The generalized connectivity of complete bipartite graphs^{*}

Shasha Li, Wei Li, Xueliang Li

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, China.

Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees T_1, T_2, \ldots, T_ℓ in G such that $V(T_i) \cap V(T_j) = S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by $\kappa_k(G)$, of G is defined by $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-subsets S of V(G). Thus $\kappa_2(G) = \kappa(G)$, where $\kappa(G)$ is the connectivity of G. Moreover, $\kappa_n(G)$ is the maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs $K_{a,b}$. First, we obtain the number of edge-disjoint spanning trees of $K_{a,b}$, which is $\lfloor \frac{ab}{a+b-1} \rfloor$, and specifically give the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees. Then based on this result, we get the k-connectivity of $K_{a,b}$ for all $2 \leq k \leq a+b$. Namely, if k > b-a+2and a-b+k is odd then $\kappa_k(K_{a,b}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor$, if k > b-a+2and a-b+k is even then $\kappa_k(K_{a,b}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor$, and if $k \leq b-a+2$ then $\kappa_k(K_{a,b}) = a$.

Keywords: k-connectivity, complete bipartite graph, edge-disjoint spanning trees

AMS Subject Classification 2010: 05C40, 05C05.

^{*}Supported by NSFC.

1 Introduction

We follow the terminology and notation of [1]. As usual, denote by $K_{a,b}$ the complete bipartite graph with bipartition of sizes a and b. The connectivity $\kappa(G)$ of a graph G is defined as the minimum cardinality of a set Q of vertices of G such that G - Qis disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent definition of the connectivity. For each 2-subset $S = \{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint uv-paths in G. Then $\kappa(G) = \min{\{\kappa(S)\}}$, where the minimum is taken over all 2-subsets S of V(G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected graph of order n, and k an integer with $2 \leq k \leq n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees T_1, T_2, \ldots, T_ℓ in G such that $V(T_i) \cap V(T_j) = S$ for every pair i, j of distinct integers with $1 \leq i, j \leq \ell$ (Note that the trees are vertex-disjoint in $G \setminus S$). A collection $\{T_1, T_2, \ldots, T_\ell\}$ of trees in G with this property is called an *internally disjoint set of trees connecting* S. The *k*-connectivity, denoted by $\kappa_k(G)$, of G is then defined as $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all *k*-subsets S of V(G). Thus, $\kappa_2(G) = \kappa(G)$ and $\kappa_n(G)$ is the maximum number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of $\kappa_3(G)$ and mainly studied the relationship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp upper and lower bounds for $\kappa_3(G)$ for general graphs G, and showed that if G is a connected planar graph, then $\kappa(G) - 1 \leq \kappa_3(G) \leq \kappa(G)$. Moreover, they studied the algorithmic aspects for $\kappa_3(G)$ and gave an algorithm to determine $\kappa_3(G)$ for a general graph G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph $K_{3,4,5}$, then $\kappa_3(G) = 6$. They also gave a general result for the complete graph K_n :

Theorem 1.1. For every two integers n and k with $2 \le k \le n$,

$$\kappa_k(K_n) = n - \lceil k/2 \rceil.$$

In this paper, we turn to complete bipartite graphs $K_{a,b}$. First, we give the number of edge-disjoint spanning trees of $K_{a,b}$, namely $\kappa_{a+b}(K_{a,b})$.

Theorem 1.2. For every two integers a and b,

$$\kappa_{a+b}(K_{a,b}) = \lfloor \frac{ab}{a+b-1} \rfloor.$$

Actually, we specifically give the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees of $K_{a,b}$. Then based on Theorem 1.2, we obtain the k-connectivity of $K_{a,b}$ for all $2 \leq k \leq a+b$.

2 Proof of Theorem 1.2

Since $K_{a,b}$ contains ab edges and a spanning tree needs a + b - 1 edges, the number of edge-disjoint spanning trees of $K_{a,b}$ is at most $\lfloor \frac{ab}{a+b-1} \rfloor$, namely, $\kappa_{a+b}(K_{a,b}) \leq \lfloor \frac{ab}{a+b-1} \rfloor$. Thus, it suffices to prove that $\kappa_{a+b}(K_{a,b}) \geq \lfloor \frac{ab}{a+b-1} \rfloor$. To this end, we want to find all the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees.

Let $X = \{x_1, x_2, \ldots, x_a\}$ and $Y = \{y_1, y_2, \ldots, y_b\}$ be the bipartition of $K_{a,b}$. Without loss of generality, we may assume that $a \leq b$.

We will express the spanning trees by adjacency-degree lists. To be specific, the fist spanning tree T_1 we find can be represented by an adjacency-degree list as follows:

vertex	neighbors	degree
x_1	$y_1, y_2, \ldots, y_{d_1}$	d_1
x_2	$y_{d_1}, y_{d_1+1}, \ldots, y_{d_1+d_2-1}$	d_2
x_3	$y_{d_1+d_2-1}, y_{d_1+d_2}, \ldots, y_{d_1+d_2+d_3-2}$	d_3
x_j	$y_{d_1+d_2+\dots+d_{j-1}-(j-2)}, y_{d_1+d_2+\dots+d_{j-1}-(j-2)+1}, \dots, y_{d_1+d_2+\dots+d_j-(j-1)}$	d_j
x_a	$y_{d_1+d_2+\dots+d_{a-1}-(a-2)}, y_{d_1+d_2+\dots+d_{a-1}-(a-2)+1}, \dots, y_{d_1+d_2+\dots+d_a-(a-1)}$	d_a
, ,		

where d_j denotes the degree of x_j in T_1 , and $d_1 + d_2 + \cdots + d_a = a + b - 1$.

To simplify the subscript, we denote $i_0 = 1$, $i_1 = d_1$, $i_2 = d_1 + d_2 - 1$, ..., $i_j = d_1 + d_2 + \cdots + d_j - (j - 1)$, ..., $i_a = d_1 + d_2 + \cdots + d_a - (a - 1) = b$. Note that, $i_j - i_{j-1} = d_j - 1$. So the adjacency-degree list of T_1 can be simplified as follows:

_	vertex	neighbors	degree
T_1	x_1	$y_{i_0}, y_{i_0+1}, \ldots, y_{i_1}$	d_1
	x_2	$y_{i_1}, y_{i_1+1}, \ldots, y_{i_2}$	d_2
	x_3	$y_{i_2}, y_{i_2+1}, \ldots, y_{i_3}$	d_3
	x_j	$y_{i_{j-1}}, y_{i_{j-1}+1}, \ldots, y_{i_j}$	d_{j}
	x_a	$y_{i_{a-1}}, y_{i_{a-1}+1}, \ldots, y_{i_a}$	d_a

Then we can list the second spanning trees we find. Here and in what follows, for a vertex y_j , if j > b, y_j denotes y_{j-b} , for a subscript i_j , if j > a, y_{i_j} denotes $y_{i_{j-a}}$, and for degree d_j , if j > a, d_j denotes d_{j-a} .

