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SYSTEMS OF QUADRATIC INEQUALITIES

A. AGRACHEV AND A. LERARIO

Abstract. We present a spectral sequence which efficiently computes Betti
numbers of a closed semi-algebraic subset of RPn defined by a system of qua-
dratic inequalities and the image of the homology homomorphism induced by
the inclusion of this subset in RPn. We do not restrict ourselves to the term E2

of the spectral sequence and give a simple explicit formula for the differential
d2.

1. Introduction

In this paper we study closed semialgebraic subsets of RPn presented as the
sets of solutions of systems of homogeneous quadratic inequalities. Systems are
arbitrary: no regularity condition is required and systems of equations are included
as special cases. Needless to say, standard Veronese map reduces any system of
homogeneous polynomial inequalities to a system of quadratic ones (but the number
of inequalities in the system increases). The nonhomogeneous affine case will be
the subject of another publication.

To study a system of quadratic inequalities we focus on the dual object. Namely,
we take the convex hull, in the space of all real quadratic forms on Rn+1, of those
quadratic forms involved in the system, and we try to recover the homology of the
set of solutions from the arrangement of this convex hull with respect to the cone
of degenerate forms. This approach allows to efficiently compute Betti numbers of
the set of solutions for a very big number of variables n as long as the number of
linearly independent inequalities is limited. Moreover, this approach works well for
systems of integral quadratic inequalities (i. e. in the infinite dimension, far beyond
the semi-algebraic context) as we plan to prove in another paper.

Let p : Rn+1 → Rk+1 be a homogeneous quadratic map and K ⊂ Rk+1 a convex
polyhedral cone in Rk (zero cone K = {0} is permitted). We are going to study
the semialgebraic set

Xp = {x̄ = (x0 : . . . : xn) ∈ RPn | p(x0, . . . , xn) ∈ K}.
More precisely, we are going to compute the homology H∗(Xp;Z2) and the image
of the map ι∗ : H∗(Xp;Z2)→ H∗(RP

n;Z2), where ι : Xp → RPn is the inclusion.
In what follows, we use shortened notations H∗(Xp;Z2) = H∗(Xp), RP

n = Pn.
Let Q be the space of real quadratic forms on R

n+1. Given q ∈ Q, we denote
by i+(q) ∈ N the positive inertia index of q that is the maximal dimension of a
subspace of Rn+1 where the form q is positive definite. Similarly, i−(q)

.
= i+(−q)

is the negative inertia index. We set:

Qj = {q ∈ Q : i+(q) ≥ j}.
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2 A. AGRACHEV AND A. LERARIO

We denote by p̄ : Rk+1∗ → Q the linear systems of quadratic forms associated to
the map p. In coordinates:

p =





p0

...
pk



 , pi ∈ Q, p̄(ω) = ωp =

k∑

i=0

ωip
i, ∀ω = (ω0, . . . , ωk) ∈ R

k+1∗.

More notations:

K◦ = {ω ∈ R
k+1∗ : 〈ω, y〉 ≤ 0, ∀y ∈ K}, the dual cone to K;

Ω = K◦ ∩ Sk = {ω ∈ K◦ : |ω| = 1};
CΩ = K◦ ∩Bk+1 = {ω ∈ K◦ : |ω| ≤ 1};

Ωj = {ω ∈ Ω : i+(ωp) ≥ j}.
Theorem A. There exists a cohomological spectral sequence of the first quadrant
(Er, dr) converging to Hn−∗(X) such that Eij

2 = Hi(CΩ,Ωj+1).

We define µ
.
= max

η∈Ω
i+(η). If µ = 0 then Xp = Pn; otherwise we can describe

the term E2 by the following table where cohomology groups are replaced with
isomorphic ones according to the long exact sequence of the pair (CΩ,Ωj+1).

0 0 0
n Z2 0 0

...
...

...
µ Z2 0 0 · · · 0 · · · 0 0

0 H0(Ωµ)/Z2 H1(Ωµ) · · · Hi(Ωµ) · · · Hk(Ωµ) 0
...

...
...

...
...

...
0 H0(Ωj+1)/Z2 H1(Ωj+1) · · · Hi(Ωj+1) · · · Hk(Ωj+1) 0
...

...
...

...
...

...
0 H0(Ω1)/Z2 H1(Ω1) · · · Hi(Ω1) · · · Hk(Ω1) 0

Example 1. Let n = k = 2, p(x0, x1, x2) =
(

x0x1
x0x2
x1x2

)

, K = {0}. Then

Ω = Ω1 = S2, Ω2 = {ω ∈ S2 : ω0ω1ω2 < 0}, Ω3 = ∅.
The term E2 has the form:

Z2 0 0 0
0 (Z2)

3 0 0
0 0 0 Z2

In this case d2 : (Z2)
3 → Z2 is a non-vanishing differential and the set Xp consists

of 3 points.

Let Gj =
{
(V, q) ∈ Gr(j) ×

(
Qj \ Qj+1

)
: q

∣
∣
V
> 0

}
, where Gr(j) is the Grass-

mannian of j-dimensional subspaces of Rn+1. It is easy to see that the projection
π : (V, q) 7→ q, (V, q) ∈ Gj is a homotopy equivalence.
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Let us consider the tautological vector bundle Vj over Gj whose fiber at (V, q) ⊂
Gj is the space V ∈ Rn+1 and the first Stiefel–Whitney class of this bundle w1(Vj) ∈
H1(Gj). Recall that w1(Vj) vanishes at a curve f : S1 → Gj if and only if f∗Vj is a
trivial bundle. Moreover, the value of w1(Vj) at f depends only on the curve π ◦ f
in Qj \ Qj+1 and w1(Vj) = π∗νj for a well-defined class νj ∈ H1

(
Qj \ Qj+1

)
.

Proposition. The differentials d2, of the spectral sequence (Er, dr) is determined

by the class p̄
∣
∣
∗

Ωj\Ωj+1(νj) ∈ H1(Ωj \ Ωj+1). If p̄
∣
∣
∗

Ωj\Ωj+1 (νj) = 0, ∀ j > 0, then

E3 = E2.

The classes νj are defined without any use of the Euclidean structure on Rn+1.
This structure is however useful for the explicit calculation of d2. Given q ∈ Q,
let λ1(q) ≥ · · · ≥ λn+1(q) be the eigenvalues of the symmetric operator Q on Rn+1

defined by the formula q(x) = 〈Qx, x〉, x ∈ Rn+1. Then Qj = {q ∈ Q : λj > 0}.
We set Dj = {q ∈ Q : λj(q) 6= λj+1(q)} and denote by L+j the j-dimensional

vector bundle over Dj whose fiber at a point q ∈ Λj equals span{x ∈ Rn+1 : Qx =

λix, 1 ≤ i ≤ j}. Obviously, Qj \ Qj+1 ⊂ Dj and νj = w1

(
L+j

)∣
∣
Qj\Qj+1 .

Now we set φj = ∂∗w1(L+j ), where ∂∗ : H1(Dj)→ H2(Q,Dj) is the connecting

isomorphism in the exact sequence of the pair (Q,Dj). Recall that

Q \ Dj = {q ∈ Q : λj(q) = λj+1(q)}
is a codimension 2 algebraic subset of Q whose singular locus

sing (Q \ Dj) = {q ∈ Q : (λj−1(q) = λj+1(q)) ∨ (λj(q) = λj+2(q))}
has codimension 5 in Q. Let f : B2 → Q be a continuous map defined on the
disc B2 and such that f(∂B2) ⊂ Dj ; the value of φj ∈ H2(Q,Dj) at f equals the
intersection number (modulo 2) of f and Q \ Dj .

Theorem B (the differentials d2). We have:

d2(x) = (x ⌣ p̄∗φj)
∣
∣
(CΩ,Ωj)

, ∀x ∈ H∗(CΩ,Ωj+1),

where ⌣ is the cohomological product.

Theorem C. Let (ι∗)a : Ha(Xp) → Ha(P
n), 0 ≤ a ≤ n, be the homomorphism

induced by the inclusion ι : Xp → Pn. Then rk(ι∗)a = dimE0,n−a
∞ .

Next theorem about hyperplane sections is a step towards the understanding
of functorial properties of the duality between the semi-algebraic sets Xp and the
index functions i+ ◦ p̄.

Let V be a codimension one subspace of Rn+1 and V̄ ⊂ RPn the projectivization
of V . We define for j > 0 the following sets:

Ωj
V = {ω ∈ Ω : i+ (ωp|V ) ≥ j}

Theorem D. There exists a cohomology spectral sequence (Gr, dr) of the first quad-
rant converging to Hn−∗(Xp, Xp ∩ V̄ ) such that

Gi,j
2 = Hi(Ωj

V ,Ω
j+1), j > 0, Gi,0

2 = Hi(CΩ,Ω1).

Theorem A is proved in Section 2, the differential d2 is computed in Sections
3, 4, Theorem 3 on the imbedding to RPn is proved in Section 5, and Theorem D
on the hyperplane sections in Section 6. In Section 7 we study a special case of
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the constant index function where higher differentials can be easily computed and
consider some other examples.

Let us indicate the main general ideas these proofs are based on.

Regularization. Polynomial inequalities can be easily regularized without change
of the homotopy type of the space of solutions. Indeed, given a polynomial a,
the space of solutions of the inequality a(x) ≤ 0 is a deformation retract of the
space of solutions of the inequality a(x) ≤ ε for any sufficiently small ε > 0, and
the inequality a(x) ≤ ε is regular for any ε from the complement of a discrete
subset of R. The regularization of the equation a(x) = 0 is a system of inequalities
±a(x) ≤ ε.
Duality. The map p̄ : K◦ → Q is the dual object to Xp. Moreover, Pn \ Xp is
homotopy equivalent to B = {(ω, x ∈ Ω× Pn : (ωp)(x) > 0}. For a regular system
of quadratic inequalities, our spectral sequence is the relative Leray spectral system
of the map (ω, x) 7→ ω applied to the pair (Ω× Pn, B).

Localization. Given ω0, we have: BOω0
≈ Bω0 ≈ Pi+(ω0p)−1, where Oω0 is any suf-

ficiently small contractible neighborhood of ω0 and ≈ is the homotopy equivalence.
This fact allows to compute the member E2 of the spectral sequence.

Regular homotopy. This is perhaps the most interesting tool which allows to
compute the differential d2. The notion of regular homotopy is based on the dual
characterization for the regularity of a system of quadratic inequalities. We say that
the system defined by the map p and cone K is regular if p

∣
∣
Rn+1\{0}

is transversal

to K; in other words, if im(Dxp) + Tp(x)K = Rk+1, ∀x ∈ Rn+1 \ {0} such that
p(x) ∈ K.

The dual characterization of regularity concerns the linear map p̄ : Ω → Q but
can be naturally extended to any smooth map f : Ω→ Q. Note that Q is the dual
space to Rn+1 ⊙ Rn+1, the symmetric square of Rn+1. Let

Q0 = {q ∈ Q : ker q 6= 0},
the discriminant of the space of quadratic forms. Then Q0 is an algebraic hyper-
surface and

singQ0 = {q ∈ Q0 : dimker q > 1}.
Given q ∈ Q0 \ singQ0 and x ∈ ker q \ 0, the vector x ⊙ x ∈ Q∗ is normal to the
hypersurface Q0 at q. We define a co-orientation of Q0 \ singQ0 by the claim that
x⊙ x is a positive normal. For any, maybe singular, q ∈ Q0 we define the positive
normal cone as follows:

N+
q = {x⊙ x : x ∈ ker q \ 0}.

The cone N+
q consists of the limiting points of the sequences N+

qi
, i ∈ N, where

qi ∈ Q0 \ singQ0 and qi → q as i→∞.
We say that f : Ω→ Q is not regular (with respect to Q0) at ω ∈ Ω if f(ω) ∈ Q0

and ∃ y ∈ N+
ω such that 〈Dωfv, y〉 ≤ 0, ∀ v ∈ TωΩ. The map f is regular if it is

regular at any point. It is easy to check that the transversality of the quadratic map
p
∣
∣
Rn+1\{0}

to the cone K is equivalent to the regularity of the linear map p̄ : Ω→ Q
where, we remind, Ω = K◦ ∩ Sk.

