}+1$ if and only if $w\left(v_{i}\right)=w\left(v_{i+1}\right)+1$, and $D_{(i-1) t+1}^{t}=D_{(i-1) t+1+1}^{t}-1$ if and only if $w\left(v_{i}\right)=w\left(v_{i+1}\right)-1$. We know that $w\left(v_{c}\right)=$ $w\left(v_{c+1}\right)+1$ and $w\left(v_{a}\right)=w\left(v_{1}\right)-1$. For simplicity, let $(c-1) t+1=\alpha(\bmod a)$, $(a-1) t+1=\beta(\bmod a)$, that is, v_{c} corresponds to x_{α} and v_{a} corresponds to x_{β}, and by the hypothesis, $\alpha \neq \beta$.

If $\alpha<\beta$, then
$D_{1}^{t}=D_{2}^{t}=\cdots=D_{\alpha}^{t}=D_{\alpha+1}^{t}+1=D_{\alpha+2}^{t}+1=\cdots=D_{\beta}^{t}+1=D_{\beta+1}^{t}=D_{\beta+2}^{t}=\cdots=D_{a}^{t}$.
If $\alpha>\beta$, then
$D_{1}^{t}=D_{2}^{t}=\cdots=D_{\beta}^{t}=D_{\beta+1}^{t}-1=D_{\beta+2}^{t}-1=\cdots=D_{\alpha}^{t}-1=D_{\alpha+1}^{t}=D_{\alpha+2}^{t}=\cdots=D_{a}^{t}$.
In any case, we have $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$ and $t>0$.
For Case 2, we construct $\frac{a}{j}$ weighted cycles. $C_{i}=v_{i_{1}} v_{i_{2}} \ldots v_{i_{j}} v_{i_{1}}, 1 \leq i \leq \frac{a}{j}$, and $w\left(v_{i_{r}}\right)=d_{(r-1) t+i}$, where $v_{i_{r}}$ corresponds to vertex $x_{(r-1) t+i}, 1 \leq r \leq j$. By the assignment, there is at most one cycle in which the vertices have two distinct weights. If such cycle does not exist, clearly, we have $D_{1}^{t}=D_{2}^{t}=\cdots=D_{a}^{t}$. So we may assume that for some cycle $C_{s}, w\left(v_{s_{\gamma}}\right)=w\left(v_{s_{\gamma+1}}\right)+1$ and $w\left(v_{s_{j}}\right)=w\left(v_{s_{1}}\right)-1$. Similar to the proof of Case 1, we can get that $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$ for any integers $1 \leq i, j \leq a$ and $t>0$.

Then, we can show that, with the assignment we can get $t \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.
Let $t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. And let

$$
\begin{aligned}
& D_{1}^{t^{\prime}}=d_{1}+d_{2}+\cdots+d_{t^{\prime}} \\
& D_{2}^{t^{\prime}}=d_{2}+d_{3}+\cdots+d_{t^{\prime}+1} \\
& D_{j}^{t^{\prime}}=d_{j}+d_{j+1}+\cdots+d_{j+t^{\prime}-1} \\
& D_{a}^{t^{\prime}}=d_{a}+d_{1}+\cdots+d_{t^{\prime}-1}
\end{aligned}
$$

we have $D_{1}^{t^{\prime}}+D_{2}^{t^{\prime}}+\cdots+D_{a}^{t^{\prime}}=t^{\prime}\left(d_{1}+d_{2}+\cdots+d_{a}\right)=t^{\prime}(a+b-1)$
It follows from $\left|D_{i}^{t}-D_{j}^{t}\right| \leq 1$, for any integers $1 \leq i, j \leq a$ and $t>0$, that

$$
D_{j}^{t^{\prime}} \leq\left\lceil\frac{t^{\prime}(a+b-1)}{a}\right\rceil<\frac{t^{\prime}(a+b-1)}{a}+1 \leq \frac{a b}{a+b-1} \frac{a+b-1}{a}+1=b+1
$$

The third inequality holds since $t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor \leq \frac{a b}{a+b-1}$. Since $D_{j}^{t^{\prime}}$ is an integer, we have $D_{j}^{t^{\prime}} \leq b$ for all $1 \leq j \leq a$. Since t is the maximum integer such that $D_{j}^{t}=$
$d_{j}+d_{j+1}+\cdots+d_{j+t-1} \leq b$ for any $1 \leq j \leq a$, then $t \geq t^{\prime}=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. So we can find at least $\left\lfloor\frac{a b}{a+b-1}\right\rfloor$ edge-disjoint spanning trees of $K_{a, b}$. And hence $\kappa_{a+b}\left(K_{a, b}\right) \geq\left\lfloor\frac{a b}{a+b-1}\right\rfloor$. So we have proved that $\kappa_{a+b}\left(K_{a, b}\right)=\left\lfloor\frac{a b}{a+b-1}\right\rfloor$.