	vertex	neighbors	degree
T_2	x_1	$y_{i_1+1}, y_{i_1+2}, \ldots, y_{i_2+1}$	d_2
	x_2	$y_{i_2+1}, y_{i_2+2}, \ldots, y_{i_3+1}$	d_3
	x_3	$y_{i_3+1}, y_{i_3+2}, \ldots, y_{i_4+1}$	d_4
	x_{j}	$y_{i_j+1}, y_{i_j+2}, \ldots, y_{i_{j+1}+1}$	d_{j+1}
	x_a	$y_{i_a+1}, y_{i_a+2}, \ldots, y_{i_{a+1}}$	d_1

From the lists, we can see that T_2 and T_1 are edge-disjoint, if and only if for every vertex x_j , $d_j + d_{j+1} \leq b$. If T_2 and T_1 are edge-disjoint, then we continue to list T_3 .

	vertex	neighbors	degree
T_3	x_1	$y_{i_2+2}, y_{i_2+3}, \ldots, y_{i_3+2}$	d_3
	x_2	$y_{i_3+2}, y_{i_3+3}, \ldots, y_{i_4+2}$	d_4
	x_3	$y_{i_4+2}, y_{i_4+3}, \ldots, y_{i_5+2}$	d_5
	x_{j}	$y_{i_{j+1}+2}, y_{i_{j+1}+3}, \ldots, y_{i_{j+2}+2}$	d_{j+2}
	x_a	$y_{i_{a+1}+2}, y_{i_{a+1}+3}, \ldots, y_{i_{a+2}+1}$	d_2

From the lists, we can see that T_3 and T_1 , T_2 are edge-disjoint, if and only if for every vertex x_j , $d_j + d_{j+1} + d_{j+2} \leq b$. If T_3 and T_1 , T_2 are edge-disjoint, then we continue to list T_4 . Continuing the procedure, our goal is to find the maximum t, such that T_t and $T_1, T_2, \ldots, T_{t-1}$ are edge-disjoint.

	vertex	neighbors	degree
T_t	x_1	$y_{i_{t-1}+(t-1)}, y_{i_{t-1}+t}, \ldots, y_{i_t+(t-1)}$	d_t
	x_2	$y_{i_t+(t-1)}, y_{i_t+t}, \ldots, y_{i_{t+1}+(t-1)}$	d_{t+1}
	x_3	$y_{i_{t+1}+(t-1)}, y_{i_{t+1}+t}, \dots, y_{i_{t+2}+(t-1)}$	d_{t+2}
	x_j	$y_{i_{j+t-2}+(t-1)}, y_{i_{j+t-2}+t}, \dots, y_{i_{j+t-1}+(t-1)}$	d_{t+j-1}
	•••		
	x_a	$y_{i_{a+t-2}+(t-1)}, y_{i_{a+t-2}+t}, \dots, y_{i_{a+t-1}+(t-2)}$	d_{t-1}

That is, we want to find the maximum t, such that $d_j + d_{j+1} + \cdots + d_{j+t-1} \leq b$, for any $1 \leq j \leq a$.

Let $D_j^t = d_j + d_{j+1} + \cdots + d_{j+t-1}$. It can be observed that $D_j^t = D_{j+1}^t$ if and only if $d_j = d_{j+t}$. Consider the numbers $1, t+1, 2t+1, \ldots, (a-1)t+1$, where addition is carried out by modula a.

Case 1. $1, t + 1, 2t + 1, \dots, (a - 1)t + 1$ are pairwise distinct.

Then we can assign the values to d_j as follows:

Let a + b - 1 = ka + c, where k, c are integers, and $0 \le c \le a - 1$. Then a + b - 1 = (k+1)c + k(a-c). If c = 0, let $d_j = k$, for all $1 \le j \le a$. If $c \ne 0$, let $d_{it+1} = k + 1$, for all $0 \le i \le c - 1$, and let other $d_j = k$.

Case 2. Some of the numbers $1, t + 1, 2t + 1, \ldots, (a - 1)t + 1$ are equal.

Without loss of generality, suppose jt + 1 is the first number that equals a number it+1 before it, namely, $jt+1 = it+1 \pmod{a}$, where j > i. Then $(j-i)t+1 = 1 \pmod{a}$. Since jt+1 is the first number that equals a number before it, we can get i = 0. Thus, $1, t+1, 2t+1, \ldots, (j-1)t+1$ are pairwise distinct.

Claim 1. $it + 1 \neq 2 \pmod{a}$, for any integer *i*.

If $it + 1 = 2 \pmod{a}$, then we have $it = 1 \pmod{a}$. Thus we have

```
it + 1 = 2 \pmod{a}
2it + 1 = 3 \pmod{a}
(a-1)it + 1 = a \pmod{a}
```

So there are a distinct numbers in $\{1, it + 1, 2it + 1, \dots, (a - 1)it + 1\}$. On the other hand, since $jt + 1 = 1 \pmod{a}$, there are at most $j \leq a - 1$ distinct numbers in $\{ut + 1, u \text{ is an integer}\} \supset \{1, it + 1, 2it + 1, \dots, (a - 1)it + 1\}$, a contradiction. Thus, $it + 1 \neq 2 \pmod{a}$ for any integer i.

Claim 2. $2, t+2, 2t+2, \ldots, (j-1)t+2$ are pairwise distinct.

If $j_1t + 2 = j_2t + 2 \pmod{a}$, where $0 \le j_1 < j_2 \le j - 1$, then $j_1t + 1 = j_2t + 1 \pmod{a}$. But $1, t + 1, 2t + 1, \dots, (j - 1)t + 1$ are pairwise distinct, a contradiction. Thus, $2, t + 2, 2t + 2, \dots, (j - 1)t + 2$ are pairwise distinct.

Claim 3. $\{1, t+1, 2t+1, \dots, (j-1)t+1\} \cap \{2, t+2, 2t+2, \dots, (j-1)t+2\} = \emptyset$.

If $i_1t + 1 = i_2t + 2 \pmod{a}$, then $(i_1 - i_2)t + 1 = 2 \pmod{a}$, but $it + 1 \neq 2 \pmod{a}$ for any integer *i*, a contradiction by Claim 1. Thus, $1, t + 1, 2t + 1, \dots, (j-1)t + 1, 2, t + 2, 2t + 2, \dots, (j-1)t + 2$ are pairwise distinct.

Now, if $2 = \frac{a}{j}$, then we have already ordered all numbers of $\{1, \ldots, a\}$. Else if $2 < \frac{a}{j}$, we will prove that $1 + it \neq 3 \pmod{a}$ and $2 + it \neq 3 \pmod{a}$ for any integer *i*.