A homotopy ft : Ω → Q, 0 ≤ t ≤ 1, is a regular homotopy if all ft are regular
maps. The following fundamental geometric fact somehow explains the results of
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this paper and gives a perspective for further research. If linear maps p̄0, p̄1 are
regularly homotopic then the pairs (Pn,Pn \Xp0) and (Pn,Pn \Xp1) are homotopy
equivalent. Note that the maps ft in the homotopy connecting p̄0 and p̄1 are just
smooth, not necessary linear. It is important that the cones N+

q , q ∈ singQ0, are

not convex. If N+
q would be convex then regular homotopy would preserve the term

E2 of our spectral sequence, the differentials dr, r ≥ 2, would vanish and E2 would
be equal to E∞.

Regular homotopy was introduced in paper [2] devoted to regular quadratic
maps. In the mentioned paper, the term E2 and the differential d2 of a converging to
the homology of the double covering of Xp spectral sequence were computed. Again
for a regular quadratic map, all the differentials of a spectral sequence converging
to H∗(Pn \ Xp) were announced (without proof) in [1]. We have to confess that,
unfortunately, only the differential d2 was computed correctly. Universal upper
bounds for the Betti numbers of the sets defined by systems of quadratic inequalities
or equations were obtained in [3, 4, 5, 7].

Remark. An Hermitian quadratic form is a quadratic form q : Cn+1 → R such
that q(iz) = q(z). Similarly, a “quaternionic” quadratic form is a quadratic form
q : Hn+1 → R such that q(iw) = q(jw) = q(w). There are obvious Hermitian and
“quaternionic” versions of the theory developed in this paper (for systems of Her-
mitian or “quaternionic” quadratic inequalities). You simply substitute RPn with
CPn or HPn, Stiefel–Whitney classes with Chern or Pontryagin classes, differentials
dr with differentials d2r−1 or d4r−3, and compute homology with coefficients in Z

instead of Z2 (see also [1]).

2. The spectral sequence

Using the above notations for Ω = K◦ ∩ Sk ⊂ (Rk+1)∗ we define

B = {(ω, x) ∈ Ω× P
n : (ωp)(x) > 0}.

Notice that the previous definition makes sense since for every ω ∈ Ω the map pω
is homogeneous of degree two. The following lemma relates the topology of B to
that of X.

Lemma 1. The projection βr on the second factor defines a homotopy equivalence
between B and P

n\X = βr(B).

Proof. The equality βr(B) = Pn\X follows from (K◦)◦ = K. For every x ∈ Pn the
set β−1

r (x) is the intersection of the set Ω×{x} with an open half space in (Rk+1)∗×
{x}. Let (ωx, x) be the center of gravity of the set β−1

r (x). It is easy to see that ωx

depends continuosly on x ∈ βr(B). Further it follows form convexity considerations

that (ωx/ ‖ωx‖, x) ∈ B and for any (ω, x) ∈ B the arc ( tωx+(1−t)ωx

‖tωx+(1−t)ωx‖
, x), 0 ≤ t ≤ 1

lies entirely in B. It is clear that x 7→ (ωx/ ‖ωx‖, x), x ∈ βr(B) is a homotopy
inverse to βr. �

We first construct a slightly more general spectral sequence (Fr, dr) converging to
H∗(Ω×Pn, B) which in general is not isomorphic toHn−∗(X). The required spectral

sequence (Er, dr) arises by applying the following Theorem to a modification (q̂, K̂)

of the pair (q,K) such that H∗(Ω̂× P
n, B̂) ≃ Hn−∗(X).



6 A. AGRACHEV AND A. LERARIO

Theorem 2. There exists a cohomology spectral sequence of the first quadrant
(Fr, dr) converging to H∗(Ω× Pn, B;Z2) such that for every i, j ≥ 0

F i,j
2 = Hi(Ω,Ωj+1;Z2).

Proof. Fix a scalar product q0 (i.e. a positive definite form) and consider the
function α : Ω× Pn → R defined by (ω, x) 7→ (ωp)(x). Notice that until the scalar
product q0 has not been fixed, then only the sign of α is well defined (because p
is homogeneous of degree two); once q0 has been fixed we can talk also about its
value by defining it to be that of the restriction to the q0-unit sphere; we will discuss
this better later. The function α is continuos semialgebraic and B = {α > 0}. By
semialgebraicity, there exists ǫ > 0 such that the inclusion

C(ǫ) = {α ≥ ǫ} →֒ B

is a homotopy equivalence.
Consider the projection βl(ǫ) : C(ǫ) → Ω on the first factor; then by Leray there
exists a cohomology spectral sequence (Fr(ǫ), dr(ǫ)) converging to the cohomology
group H∗(Ω× Pn, C(ǫ);Z2) ≃ H∗(Ω× Pn, B;Z2) such that

F i,j
2 (ǫ) = Ȟi(Ω,F j(ǫ))

where F j(ǫ) si the sheaf generated by the presheaf V 7→ Hj(V ×Pn, βl(ǫ)
−1(V );Z2).

Since C(ǫ) and Ω are locally compact and βl(ǫ) is proper (C(ǫ) is compact), then the
following isomorphism holds for the stalk of F j(ǫ) at each ω ∈ Ω (see [8], Remark
4.17.1, p. 202):

(F j(ǫ))ω ≃ Hj({ω} × P
n, βl(ǫ)

−1(ω);Z2).

The set βl(ǫ)
−1(ω) = {x ∈ Pn : (ωp)(x) ≥ ǫ} = {x ∈ Pn : (ωp− ǫq0)(x) ≥ 0} has

the homotopy type of a projective space of dimension n− ind−(ωp− ǫq0); thus, if
we set i−(ǫ) for the function ω 7→ ind−(ωp− ǫq0), the following holds:

(F j(ǫ))ω =

{
Z2 if i−(ǫ)(ω) > n− j;
0 otherwise

Thus the sheaf F j(ǫ) is zero on the closed set Ωn−j(ǫ) = {i−(ǫ) ≤ n − j} and is
locally constant with stalk Z2 on its complement; hence

F i,j
2 (ǫ) = Ȟi(Ω,F j(ǫ)) = Ȟi(Ω,Ωn−j(ǫ);Z2).

We claim now that Ωj+1 =
⋃

ǫ>0Ωn−j(ǫ). Let ω ∈
⋃

ǫ>0 Ωn−j(ǫ); then there exists
ǫ such that ω ∈ Ωn−j(ǫ) for every ǫ < ǫ. Since for ǫ small enough

i−(ǫ)(ω) = i−(ω) + dim(kerωp)

then it follows that

i+(ω) = n+ 1− i−(ω)− dim(kerωp) ≥ j + 1.

Viceversa if ω ∈ Ωj+1 the previous inequality proves ω ∈ Ωn−j(ǫ) for ǫ small enough,
i.e. ω ∈ ⋃

ǫ>0 Ωn−j(ǫ).
Moreover if ω ∈ Ωn−j(ǫ) then, eventually choosing a smaller ǫ, we may assume ǫ
properly separates the spectrum of ωp and thus, by algebraicity of the map ω 7→ ωp,
there exists U open neighborhood of ω such that ǫ properly separates also the
spectrum of ωp′ for every ω′ ∈ U ; hence ω′ ∈ Ωn−j(ǫ) for every ω

′ ∈ U. From this
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consideration it easily follows that each compact set in Ωj+1 is contained in some
Ωn−j(ǫ) and thus

lim−→
ǫ

{H∗(Ω,Ωn−j(ǫ))} = H∗(Ω,Ω
j+1).

With this in mind the following chain of isomorphisms lim←−{H
i(Ω,Ωn−j(ǫ);Z2)} ≃

(lim−→{Hi(Ω,Ωn−j(ǫ);Z2)})∗ = (Hi(Ω,Ω
j+1;Z2))

∗ gives

F i,j
2 = Hi(Ω,Ωj+1;Z2).

�

Remark 1. In the caseK 6= −K, i.e. Ω 6= Sl, then (Er , dr) converges toHn−∗(X,Z2).
This follows by comparing the two cohomology long exact sequences of the pairs
(Ω × Pn, B) and (Pn,Pn\X) via the map βr. In this case βr : Ω × Pn → Pn is a
homotopy equivalence and the Five Lemma and Lemma 1 together give

H∗(Ω× P
n, B) ≃ H∗(Pn,Pn\X) ≃ Hn−∗(X)

the last isomorphism being given by Alexander-Pontryagin Duality.

Theorem A. There exists a cohomology spectral sequence of the first quadrant
(Er, dr) converging to Hn−∗(X ;Z2) such that

Ei,j
2 = Hi(CΩ,Ωj+1;Z2).

Proof. Keeping in mind the previous remark, we work the general case (i.e. also

the case K = {0}). We replace K with K̂ = (−∞, 0]×K, the map p with the map
p̂ : Rn+1 → R

k+2 defined by p̂ = (−q0, p), where q0 is a positive definite form (i.e.
a scalar product) and Ω with

Ω̂ = K̂◦ ∩ Sk+1.

We also define

Ω̂j+1 = {(η, ω) ∈ Ω̂ : ind+(ωp− ηq0) ≥ j + 1}.
Then, by construction,

p̂−1(K̂) = p−1(K) = X.

Applying Theorem 2 to the pair (p̂, K̂), with the previous remark in mind, we get

a spectral sequence (Êr, d̂r) converging to Hn−∗(X ;Z2) with

Êi,j
2 = Hi(Ω̂, Ω̂j+1;Z2).

We identify Ωj+1 with Ω̂j+1 ∩ {η = 0} and we claim that the inclusion of pairs

(Ω̂,Ωj+1) →֒ (Ω̂, Ω̂j+1) induces an isomorphism in cohomology. This follows from

the fact that Ω̂j+1 deformation retracts onto Ωj+1 along the meridians (the defor-
mation retraction is defined since j ≥ 0 and i+(1, 0, . . . , 0) = 0, thus the “north

pole” of Sk+1 does not belong to any of the Ω̂j+1). If η1 ≤ η2 then ind+(ωp−η1q0) ≥
ind+(ωp− η2q0) : thus if (η, ω) ∈ Ω̂j+1 then all the points on the meridian arc con-

necting (η, ω) with Ω = Ω̂ ∩ {η = 0} belong to Ω̂j+1.

Noticing that (Ω̂,Ωj+1) ≈ (CΩ,Ωj+1), where CΩ stands for the topological space
cone of Ω, concludes the proof. �
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If we define

µ
.
= max

η∈Ω
i+(η),

then by looking directly at the table in the Introduction we can derive the following
corollary of Theorem A.

Corollary 3. If 0 ≤ b ≤ n− µ− k then

Hb(X) = Z2.

In particular if n ≥ µ+ k then X is nonempty.

Proof. Simply observe that the group E0,n−b
2 equals Z2 for 0 ≤ b ≤ n− µ− k and

that all the differentials dr : E0,n−b
r → Er,n−b+r−1

r for r ≥ 0 are zero, since they
take values in zero elements. Hence

Z2 = E0,n−b
∞ = Hb(X).

�

3. Preliminaries for the second differential

3.1. Nondegeneracy properties. Let Q0 ⊂ Q be the set of singular quadratic
forms on Rn+1:

Q0 = {q ∈ Q : ker(q) 6= 0}.
Consider the set K = {(x, q) ∈ Rn+1×Q |x ∈ ker q} and the map p : K → Q which
is the restriction of the projection on the second factor. Let

Q0 =
∐

Zj

be a Nash stratification (i.e. smooth and semialgebraic) such that p trivializes over
each Zj .
For a quadratic form q ∈ Q we may abuse a little of notations and write q(·, ·) for
the bilinear form obtained by polarizing q; no confusion will arise by distinguish
the two from the number of their arguments.
We notice the following:

Fact 1. Let r be a singular form and suppose r ∈ Zj for some stratum of Q0 as
above. Then for every q ∈ TrZj and x0 ∈ ker(r) we have q(x0, x0) = 0.