3 The k-connectivity of complete bipartite graphs

Next, we will calculate $\kappa_{k}\left(K_{a, b}\right)$, for $2 \leq k \leq a+b$.
Recall that $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of $V(G)$. Denote by $K_{a, b}$ a complete bipartite graph with bipartition $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$, where $a \leq b$. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of $V(G)$, we can restrict our attention to the subsets S_{i}, for $0 \leq i \leq k$, where S_{i} is an k-element subsets of $V(G)$ such that $S_{i} \cap X=\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}, S_{i} \cap Y=$ $\left\{y_{1}, y_{2}, \ldots, y_{k-i}\right\}, 1 \leq i \leq k$ and $S_{0} \cap X=\emptyset, S_{0} \cap Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. Notice that, if $i>a$ or $k-i>b$ then S_{i} does not exist, and if $k>b$ then S_{0} does not exist. So, we need only to consider S_{i} for $\max \{0, k-b\} \leq i \leq \min \{a, k\}$.

Now, let A be a maximum set of internally disjoint trees connecting S_{i}. Let \mathfrak{A}_{0} be the set of trees connecting S_{i} whose vertex set is S_{i}, let \mathfrak{A}_{1} be the set of trees connecting S_{i} whose vertex set is $S_{i} \cup\{u\}$, where $u \notin S_{i}$ and let \mathfrak{A}_{2} be the set of trees connecting S_{i} whose vertex set is $S_{i} \cup\{u, v\}$, where $u, v \notin S_{i}$ and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting S_{i}. Then we can always find a set A^{\prime} of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime}\right|$ and $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Proof. If there is a tree T^{0} in A whose vertex set $V\left(T^{0}\right) \supseteq\left\{u_{1}, u_{2}\right\}$, where $u_{1}, u_{2} \notin S_{i}$ and u_{1}, u_{2} belong to the same partition, then we can connect all neighbors of u_{2} to u_{1} by some new edges and delete u_{2} and the multiple edges (if exist). Obviously, the new graph we obtain is still a tree T^{\prime} that connect S_{i}. Since $V\left(T_{m}\right) \cap V\left(T_{n}\right)=S_{i}$ for every pair of trees in A, other trees in A will not contain u_{1}, including the edges incident with u_{1}. So for all trees T_{n} in A other than $T^{0}, V\left(T^{\prime}\right) \cap V\left(T_{n}\right)=S_{i}$ and $E\left(T^{\prime}\right) \cap E\left(T_{n}\right)=\emptyset$. Moreover, T^{\prime} has less vertices which are not in S_{i} than T^{0}. Repeat this process, until we get a tree $T \in \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Replace A by $A^{1}=A \backslash\left\{T^{0}\right\} \cup\{T\}$, and then A^{1} contains less trees that are not in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ than A. Repeating the process, we can get a series of sets $A^{0}, A^{1}, \ldots, A^{t}$, such that $A^{0}=A, A^{t}=A^{\prime}$, and A^{j} contains less trees not in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ than A^{j-1} for $1 \leq j \leq t$, where all A^{s} are sets of internally disjoint trees connecting S_{i} for $0 \leq s \leq t$, and $\left|A^{0}\right|=\cdots=\left|A^{t}\right|$. So we finally get the set $A^{\prime} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_{i} is contained in $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$.

Next, we will define the standard structure of trees in $\mathfrak{A}_{0}, \mathfrak{A}_{1}$ and \mathfrak{A}_{2}, respectively.
Every tree in \mathfrak{A}_{0} is of standard structure. A tree T in \mathfrak{A}_{1} with vertex set $V(T)=$ $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, is of standard structure, if u is adjacent to every vertex in $S_{i} \cap Y$, and every vertex in $S_{i} \cap X$ has degree 1 . A tree T in \mathfrak{A}_{1} with vertex set $V(T)=S_{i} \cup\{v\}$, where $v \in Y \backslash S_{i}$, is of standard structure, if v is adjacent to every vertex in $S_{i} \cap X$, and every vertex in $S_{i} \cap Y$ has degree 1. A tree T in \mathfrak{A}_{2} with vertex set $V(T)=S_{i} \cup\{u, v\}$, where $u \in X \backslash S_{i}$ and $v \in Y \backslash S_{i}$, is of standard structure, if u is adjacent to every vertex in $S_{i} \cap Y$ and v is adjacent to every vertex in $S_{i} \cap X$, particularly, we denote the tree by $T_{u, v}$. Denote the set of trees in \mathfrak{A}_{0} with the standard structure by \mathcal{A}_{0}, clearly, $\mathcal{A}_{0}=\mathfrak{A}_{0}$. Similarly, denote the set of trees in \mathfrak{A}_{1} and \mathfrak{A}_{2} with the standard structure by \mathcal{A}_{0} and \mathcal{A}_{2}, respectively.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting $S_{i}, A \subset$ $\mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$. Then we can always find a set $A^{\prime \prime}$ of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime \prime}\right|$ and $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$.