Claim 4. If $2 < \frac{a}{j}$, then $1 + it \neq 3 \pmod{a}$ and $2 + it \neq 3 \pmod{a}$ for any integer *i*. If $2 + it = 3 \pmod{a}$, then $1 + it = 2 \pmod{a}$, a contradiction by Claim 1. If $1 + it = 3 \pmod{a}$, then we have $it = 2 \pmod{a}$. Thus we have

it	+	1	=	3	(mod a)
it	+	2	=	4	(mod a)
2it	+	1	=	5	(mod a)
2it	+	2	=	6	(mod a)
$\frac{a-2}{2}it$	+	1	=	a-1	$(mod \ a)$ (for $a \ even$)
$\frac{a-3}{2}it$	+	2	=	a-1	$(mod \ a) \ (for \ a \ odd)$
$\frac{a-2}{2}it$	+	2	=	a	$(mod \ a) \ (for \ a \ even)$
$\frac{a-1}{2}it$	+	1	=	a	$(mod \ a)$ (for $a \ odd$)

So there are at least a distinct numbers in $\{1, it + 1, 2it + 1, \dots, \lceil \frac{a}{2} \rceil it + 1, 2, it + 2, 2it + 2, \dots, \lceil \frac{a}{2} \rceil it + 2\}$. On the other hand, since $jt + 1 = 1 \pmod{a}$ and $j \leq a - 1$, there are at most 2j < a distinct numbers in $\{ut + 1, u \text{ is an integer}\} \cup \{vt + 2, v \text{ is an integer}\} \supset \{1, it + 1, 2it + 1, \dots, \lceil \frac{a}{2} \rceil it + 1, 2, it + 2, 2it + 2, \dots, \lceil \frac{a}{2} \rceil it + 2\}$, a contradiction. Hence, if $2 < \frac{a}{i}$, then $1 + it \neq 3 \pmod{a}$ and $2 + it \neq 3 \pmod{a}$ for any integer i.

Similarly, we can prove that $r + it \neq s \pmod{a}$ for $1 \leq r < s \leq \frac{a}{j}$. Thus we can get the following claim:

Claim 5. $1, t+1, 2t+1, \ldots, (j-1)t+1, 2, t+2, 2t+2, \ldots, (j-1)t+2, \ldots, \frac{a}{j}, t+\frac{a}{j}, 2t+\frac{a}{j}, \ldots, (j-1)t+\frac{a}{j}$ are pairwise distinct. And hence $\{1, t+1, 2t+1, \ldots, (j-1)t+1\} \cup \{2, t+2, 2t+2, \ldots, (j-1)t+2\} \cup \cdots \cup \{\frac{a}{j}, t+\frac{a}{j}, 2t+\frac{a}{j}, \ldots, (j-1)t+\frac{a}{j}\} = \{1, 2, \ldots, a\}.$

The proof is similar to those of Claims 2, 3 and 4. We thus have ordered $\{1, 2, ..., a\}$ by $1, t+1, 2t+1, ..., (j-1)t+1, 2, t+2, 2t+2, ..., (j-1)t+2, ..., \frac{a}{j}, t+\frac{a}{j}, 2t+\frac{a}{j}, ..., (j-1)t+\frac{a}{j}$. Let a + b - 1 = ka + c, where k, c are integers, and $0 \le c \le a - 1$. Then a + b - 1 = (k+1)c + k(a-c).

Now, we can assign the values of d_j as follows: If c = 0, let $d_j = k$ for all $1 \le j \le a$. If $c \ne 0$, for the first c numbers of our ordering, if d_j uses one of them as subscript, then $d_j = k + 1$, else $d_j = k$.

Next, we will show that, in either case, $|D_i^t - D_j^t| \le 1$ for any integers $1 \le i, j \le a$ and t > 0.

If c = 0, $d_j = k$ for all $1 \le j \le a$, then $D_i^t = D_j^t$ for any integers $1 \le i, j \le a$. The assertion is certainly true. So we may assume that $c \ne 0$. For Case 1, we construct a weighted cycle: $C = v_1 v_2 \dots v_a v_1$ and $w(v_i) = d_{(i-1)t+1}$, where v_i corresponds to vertex $x_{(i-1)t+1}$, $1 \le i \le a$.

According to the assignment,

$$w(v_1) = w(v_2) = \dots = w(v_c) = k+1,$$

and

$$w(v_{c+1}) = w(v_{c+2}) = \dots = w(v_a) = k.$$

Since $D_i^t = D_{i+1}^t$ if and only if $d_i = d_{i+t}$, then $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t$ if and only if $w(v_i) = w(v_{i+1})$. Similarly, $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t + 1$ if and only if $w(v_i) = w(v_{i+1}) + 1$, and $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t - 1$ if and only if $w(v_i) = w(v_{i+1}) - 1$. We know that $w(v_c) = w(v_{c+1}) + 1$ and $w(v_a) = w(v_1) - 1$. For simplicity, let $(c-1)t + 1 = \alpha \pmod{a}$, $(a-1)t + 1 = \beta \pmod{a}$, that is, v_c corresponds to x_α and v_a corresponds to x_β , and by the hypothesis, $\alpha \neq \beta$.

If $\alpha < \beta$, then

$$D_1^t = D_2^t = \dots = D_{\alpha}^t = D_{\alpha+1}^t + 1 = D_{\alpha+2}^t + 1 = \dots = D_{\beta}^t + 1 = D_{\beta+1}^t = D_{\beta+2}^t = \dots = D_a^t.$$

If $\alpha > \beta$, then

$$D_1^t = D_2^t = \dots = D_{\beta}^t = D_{\beta+1}^t - 1 = D_{\beta+2}^t - 1 = \dots = D_{\alpha}^t - 1 = D_{\alpha+1}^t = D_{\alpha+2}^t = \dots = D_a^t.$$

In any case, we have $|D_i^t - D_j^t| \le 1$ for any integers $1 \le i, j \le a$ and t > 0.

For Case 2, we construct $\frac{a}{j}$ weighted cycles. $C_i = v_{i_1}v_{i_2}\ldots v_{i_j}v_{i_1}$, $1 \leq i \leq \frac{a}{j}$, and $w(v_{i_r}) = d_{(r-1)t+i}$, where v_{i_r} corresponds to vertex $x_{(r-1)t+i}$, $1 \leq r \leq j$. By the assignment, there is at most one cycle in which the vertices have two distinct weights. If such cycle does not exist, clearly, we have $D_1^t = D_2^t = \cdots = D_a^t$. So we may assume that for some cycle C_s , $w(v_{s_\gamma}) = w(v_{s_{\gamma+1}}) + 1$ and $w(v_{s_j}) = w(v_{s_1}) - 1$. Similar to the proof of Case 1, we can get that $|D_i^t - D_j^t| \leq 1$ for any integers $1 \leq i, j \leq a$ and t > 0.

Then, we can show that, with the assignment we can get $t \ge \lfloor \frac{ab}{a+b-1} \rfloor$.