Proof. Let r : I → Zj be a smooth curve such that r(0) = r and ṙ(0) = q. By the
triviality of p over Zj it follows that there exists x : I → Rn+1 such that x(0) = x0
and x(t) ∈ ker(r(t)) for every t ∈ I. This implies r(t)(x(t), x(t)) ≡ 0 and deriving
we get

0 = ṙ(0)(x(0), x(0)) + 2r(0)(x(0), ẋ(0)) = q(x0, x0).

�

Definition 4. Let f : Ω → Q be a smooth map. We say that f is degenerate at
ω0 ∈ Ω if there exists x ∈ ker(f(ω0))\{0} such that for every v ∈ Tω0Ω we have
(dfω0v)(x, x) ≤ 0; in the contrary case we say that f is nondegenerate at ω0. We
say that f is nondegenerate if it is nondegenerate at each point ω ∈ Ω.

Lemma 5. Let Ω =
∐
Vi be a finite partiton with each Vi Nash and f : Ω→ Q be

a semialgebraic map and Q0 =
∐
Zj as above. Suppose that for every Vi the map

f|Vi
is transversal to all strata of Q0. Then f is nondegenerate.
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Proof. Let ω0 ∈ Ω and x ∈ ker(f(ω0))\{0}; we must prove that there exists v ∈
Tω0Ω such that (dfω0v)(x, x) > 0. Let Vi such that ω0 ∈ Vi. Then Tω0Vi ⊂ Tω0Ω;
suppose f(ω0) ∈ Zj . Since f|Vi

is transversal to Zj , then

im(df|Vi
)ω0 + Tf(ω0)Zj = Q.

Thus let q+ ∈ Q be a positive definite form, v ∈ Tω0Vi and ṙ ∈ Tf(ω0)Zj such that

dfω0v + ṙ = q+.

Since x ∈ ker(f(ω0))\{0}, then the previous Fact implies ṙ(x, x) = 0, and plugging
in the previous equation we get

(dfω0v)(x, x) = (dfω0v)(x, x) + ṙ(x, x) = q+(x, x) > 0.

�

Lemma 6. Let f : Ω → Q be a semialgebraic smooth map. Then there exists a
definite positive form q0 ∈ Q such that for every ǫ > 0 sufficiently small the map
fǫ : Ω→ Q defined by

ω 7→ f(ω)− ǫq0
is nondegenerate.

Proof. Let Ω =
∐
Vi and Q0 =

∐
Zj be as above. For every Vi consider the map

Fi : Vi ×Q+ → Q defined by

(ω, q0) 7→ f(ω)− q0.
Since Q+ is open in Q, then Fi is a submersion and F−1

i (Q0) is Nash-stratified

by
∐
F−1
i (Zj). Then (Fq0 )|Vi

: ω 7→ f(ω) − q0 is transversal to all strata of Q0 if

and only if q0 is a regular value for the restriction of the second factor projection
πi : Vi × Q+ → Q+ to each stratum of F−1

i (Q0) =
∐
F−1
i (Zj). Thus let πij =

(πi)|F−1
i

(Zj)
: F−1

i (Zj) → Q+; since all datas are smooth semialgebraic, then by

semialgebraic Sard’s Lemma, the set Σij = {q̂ ∈ Q+ : q̂ is a critical value of πij} is
a semialgebraic subset of Q+ of dimension dim(Σij) < dim(Q+). Hence Σ = ∪i,jΣij

also is a semialgebraic subset of Q+ of dimension dim(Σ) < dim(Q+) and for every
q0 ∈ Q+\Σ and for every i, j the restriction of ω 7→ f(ω)− q0 to Vi is transversal to
Zj. Thus by the previous Lemma f−q0 is nondegenerate. Since Σ is semialgebraic of
codimension at least one, then there exists q0 ∈ Q+\Σ such that {tq0}t>0 intersects
Σ in a finite number of points, i.e. for every ǫ > 0 sufficiently small ǫq0 ∈ Q+\Σ.
The conclusion follows. �

Let f : Ω→ Q be a smooth map. We define, for every V ⊂ Ω the set

Bf (V ) = {(ω, x) ∈ V × P
n : f(ω)(x) > 0}.

Notice that for the previous definition the value of f(ω) at x ∈ Pn, which is still
undefined, is irrelevant: what we need, i.e. its sign, is well defined since f(ω) is a
quadratic form, hence homogeneous of degree two.
Suppose now that a scalar product in R

n+1 has been fixed. Then we can identify
each q ∈ Q with a symmetric (n+ 1)× (n+ 1) matrix Q by the rule:

q(x) = 〈x,Qx〉.
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Now also the value of q at x ∈ Pn is defined: let Sn be the unit sphere (w.r.t. the
fixed scalar product) in Rn+1 and p : Sn → Pn be the covering map; then, with a
little abuse of notations, we set for x = p(v) ∈ Pn (for some v ∈ Sn) :

q(x)
.
= q(v).

Since q is homogeneous of even degree, the previous function is well defined, i.e.
does not depend on the choice of v.
The eigenvalues of q with respect to g are defined to be those of Q:

λ1(q) ≥ · · · ≥ λn+1(q).

In the space Q we define

Dj
.
= {q ∈ Q : λj(q) 6= λj+1(q)}.

Notice that Qj\Qj+1 ⊂ Dj for every possible choice of the scalar product in Rn+1.
On the space Dj is naturally defined the vector bundle:

Dj

Rj L+j

whose fiber at the point q ∈ Dj is (L+j )q = span{x ∈ Rn+1 : Qx = λix, 1 ≤ i ≤ j}
and whose vector bundle structure is given by its inclusion in Dj × Rn+1.

Similarly the vector bundle Rn−j+1 →֒ L−j → Dj has fiber at the point q ∈ Dj the

vector space (L−j )q = span{x ∈ Rn+1 : Qx = λix, j + 1 ≤ i ≤ n + 1} and vector

bundle structure given by its inclusion in Dj × Rn+1. Notice that

L+j ⊕ L−j = Dj × R
n+1

and thus Whitney product formula holds for their total Stiefel-Whitney classes:
w(L+j )⌣ w(L−j ) = 1. In particular:

w1(L+j ) = w1(L−j ).
In the sequel we will need for q ∈ Dj the projective spaces:

P+
j (q)

.
= P(L+j )q and P−

j (q)
.
= P(L−j )q.

For a given q ∈ Q with i−(q) = i (which implies q ∈ Dn+1−i) we will use the
simplified notation

P+(q)
.
= P+

n+1−i(q) and P−(q)
.
= P−

n+1−i(q).

(even if q ∈ Dn+1−i for every metric still there is dependence on the metric for these
spaces, but we omit it for brevity of notations; the reader should pay attention).
Notice that q|P−(q) < 0 whereas q|P+(q) ≥ 0, i.e. P+(q) contains also P(ker q). The
following picture may help the reader:

λ1(q) ≥ · · · ≥ λn+1−i−(q)(q)
︸ ︷︷ ︸

P+(q)

≥ 0 > λn+2−i−(q)(q) ≥ · · · ≥ λn+1(q)
︸ ︷︷ ︸

P−(q)
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Lemma 7. Let f : Ω → Q be a smooth nondegenerate map. Then there exists
δ1 : Ω → (0,+∞) such that for every ω ∈ Ω, for every V1 ⊂ V2 closed convex
neighborhoods of ω with diam(V2) < δ1(ω) and for every η ∈ V1 such that i−(f(η)) =
i−(f(ω)) and det(f(η)) 6= 0 the inclusions

(η, P+(f(η))) →֒ Bf (V1) →֒ Bf (V2)

are homotopy equivalences.
Moreover in the case f is semialgebraic, then the function δ1 can be chosen to be
semialgebraic (but in general not continuous).

Proof. The existence of δ1 is a direct consequence of Lemma 8 of [2]. The fact that
δ1 can be chosen to be semialgebraic if f is semialgebraic follows directly from the
proof of Lemma 7 of [2]. �

3.2. Negativity properties. Let now f : Ω → Q and ω ∈ Ω; let M(ω) < 0 be
such that

λn+2−i−(f(ω))(f(ω)) < M(ω)

(notice that by definition λn+2−i−(ω)(f(ω)) is the biggest negative eigenvalue of
f(ω); see the above diagram for the numbering of the eigenvalues of a quadratic
form). Then by continuity there exists δ′′2 (ω) such that for every neighborhood V
of ω with diam(V ) < d′′2(ω) and for every η ∈ V

λn+2−i−(f(ω))(f(η)) < M(ω).

Thus for every neighborhood U of ω with diam(U) < δ′′2 (ω) we define:

P−(ω,U) = {x ∈ P
n : ∃η ∈ U s.t.x ∈ P−

n+1−i−(f(ω))(f(η))}.
We claim the following.

Lemma 8. For every ω ∈ Ω there exists 0 < δ′2(ω) < δ′′2 (ω) such that for every
neighborhood of ω with diam(V ) < δ′2(ω)

Cl(P−(ω, V )) ⊆ P
n\{f(ω)(x) ≥ 0}.

Proof. By absurd suppose for every k ∈ N the two sets Cl(P−(ω,B(ω, 1/k))) and
{f(ω)(x) ≥ 0} intersect. Then for every k ∈ N there exists a sequence xlk → xk such

that for every xlk there exists ωl
k ∈ B(ω, 1/k) such that xlk ∈ P−

n+1−i−(ω)(f(ω
l
k))

and f(ω)(xk) ≥ 0.
Then it follows that f(ωl

k)(x
l
k) < M(ω) (recall that the function (ω, x) 7→ f(ω)(x)

is defined, once the scalar product has been fixed, to be the restriction of f(ω) to
the unit sphere covering P

n) and, by extracting convergent subsequences, that

0 ≤ lim
k→∞

f(ω)(xk) = lim
k→∞

f(ωk)(xk) ≤M(ω)

which is absurd since M(ω) < 0 by definition. �

Notice that in the case f is semialgebraic then ω 7→ M(ω) can be chosen semi-
algebraic and hence ω 7→ δ′2(ω) also can be chosen to be semialgebraic.

Lemma 9. For every ω ∈ Ω there exists 0 < δ2(ω) < δ′′2 (ω) such that for every
neighborhood V of ω with diam(V ) < δ2(ω) the following holds:

Cl(P−(ω, V )) ⊂ P
n\βr(Bf (V )).

Moreover in the case f is semialgebraic, then ω 7→ δ2(ω) can be chosen semialge-
braic.
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Proof. Let W be a neighborhood of ω with diam(W ) < δ′2(ω). Then the two com-
pact sets Cl(P−(ω,W )) and {f(ω)(x) ≥ 0} do not intersect by the previous Lemma.
Consider the continuous function a : Cl(W )×Pn → R defined by a(η, x) = f(η)(x)
and a neighborhood U of {f(ω)(x) ≥ 0} in Pn disjoint form Cl(P−(ω,W )). Then
β−1
r (U) ∩ {a ≥ 0} is an open neighborhood of {ω} × {f(ω)(x) ≥ 0} in {a ≥ 0}.

Consider now b : {a ≥ 0} → R defined by (η, x) 7→ d(η, ω). Then, since {a ≥ 0}
is compact, the family {b−1[0, δ)}δ>0 is a fundamental system of neighborhoods
of b−1(0) = {ω} × {f(ω)(x) ≥ 0} in {a ≥ 0}. Thus there exists δ such that
b−1[0, δ) ⊂ β−1

r (U)∩{a ≥ 0}.Hence any δ2(ω) such thatB(ω, 3δ2(ω)) ⊂ B(ω, δ)∩W
satisfies the requirement, since every neighborhood V of ω with diam(V ) < δ2(ω)
is contained in B(ω, 3δ2(ω)) and

Cl(P−(ω,B(ω, 3δ2(ω))) ⊂ Cl(P−(ω,W ))

⊂ P
n\βr({a ≥ 0}) ⊂ P

n\βr(Bf (B(ω, 3δ2(ω)))).