Proof. Suppose there is a tree T^{0} in A such that $T^{0} \in \mathfrak{A}_{1}$ but $T^{0} \notin \mathcal{A}_{1}$, and $V\left(T^{0}\right)=$ $S_{i} \cup\left\{u_{0}\right\}$, where $u_{0} \in X \backslash S_{i}$. Note that the case $u_{0} \in Y \backslash S_{i}$ is similar. Since $T^{0} \notin \mathcal{A}_{1}$, there are some vertices in $S_{i} \cap Y$, say $y_{i_{1}}, \ldots, y_{i_{t}}$, not adjacent to u_{0}. Then we can connect $y_{i_{1}}$ to u_{0} by a new edge. It will produce a unique cycle. Delete the other edge incident with $y_{i_{1}}$ on the cycle. The graph remains a tree. Do the operation to $y_{i_{2}}, \ldots, y_{i_{t}}$ in turn. Finally we get a tree T whose vertex set is $S_{i} \cup\left\{u_{0}\right\}$ and u_{0} is adjacent to every vertex in $S_{i} \cap Y$, that is, T is of standard structure. For each tree $T_{n} \in A \backslash\left\{T^{0}\right\}$, clearly T_{n} does not contain u_{0}, including the edges incident with u_{0}. So $V(T) \cap V\left(T_{n}\right)=S_{i}$ and $E(T) \cap E\left(T_{n}\right)=\emptyset$. Replace A by $A^{1}=A \backslash\left\{T^{0}\right\} \cup\{T\}$, and then A^{1} contains less trees not in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ than A. Suppose that there is a tree T^{1} in A such that $T^{1} \in \mathfrak{A}_{2}$ but $T^{1} \notin \mathcal{A}_{2}$ and $V\left(T^{1}\right)=S_{i} \cup\left\{u_{1}, v_{1}\right\}$, where $u_{1} \in X \backslash S_{i}$ and $v_{1} \in Y \backslash S_{i}$. $T_{u_{1}, v_{1}}$ is the tree in \mathcal{A}_{2} whose vertex set is $S_{i} \cup\left\{u_{1}, v_{1}\right\}$. Then for each tree $T_{n} \in A \backslash\left\{T^{1}\right\}$, $V\left(T_{u_{1}, v_{1}}\right) \cap V\left(T_{n}\right)=S_{i}$ and $E\left(T_{u_{1}, v_{1}}\right) \cap E\left(T_{n}\right)=\emptyset$. Replace A by $A^{1}=A \backslash\left\{T^{1}\right\} \cup\left\{T_{u_{1}, v_{1}}\right\}$. Then A^{1} contains less trees not in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ than A. Repeating the process, we can get a series of sets $A^{0}, A^{1}, \ldots, A^{t}$, such that $A^{0}=A, A^{t}=A^{\prime \prime}$, and A^{j} contains less trees not in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ than A^{j-1}, for $1 \leq j \leq t$, where all A^{s} are sets of internally disjoint trees connecting $S_{i}, A^{s} \subset \mathfrak{A}_{0} \cup \mathfrak{A}_{1} \cup \mathfrak{A}_{2}$, for $0 \leq s \leq t$, and $\left|A^{0}\right|=\cdots=\left|A^{t}\right|$. So we finally get the set $A^{\prime \prime} \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_{i} is contained in $\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by $V(A)$ and the union of the edge sets of all trees in set A by $E(A)$. Let A be a set of internally disjoint trees connecting S_{i}. Let $A_{0}:=A \cap \mathcal{A}_{0}, A_{1}:=A \cap \mathcal{A}_{1}$ and $A_{2}:=A \cap \mathcal{A}_{2}$. Then $A=A_{0} \cup A_{1} \cup A_{2}$. Let $U(A):=V(G) \backslash V(A)$.

Lemma 3.3. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{i}, A=A_{0} \cup A_{1} \cup A_{2}$ and $U(A):=V(G) \backslash V(A)$. Then either $U(A) \cap X=\emptyset$ or $U(A) \cap Y=\emptyset$.

Proof. If $U(A) \cap X \neq \emptyset$ and $U(A) \cap Y \neq \emptyset$, let $x \in U(A) \cap X$ and $y \in U(A) \cap Y$. Then the tree $T_{x, y} \in \mathcal{A}_{2}$ with vertex set $S_{i} \cup\{x, y\}$ is a tree that connects S_{i}. Moreover, $V(T) \cap V(A)=S_{i}$ and for any tree $T^{\prime} \in A, T$ and T^{\prime} are edge-disjoint. So, $A \cup\{T\}$ is also a set of internally disjoint trees connecting S_{i}, contradicting to the maximality of A.

So we conclude that if A is a maximum set of internally disjoint trees connecting S_{i}, then $U(A) \subset X$ or $U(A) \subset Y$.

Lemma 3.4. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{i}, A=A_{0} \cup A_{1} \cup A_{2}$ and $U(A):=V(G) \backslash V(A)$. If $U(A) \neq \emptyset$ and $A_{0} \neq \emptyset$, then we can find a set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1,\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1, A_{2}^{\prime}=A_{2}$ and $\left|U\left(A^{\prime}\right)\right|=|U(A)|-1$.