Let $t' = \lfloor \frac{ab}{a+b-1} \rfloor$. And let

 $D_{1}^{t'} = d_{1} + d_{2} + \cdots + d_{t'}$ $D_{2}^{t'} = d_{2} + d_{3} + \cdots + d_{t'+1}$ \dots $D_{j}^{t'} = d_{j} + d_{j+1} + \cdots + d_{j+t'-1}$ \dots $D_{a}^{t'} = d_{a} + d_{1} + \cdots + d_{t'-1}$

we have $D_1^{t'} + D_2^{t'} + \dots + D_a^{t'} = t'(d_1 + d_2 + \dots + d_a) = t'(a+b-1)$

It follows from $|D_i^t - D_j^t| \le 1$, for any integers $1 \le i, j \le a$ and t > 0, that

$$D_j^{t'} \le \lceil \frac{t'(a+b-1)}{a} \rceil < \frac{t'(a+b-1)}{a} + 1 \le \frac{ab}{a+b-1} + 1 = b+1$$

The third inequality holds since $t' = \lfloor \frac{ab}{a+b-1} \rfloor \leq \frac{ab}{a+b-1}$. Since $D_j^{t'}$ is an integer, we have $D_j^{t'} \leq b$ for all $1 \leq j \leq a$. Since t is the maximum integer such that $D_j^t =$

 $d_j + d_{j+1} + \dots + d_{j+t-1} \leq b$ for any $1 \leq j \leq a$, then $t \geq t' = \lfloor \frac{ab}{a+b-1} \rfloor$. So we can find at least $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees of $K_{a,b}$. And hence $\kappa_{a+b}(K_{a,b}) \geq \lfloor \frac{ab}{a+b-1} \rfloor$. So we have proved that $\kappa_{a+b}(K_{a,b}) = \lfloor \frac{ab}{a+b-1} \rfloor$.

3 The k-connectivity of complete bipartite graphs

Next, we will calculate $\kappa_k(K_{a,b})$, for $2 \le k \le a + b$.

Recall that $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of V(G). Denote by $K_{a, b}$ a complete bipartite graph with bipartition $X = \{x_1, x_2, \ldots, x_a\}$ and $Y = \{y_1, y_2, \ldots, y_b\}$, where $a \leq b$. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of V(G), we can restrict our attention to the subsets S_i , for $0 \leq i \leq k$, where S_i is an k-element subsets of V(G) such that $S_i \cap X = \{x_1, x_2, \ldots, x_i\}, S_i \cap Y =$ $\{y_1, y_2, \ldots, y_{k-i}\}, 1 \leq i \leq k$ and $S_0 \cap X = \emptyset, S_0 \cap Y = \{y_1, y_2, \ldots, y_k\}$. Notice that, if i > a or k - i > b then S_i does not exist, and if k > b then S_0 does not exist. So, we need only to consider S_i for max $\{0, k - b\} \leq i \leq \min\{a, k\}$.

Now, let A be a maximum set of internally disjoint trees connecting S_i . Let \mathfrak{A}_0 be the set of trees connecting S_i whose vertex set is S_i , let \mathfrak{A}_1 be the set of trees connecting S_i whose vertex set is $S_i \cup \{u\}$, where $u \notin S_i$ and let \mathfrak{A}_2 be the set of trees connecting S_i whose vertex set is $S_i \cup \{u\}$, where $u, v \notin S_i$ and let \mathfrak{A}_2 be the set of trees connecting S_i whose vertex set is $S_i \cup \{u, v\}$, where $u, v \notin S_i$ and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting S_i . Then we can always find a set A' of internally disjoint trees connecting S_i , such that |A| = |A'| and $A' \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$.

Proof. If there is a tree T^0 in A whose vertex set $V(T^0) \supseteq \{u_1, u_2\}$, where $u_1, u_2 \notin S_i$ and u_1, u_2 belong to the same partition, then we can connect all neighbors of u_2 to u_1 by some new edges and delete u_2 and the multiple edges (if exist). Obviously, the new graph we obtain is still a tree T' that connect S_i . Since $V(T_m) \cap V(T_n) = S_i$ for every pair of trees in A, other trees in A will not contain u_1 , including the edges incident with u_1 . So for all trees T_n in A other than $T^0, V(T') \cap V(T_n) = S_i$ and $E(T') \cap E(T_n) = \emptyset$. Moreover, T' has less vertices which are not in S_i than T^0 . Repeat this process, until we get a tree $T \in \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$. Replace A by $A^1 = A \setminus \{T^0\} \cup \{T\}$, and then A^1 contains less trees that are not in $\mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ than A. Repeating the process, we can get a series of sets A^0, A^1, \ldots, A^t , such that $A^0 = A, A^t = A'$, and A^j contains less trees not in $\mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ than A are sets of internally disjoint trees connecting S_i for $0 \leq s \leq t$, and $|A^0| = \cdots = |A^t|$. So we finally get the set $A' \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_i is contained in $\mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$.

Next, we will define the standard structure of trees in \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 , respectively.

Every tree in \mathfrak{A}_0 is of standard structure. A tree T in \mathfrak{A}_1 with vertex set $V(T) = S_i \cup \{u\}$, where $u \in X \setminus S_i$, is of standard structure, if u is adjacent to every vertex in $S_i \cap Y$, and every vertex in $S_i \cap X$ has degree 1. A tree T in \mathfrak{A}_1 with vertex set $V(T) = S_i \cup \{v\}$, where $v \in Y \setminus S_i$, is of standard structure, if v is adjacent to every vertex in $S_i \cap X$, and every vertex in $S_i \cap Y$ has degree 1. A tree T in \mathfrak{A}_2 with vertex set $V(T) = S_i \cup \{u, v\}$, where $u \in X \setminus S_i$ and $v \in Y \setminus S_i$, is of standard structure, if u is adjacent to every vertex in $S_i \cap Y$ and v is adjacent to every vertex in $S_i \cap X$, particularly, we denote the tree by $T_{u,v}$. Denote the set of trees in \mathfrak{A}_0 with the standard structure by \mathcal{A}_0 , clearly, $\mathcal{A}_0 = \mathfrak{A}_0$. Similarly, denote the set of trees in \mathfrak{A}_1 and \mathfrak{A}_2 with the standard structure by \mathcal{A}_0 and \mathcal{A}_2 , respectively.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting S_i , $A \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$. Then we can always find a set A" of internally disjoint trees connecting S_i , such that |A| = |A''| and $A'' \subset \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$.