It is clear from the construction that in the case f is semialgebraic the function
ω 7→ δ2(ω) can be chosen semialgebraic too. �

3.3. Convexity properties. We discuss here some useful facts related to convex
open sets of Rk.We begin with the following; recall that for a given convex function
a and c ∈ R the set {a < c} is convex.
Lemma 10. Let a : Rn → [0,∞) be a proper convex function of class C2, x0 ∈ Rn

such that dax0 ≡ 0 and the Hessian He(a)x0 of a at x0 is positive definite. Let also
ψ : Rn → R

n be a diffeomorphism. Then there exists ǫ > 0 such that for every
ǫ < ǫ

ψ({a < ǫ}) is convex.

Proof. Let φ be the inverse of ψ, y0 = ψ(x0) and â
.
= a◦φ. Then the set ψ({a < ǫ})

equals {â < ǫ}. Since dax0 ≡ 0, then

He(â)y0 = tJφy0He(a)x0Jφy0 > 0

and thus, by continuity of the map y 7→ He(â)y , the function â is convex on B(y0, ǫ
′)

for sufficiently small ǫ′; hence for every c > 0 the set {â|B(y0,ǫ′) < c} is convex.
Since a is proper, then there exists ǫ such that {y : a(φ(y)) < ǫ} ⊂ B(y0, ǫ

′). Thus
{â < ǫ} = {â|B(y0,ǫ′) < ǫ} is convex. �

Consider a family of functions aw : x 7→ a(x + x0 − w), w ∈ W ⊂ Rn with
compact closure, with a satisfying the conditions of the previous lemma. Since
He(aw)x = He(a)x, then the exstimate on He(aw)w can be made uniform on W. In
particular taking a(x) = |x|2 we derive the following corollary.

Corollary 11. Let U be an open subset of Rn and ψ : U → R
n be a diffeomorphism

onto its image. Then for every x ∈ U there exists δc(x) > 0 such that for every
B(y, r) ⊂ B(x, 3δc(x)) with r < δc(x) then

ψ(B(y, r)) is convex.

3.4. Construction of regular covers. We recall the following useful result de-
scribing the local topology of the space of quadratic forms.

Proposition 12. Let q0 ∈ Q be a quadratic map and let V be its kernel. Then there
exists a neighborhood Uq0 of q0 and a smooth semialgebraic map φ : Uq0 → Q(V )
such that: 1) φ(q0) = 0; 2) i−(q) = i−(q0)+i−(φ(q)); 3) dimker(q) = dimker(φ(q));
4) dφq0(p) = p|V .
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For the proof of the previous we refer the reader to [2].

Lemma 13. Let f : Ω → Q be a smooth function transversal to all strata of
Q0 =

∐
Zj . Then for every ω ∈ Ω there exists δ′3(ω) > 0 and ψ : B(ω, δ′3(ω)) →

Q(ker f(ω))× Rl a diffeomorphism onto its image such that

Q(ker f(ω))

B(ω, δ′3(ω)) Q(ker f(ω))× Rl
ψ

φ ◦ f p1

is commutative. Moreover in the case f is semialgebraic then ω 7→ δ′3(ω) can be
chosen to be semialgebraic too.

Proof. If det(f(ω)) 6= 0 then let δ′3(ω) > 0 be such that f(B(ω, δ′3(ω))) ∩ Q0 = ∅;
in the contrary case let f(ω) ∈ Zj for some j. Consider φ : Uf(ω) → Q(ker f(ω))
the map given by the previous lemma. Since dφf(ω)p = p|ker f(ω) then dφf(ω) is
surjective. On the other hand by transversality of f to Zj we have:

im(dfω) + Tf(ω)Zj = Q
Since φ(Zj) = {0}, which implies (dφf(ω))|Tf(ω)Zj

= 0, then

Q(ker f(ω)) = im(dφf(ω)) = im(d(φ ◦ f)ω)
which tells φ◦f is a submersion at ω. Thus by the rank theorem there exists Uω and
a diffeomorphism onto its image ψ : Uω → Q(ker f(ω))×Rl such that p1 ◦ψ = φ◦f.
Taking δ′3(ω) > 0 such that B(ω, δ′3(ω)) ⊂ Uω concludes the proof.
In the case f is semialgebraic, then it is clear by construction and semialgebraic
rank theorem that δ′3 can be chosen semialgebraic too. �

Corollary 14. For every ω ∈ Ω there exists δ3(ω) > 0 such that for every
B(ω′, r) ⊂ B(ω, 3δ3(ω)) with r < δ3(ω) then

ψ(B(ω′, r)) is convex.

In particular if ω ∈ B(ωk, rk) for some ω0, . . . , ωi ∈ Ω and r0, . . . , ri < δ3(ω), then
for every j ∈ N the space

{η ∈ Ω : i−(f(η)) ≤ n− j} ∩ (

i⋂

k=0

B(ωk, rk)) is acyclic.

Proof. The first part of the statement follows by applying the previous lemmas to
ψ : Uω → Q(ker f(ω))× Rl.
For the second part notice that by Proposition 12 we have for every η ∈ Uω (using
the above notations):

i−(f(η)) = i−(f(ω)) + i−(p1(ψ(η))).

This implies that, setting as above Ωn−j(f)
.
= {η ∈ Ω : i−(f(η)) ≤ n− j},

ψ(Uω ∩ Ωn−j(f)) ⊆ Qn−j(ker f(ω))× R
l,
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where Qn−j(ker(f(ω))) = {q ∈ Q(ker f(ω)) : i−(q) ≤ n − j}. Since for each
k = 0, . . . , i the set ψ(B(ωk, rk)) is convex, then

i⋂

k=0

ψ(B(ωk, rk)) is convex

and by hypothesis it contains ψ(ω). Since Qn−j(ker f(ω)) × Rl (if nonempty) has
linear conical structure with respect to ψ(ω), then

ψ(Ωn−j(f)) ∩
i⋂

k=0

ψ(B(ωk, rk)) is acyclic

and since ψ :
⋂

kB(ωk, rk) ⊂ Uω → Q(ker f(ω))× Rl is a homeomorphism onto its
image the conclusion follows.

�

Let now f : Ω → Q be smooth, semialgebraic and transversal to all strata of
Q0 =

∐
Zj. Then we define δ : Ω→ (0,∞) by

δ(ω) = min{δ1(ω), δ2(ω), δ3(ω)}.
By construction δ can be chosen to be semialgebraic. Under this assumption we
prove the following.

Lemma 15. Let W be an open cover of Ω and f and δ as above. Then there exists
a locally finite refinement U = {Vα = B(xα, δα), xα ∈ Ω}α∈A such that for every
multi-index ᾱ = (α0 · · ·αi) such that Vᾱ 6= ∅ there exists ωᾱ ∈ Vᾱ such that for
every k = 0, . . . , i the following holds:

B(xαk
, δαk

) ⊂ B(ωᾱ, δ(ωᾱ)).

Moreover if for every ᾱ multi-index we let nᾱ be the minimum of i−◦f over Vᾱ 6= ∅,
then the cover U can be chosen as to satisfy

nα0···αi
= max{nα0 , . . . , nαi

}.

Proof. We first set some notations. Let N =
∐l

i=1Ni ⊂ Ω be a finite family of
disjoint smooth submanifold such that δ|N is continuous. For i = 1, . . . , l let also
N ′

i ⊂ Ni be a compact subset and define N ′ =
∐
N ′

i .
Then there exists ǫ(N ,N ′) > 0 such that for i 6= j the two sets {x ∈ Ω : d(x,N ′

i) <
ǫ(N ,N ′)} and {x ∈ Ω : d(x,N ′

j) < ǫ(N ,N ′)} are disjoint.

Let WN ′ be the cover {W ∩ N ′ : W ∈W} and λN ′ > 0 be its Lebesgue number.
Finally let δ′N ′ = minη∈N ′ 3δ(η) > 0 which exists since δ|N is continuos and N ′ is
compact.
We define δ(N ,N ′) > 0 to be any number such that

δ(N ,N ′) < min{ǫ(N ,N ′), λN ′ , δ′N ′}.
We construct now the desired cover. Let h : |K| → Ω be a nash semialgebraic
triangulation of Ω respecting i− ◦ f and such that δ is continuous on each simplex.
Thus Ω =

∐
Si, where i = 0, . . . , k and Si is the image under h of the i-th skeleton

of the complex K.
Let S0 = {x0, . . . , xv} and define

U0
.
= {B(xi, δ(S0, S0)), i = 0, . . . , v}
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and T0 = ∪iB(xi, δ(S0, S0)).
Now proceed inductively: first set Si =

∐

σi,j∈Ki
h(σi,j) and S

′
i =

∐
h(σi,j)\Ti−1.

Then let Ui = {B(xji , δi) : xji ∈ S′
i and δi < δ(Si, S

′
i)} be such that Ui and Ui ∩ S′

i

have the same combinatorics; let also Ti be defined by

Ti = ∪V ∈Ui
V.

With the previous settings we finally define

U
.
= U0 ∪ · · · ∪ Uk.

Then U verifies by construction the requirements and this concludes the proof. �

Given f and δ as above, then a cover U satisfying the conditions of the previous
lemma will be called a f -regular cover.

4. The second differential

Suppose that a scalar product on R
n+1 has been fixed and let w1(L+j ) ∈ H1(Dj)

be the first Stiefel-Whitney class of L+j → Dj (the definition of the previous bundle

depends on the fixed scalar product).
With the previous notations we prove the following theorem which describes the
second differential for the spectral sequence of Theorem 2.

Theorem 16. Let ∂∗ : H1(Dj) → H2(Ω, Dj) be the connecting homomorphism.

Then for every i, j ≥ 0 the differential d2 : F i,j
2 → F i+2,j−1

2 is given by:

d2(x) = (x ⌣ ∂∗p̄∗w1(L+j ))|(Ω,Ωj).

Proof. First notice that given x ∈ Hi(Ω,Ωj+1) then the product x ⌣ ∂∗p̄∗w1(L+j ) ∈
Hi+2(Ω,Ωj+1 ∪Dj) and since

Ωj ⊂ Ωj+1 ∪Dj

we can consider the restriction (x ⌣ ∂∗p̄∗w1(L+j ))|(Ω,Ωj) ∈ Hi+2(Ω,Ωj).

We construct (Fr , dr) in a slightly different way than in Theorem 2, more practical
for computations.
Let’s start with a fixed scalar product g. For this proof we will use in the notations
for the various objects their dependence on g.
By Lemma 6 there exists q0 > 0 such that for ǫ > 0 sufficiently small the map
fǫ : Ω→ Q defined by

ω 7→ ωp− ǫq0
is nondegenerate (and also can be made transversal to Q\Dg, where Dg = ∪jDg

j ).

Let a : Ω×Pn → R be the semialgebraic function defined by (ω, x) 7→ (ωp)(x)/q0(x)
(recall that we need to fix a scalar product for the definition of a). Then B = {a >
0} and by semialgebraicity for every ǫ > 0 sufficiently small the inclusion

B(ǫ) = {a > ǫ} →֒ B

is a homotopy equivalence.
The proof will develop along the following idea: first we study the Leray spectral
sequence (Fr(ǫ,U), dr(ǫ,U)) of the map (βl)|B(ǫ) with respect to fǫ-regular cover
U; then we perform the direct limit over the cover to get the pure Leray spectral
sequence (Fr(ǫ), dr(ǫ)) of the map (βl)|B(ǫ); finally we perform the ǫ-limit getting
the desired spectral sequence (Fr, dr).
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Thus for every ǫ > 0 let U = {Vα}α∈A be a cover of Ω regular with respect to fǫ and
(Fr(ǫ,U), dr(ǫ,U)) be the relative Leray spectral sequence of (βl)|B(ǫ) with respect
to the cover U :

F i,j
0 (ǫ,U) =

∏

α0<···<αi

Cj(β−1
l Vα0···αi

, β−1
l Vα0···αi

∩B(ǫ);Z2)

Let also K∗,∗
0 = K∗,∗

0 (U) be the Kunneth bicomplex associated to the map βl :
Ω× Pn → Ω with respect to U. Notice that F ∗,∗

0 (ǫ,U) is a subcomplex of K∗,∗
0 and

we denote by δF , dF and δK , dK the respective bicomplex differentials (the first two
are the restriction to F ∗,∗

0 of the second two).
For every ω ∈ Ω and ǫ > 0 we let i−(ǫ)(ω) = ind−(ωp − ǫq0) and for every multi-
index ᾱ = (α0, . . . , αi) such that Vᾱ 6= ∅ we let nᾱ be the minimum of i−(ǫ) over
Vᾱ. We take an order on the index set A such that

α ≤ β ⇒ nα ≤ nβ .