Proof. Let $u \in U(A)$ and $T \in A_{0}$. Without loss of generality, suppose $u \in X$. Then we can connect u to y_{1} by a new edge, and the new graph becomes a tree $T^{\prime} \in \mathfrak{A}_{1}$. Using the method in Lemma 3.2, we can transform T^{\prime} into a tree $T^{\prime \prime}$ with the standard structure. Then $T^{\prime \prime} \in \mathcal{A}_{1}$. Let $A_{0}^{\prime}:=A_{0} \backslash T, A_{1}^{\prime}:=A_{1} \cup\left\{T^{\prime \prime}\right\}$ and $A_{2}^{\prime}=A_{2}$. It is easy to see that $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ is a set of internally disjoint trees connecting S_{i}. Since $\left|A_{0}^{\prime}\right|=\left|A_{0}\right|-1$, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|+1$, and $A_{2}^{\prime}=A_{2}, A^{\prime}$ is a maximum set of internally disjoint trees connecting S_{i} and $\left|U\left(A^{\prime}\right)\right|=|U(A)|-1$.

So, we can assume that for the maximum set A of internally disjoint trees connecting S_{i}, either $U(A)=\emptyset$ or $A_{0}=\emptyset$. Moreover, if A^{\prime} is a set of internally disjoint trees connecting S_{i} which we find currently, $U\left(A^{\prime}\right) \neq \emptyset$ and the edges in $E\left(G\left[S_{i}\right]\right) \backslash E\left(A^{\prime}\right)$ can form a tree T in \mathcal{A}_{0}, then we will add to A^{\prime} the tree $T^{\prime \prime}$ in Lemma 3.4 rather than the tree T.

Lemma 3.5. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{i}, A=A_{0} \cup A_{1} \cup A_{2}$ and $U(A):=V(G) \backslash V(A)$. If there is a vertex $x \in U(A) \subset X$ and a tree $T \in A_{1}$ with vertex set $S_{i} \cup\{y\}$, where $y \in Y \backslash S_{i}$. Then we can find a set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $A_{0}^{\prime}=A_{0}$, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|-1,\left|A_{2}^{\prime}\right|=\left|A_{2}\right|+1$ and $\left|U\left(A^{\prime}\right)\right|=|U(A)|-1$.

Proof. Let $T_{x, y}$ be the tree in \mathcal{A}_{2} whose vertex set is $S_{i} \cup\{x, y\}$. Then $A^{\prime}=A \backslash T \cup\left\{T_{x, y}\right\}$ is just the set we want.

The case that there is a vertex $y \in U(A) \subset Y$ and a tree $T \in A_{1}$ with vertex set $S_{i} \cup\{x\}$, where $x \in X \backslash S_{i}$, is similar. So we can assume that, for the maximum set A of internally disjoint trees connecting S_{i}, A satisfies one of the following properties:
(1) $U(A)=\emptyset$
(2) $\emptyset \neq U(A) \subset X$ and $V\left(A_{1}\right) \backslash S_{i} \subset X$
(3) $\emptyset \neq U(A) \subset Y$ and $V\left(A_{1}\right) \backslash S_{i} \subset Y$

Now, we can see that if $U(A) \neq \emptyset$, then all vertices in $V\left(A_{1}\right) \backslash S_{i}$ belong to the same partition. Next, we will show that we can always find a set A of internally disjoint trees connecting S_{i}, such that no matter whether $U(A)$ is empty, all vertices in $V\left(A_{1}\right) \backslash S_{i}$ belong to the same partition. To show this, we need the following lemma.

Lemma 3.6. Let p, q be two nonnegative integers. If $p(k-1)+q i \leq i(k-i)$, and there are q vertices $u_{1}, u_{2}, \ldots, u_{q} \in X \backslash S_{i}$, then we can always find p trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0} and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}, such that $V\left(T_{j}\right)=S_{i}$ for $1 \leq j \leq p, V\left(T_{p+m}\right)=S_{i} \cup\left\{u_{m}\right\}$ for $1 \leq m \leq q$, and T_{r} and T_{s} are edge-disjoint for $1 \leq r<s \leq p+q$. Similarly, if $p(k-1)+q(k-i) \leq i(k-i)$, and there are q vertices $v_{1}, v_{2}, \ldots, v_{q} \in Y \backslash S_{i}$, then we can always find p trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0} and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}, such that $V\left(T_{j}\right)=S_{i}$ for $1 \leq j \leq p, V\left(T_{p+m}\right)=S_{i} \cup\left\{v_{m}\right\}$ for $1 \leq m \leq q$, and T_{r} and T_{s} are edge-disjoint for $1 \leq r<s \leq p+q$.

Proof. If $p(k-1)+q i \leq i(k-i)$, then $p(k-1) \leq i(k-i)$, namely $p \leq\left\lfloor\frac{i(k-i)}{k-1}\right\rfloor$. Then with the method which we used to find edge-disjoint spanning trees in the proof of Theorem 1.2, we can find p edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{p}$ in \mathcal{A}_{0}, just by taking $a=i, b=k-i$ and $t=p$. Moreover, let D_{s}^{p} denote the number of edges incident with x_{s} in all of the p trees, then according to the method, $\left|D_{s}^{p}-D_{t}^{p}\right| \leq 1$ for $1 \leq s, t \leq i$. Now, denote by B_{s}^{p} the number of edges incident with x_{s} which we have not used in the p trees. Then $\left|B_{s}^{p}-B_{t}^{p}\right| \leq 1$ for $1 \leq s, t \leq i$. Since $B_{1}^{p}+B_{2}^{p}+\cdots+B_{i}^{p}=i(k-i)-p(k-1) \geq q i, B_{s}^{p} \geq q$. Because for each tree in \mathcal{A}_{1} with vertex set $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, the vertices in $S_{i} \cap X$ all have degree 1, we can find q edge-disjoint trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_{1}. Since the edges in $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ are not used in $T_{1}, T_{2}, \ldots, T_{p}$ for $1 \leq r<s \leq p+q, T_{r}$ and T_{s} are edge-disjoint. The proof of the second half of the lemma is similar.