Proof. Suppose there is a tree T^0 in A such that $T^0 \in \mathfrak{A}_1$ but $T^0 \notin \mathcal{A}_1$, and $V(T^0) =$ $S_i \cup \{u_0\}$, where $u_0 \in X \setminus S_i$. Note that the case $u_0 \in Y \setminus S_i$ is similar. Since $T^0 \notin \mathcal{A}_1$, there are some vertices in $S_i \cap Y$, say y_{i_1}, \ldots, y_{i_t} , not adjacent to u_0 . Then we can connect y_{i_1} to u_0 by a new edge. It will produce a unique cycle. Delete the other edge incident with y_{i_1} on the cycle. The graph remains a tree. Do the operation to y_{i_2}, \ldots, y_{i_t} in turn. Finally we get a tree T whose vertex set is $S_i \cup \{u_0\}$ and u_0 is adjacent to every vertex in $S_i \cap Y$, that is, T is of standard structure. For each tree $T_n \in A \setminus \{T^0\}$, clearly T_n does not contain u_0 , including the edges incident with u_0 . So $V(T) \cap V(T_n) = S_i$ and $E(T) \cap E(T_n) = \emptyset$. Replace A by $A^1 = A \setminus \{T^0\} \cup \{T\}$, and then A^1 contains less trees not in $\mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ than A. Suppose that there is a tree T^1 in A such that $T^1 \in \mathfrak{A}_2$ but $T^1 \notin \mathcal{A}_2$ and $V(T^1) = S_i \cup \{u_1, v_1\}$, where $u_1 \in X \setminus S_i$ and $v_1 \in Y \setminus S_i$. T_{u_1, v_1} is the tree in \mathcal{A}_2 whose vertex set is $S_i \cup \{u_1, v_1\}$. Then for each tree $T_n \in A \setminus \{T^1\}$, $V(T_{u_1,v_1}) \cap V(T_n) = S_i$ and $E(T_{u_1,v_1}) \cap E(T_n) = \emptyset$. Replace A by $A^1 = A \setminus \{T^1\} \cup \{T_{u_1,v_1}\}$. Then A^1 contains less trees not in $\mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ than A. Repeating the process, we can get a series of sets A^0, A^1, \ldots, A^t , such that $A^0 = A, A^t = A''$, and A^j contains less trees not in $\mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ than A^{j-1} , for $1 \leq j \leq t$, where all A^s are sets of internally disjoint trees connecting S_i , $A^s \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$, for $0 \leq s \leq t$, and $|A^0| = \cdots = |A^t|$. So we finally get the set $A'' \subset \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_i is contained in $\mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by V(A)and the union of the edge sets of all trees in set A by E(A). Let A be a set of internally disjoint trees connecting S_i . Let $A_0 := A \cap \mathcal{A}_0$, $A_1 := A \cap \mathcal{A}_1$ and $A_2 := A \cap \mathcal{A}_2$. Then $A = A_0 \cup A_1 \cup A_2$. Let $U(A) := V(G) \setminus V(A)$.

Lemma 3.3. Let $A \subset \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ be a maximum set of internally disjoint trees connecting S_i , $A = A_0 \cup A_1 \cup A_2$ and $U(A) := V(G) \setminus V(A)$. Then either $U(A) \cap X = \emptyset$ or $U(A) \cap Y = \emptyset$.

Proof. If $U(A) \cap X \neq \emptyset$ and $U(A) \cap Y \neq \emptyset$, let $x \in U(A) \cap X$ and $y \in U(A) \cap Y$. Then the tree $T_{x,y} \in \mathcal{A}_2$ with vertex set $S_i \cup \{x, y\}$ is a tree that connects S_i . Moreover, $V(T) \cap V(A) = S_i$ and for any tree $T' \in A$, T and T' are edge-disjoint. So, $A \cup \{T\}$ is also a set of internally disjoint trees connecting S_i , contradicting to the maximality of A.

So we conclude that if A is a maximum set of internally disjoint trees connecting S_i , then $U(A) \subset X$ or $U(A) \subset Y$.

Lemma 3.4. Let $A \subset \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ be a maximum set of internally disjoint trees connecting S_i , $A = A_0 \cup A_1 \cup A_2$ and $U(A) := V(G) \setminus V(A)$. If $U(A) \neq \emptyset$ and $A_0 \neq \emptyset$, then we can find a set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that $|A'_0| = |A_0| - 1$, $|A'_1| = |A_1| + 1$, $A'_2 = A_2$ and |U(A')| = |U(A)| - 1.

Proof. Let $u \in U(A)$ and $T \in A_0$. Without loss of generality, suppose $u \in X$. Then we can connect u to y_1 by a new edge, and the new graph becomes a tree $T' \in \mathfrak{A}_1$. Using the method in Lemma 3.2, we can transform T' into a tree T'' with the standard structure. Then $T'' \in \mathcal{A}_1$. Let $A'_0 := A_0 \setminus T$, $A'_1 := A_1 \cup \{T''\}$ and $A'_2 = A_2$. It is easy to see that $A' = A'_0 \cup A'_1 \cup A'_2$ is a set of internally disjoint trees connecting S_i . Since $|A'_0| = |A_0| - 1$, $|A'_1| = |A_1| + 1$, and $A'_2 = A_2$, A' is a maximum set of internally disjoint trees connecting S_i and |U(A')| = |U(A)| - 1.

So, we can assume that for the maximum set A of internally disjoint trees connecting S_i , either $U(A) = \emptyset$ or $A_0 = \emptyset$. Moreover, if A' is a set of internally disjoint trees connecting S_i which we find currently, $U(A') \neq \emptyset$ and the edges in $E(G[S_i]) \setminus E(A')$ can form a tree T in \mathcal{A}_0 , then we will add to A' the tree T'' in Lemma 3.4 rather than the tree T.

Lemma 3.5. Let $A \subset A_0 \cup A_1 \cup A_2$ be a maximum set of internally disjoint trees connecting S_i , $A = A_0 \cup A_1 \cup A_2$ and $U(A) := V(G) \setminus V(A)$. If there is a vertex $x \in U(A) \subset X$ and a tree $T \in A_1$ with vertex set $S_i \cup \{y\}$, where $y \in Y \setminus S_i$. Then we can find a set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that $A'_0 = A_0$, $|A'_1| = |A_1| - 1$, $|A'_2| = |A_2| + 1$ and |U(A')| = |U(A)| - 1. *Proof.* Let $T_{x,y}$ be the tree in \mathcal{A}_2 whose vertex set is $S_i \cup \{x, y\}$. Then $A' = A \setminus T \cup \{T_{x,y}\}$ is just the set we want.

The case that there is a vertex $y \in U(A) \subset Y$ and a tree $T \in A_1$ with vertex set $S_i \cup \{x\}$, where $x \in X \setminus S_i$, is similar. So we can assume that, for the maximum set A of internally disjoint trees connecting S_i , A satisfies one of the following properties:

- (1) $U(A) = \emptyset$
- (2) $\emptyset \neq U(A) \subset X$ and $V(A_1) \setminus S_i \subset X$
- (3) $\emptyset \neq U(A) \subset Y$ and $V(A_1) \setminus S_i \subset Y$

Now, we can see that if $U(A) \neq \emptyset$, then all vertices in $V(A_1) \setminus S_i$ belong to the same partition. Next, we will show that we can always find a set A of internally disjoint trees connecting S_i , such that no matter whether U(A) is empty, all vertices in $V(A_1) \setminus S_i$ belong to the same partition. To show this, we need the following lemma.