In this way, by Lemma 15, for every multi-index ᾱ = (α0, . . . , αi) such that Vᾱ 6= ∅
we have that nᾱ = nαi

. For every multi-index ᾱ such that Vᾱ 6= ∅ let ωᾱ be given
by Lemma 15, i−(ǫ)(ωᾱ) = nᾱ, and we let ηᾱ ∈ Vᾱ be such that det(fǫ(ηᾱ)) 6=
0, i−(ǫ)(ηᾱ) = nᾱ and fǫ(ηᾱ) ∈ Dg (such ηᾱ always exists, and by transversality of
the map fǫ to Q0 and to Q\Dg, which have respectively codimension one and two,
there are plenty of them).
For every 0 ≤ j ≤ n and α ∈ A we define

N(α, j) = (P−
j )g(fǫ(ηα))

where the g on (P−
j )g denotes the dependence on the fixed scalar product. Moreover

we let ν(α, j) ∈ Cj(Pn) be the Poincaré dual of N(α, j) and we define a cochain

ψ0,j ∈ K0,j
0 by

ψ0,j(α) = β∗
rν(α, j).

Notice that if n−nα +1 ≤ j ≤ n then , by Lemma 9, N(α, j) ⊂ P
n\βr(Bα(ǫ)) and

thus ν(α, j) ∈ Cj(Pn, βr(Bα(ǫ)). Hence

(1) n− nα + 1 ≤ j ≤ n⇒ ψ0,j(α) ∈ Cj(Vα × P
n, Bα(ǫ))

Moreover N(α, n− nα + 1) is a (nα − 1)-dimensional projective space contained in
P
n\βr(Bα0...αiα(ǫ)) for every (α0, . . . , αi); thus by Lemma 7 if n− nα + 1 ≤ j ≤ n

then the cohomology class of ν(α, j) generates Hj(Pn, βr(Bα(ǫ))). Hence it follows
that for every α = (α0 · · ·αiα) such that Vα 6= ∅
(2) n− nα + 1 ≤ j ≤ n⇒ [ψ0,j(α)|α] generates Hj(Vα × P

n, Bα(ǫ)) = Z2

For every α0, α1 ∈ A such that Vα0α1 6= ∅ we consider a curve cα0α1 : I → Vα0 ∪Vα1

such that cα0α1(i) = ηαi
, i = 0, 1; since Ω\f−1

ǫ (Dg) has codimension two in Ω, then
we may choose cα0α1 such that for every t ∈ I we have fǫ(cα0α1(t)) ∈ Dg. Con-
sider the Rn−j+1-bundle Lg

j (α0α1) = c∗α0α1
f∗
ǫ (L−j )g over I and its projectivization

P (Lg
j (α0α1)). Then the natural map

P (Lg
j (α0α1))→ P

n

defines a (n − j + 1)-chain T (α0α1, j − 1) in Pn. Let τ(α0α1, j − 1) ∈ Cj−1(Pn)

be its Poincaré dual and define θ1,j−1 ∈ K1,j−1
0 by setting for every α0, α1 with

Vα0α1 6= ∅
θ1,j−1(α0α1) = β∗

r τ(α0α1, j − 1).
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Notice that ∂T (α0α1, j−1) = N(α0, j)+N(α1, j), hence dτ(α0α1, j−1) = ν(α0, j)+
ν(α1, j); it follows that

(3) δKψ
0,j = dKθ

1,j−1.

Moreover by construction if n− nα0 + 1 ≤ j ≤ n and n− nα1 + 1 ≤ j ≤ n, which
by the previous computations implies n− nα0α1 + 1 ≤ j ≤ n, then
(4) θ1,j−1(α0α1) ∈ Cj−1(Vα0α1 × P

n, Bα0α1(ǫ)).

We compute now δKθ
1,j−1; first we recall the following fact, which is a direct

consequence of the definition of Stiefel-Whitney classes.

Fact 2. Let π : E → S1 a Rk+1 fiber bundle and P (π) : P (E)→ S1 its projectiviza-
tion. Moreover let L : P (E) → Pm, m > k be a linear map, c ∈ Hk(P (E)) such
that for every y ∈ S1 the class c|P (Ey) generates Hk(P (Ey)) and b ∈ Hk+1(Pm)
be the generator. Then, writing w1(E) for the first Stiefel-Whitney class of E, the
following holds:

L∗b = P (π)∗w1(E)⌣ c.

Let now (α0α1α2) = ᾱ such that Vᾱ 6= ∅. Then the curves cα0α1 , cα1α2 and
cα2α0 define a map σα0α1α2 : S1 → Ω and we have the bundle Lg

j (α0α1α2) =

σ∗
α0α1α2

f∗
ǫ (L−j )g and its projectivization P (Lg

j (α0α1α2)) over S
1. The natural map

P (Lg
j (α0α1α2))→ P

n

defines a (n− j+1)-cochain which by construction equals δKθ
1,j−1(α0α1α2). Thus

by Fact 1 we have:

(5) δKθ
1,j−1(α0α1α2) = w1(∂(α0α1α2))(ψ

0,j−1(α2)|α0α1α2
) + dr2,j−1(α0α1α2)

where w1(∂(α0α1α2)) = w1(L
g
j (α0α1α2)). Let now ξi ∈ F i,j

1 (ǫ,U); we define ξi,0 ∈
Ki,0

0 by
ξi,0(α0 . . . αi) ≡ ξi(α0 . . . αi)

i.e. the values of ξi,0(α0 . . . αi) on every 0-chain equals ξi(α0 . . . αi) ∈ Z2. Notice
that by construction dKξ

i,0 = 0 and that

(6) d1ξ
i = 0 ⇒ δKξ

i,0 = 0.

Pick now x ∈ F i,j
2 (ǫ,U) and ξi such that x = [ξi]δ̌; consider the cochain ξi,0 ·ψ0,j ∈

Ki,j
0 . Since ξi ∈ F i,j

1 (ǫ,U), then (1) implies

ξi,0 · ψ0,j ∈ F i,j
0 (ǫ,U).

Moreover by (2) it follows that [ξi,0 · · ·ψ0,j ]1 = ξi and thus

[ξi,0 · ψ0,j]2 = x.

We calculate now:

δF (ξ
i,0 · ψ0,j) = δK(ξi,0 · ψ0,j) = ξi,0 · δKψ0,j = ξi,0 · dKθ1,j−1

= dK(ξi,0 · θ1,j−1) = dF (ξ
i,0 · θ1,j−1).

The first equality comes from F i,j
0 (ǫ,U) ⊂ Ki,j

0 ; the second from δ̌ξi = 0; the third

from (3); the fourth from (6); the last by ξi,0 · θ1,j−1 ∈ F i+1,j−1
0 (ǫ,U), which is a

direct consequence of (4).
We finally compute d2(ǫ,U)(x) = [δF (ξ

i,0 · θ1,j−1)]2 :

δF (ξ
i,0 · θ1,j−1) = δK(ξi,0 · θ1,j−1) = ξi,0 · δKθ1,j−1
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and thus by (5) we have

[δF (ξ
i,0 · θ1,j−1)]1(α0 · · ·αi+2) = ξi(α0 · · ·αi)w1(∂(αiαi+1αi+2)).

Now we define (Fr(ǫ), dr(ǫ)) to be the pure Leray spectral sequence of the map
(βl)|B(ǫ), which by definition is

(Fr(ǫ), dr(ǫ)) = lim−→
W

{(Fr(ǫ,W), dr(ǫ,W))}

where the direct limit is taken over all open covers of Ω directed by refinement.
By Lemma 15 the previous direct limit can be computed over fǫ-regular covers;
moreover by Corollary 14 for a fǫ- regular cover U the limit map gives natural
isomorphism

F i,j
2 (ǫ,U) ≃ lim−→

U

{F i,j
2 (ǫ,U)}

Now Lemma 7 implies the third of the following equalities:

F i,j
2 (ǫ) = lim−→

W

{F i,j
2 (ǫ,W)} = lim−→

U

{F i,j
2 (ǫ,U)} = Ȟi(Ω,Ωn−j(ǫ);Z2)

(we stress that the previous limits are attained at fǫ-regular covers).
Then by definition of Cech cohomology class and of the connecting homomorphism
we get that the differential d2(ǫ) : F

i,j
2 (ǫ)→ F i+2,j−1(ǫ) is given by

d2(ǫ)(x) = (x ⌣ f∗
ǫ ∂

∗w1(L+j )g)|(Ω,Ωn−j+1(ǫ))

(here we are using the fact that w1(L+j ) = w1(L−j )).
Consider now, for ǫ > 0, the complex (F0(ǫ), Dǫ = d + δ). Then for ǫ1 < ǫ2
the inclusion B(ǫ2) →֒ B(ǫ1) defines a morphism of filtered differential graded
modules i0(ǫ1, ǫ2) : (F0(ǫ1), D(ǫ1)) → (F0(ǫ2), D(ǫ2)) turning {(F0(ǫ), D(ǫ))}ǫ>0

into an inverse system and thus {(Fr(ǫ), dr(ǫ))}ǫ>0 into an inverse system of spectral
sequences. We set

(Fr , dr)
.
= lim←−

ǫ

{(Fr(ǫ), dr(ǫ))}.

We examine i2(ǫ1, ǫ2) : F
i,j
2 (ǫ1)→ F i,j

2 (ǫ2); it is readily verified that for i, j ≥ 0 the

map i2(ǫ1, ǫ2)i,j : F
i,j
2 (ǫ1)→ F i,j

2 (ǫ2) equals the map

i∗(ǫ1, ǫ2) : Ȟ
i(Ω,Ωn−j(ǫ1))→ Ȟi(Ω,Ωn−j(ǫ2))

given by the inclusion of pairs (Ω,Ωn−j(ǫ2)) →֒ (Ω,Ωn−j(ǫ1)). By semialgebraicity
i∗(ǫ1, ǫ2) is definitely an isomorphism, hence i2(ǫ1, ǫ2) is definitely an isomorphism
and thus i∞(ǫ1, ǫ2) and i

∗
0(ǫ1, ǫ2) : H

∗
D(F0(ǫ1))→ H∗

D(F0(ǫ2)) are definitely isomor-
phisms. Thus (Fr, dr) converges to limǫH

∗(Ω×Pn, B(ǫ)). Again by semialgebraicity
the inclusions (Ω × Pn, B(ǫ2)) →֒ (Ω × Pn, B(ǫ1)) are definitely homotopy equiva-
lences and since for small ǫ > 0 the inclusion B(ǫ) →֒ B is a homotopy equivalence
too, then we have that (Fr, dr) converges to

lim←−
ǫ

{H∗(Ω× P
n, B(ǫ))} = H∗(Ω× P

n, B).

It remains to identify (F2, d2). We already proved, in Theorem 2 that

lim−→
ǫ

{H∗(Ω,Ωn−j(ǫ))} = H∗(Ω,Ω
j+1).
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Then, as before, the following chain of isomorphisms lim←−{H
i(Ω,Ωn−j(ǫ);Z2)} ≃

(lim−→{Hi(Ω,Ωn−j(ǫ);Z2)})∗ = (Hi(Ω,Ω
j+1;Z2))

∗ gives

F i,j
2 = Hi(Ω,Ωj+1;Z2).