Lemma 3.7. Let $A \subset \mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ be a maximum set of internally disjoint trees connecting $S_{i}, A=A_{0} \cup A_{1} \cup A_{2}$ and $U(A):=V(G) \backslash V(A)$. If there are s trees $T_{1}, T_{2}, \ldots, T_{s} \in A_{1}$ with vertex set $S_{i} \cup\left\{u^{1}\right\}, S_{i} \cup\left\{u^{2}\right\}, \ldots, S_{i} \cup\left\{u^{s}\right\}$ respectively, where $u^{j} \in X \backslash S_{i}$ for
$1 \leq j \leq s$, and t trees $T_{s+1}, T_{s+2}, \ldots, T_{s+t} \in A_{1}$ with vertex set $S_{i} \cup\left\{v^{1}\right\}, S_{i} \cup\left\{v^{2}\right\}$, $\ldots, S_{i} \cup\left\{v^{t}\right\}$ respectively, where $v^{j} \in Y \backslash S_{i}$ for $1 \leq j \leq t$. Then we can find a set $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ of internally disjoint trees connecting S_{i}, such that $|A|=\left|A^{\prime}\right|$ and all vertices in $V\left(A_{1}^{\prime}\right) \backslash S_{i}$ belong to the same partition.

Proof. Let $\left|A_{0}\right|=p$. Since A is a set of internally disjoint trees connecting S_{i}, we have $p(k-1)+s i+t(k-i) \leq i(k-i)$, where si denote the si edges incident with x_{1}, \ldots, x_{i} in $T_{1}, T_{2}, \ldots, T_{s}$, and $t(k-i)$ denote the $t(k-i)$ edges incident with y_{1}, \ldots, y_{k-i} in $T_{s+1}, T_{s+2}, \ldots, T_{s+t}$. If $s \leq t$, then $p(k-1)+s i+s(k-i)+(t-s)(k-i) \leq i(k-i)$, and hence $(p+s)(k-1)+(t-s)(k-i) \leq i(k-i)$. Obviously, there are $t-s$ vertices $v^{s+1}, v^{s+2}, \ldots, v^{t} \in Y \backslash S_{i}$, and therefore by Lemma 3.6, we can find $p+s$ trees in \mathcal{A}_{0} and $t-s$ trees in \mathcal{A}_{1}, such that all these trees are internally disjoint trees connecting S_{i}. Now let A_{0}^{\prime} be the set of the $p+s$ trees in $\mathcal{A}_{0}, A_{1}^{\prime}$ be the set of the $t-s$ trees in \mathcal{A}_{1} and $A_{2}^{\prime}:=A_{2} \cup\left\{T_{u^{j}, v^{j}}, 1 \leq j \leq s\right\}$. Then $A^{\prime}=A_{0}^{\prime} \cup A_{1}^{\prime} \cup A_{2}^{\prime}$ is just the set we want. The case that $s>t$ is similar.

From Lemmas 3.5 and 3.7, we can see that, if A^{\prime} is a set of internally disjoint trees connecting S_{i} which we find currently, $U\left(A^{\prime}\right) \cap X \neq \emptyset$ and $U\left(A^{\prime}\right) \cap Y \neq \emptyset$, then no matter how many edges are there in $E\left(G\left[S_{i}\right]\right) \backslash E\left(A^{\prime}\right)$, we always add to A^{\prime} the trees in \mathcal{A}_{2} rather than the trees in \mathcal{A}_{1}.

Next, let us state and prove our main result.
Theorem 3.1. Given any two positive integers a and b, let $K_{a, b}$ denote a complete bipartite graph with a bipartition of sizes a and b, respectively. Then we have the following results: if $k>b-a+2$ and $a-b+k$ is odd then

$$
\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor ;
$$

if $k>b-a+2$ and $a-b+k$ is even then

$$
\kappa_{k}\left(K_{a, b}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor
$$

and if $k \leq b-a+2$ then

$$
\kappa_{k}\left(K_{a, b}\right)=a .
$$

Proof. Recall that $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of $V(G)$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$ be the bipartition of $K_{a, b}$, where $a \leq b$. As we have mentioned, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of $V(G)$, we can restrict our attention to the subsets S_{i}, for $0 \leq i \leq k$, where S_{i} is an k-element
subsets of $V(G)$ such that $S_{i} \cap X=\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}, S_{i} \cap Y=\left\{y_{1}, y_{2}, \ldots, y_{k-i}\right\}, 1 \leq i \leq k$ and $S_{0} \cap X=\emptyset, S_{0} \cap Y=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$. Notice that, if $i>a$ or $k-i>b$ then S_{i} does not exist, and if $k>b$ then S_{0} does not exist. So, we need only to consider S_{i} for $\max \{0, k-b\} \leq i \leq \min \{a, k\}$.