Lemma 3.6. Let p, q be two nonnegative integers. If $p(k-1)+qi \leq i(k-i)$, and there are q vertices $u_1, u_2, \ldots, u_q \in X \setminus S_i$, then we can always find p trees T_1, T_2, \ldots, T_p in \mathcal{A}_0 and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_1 , such that $V(T_j) = S_i$ for $1 \leq j \leq p$, $V(T_{p+m}) = S_i \cup \{u_m\}$ for $1 \leq m \leq q$, and T_r and T_s are edge-disjoint for $1 \leq r < s \leq p + q$. Similarly, if $p(k-1) + q(k-i) \leq i(k-i)$, and there are q vertices $v_1, v_2, \ldots, v_q \in Y \setminus S_i$, then we can always find p trees T_1, T_2, \ldots, T_p in \mathcal{A}_0 and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_1 , such that $V(T_j) = S_i$ for $1 \leq j \leq p$, $V(T_{p+m}) = S_i \cup \{v_m\}$ for $1 \leq m \leq q$, and T_r and T_s are edge-disjoint for $1 \leq m \leq q$, and T_r and T_s are edge-disjoint for $1 \leq r < s \leq p + q$.

Proof. If $p(k-1) + qi \leq i(k-i)$, then $p(k-1) \leq i(k-i)$, namely $p \leq \lfloor \frac{i(k-i)}{k-1} \rfloor$. Then with the method which we used to find edge-disjoint spanning trees in the proof of Theorem 1.2, we can find p edge-disjoint trees T_1, T_2, \ldots, T_p in \mathcal{A}_0 , just by taking a = i, b = k - iand t = p. Moreover, let D_s^p denote the number of edges incident with x_s in all of the p trees, then according to the method, $|D_s^p - D_t^p| \leq 1$ for $1 \leq s, t \leq i$. Now, denote by B_s^p the number of edges incident with x_s which we have not used in the p trees. Then $|B_s^p - B_t^p| \leq 1$ for $1 \leq s, t \leq i$. Since $B_1^p + B_2^p + \cdots + B_i^p = i(k-i) - p(k-1) \geq qi$, $B_s^p \geq q$. Because for each tree in \mathcal{A}_1 with vertex set $S_i \cup \{u\}$, where $u \in X \setminus S_i$, the vertices in $S_i \cap X$ all have degree 1, we can find q edge-disjoint trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in \mathcal{A}_1 . Since the edges in $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ are not used in T_1, T_2, \ldots, T_p for $1 \leq r < s \leq p + q$, T_r and T_s are edge-disjoint. The proof of the second half of the lemma is similar.

Lemma 3.7. Let $A \subset \mathcal{A}_0 \cup \mathcal{A}_1 \cup \mathcal{A}_2$ be a maximum set of internally disjoint trees connecting S_i , $A = A_0 \cup A_1 \cup A_2$ and $U(A) := V(G) \setminus V(A)$. If there are s trees $T_1, T_2, \ldots, T_s \in A_1$ with vertex set $S_i \cup \{u^1\}$, $S_i \cup \{u^2\}$, ..., $S_i \cup \{u^s\}$ respectively, where $u^j \in X \setminus S_i$ for $1 \leq j \leq s$, and t trees $T_{s+1}, T_{s+2}, \ldots, T_{s+t} \in A_1$ with vertex set $S_i \cup \{v^1\}$, $S_i \cup \{v^2\}$, $\ldots, S_i \cup \{v^t\}$ respectively, where $v^j \in Y \setminus S_i$ for $1 \leq j \leq t$. Then we can find a set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that |A| = |A'| and all vertices in $V(A'_1) \setminus S_i$ belong to the same partition.

Proof. Let $|A_0| = p$. Since A is a set of internally disjoint trees connecting S_i , we have $p(k-1) + si + t(k-i) \leq i(k-i)$, where si denote the si edges incident with x_1, \ldots, x_i in T_1, T_2, \ldots, T_s , and t(k-i) denote the t(k-i) edges incident with y_1, \ldots, y_{k-i} in $T_{s+1}, T_{s+2}, \ldots, T_{s+t}$. If $s \leq t$, then $p(k-1) + si + s(k-i) + (t-s)(k-i) \leq i(k-i)$, and hence $(p+s)(k-1) + (t-s)(k-i) \leq i(k-i)$. Obviously, there are t-s vertices $v^{s+1}, v^{s+2}, \ldots, v^t \in Y \setminus S_i$, and therefore by Lemma 3.6, we can find p + s trees in \mathcal{A}_0 and t-s trees in \mathcal{A}_1 , such that all these trees are internally disjoint trees connecting S_i . Now let A'_0 be the set of the p + s trees in \mathcal{A}_0, A'_1 be the set of the t-s trees in \mathcal{A}_1 and $A'_2 := A_2 \cup \{T_{u^j,v^j}, 1 \leq j \leq s\}$. Then $A' = A'_0 \cup A'_1 \cup A'_2$ is just the set we want. The case that s > t is similar.

From Lemmas 3.5 and 3.7, we can see that, if A' is a set of internally disjoint trees connecting S_i which we find currently, $U(A') \cap X \neq \emptyset$ and $U(A') \cap Y \neq \emptyset$, then no matter how many edges are there in $E(G[S_i]) \setminus E(A')$, we always add to A' the trees in \mathcal{A}_2 rather than the trees in \mathcal{A}_1 .

Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers a and b, let $K_{a,b}$ denote a complete bipartite graph with a bipartition of sizes a and b, respectively. Then we have the following results: if k > b - a + 2 and a - b + k is odd then

$$\kappa_k(K_{a,b}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor;$$

if k > b - a + 2 and a - b + k is even then

$$\kappa_k(K_{a,b}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor;$$

and if $k \leq b - a + 2$ then

$$\kappa_k(K_{a,b}) = a.$$

Proof. Recall that $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of V(G). Let $X = \{x_1, x_2, \ldots, x_a\}$ and $Y = \{y_1, y_2, \ldots, y_b\}$ be the bipartition of $K_{a,b}$, where $a \leq b$. As we have mentioned, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of V(G), we can restrict our attention to the subsets S_i , for $0 \leq i \leq k$, where S_i is an k-element subsets of V(G) such that $S_i \cap X = \{x_1, x_2, \dots, x_i\}, S_i \cap Y = \{y_1, y_2, \dots, y_{k-i}\}, 1 \le i \le k$ and $S_0 \cap X = \emptyset, S_0 \cap Y = \{y_1, y_2, \dots, y_k\}$. Notice that, if i > a or k - i > b then S_i does not exist, and if k > b then S_0 does not exist. So, we need only to consider S_i for $\max\{0, k - b\} \le i \le \min\{a, k\}$.

From the above lemmas, we can decide our principle to find the maximum set of internally disjoint trees connecting S_i . Namely, first we find as many trees in \mathcal{A}_2 as possible, next we find as many trees in \mathcal{A}_1 as possible, and finally we find as many trees in \mathcal{A}_0 as possible.

For a set $S_i = \{x_1, x_2, \dots, x_i, y_1, y_2, \dots, y_{k-i}\}$, let A be the maximum set of internally disjoint trees connecting S_i we find with our principle. We now compute |A|.

- **Case 1.** $k \le b a + 2$
- Obviously, $\kappa(S_0) = a$.