It is easy to see that this spectral sequence and that one constructed in Theorem 2
are isomorphic.
We define Γ1,j ∈ H2(Q,Dj) by

Γg
1,j

.
= ∂∗w1(L+j )g.

Consider now the following sequences of maps:

H2(Q,Dg
j )

f∗

ǫ−→ H2(Ω, Dg
j (ǫ))

r∗ǫ−→ H2(Ω,Ωn−j+1(ǫ)\Ωn−j(ǫ)).

Notice that r∗ǫ f
∗
ǫ Γ

g
1,j does not depend on g and thus the differential d2(ǫ) is given

by

x 7→ (x ⌣ f∗
ǫ Γ

g
1,j)|(Ω,Ωn−j+1(ǫ))

for any g. Let now g = q0; then in this case Dq0
j = Dq0

j (ǫ) and f∗ = f∗
ǫ . Consider

the following commutative diagram of inclusions:

(Ω,Ωn−j+1(ǫ)) (Ω,Ωn−j(ǫ) ∪Dq0
j )

(Ω,Ωj) (Ω,Ωj+1 ∪Dq0
j )

j(ǫ)

ρ(ǫ)

j

ρ̂(ǫ)

Then, using ρ(ǫ) also for the inclusion (Ω,Ωn−j(ǫ)) →֒ (Ω,Ωj+1) and setting
γ1,j = f∗Γq0

1,j , we have for x ∈ Hi(Ω,Ωj+1) the following chain of equalities:

ρ(ǫ)∗((x ⌣ γ1,j)|(Ω,Ωj)) = ρ(ǫ)∗j∗(x ⌣ f∗Γq0
1,j) = j(ǫ)∗ρ̂(ǫ)∗(x ⌣ f∗Γq0

1,j)

= j(ǫ)∗(ρ(ǫ)∗x ⌣ f∗
ǫ Γ

q0
1,j) = d2(ǫ)(ρ(ǫ)

∗x).

This proves that the following diagram is commutative:

Hi(Ω,Ωn−j(ǫ)) Hi+2(Ω,Ωn−j+1(ǫ))

Hi(Ω,Ωj+1) Hi+2(Ω,Ωj)

d2(ǫ)

ρ(ǫ)∗

(·⌣ γj)|(Ω,Ωj)

ρ(ǫ)∗

From this the conlusion follows. �

We are now ready to prove the statement concerning the second differential of
the spectral sequence of Theorem A.
First we fix a scalar product (i.e. a positive definite form) q0.
We let ∂∗ : H1(Dj)→ H2(CΩ, Dj) be the connecting homomorphism and we define
γ1,j ∈ H2(CΩ, Dj) by

γ1,j = ∂∗p̄∗w1(L+j )



20 A. AGRACHEV AND A. LERARIO

(notice that all the previous objects are those associated to q0 and that γ1,j = p̄∗φj
as defined in the Introduction).

Theorem B. For every i, j ≥ 0 the differential d2 : Ei,j
2 → Ei+2,j−1

2 is given by:

d2(x) = (x ⌣ γ1,j)|(CΩ,Ωj).

Proof. As before we replace now K with K̂ = (−∞, 0] × K, the map p with the

map p̂ = (q0, p) : Rn+1 → R
k+2 and we apply the previoius Theorem to (p̂, K̂).

As before we use the deformation retraction (Ω̂, Ω̂j+1)→ (Ω̂,Ωj+1) = (CΩ,Ωj+1).
Notice that we have also the deformation retraction

r : (Ω̂, D̂j)→ (Ω̂, Dj)

where Dj is identified with D̂j ∩ {η = 0} : by definition ω ∈ Dj if and only if

(η, ω) ∈ D̂j and for every 0 < j < n + 1 we have (1, 0, . . . , 0) /∈ Dj since all
the eigenvalues of 〈(1, 0, . . . , 0), p̂〉 = −q0 with respect to q0 coincide. Then by
construction

r∗γ1,j = ∂∗p̄∗w1(L+j )
and by naturality the conclusion follows.

�

5. Some remarks on spectral sequences

Here we make some remarks which will be useful in the sequel. We always make
use of Z2 coefficients, in order to avoid sign problems; the following results still hold
for Z coefficients, but sign must be put appropriately. We begin with the following.

Lemma 17. Let (C∗, ∂∗) be an acyclic free chain complex and (D∗, ∂
D
∗ ) be an

acyclic subcomplex. Then there exists a chain homotopy

K∗ : C∗ → C∗+1

such that ∂∗+1K∗ +K∗−1∂∗ = I∗ and K∗(D∗) ⊂ (D∗+1).

Proof. By taking a right inverse sDq−1 of ∂Dq , which exists since Dq−1 and hence

ZD
q−1 are free, a chain contraction KD

q for D is defined by: KD
q = sDq (Iq − sDq−1∂

D
q ).

Since Zq is free, then it is possible to extend sDq−1 to a right inverse sq−1 of ∂q:

sq−1 : Zq−1 = Bq−1 → Cq.

Then by setting

Kq = sq(Iq − sq−1∂q)

we obtain a chain contraction for the complex (C∗, ∂∗) which restricts to a chain
contraction for the subcomplex (D∗, ∂

D
∗ ). �

Let now X be a topological space and Y be a subspace. If we consider an open
cover U = {Vα}α∈A for X, then the Mayer-Vietoris bicomplex E(Y )∗,∗0 for the pair
(X,Y ) relative to the cover U is defined by

E(Y )p,q0 = Čp(U,U ∩ Y ;Cq) =
∏

α0<···<αp

Cq(Vα0···αp
, Vα0···αp

∩ Y )

with the horizontal δ and the vertical d defined as the usual ones. By the Mayer-
Vietoris principle, which of course extends to the case of a subspace pair, each row
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of the augmented chain complex of E(Y )∗,∗0 is exact, i.e. for each q ≥ 0 the chain
complex

0→ Cq
U
(X,Y )→ Č0(U,U ∩ Y,Cq)→ · · ·

is acyclic - we recall that (C∗
U
(X,Y ), d) is defined to be the complex of U-small

singular cochains and that the following isomorphism holds:

Hd(C
∗
U(X,Y )) ≃ H∗(X,Y ).

From this it follows that the spectral sequence associated to E(Y )∗,∗0 converges to

H∗(X,Y ) ≃ H∗
D(E(Y )∗,∗0 )

where H∗
D(E(Y )∗,∗0 ) is the cohomology of the complex E(Y )∗,∗0 with differential

D = d+ δ. We also recall that

r∗ : C∗
U(X,Y )→ Č∗(U,U ∩ Y,C∗)

induces isomorphisms on cohomologies; if we take a chain contraction K for the
Mayer-Vietoris rows of the pair (X,Y ), then we can define a homotopy inverse f

to r∗ by the following procedure. If c =
∑n

i=0 ci and Dc =
∑n+1

i=0 bi then we set

f(c) =

n∑

i=0

(dK)ici +

n+1∑

i=0

K(dK)i−1bi.

The reader can see [6] for more details.
If we let Z ⊂ Y be a subspace, then E(Y )∗,∗0 is naturally included in the Mayer-
Vietoris bicomplex E(Z)∗,∗0 for the pair (X,Z) relative to the cover U :

i0 : E(Y )∗,∗0 →֒ E(Z)∗,∗0 .

Since i0 obviously commutes with the total differentials, then it induces a morphism
of spectral sequence, and thus a map

i∗0 : H∗
D(E(Y )0)→ H∗

D(E(Z)0).

At the same time the inclusion j : (X,Z) →֒ (X,Y ) induces a map

j∗ : H∗(X,Y )→ H∗(X,Z).

With the previous notations we prove the following useful lemma.

Lemma 18. There are isomorphisms f∗
Y : H∗

D(E(Y )0) → H∗(X,Y ) and f∗
Z :

H∗
D(E(Z)0)→ H∗(X,Z) such that the following diagram is commutative:

H∗(X,Y ) H∗(X,Z)

H∗
D(E(Y )0) H∗

D(E(Z)0)

j∗

f∗
Y

i∗0

f∗
Z

Proof. The augmented Mayer-Vietoris complex for the pair (X,Y ) relative to U is
a subcomplex of the augmented Mayer-Vietoris complex for the pair (X,Z) relative
to U. Thus by Lemma 17 for every q ≥ 0 there exists a chain contraction KZ for
the complex

0→ Cq
U
(X,Z)→ Č0(U,U ∩ Z,Cq)→ · · ·



22 A. AGRACHEV AND A. LERARIO

which restricts to a chain contraction KY for the complex

0→ Cq
U
(X,Y )→ Č0(U,U ∩ Y,Cq)→ · · ·

We define fY and fZ with the above construction and we take f∗
Y and f∗

Z to be the
induced maps in cohomology. Then fZ restricted to E(Y )∗,∗0 coincides with fY and
since j∗ is induced by the inclusion j♮ : Cq

U
(X,Y )→ Cq

U
(X,Z), then the conclusion

follows. �

Remark 2. Notice that i0 : E(Y )∗,∗0 → E(Z)∗,∗0 induces maps of spectral sequences
respecting the bigradings (ir)a,b : E(Y )a,br → E(Z)a,br and thus also a map i∞ :
E(Y )∞ → E(Z)∞. Even tough E(Y )∞ ≃ H∗(X,Y ) and E(Z)∞ ≃ H∗(X,Z), in
general i∞ does not equal j∗ (neither their ranks do); the same considerations hold
for the more general case of a map of pairs f : (X,Y )→ (X ′, Y ′).

We recall also the following fact. Given a first quadrant bicomplex E∗,∗
0 with

total differential D = d+δ and associated convergent spectral sequence (Er, dr)r≥0,
then

E∗
∞ ≃ GH∗

D(E0)

and there is a canonical homomorphism

pE : H∗
D(E0)→ E0,∗

∞

constructed as follows. Let [ψ]D ∈ Hk
D(E0); then there exists ψi ∈ Ei,k−i

0 for
i = 0, . . . , k such that D(ψ0 + · · ·+ ψk) = 0 and

[ψ]D = [ψ0 + · · ·+ ψk]D.

By definition of the differentials dr, r ≥ 0, the element ψ0 survives to E∞.We check
that the correspondence

pE : [ψ]D 7→ [ψ0]∞

is well defined: since ψ0 ∈ E0,k
0 and Ei,j

0 = 0 for i < 0, then [ψ0]∞ = [ψ′
0]∞ if

and only if ψ0 and ψ′
0 survive to E∞ and [ψ0]1 = [ψ′

0]1; if ψ = ψ′ + Dφ, then
ψ0 = ψ′

0 + dφ0 and thus [ψ0]1 = [ψ′
0]1.

6. Projective inclusion

In this section we study the image of the homology of X under the inclusion
map

j : X → P
n.

Using the above notations, we define B̂ = {(ω̂, x) ∈ Ω̂ × Pn : (ω̂p̂)(x) > 0} and

we call (Er , dr) the spectral sequence of Theorem A converging to H∗(Ω̂× Pn, B̂).

Moreover we let K∗,∗
0 be the Leray bicomplex for the map Ω̂ × Pn → Ω̂ (it equals

the Kunneth bicomplex for Ω̂×Pn). Thus there is a morphism of spectral sequence

(ir : Er → Kr)r≥0 induced by the inclusion j : (Ω̂ × Pn, ∅) → (Ω̂ × Pn, B). With
the above notations we prove the following theorem which gives the rank of the
homomorphism

j∗ : H∗(X)→ H∗(P
n).

Theorem C. For every b ∈ Z the following holds:

rk(j∗)b = rk(i∞)0,n−b.

Moreover the map (i∞)0,n−b : E0,n−b
∞ → K0,n−b

∞ = Z2 is an isomorphism onto its
image.