From the above lemmas, we can decide our principle to find the maximum set of internally disjoint trees connecting S_{i}. Namely, first we find as many trees in \mathcal{A}_{2} as possible, next we find as many trees in \mathcal{A}_{1} as possible, and finally we find as many trees in \mathcal{A}_{0} as possible.

For a set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{i}, y_{1}, y_{2}, \ldots, y_{k-i}\right\}$, let A be the maximum set of internally disjoint trees connecting S_{i} we find with our principle. We now compute $|A|$.

Case 1. $k \leq b-a+2$
Obviously, $\kappa\left(S_{0}\right)=a$.
For S_{1}, since $k \leq b-a+2$, then

$$
b-(k-1)=b-k+1 \geq a-2+1=a-1
$$

So, $\left|A_{2}\right|=a-1$. If $b-k+1=a-1$, then $\left|A_{1}\right|=0,\left|A_{0}\right|=1$. If $b-k+1>a-1$, then $\left|A_{1}\right|=1,\left|A_{0}\right|=0$. No matter which case happens, we have $\kappa\left(S_{1}\right)=\left|A_{2}\right|+\left|A_{1}\right|+\left|A_{0}\right|=a$.

For $S_{i}, i \geq 2$, since $k \leq b-a+2$, then

$$
b-(k-i)=b-k+i \geq a-2+i>a-i .
$$

So, $\left|A_{2}\right|=a-i$. Since $b-k+i-(a-i)=b-a-k+2 i \geq-2+2 i \geq i$, then $\left|A_{1}\right|=i$ and $\left|A_{0}\right|=0$. Thus $\kappa\left(S_{i}\right)=\left|A_{2}\right|+\left|A_{1}\right|+\left|A_{0}\right|=a$.

In summary, if $k \leq b-a+2$, then $\kappa_{k}(G)=a$.
Case 2. $k>b-a+2$
First, let us compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{k-i}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$. If $a=b$, clearly, $\kappa\left(S_{i}\right)=$ $\kappa\left(S_{k-i}\right)$. So we may assume that $a<b$.

For $i=0, \kappa\left(S_{0}\right)=a<b=\kappa\left(S_{k}\right)$.
For $1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$, we will give the expressions of $\kappa\left(S_{i}\right)$ and $\kappa\left(S_{k-i}\right)$.
First for S_{i}, since every pair of vertices $u \in X \backslash S_{i}$ and $v \in Y \backslash S_{i}$ can form a tree $T_{u, v}$, then $\left|A_{2}\right|=\min \{a-i, b-(k-i)\}$. Namely,

$$
\left|A_{2}\right|= \begin{cases}a-i & \text { if } i \geq \frac{a-b+k}{2} \\ b-k+i & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Next, since every tree T in A_{1} has a vertex in $V \backslash\left(S_{i} \cup V\left(A_{2}\right)\right)$, we have

$$
\left|A_{1}\right| \leq \begin{cases}b-k+i-(a-i) & \text { if } i \geq \frac{a-b+k}{2} \\ a-i-(b-k+i) & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

On the other hand, if the tree T has vertex set $S_{i} \cup\{u\}$, where $u \in X \backslash S_{i}$, then every vertex in $S_{i} \cap X$ is incident with one edge in $E\left(S_{i}\right)$, where $E\left(S_{i}\right)$ denotes the set of edges whose ends are both in S_{i}. And if the tree T has vertex set $S_{i} \cup\{v\}$, where $v \in Y \backslash S_{i}$, then every vertex in $S_{i} \cap Y$ is incident with one edge in $E\left(S_{i}\right)$. Since every vertex in $S_{i} \cap X$ is incident with $k-i$ edges in $E\left(S_{i}\right)$ and every vertex in $S_{i} \cap Y$ is incident with i edges in $E\left(S_{i}\right)$, we have

$$
\left|A_{1}\right| \leq \begin{cases}i & \text { if } i \geq \frac{a-b+k}{2} \\ k-i & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Combining the two inequalities, we get

$$
\left|A_{1}\right|= \begin{cases}\min \{b-a-k+2 i, i\} & \text { if } i \geq \frac{a-b+k}{2} \\ \min \{a-b+k-2 i, k-i\} & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Thus

$$
\left|A_{1}\right|= \begin{cases}i & \text { if } i \geq a-b+k \\ b-a-k+2 i & \text { if } \frac{a-b+k}{2} \leq i<a-b+k \\ a-b+k-2 i & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

Finally, by Lemma 3.6 we have

$$
\left|A_{0}\right|= \begin{cases}\left\lfloor\frac{i(k-i)-\left|A_{1}\right|(k-i)}{k-1}\right\rfloor & \text { if } i \geq \frac{a-b+k}{2} ; \\ \left\lfloor\frac{i(k-i)-\left|A_{1}\right| i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Thus

$$
\left|A_{0}\right|= \begin{cases}0 & \text { if } i \geq a-b+k ; \\ \left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k ; \\ \left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

And hence

$$
\kappa\left(S_{i}\right)= \begin{cases}a & \text { if } i \geq a-b+k ; \\ b-k+i+\left\lfloor\frac{\lfloor i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k ; \\ a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2} .\end{cases}
$$

Notice that $i \geq 1$, and hence $k-i \leq k-1$.
If $\frac{a-b+k}{2} \leq i<a-b+k$, then

$$
\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor \leq i-(b-a-k+2 i)=a-b+k-i .
$$

So, $\kappa\left(S_{i}\right) \leq b-k+i+a-b+k-i=a$.