For S_1 , since $k \leq b - a + 2$, then

$$b - (k - 1) = b - k + 1 \ge a - 2 + 1 = a - 1.$$

So, $|A_2| = a - 1$. If b - k + 1 = a - 1, then $|A_1| = 0$, $|A_0| = 1$. If b - k + 1 > a - 1, then $|A_1| = 1$, $|A_0| = 0$. No matter which case happens, we have $\kappa(S_1) = |A_2| + |A_1| + |A_0| = a$.

For S_i , $i \ge 2$, since $k \le b - a + 2$, then

$$b - (k - i) = b - k + i \ge a - 2 + i > a - i.$$

So, $|A_2| = a - i$. Since $b - k + i - (a - i) = b - a - k + 2i \ge -2 + 2i \ge i$, then $|A_1| = i$ and $|A_0| = 0$. Thus $\kappa(S_i) = |A_2| + |A_1| + |A_0| = a$.

In summary, if $k \leq b - a + 2$, then $\kappa_k(G) = a$.

Case 2. k > b - a + 2

First, let us compare $\kappa(S_i)$ with $\kappa(S_{k-i})$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor$. If a = b, clearly, $\kappa(S_i) = \kappa(S_{k-i})$. So we may assume that a < b.

For i = 0, $\kappa(S_0) = a < b = \kappa(S_k)$.

For $1 \leq i \leq \lfloor \frac{k}{2} \rfloor$, we will give the expressions of $\kappa(S_i)$ and $\kappa(S_{k-i})$.

First for S_i , since every pair of vertices $u \in X \setminus S_i$ and $v \in Y \setminus S_i$ can form a tree $T_{u,v}$, then $|A_2| = \min\{a - i, b - (k - i)\}$. Namely,

$$|A_2| = \begin{cases} a-i & \text{if } i \ge \frac{a-b+k}{2} ;\\ b-k+i & \text{if } i < \frac{a-b+k}{2} \end{cases}.$$

Next, since every tree T in A_1 has a vertex in $V \setminus (S_i \cup V(A_2))$, we have

$$|A_1| \le \begin{cases} b-k+i-(a-i) & \text{if } i \ge \frac{a-b+k}{2} \\ a-i-(b-k+i) & \text{if } i < \frac{a-b+k}{2} \end{cases}.$$

On the other hand, if the tree T has vertex set $S_i \cup \{u\}$, where $u \in X \setminus S_i$, then every vertex in $S_i \cap X$ is incident with one edge in $E(S_i)$, where $E(S_i)$ denotes the set of edges whose ends are both in S_i . And if the tree T has vertex set $S_i \cup \{v\}$, where $v \in Y \setminus S_i$, then every vertex in $S_i \cap Y$ is incident with one edge in $E(S_i)$. Since every vertex in $S_i \cap X$ is incident with k - i edges in $E(S_i)$ and every vertex in $S_i \cap Y$ is incident with i edges in $E(S_i)$, we have

$$|A_1| \le \begin{cases} i & \text{if } i \ge \frac{a-b+k}{2} ;\\ k-i & \text{if } i < \frac{a-b+k}{2} \end{cases}.$$

Combining the two inequalities, we get

$$|A_1| = \begin{cases} \min\{b - a - k + 2i, i\} & \text{if } i \ge \frac{a - b + k}{2};\\ \min\{a - b + k - 2i, k - i\} & \text{if } i < \frac{a - b + k}{2}. \end{cases}$$

Thus

$$|A_1| = \begin{cases} i & \text{if } i \ge a - b + k ;\\ b - a - k + 2i & \text{if } \frac{a - b + k}{2} \le i < a - b + k ;\\ a - b + k - 2i & \text{if } i < \frac{a - b + k}{2} . \end{cases}$$

Finally, by Lemma 3.6 we have

$$|A_0| = \begin{cases} \lfloor \frac{i(k-i) - |A_1|(k-i)|}{k-1} \rfloor & \text{if } i \ge \frac{a-b+k}{2} ;\\ \lfloor \frac{i(k-i) - |A_1|i}{k-1} \rfloor & \text{if } i < \frac{a-b+k}{2} . \end{cases}$$

Thus

$$|A_0| = \begin{cases} 0 & \text{if } i \ge a - b + k ;\\ \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor & \text{if } \frac{a - b + k}{2} \le i < a - b + k ;\\ \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor & \text{if } i < \frac{a - b + k}{2} . \end{cases}$$

And hence

$$\kappa(S_i) = \begin{cases} a & \text{if } i \ge a - b + k ;\\ b - k + i + \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor & \text{if } \frac{a - b + k}{2} \le i < a - b + k ;\\ a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor & \text{if } i < \frac{a - b + k}{2} . \end{cases}$$

Notice that $i \ge 1$, and hence $k - i \le k - 1$.

If
$$\frac{a-b+k}{2} \le i < a-b+k$$
, then
 $\lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor \le i-(b-a-k+2i) = a-b+k-i.$

So, $\kappa(S_i) \leq b - k + i + a - b + k - i = a$.

If
$$i < \frac{a-b+k}{2}$$
, then $a-b+k-2i > 0$, $k-i-(a-b+k-2i) < k-i \le k-1$, and hence $\lfloor \frac{[k-i-(a-b+k-2i)]i}{k-1} \rfloor \le i$.

So, $\kappa(S_i) \leq a - i + i = a$

Thus $\kappa(S_i) \leq a$, for $i \geq 1$.

Next, considering S_{k-i} , similarly, we have

$$|A_2| = \min\{a - (k - i), b - i\}.$$

Since a < b and $i \le \lfloor \frac{k}{2} \rfloor \le \lceil \frac{k}{2} \rceil \le k - i$, then b - i > a - (k - i). So $|A_2| = a - k + i$ and $|A_1| = \min\{b - i - (a - k + i), k - i\}$. Hence

$$|A_1| = \begin{cases} k - i & \text{if } i \le b - a ;\\ b - a + k - 2i & \text{if } i > b - a . \end{cases}$$

Moreover,

$$|A_0| = \begin{cases} 0 & \text{if } i \le b-a \\ \lfloor \frac{[k-i-(b-a+k-2i)]i}{k-1} \rfloor & \text{if } i > b-a \end{cases}$$

So,

$$\kappa(S_{k-i}) = \begin{cases} a & \text{if } i \leq b-a \\ b-i + \lfloor \frac{[k-i-(b-a+k-2i)]i}{k-1} \rfloor & \text{if } i > b-a \end{cases}$$

Now, we can compare $\kappa(S_i)$ with $\kappa(S_{k-i})$. For $i \leq b-a$, $\kappa(S_{k-i}) = a \geq \kappa(S_i)$. For i > b-a, there must be b-a < k-i, that is, i < a-b+k.

If
$$\frac{a-b+k}{2} \le i < a-b+k$$
, then

$$\kappa(S_{k-i}) - \kappa(S_i) = b-i + \lfloor \frac{[k-i-(b-a+k-2i)]i}{k-1} \rfloor$$

$$-\{b-k+i+\lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor\}$$

$$\ge (k-2i) + \lfloor \frac{(k-2i)(b-a-k)}{k-1} \rfloor$$

$$\ge (k-2i) + \lfloor \frac{(k-2i)(1-k)}{k-1} \rfloor$$

$$\ge (k-2i) - (k-2i) = 0.$$

So, $\kappa(S_{k-i}) \ge \kappa(S_i)$.