SYSTEMS OF QUADRATIC INEQUALITIES 23

Proof. First we look at the following commutative diagram of maps

Hb(X)

Hn−b(Pn,Pn\X)

Hn−b(Ω̂× Pn, B̂)

Hb(P
n)

Hn−b(Pn)

Hn−b(Ω̂× Pn)

P ∗

β∗
l

(j∗)b

(j′
∗
)n−b

(j∗)n−b

P ∗

β∗
l

where the maps j∗, j
∗ and j′

∗
are those induced by inclusions and the P ∗’s are

Poincaré duality isomorphisms; commutativity follows from naturality of Poincaré
duality. Since Ω̂ ≈ CΩ, then it is contractible and βl : (Ω̂ × Pn, B̂) → (Pn,Pn\X)
is a homotopy equivalence; hence all the vertical arrows are isomorphisms. Thus
we identify (j∗)b with (j∗)n−b.

Let now ǫ > 0 such that Ĉ(ǫ) →֒ B̂ is a homotopy equivalence (we use the above
notations); then the inclusion of pairs

(Ω̂× P̂
n, Ĉ(ǫ))

ĵ(ǫ)−→ (Ω̂× P
n, B̂)

also is a homotopy equivalence and the inclusion (Ω̂×Pn, ∅) j−→ (Ω̂×Pn, B̂) factors
trough:

(Ω̂× Pn, Ĉ(ǫ))

(Ω̂× Pn, ∅) (Ω̂× Pn, B̂(ǫ))
j

j(ǫ) ĵ(ǫ)

Since ĵ(ǫ) is a homotopy equivalence, it follows that:

rk(j∗)n−b = rk(j(ǫ)∗)n−b.

Let now U be any cover of Ω̂ and consider the Leray-Mayer-Vietoris bicomplexes
F̂ ∗,∗(ǫ,U) and K∗,∗

0 (U) with their respective associated spectral sequences; since

i0(ǫ,U) : F̂
∗,∗
0 (ǫ,U) →֒ K∗,∗

0 (U) there is a morphism of respective spectral sequences.

Moreover by Mayer-Vietoris argument, the spectral sequence (F̂r(ǫ,U), d̂r(ǫ,U))r≥0

converges to H∗(Ω̂× Pn, Ĉ(ǫ)) and (Kr(U), dr(U))r≥0 converges to H∗(Ω̂× Pn, ∅).
We look now at the following commutative diagram:
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Hn−b(Ω̂× Pn, B̂)

Hn−b
D (E0(ǫ,U))

E0,n−b
∞ (ǫ,U)

Hn−b(Ω̂× Pn)

Hn−b
D (K0(U))

K0,n−b
∞ (U)

(f∗
E)

−1

pE(ǫ,U)

(j∗)n−b

(i∗0(ǫ,U))n−b

(i∞(ǫ,U))0,n−b

(f∗
K)−1

pK

The upper square is commutative, since if we let ψ = ψ0 + · · ·+ψn−b ∈ En−b
0 with

Dψ = 0, then (avoiding the (ǫ,U)-notations, but only for the next formula):

pK(i∗0)n−b[ψ]E = pK [ψ]K = [ψ0]∞,K = (i∞)0,n−b[ψ0]∞,E = (i∞)0,n−bpE [ψ]E .

The lower square is the one coming from Lemma 18 with the vertical arrows in-
verted, hence it is commutative.
SinceK∞(U) = K2(U) has only one column (the first), then pK(U) : Hn−b

D (K0(U))→
K0,n−b

∞ (U) is an isomorphism, hence for 0 ≤ b ≤ n and using the above identifica-
tions we can identify the map (j∗)b : Hb(X)→ Hb(P

n) with

(i∞(ǫ,U))0,n−b(pE(ǫ,U))n−b : H
n−b
D (E0(ǫ,U))→ Z2.

Since (pE(ǫ,U))n−b is surjective, then:

rk(j∗)n−b = rk(i∞(ǫ,U))0,n−b.

By Corollary 14 and Lemma 15 there exists a family C of covers which is cofinal
in the family of all covers such that for every U ∈ C the natural map F̂ i,j

2 (ǫ,U) →
F̂ i,j
2 (ǫ) is an isomorphism.

Remark 3. Since here we do not need the cover to be convex, the existence of the

family C follows from easier consideration. Let h : Ω̂→ |K| ⊂ R
N be a triangulation

respecting the filtration {Ω̂j}n+2
j=0 , and W be a cover of Ω̂. Let U′ be a convex cover

of |K| refining h(W) and such that for every U ′ ∈ U
′ the intersection h(Ω̂j) ∩ U ′

is contractible for every j (the existence of such a U′ follows from the fact that

h(Ω̂j) is a subcomplex of |K|). Then the cover U = h−1(U′) refines W and since for

every j and U ∈ U the intersection Ω̂j ∩ U is contractible, then the natural map

F̂ i,j
2 (ǫ,U)→ F̂ i,j

2 (ǫ) is an isomorphism.

It follows that rk(i∞(ǫ,U)0,n−b) = rk(i∞(ǫ))0,n−b, and thus by semialgebraicity
we have

rk(i∞(ǫ))0,n−b = rk(i∞)0,n−b.

It remains to study the map (i∞)0,n−b : E
0,n−b
∞ → K0,n−b

∞ = K0,n−b
2 .

If E0,n−b
∞ is zero, then (i∞)0,n−b is obviously an isomorphism onto its image.

If E0,n−b
∞ is not zero then, since E0,n−b

2 = H0(CΩ,Ωn−b+1), it must be Ω̂n−b+1 = ∅
and

E0,n−b
∞ = E0,n−b

2 = Z2.
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From this it follows that
i0,n−b
∞ = i0,n−b

2 .

By looking directly at the two spectral sequences, we see that i0,n−b
2 : H0(Ω̂, ∅)→

H0(Ω̂)⊗Hn−b(Pn) is the identity and then the conclusion follows. �

We can immediately derive the following elementary corollary

Corollary 19. If b > n− µ then (j∗)b = 0.

Proof. Since n− b < µ then Ωn−b+1 6= ∅. This gives E0,n−b
2 = 0 and thus applying

the previous theorem the conclusion follows. �

7. Hyperplane section

We consider here the following problem: given X ⊂ Pn defined by quadratic
inequalities and V a codimension one subspace of Rn+1 with projectivization V̄ ⊂
Pn, determine the homology of (X,X ∩ V̄ ).
Thus let p : Rn+1 → R

k+1 ⊇ K be homogeneous quadratic and X = p−1(K) ⊂ P
n.

Let h be a degree one homogeneous polynomial such that

V = {h = 0} = {h2 = 0}.
We can consider the function i+V : Ω→ N defined by

i+V (ω) = i+(ωp|V )
and we try describe the homology of (X,X ∩ V̄ ) only in terms of i+ and i+V .
We introduce the quadratic map ph : Rn+1 → Rk+2 defined by

ph
.
= (p, h2).

Then we have the following equalities:

X = p−1
h (K × R) and X ∩ V̄ = p−1

h (K × (−∞, 0]).
We consider Ω̂ = (K × (−∞, 0])◦ ∩ Sk+1, and the function i+h : Rk+1 × R → N

defined by

i+h (ω, t) = i+(p̄h(ω, t)) = i+(ωp+ th2), (ω, t) ∈ R
k+1 × R.

For the moment we define, for j ∈ Z the set

Ω̂j+1 = {η ∈ Ω̂ : i+h (η) ≥ j + 1}
and we identify Ω with {(ω, t) ∈ Ω̂ : t = 0}.
With the previous notations we prove the following.

Lemma 20. There exists a cohomology spectral sequence (Gr , dr) of the first quad-
rant converging to Hn−∗(X,X ∩ V̄ ) such that

Gi,j
2 = Hi(Ω̂j+1,Ωj+1).

Proof. Consider for ǫ > 0 the sets Ch(ǫ) = {(η, x) ∈ Ω̂ × Pn : (ηph)(x) ≥ ǫ} and
C(ǫ) = Ch(ǫ) ∩ Ω× Pn. By semialgebraic triviality for small ǫ the inclusion

(Ch(ǫ), C(ǫ)) →֒ (Bh, B)

is a homotopy equivalence (here Bh stands for {(η, x) ∈ Ω̂ × Pn : (ηph)(x) > 0}
and B for Bh ∩ Ω× Pn).

Consider the projection βr : Ω̂ × P
n → P

n; then βr(Bh) = P
n\(X ∩ H) and
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βr(B) = Pn\X ; moreover by Lemma 1 the previous are homotopy equivalences.
Hence it follows:

H∗(Ch(ǫ), C(ǫ)) ≃ H∗(Bh, B) ≃ H∗(Pn\(X ∩H),Pn\X) ≃ Hn−∗(X,X ∩H)

where the last isomorphism is given by Alexander-Pontryagin Duality. Consider

now βl : Ch(ǫ) → Ω̂. Then by Leray there is a cohomology spectral sequence
(Gr(ǫ), dr(ǫ)) converging to H∗(Ch(ǫ), C(ǫ)) such that

Gi,j
2 = Ȟi(Ω̂,Gj(ǫ))

where Gj(ǫ) is a sheaf such that for η ∈ Ω̂

(Gj(ǫ))η = Hj(β−1
l (η) ∩Ch(ǫ), β

−1
l (η) ∩C(ǫ))

(here we are using tha fact that both Ch(ǫ) and C(ǫ) are compact). We use now

i−h (ǫ) : Ω̂ → N for the function η 7→ i−(ηph − ǫg) where g is an arbitrary positive

definite form, and we set Ω̂n−j(ǫ) = {i−h (ǫ) ≤ n − j}. If η /∈ Ω, then (β−1
l (η) ∩

Ch(ǫ), β
−1
l (η) ∩ C(ǫ)) ≃ (Pn−i−

h
(ǫ)(η), ∅); on the contrary if η ∈ Ω then (β−1

l (η) ∩
Ch(ǫ), β

−1
l (η) ∩ C(ǫ)) = (Pn−i−

h
(ǫ)(η),Pn−i−

h
(ǫ)(η)). Since Ω is closed in Ω̂, it follows

that

Gj,j
2 (ǫ) = Ȟi(Ω̂n−j(ǫ),Ωn−j(ǫ)).

We define now

(Gr, dr) = lim←−
ǫ

{(Gr(ǫ), dr(ǫ))}

and using the same argument as in the end of Theorem A we finally have

Gi,j
2 = Hi(Ω̂j+1,Ωj+1).

�

We are ready now for the proof of Theorem D; we define for j > 0 the following
set:

Ωj
V = {ω ∈ Ω : i+ (ωp|V ) ≥ j}.

Theorem D. There exists a cohomology spectral sequence (Gr, dr) of the first quad-
rant converging to Hn−∗(Xp, Xp ∩ V̄ ) such that

Gi,j
2 = Hi(Ωj

V ,Ω
j+1), j > 0, Gi,0

2 = Hi(CΩ,Ω1).

Proof. Take the spectral sequence (Gr, dr) to be that of lemma 20; then it remains

to prove that Gi,j
2 is isomorphic to the group described in the statement.

In the case j = 0 we have that Ω̂1 contains (0, . . . , 0, 1) and, since t1 ≤ t2 implies

ih(ω, t1) ≤ i+h (ω, t2), the set Ω̂
1 is contractible. Thus, using the long exact sequences

of the pairs, we see that for every i ≥ 0 the following holds:

Gi,0
2 = Hi(Ω̂1,Ω1) ≃ Hi(CΩ,Ω1).