If $i<\frac{a-b+k}{2}$, then $a-b+k-2 i>0, k-i-(a-b+k-2 i)<k-i \leq k-1$, and hence

$$
\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor \leq i
$$

So, $\kappa\left(S_{i}\right) \leq a-i+i=a$
Thus $\kappa\left(S_{i}\right) \leq a$, for $i \geq 1$.
Next, considering S_{k-i}, similarly, we have

$$
\left|A_{2}\right|=\min \{a-(k-i), b-i\} .
$$

Since $a<b$ and $i \leq\left\lfloor\frac{k}{2}\right\rfloor \leq\left\lceil\frac{k}{2}\right\rceil \leq k-i$, then $b-i>a-(k-i)$. So $\left|A_{2}\right|=a-k+i$ and $\left|A_{1}\right|=\min \{b-i-(a-k+i), k-i\}$. Hence

$$
\left|A_{1}\right|= \begin{cases}k-i & \text { if } i \leq b-a \\ b-a+k-2 i & \text { if } i>b-a\end{cases}
$$

Moreover,

$$
\left|A_{0}\right|= \begin{cases}0 & \text { if } i \leq b-a \\ \left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor & \text { if } i>b-a\end{cases}
$$

So,

$$
\kappa\left(S_{k-i}\right)= \begin{cases}a & \text { if } i \leq b-a \\ b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor & \text { if } i>b-a\end{cases}
$$

Now, we can compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{k-i}\right)$. For $i \leq b-a, \kappa\left(S_{k-i}\right)=a \geq \kappa\left(S_{i}\right)$. For $i>b-a$, there must be $b-a<k-i$, that is, $i<a-b+k$.

If $\frac{a-b+k}{2} \leq i<a-b+k$, then

$$
\begin{aligned}
\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right)= & b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor\right\} \\
\geq & (k-2 i)+\left\lfloor\frac{(k-2 i)(b-a-k)}{k-1}\right\rfloor \\
\geq & (k-2 i)+\left\lfloor\frac{(k-2 i)(1-k)}{k-1}\right\rfloor \\
\geq & (k-2 i)-(k-2 i)=0 .
\end{aligned}
$$

So, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$.
If $i<\frac{a-b+k}{2}$, then

$$
\begin{aligned}
\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right)= & b-i+\left\lfloor\frac{[k-i-(b-a+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor\right\} \\
\geq & (b-a)+\left\lfloor\frac{(2 i)(a-b)}{k-1}\right\rfloor .
\end{aligned}
$$

Since $i<\frac{a-b+k}{2}$, then $2 i \leq k-1$, and hence $\frac{(2 i)(a-b)}{k-1} \geq a-b$. So, $\kappa\left(S_{k-i}\right)-\kappa\left(S_{i}\right) \geq$ $b-a+a-b=0$. Thus, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$.

In summary, $\kappa\left(S_{k-i}\right) \geq \kappa\left(S_{i}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$. So, in order to get $\kappa_{k}(G)$, it is enough to consider $\kappa\left(S_{i}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$.

Next, let us compare $\kappa\left(S_{i}\right)$ with $\kappa\left(S_{i+1}\right)$, for $0 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor-1$. For $i=0, \kappa\left(S_{i}\right)=a \geq$ $\kappa\left(S_{i+1}\right)$. For $1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor-1$,

$$
\kappa\left(S_{i}\right)= \begin{cases}a & \text { if } i \geq a-b+k \\ b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2} \leq i<a-b+k \\ a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2}\end{cases}
$$

and
$\kappa\left(S_{i+1}\right)= \begin{cases}a & \text { if } i \geq a-b+k-1 ; \\ b-k+i+1+\left\lfloor\frac{[i+1-(b-a-k+2 i+2)](k-i-1)}{k-1}\right\rfloor & \text { if } \frac{a-b+k}{2}-1 \leq i<a-b+k-1 ; \\ a-i-1+\left\lfloor\frac{[k-i-1-(a-b+k-2 i-2)](i+1)}{k-1}\right\rfloor & \text { if } i<\frac{a-b+k}{2}-1 .\end{cases}$
So, $\kappa\left(S_{a-b+k}\right)=\kappa\left(S_{a-b+k+1}\right)=\cdots=\kappa\left(S_{\min \{a, k\}}\right)=a$.
If $i<\frac{a-b+k}{2}-1$, then

$$
\begin{aligned}
\kappa\left(S_{i}\right)-\kappa\left(S_{i+1}\right)= & a-i+\left\lfloor\frac{[k-i-(a-b+k-2 i)] i}{k-1}\right\rfloor \\
& -\left\{a-i-1+\left\lfloor\frac{[k-i-1-(a-b+k-2 i-2)] i+1}{k-1}\right\rfloor\right\} \\
\geq & 1+\left\lfloor\frac{(a-b-2 i-1)}{k-1}\right\rfloor \\
\geq & 1+\left\lfloor\frac{1-k}{k-1}\right\rfloor \\
\geq & 1-1=0 .
\end{aligned}
$$