If $i < \frac{a-b+k}{2}$, then

$$\kappa(S_{k-i}) - \kappa(S_i) = b - i + \lfloor \frac{[k - i - (b - a + k - 2i)]i}{k - 1} \rfloor$$
$$-\{a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor\}$$
$$\geq (b - a) + \lfloor \frac{(2i)(a - b)}{k - 1} \rfloor.$$

Since $i < \frac{a-b+k}{2}$, then $2i \leq k-1$, and hence $\frac{(2i)(a-b)}{k-1} \geq a-b$. So, $\kappa(S_{k-i}) - \kappa(S_i) \geq b-a+a-b=0$. Thus, $\kappa(S_{k-i}) \geq \kappa(S_i)$.

In summary, $\kappa(S_{k-i}) \ge \kappa(S_i)$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor$. So, in order to get $\kappa_k(G)$, it is enough to consider $\kappa(S_i)$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor$.

Next, let us compare $\kappa(S_i)$ with $\kappa(S_{i+1})$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor - 1$. For i = 0, $\kappa(S_i) = a \ge \kappa(S_{i+1})$. For $1 \le i \le \lfloor \frac{k}{2} \rfloor - 1$,

$$\kappa(S_i) = \begin{cases} a & \text{if } i \ge a - b + k ;\\ b - k + i + \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor & \text{if } \frac{a - b + k}{2} \le i < a - b + k ;\\ a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor & \text{if } i < \frac{a - b + k}{2} . \end{cases}$$

and

$$\kappa(S_{i+1}) = \begin{cases} a & \text{if } i \ge a - b + k - 1 ;\\ b - k + i + 1 + \lfloor \frac{[i+1 - (b-a-k+2i+2)](k-i-1)}{k-1} \rfloor & \text{if } \frac{a-b+k}{2} - 1 \le i < a - b + k - 1 ;\\ a - i - 1 + \lfloor \frac{[k-i-1 - (a-b+k-2i-2)](i+1)}{k-1} \rfloor & \text{if } i < \frac{a-b+k}{2} - 1 . \end{cases}$$

So, $\kappa(S_{a-b+k}) = \kappa(S_{a-b+k+1}) = \cdots = \kappa(S_{\min\{a,k\}}) = a.$

$$\begin{split} \text{If } i < \frac{a-b+k}{2} - 1, \text{ then} \\ \kappa(S_i) - \kappa(S_{i+1}) &= a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor \\ &- \{a - i - 1 + \lfloor \frac{[k - i - 1 - (a - b + k - 2i - 2)]i + 1}{k - 1} \rfloor \} \\ &\geq 1 + \lfloor \frac{(a - b - 2i - 1)}{k - 1} \rfloor \\ &\geq 1 + \lfloor \frac{1 - k}{k - 1} \rfloor \\ &\geq 1 - 1 = 0. \end{split}$$

So, $\kappa(S_i) \ge \kappa(S_{i+1})$. Namely, if a - b + k is odd, we have

$$\kappa(S_0) \ge \kappa(S_1) \ge \dots \ge \kappa(S_{\frac{a-b+k-3}{2}}) \ge \kappa(S_{\frac{a-b+k-1}{2}}).$$

and if a - b + k is even, we have

$$\kappa(S_0) \ge \kappa(S_1) \ge \dots \ge \kappa(S_{\frac{a-b+k-4}{2}}) \ge \kappa(S_{\frac{a-b+k-2}{2}}).$$

$$\begin{split} \text{If } i &= \frac{a-b+k}{2} - 1, \ \kappa(S_i) = \frac{a+b-k}{2} + 1 + \lfloor \frac{(b-a+k-2)(a-b+k-2)}{4(k-1)} \rfloor.\\ \text{If } i &= \frac{a-b+k-1}{2}, \ \kappa(S_i) = \frac{a+b-k+1}{2} + \lfloor \frac{(b-a+k-1)(a-b+k-1)}{4(k-1)} \rfloor.\\ \text{If } i &= \frac{a-b+k}{2}, \ \kappa(S_i) = \frac{a+b-k}{2} + \lfloor \frac{(b-a+k)(a-b+k)}{4(k-1)} \rfloor.\\ \text{If } i &= \frac{a-b+k+1}{2}, \ \kappa(S_i) = \frac{a+b-k+1}{2} + \lfloor \frac{(b-a+k-1)(a-b+k-1)}{4(k-1)} \rfloor. \end{split}$$

If a - b + k is even, since

$$\begin{aligned} &(a-b+k)(b-a+k) - (b-a+k-2)(a-b+k-2) \\ &= (a-b+k)(b-a+k) - [(a-b+k)(b-a+k) - 2(b-a+k) - 2(a-b+k-2)] \\ &= 4(k-1), \end{aligned}$$

then we have $\kappa(S_{\frac{a-b+k}{2}-1}) = \kappa(S_{\frac{a-b+k}{2}})$. If a-b+k is odd, we have $\kappa(S_{\frac{a-b+k-1}{2}}) = \kappa(S_{\frac{a-b+k+1}{2}})$.

If $\frac{a-b+k}{2} \le i \le a-b+k-1$, then

$$\begin{split} \kappa(S_{i+1}) - \kappa(S_i) &= b - k + i + 1 + \lfloor \frac{[i+1-(b-a-k+2i+2)](k-i-1)}{k-1} \rfloor \\ &- \{b - k + i + \lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor \} \\ &\geq 1 + \lfloor \frac{(b-a-2k+2i+1)}{k-1} \rfloor \\ &\geq 1 + \lfloor \frac{1-k}{k-1} \rfloor \\ &\geq 1 - 1 = 0. \end{split}$$

So, $\kappa(S_{i+1}) \geq \kappa(S_i)$. Namely, if a - b + k is odd, we have

$$\kappa(S_{\frac{a-b+k+1}{2}}) \le \kappa(S_{\frac{a-b+k+3}{2}}) \le \dots \le \kappa(S_{a-b+k-1}) \le \kappa(S_{a-b+k}) = a,$$

and if a - b + k is even, we have

$$\kappa(S_{\frac{a-b+k}{2}}) \le \kappa(S_{\frac{a-b+k+2}{2}}) \le \dots \le \kappa(S_{a-b+k-1}) \le \kappa(S_{a-b+k}) = a.$$

Thus, if k > b - a + 2 and a - b + k is odd,

$$\kappa_k(K_{a,b}) = \kappa(S_{\frac{a-b+k-1}{2}}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor,$$

and if k > b - a + 2 and a - b + k is even,

$$\kappa_k(K_{a,b}) = \kappa(S_{\frac{a-b+k}{2}}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor.$$

The proof is complete.

Notice that, when k = a + b, the result coincides with Theorem 1.2.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

- [2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360–367.
- [3] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$, Discrete Math. 310(2010), 2147C2163.
- [4] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150–168.