So, $\kappa\left(S_{i}\right) \geq \kappa\left(S_{i+1}\right)$. Namely, if $a-b+k$ is odd, we have

$$
\kappa\left(S_{0}\right) \geq \kappa\left(S_{1}\right) \geq \cdots \geq \kappa\left(S_{\frac{a-b+k-3}{2}}\right) \geq \kappa\left(S_{\frac{a-b+k-1}{2}}\right)
$$

and if $a-b+k$ is even, we have

$$
\kappa\left(S_{0}\right) \geq \kappa\left(S_{1}\right) \geq \cdots \geq \kappa\left(S_{\frac{a-b+k-4}{2}}\right) \geq \kappa\left(S_{\frac{a-b+k-2}{}}^{2}\right) .
$$

If $i=\frac{a-b+k}{2}-1, \kappa\left(S_{i}\right)=\frac{a+b-k}{2}+1+\left\lfloor\frac{(b-a+k-2)(a-b+k-2)}{4(k-1)}\right\rfloor$.
If $i=\frac{a-b+k-1}{2}, \kappa\left(S_{i}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(b-a+k-1)(a-b+k-1)}{4(k-1)}\right\rfloor$.
If $i=\frac{a-b+k}{2}, \kappa\left(S_{i}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(b-a+k)(a-b+k)}{4(k-1)}\right\rfloor$.
If $i=\frac{a-b+k+1}{2}, \kappa\left(S_{i}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(b-a+k-1)(a-b+k-1)}{4(k-1)}\right\rfloor$.

If $a-b+k$ is even, since

$$
\begin{aligned}
& (a-b+k)(b-a+k)-(b-a+k-2)(a-b+k-2) \\
= & (a-b+k)(b-a+k)-[(a-b+k)(b-a+k)-2(b-a+k)-2(a-b+k-2)] \\
= & 4(k-1)
\end{aligned}
$$

then we have $\kappa\left(S_{\frac{a-b+k}{2}-1}\right)=\kappa\left(S_{\frac{a-b+k}{2}}\right)$. If $a-b+k$ is odd, we have $\kappa\left(S_{\frac{a-b+k-1}{2}}\right)=$ $\kappa\left(S_{\frac{a-b+k+1}{2}}\right)$.

$$
\begin{aligned}
& \text { If } \frac{a-b+k}{2} \leq i \leq a-b+k-1 \text {, then } \\
& \qquad \begin{aligned}
\kappa\left(S_{i+1}\right)-\kappa\left(S_{i}\right)= & b-k+i+1+\left\lfloor\frac{[i+1-(b-a-k+2 i+2)](k-i-1)}{k-1}\right\rfloor \\
& -\left\{b-k+i+\left\lfloor\frac{[i-(b-a-k+2 i)](k-i)}{k-1}\right\rfloor\right\} \\
\geq & 1+\left\lfloor\frac{(b-a-2 k+2 i+1)}{k-1}\right\rfloor \\
\geq & 1+\left\lfloor\frac{1-k}{k-1}\right\rfloor \\
\geq & 1-1=0 .
\end{aligned}
\end{aligned}
$$

So, $\kappa\left(S_{i+1}\right) \geq \kappa\left(S_{i}\right)$. Namely, if $a-b+k$ is odd, we have

$$
\kappa\left(S_{\frac{a-b+k+1}{2}}\right) \leq \kappa\left(S_{\frac{a-b+k+3}{2}}\right) \leq \cdots \leq \kappa\left(S_{a-b+k-1}\right) \leq \kappa\left(S_{a-b+k}\right)=a,
$$

and if $a-b+k$ is even, we have

$$
\kappa\left(S_{\frac{a-b+k}{2}}\right) \leq \kappa\left(S_{\frac{a-b+k+2}{2}}\right) \leq \cdots \leq \kappa\left(S_{a-b+k-1}\right) \leq \kappa\left(S_{a-b+k}\right)=a .
$$

Thus, if $k>b-a+2$ and $a-b+k$ is odd,

$$
\kappa_{k}\left(K_{a, b}\right)=\kappa\left(S_{\frac{a-b+k-1}{2}}\right)=\frac{a+b-k+1}{2}+\left\lfloor\frac{(a-b+k-1)(b-a+k-1)}{4(k-1)}\right\rfloor,
$$

and if $k>b-a+2$ and $a-b+k$ is even,

$$
\kappa_{k}\left(K_{a, b}\right)=\kappa\left(S_{\frac{a-b+k}{2}}\right)=\frac{a+b-k}{2}+\left\lfloor\frac{(a-b+k)(b-a+k)}{4(k-1)}\right\rfloor .
$$

The proof is complete.
Notice that, when $k=a+b$, the result coincides with Theorem 1.2 ,

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
[3] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147C2163.
[4] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150-168.

[^0]: *Supported by NSFC.