We study now the case j > 0.
We identify Ω̂\{(0, . . . , 0, 1)} with Ω × [0,∞) via the index preserving homeomor-
phism

(ω, t) 7→ (ω, t)/‖ω‖.
Thus, under the above identification, we have for j > 0

Ω̂j+1 = {(ω, t) ∈ Ω× [0,∞) : i+h (ω, t) ≥ j + 1}
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and letting π : Ω× [0,∞) be the projection onto the first factor, we see that

π(Ω̂j+1) = {ω : ∃t > 0 s.t. i+h (ω, t) ≥ j + 1}.
We prove that π : Ω̂j+1 → π(Ω̂j+1) is a homotopy equivalence. Let ω ∈ π(Ω̂j+1),

then there exists tω > 0 such that (ω, tω) ∈ Ω̂j+1. Since Ω̂j+1 is open, then there

exists an open neighboroud Uω×(t1, t2) of (ω, t) in Ω̂j+1; in particular for every η ∈
Uω we have (η, tω) ∈ Ω̂j+1 and σω : η 7→ (η, tω) is a section of π over Uω. Collating

together the different σω for ω ∈ π(Ω̂j+1), with the help of a partition of unity, we

get a section σ : π(Ω̂j+1)→ Ω̂j+1 of π. Since for every ω ∈ π(Ω̂j+1) the set {t ≥ 0 :

(ω, t) ∈ Ω̂j+1} is an interval, a straight line homotopy gives the homotopy between

σ ◦ π and the identity on Ω̂j+1. This implies π : Ω̂j+1 → π(Ω̂j+1) is a homotopy
equivalence. Using the five lemma and the naturality of the commutative diagrams
of the long exact sequences of pairs given by π : (Ω̂j+1,Ωj+1) → (π(Ω̂j+1),Ωj+1)
we get (π|Ωj+1 = Id|Ωj+1):

Gi,j
2 = Hi(Ω̂j+1,Ωj+1) ≃ Hi(π(Ω̂j+1),Ωj+1).

It remains to prove that for j > 0

π(Ω̂j+1) = Ωj
V .

First suppose that (ω, t) ∈ Ω̂j+1. Then there exists a subspace W j+1 of dimension
at least j + 1 such that p̄(ω, t)|W j+1 > 0. Then

ωp|W j+1∩V = p̄(ω, t)|W j+1∩V > 0

and by Grassmann formula

dim(W j+1 ∩ V ) = dim(W j+1) + dim(V )− dim(W j+1 + V ) ≥ j
which implies i+V (ω) ≥ j, i.e. π(ω, t) ∈ Ωj

V . Thus

π(Ω̂j+1) ⊂ Ωj
V .

Now let ω be in Ωj
V ; we prove that there exists t > 0 such that i+h (ω, t) ≥ j + 1.

Since ω ∈ Ωj
V then there exists a subspace V j ⊂ V of dimension at least j such

that
ωp|V j > 0.

Fix a scalar product on Rn+1 and let e ∈ Rn+1 be such that V ⊥ = span{e}; consider
the space W = {λe}λ∈R + V j , whose dimension is at least j + 1 since e ⊥ V j ⊂ V.
Then the matrix for p̄h(ω, t)|W with respect to the fixed scalar product has the
form:

QW (ω, t) =

(
ωa0 + t tωa
ωa ωQV j

)

where ωQV j is the matrix for p̄(ω, t)|V j = ωp|V j . Since ωp|V j > 0 we have that for
t > 0 big enough det(QW (ω, t)) = t det(ωQV j ) + det(

ωa0 ωa
ωa ωQ

V j
) has the same sign

of det(ωQV j ) > 0. For such a t we have

p̄h(ω, t)|W > 0

and since dim(W ) ≥ j + 1 this implies (ω, t) ∈ Ω̂j+1 and ω ∈ π(Ω̂j+1). Thus

Ωj
V ⊂ π(Ω̂j+1)

and this concludes the proof.
�
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8. Remarks on higher differentials and examples

Let X ⊂ P
n be a compact, locally contractible subset and consider the two

inclusions:

X
j−→ P

n and P
n\X c−→ P

n.

We recall the existence for every k ∈ Z of the following exact sequence, which is a
direct consequence of Alexander-Pontryagin Duality:

0→ ker(c∗)→ Hk(P
n\X)

c∗→ Hk(P
n) ≃ Hn−k(Pn)

i∗→ Hn−k(X)→ coker(i∗)→ 0

In particular we have the following equality for the k-th Z2-Betti number of Pn:

(7) bk(P
n) = rk(c∗)k + rk(j∗)n−k

Consider now p : Rn+1 → Rk+1 ⊇ K such that

i+(p̄η) = µ ∀η ∈ Ω.

Then in this case Ω1 = · · · = Ωµ = Ω and Ωµ+1 = · · · = Ωn+1 = ∅. For any scalar
product g on Rn+1 we have Dµ = Ωµ = Ω and we denote by wk,µ the k-th Stiefel-

Whitney class of the R
µ-bundle p̄∗L+j → Ω (the class now defined is independent

from g and also are the following results). We define γk,µ ∈ Hk+1(CΩ,Ω)≃Hk(Ω)
by

γk,µ
.
= ∂∗wk,µ

(notice that this notation agrees with the one previously used for γ1,j).
Letting (Er, dr) be the spectral sequence of Theorem A convergent to Hn−∗(X),
where as usual X = p−1(K) ⊆ Pn, we have that (Er, dr) degenerates at (k + 2)-th
step and E2 = · · · = Ek+1. Moreover Ek+1 has entries only in the 0-th and the
(k + 1)-th column:

Ea,b
k+1 =







Z2 if a = 0 and µ ≤ b ≤ n or
a = k + 1 and 0 ≤ b < µ

0 otherwise

Thus the only possible nonzero differential is dk+1, for which we prove the following.

Theorem 21. Suppose i+ ≡ µ. Then E2 = · · · = Ek+1 and the only possible

nonzero differential is dk+1 : E0,b
k+1 → Ek+1,b−k

k+1 for µ ≤ b ≤ n and it is given by:

dk+1(x) = x ⌣ γk,µ

Remark 4. Notice that γk,µ and x are nothing but numbers modulo 2, thus since

E0,b
k+1 = Z2 = Ek+1,b−k

k+1 the element dk+1(x) is nothing but the product xγk,µ.

Proof. By Theorem C we have that dk+1 : E0,b
k+1 → Ek+1,b−k

k+1 is identically zero if
and only if rk(j∗)n−b = 1 and formula (7) implies

(dk+1)0,b ≡ 0 iff rk(c∗)b = 0
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where c∗ is the map induced by c : Pn\X →֒ Pn. Consider now the following
commutative diagram:

P
n\X P

n

B Ω× P
n

c

βr |B βr
βr ◦ ι

ι

Since βr |B is a homotopy equivalence, then

rk(c∗)b = rk(ι∗β∗
r )b.

Let Pµ−1 →֒ P (p̄∗Lµ)→ Ω be the projectivization of the bundle Rµ →֒ p̄∗Lµ → Ω.
It is easily seen that the inclusion

P (p̄∗Lµ) →֒ B

is a homotopy equivalence. From this, letting l : P (p̄∗Lµ) → Pn be the restriction
of βr ◦ ι to P (p̄∗Lµ), it follows that:

rk(c∗)b = rk(l∗)b.

Let y ∈ H1(Pn) be the generator; since l is a linear embedding on each fiber, then
by Leray-Hirsch, it follows that

H∗(P (p̄∗Lµ)) = H∗(Ω)⊗ {1, l∗y, . . . , (l∗y)µ−1}.
Thus for µ ≤ b ≤ n we have:

l∗yb =(l∗y)b = (l∗y)µ ⌣ (l∗y)b−µ

=β∗
l wk,µ ⌣ (l∗y)µ−k ⌣ (l∗y)b−µ

=β∗
l wk,µ ⌣ (l∗y)b−k.

Thus (dk+1)0,b is zero if and only if wk,µ = 0 and by looking at the definition of
γk,µ we see that

dk+1(x) = x ⌣ γk,µ.

�

Example 2 (The case of one quadric). This is the most elementary example we can
consider, namely the homology of a single quadric in Pn. Let q ∈ Q be a quadratic
form on Rn+1 with signature (a, b) with a ≤ b (otherwise we can replace q with −q)
and a+ b = rk(q) ≤ n+ 1. Consider

Xa,b = {q = 0} ⊂ P
n.

For example, in the case q is nondegenerate (i.e. a+ b = n+1) then Xa,b is smooth
and Sa−1 × Sb−1 is a double cover of it.
Define the two vectors h−(Xa,b), h

+(Xa,b) ∈ Nn by:

h−(Xa,b) = (1, . . . , 1
︸ ︷︷ ︸

n+1−b

, 0, . . . , 0), h+(Xa,b) = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

a

).
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Then a straightforward application of Theorem A gives the following identity for
the array whose components are the Z2-Betti numbers of Xa,b :

(b0(Xa,b), . . . , bn(Xa,b)) = h−(Xa,b) + h+(Xa,b).

Moreover if we let j : Xa,b → Pn be the inclusion, then Theorem C gives the
following:

(rk(j∗)0, . . . , rk(j∗)n) = h−(Xa,b).

Example 3 (The case of two quadrics). In the case p = (q1, q2) and i+ not con-
stant, then the spectral sequence of Theorem A degenerates at the second step and
E2 = E∞. In the case of constant positive index we can use Theorem 21 to find
H∗(p

−1(K)) (notice that K 6= {0} again implies E2 = E∞.)

Example 4 (see [9]). For a = 1, 2, 4, 8 consider the isomorphism Ra ≃ A where A
denotes respectively R,C,H,O. Consider the quadratic map

ha : Ra ⊕ R
a → R

a ⊕ R

defined, using the previous identification Ra ≃ A, by
(z, w) 7→ (2zw, |w|2 − |z|2).

Then it is not difficult to prove that ha maps S2a−1 into Sa by a Hopf fibration.
Hence it follows that

∅ = Ka
.
= h−1

a (0) ⊂ P
2a−1.

In each case we have i+(ωha) = a for every ω ∈ Ω = Sa. Using Theorem 21, since
Ka = ∅ then da+1 must be an isomorphism, hence

0 6= wa,a = wa(h̄
∗
aLa) ∈ Ha(Sa).

For example in the case a = 2 we have the standard Hopf fibration h2|S3 : S3 → S2

and the table for E2 = E3 is:

Z2 0 0 0
Z2 0 0 0
0 0 0 Z2

0 0 0 Z2

The bundle R2 →֒ h̄∗aL2 → S2 has total Stiefel-Whitney class

w(h̄∗aL2) = 1 + w2,2, w2,2 6= 0

and the differential d3 is an isomorphism.
Notice that for a = 1, 2, 4, 8 we have ker(ωha) = 0 for every ω ∈ Ω. It is an
interesting fact that the contrary also is true.

Fact 3. if p : Rm → Rl is such that ker(ωp) = {0} for every ω ∈ Sl and p|Sm−1 :

Sm−1 → Sl−1 then, up to orthonormal change of coordinates p = ha for some
a ∈ {1, 2, 4, 8}.
Proof. First observe that i+ ≡ c for a constant c and that m = 2c. Then, since p
maps the sphere Ssc−1 to the sphere Sl−1, we have

∅ = p−1({0}) ⊂ P
sc−1.

Thus Theorem 21 implies that the differential dl must be an isomorphism and this
forces l = c + 1. Moreover the condition ker(ωp) = {0} for every ω ∈ Sc−1 says
also p|S2c−1 : S2c−1 → Sc is a submersion. It is a well-known result (see [10]) that
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the preimage of a point trough a quadratic map between spheres is a sphere, and
thus p|S2c−1 is the projection of a sphere-bundle between spheres, hence it must be
a Hopf fibration. �

The situation in the case {ω ∈ Sl−1 : ker(ωp) 6= 0} = ∅ with only the assumption
X = ∅ (which is weaker than p(Sm−1) ⊂ Sl−1) is more delicate.

Example 5. For i = 1, . . . , l let pi : Rni → Rk+1 be a quadratic map and set
N =

∑

i ni. Define the map

⊕ipi : R
N → R

k+1

by the formula

(x1, . . . , xl) 7→
l∑

i=1

pi(xi) xi ∈ R
ni .

Then for every ω ∈ Sk we have

i+(ω(⊕ipi)) =

l∑

i=1

i+(ωpi).

In particular if each pi has constant positive index function with constant value µi,
then ⊕ipi has also constant positive index function with constant value

∑

i µi.
Generalizing the previous example, we consider now for a = 1, 2, 4, 8 the map
ha : R2a → Ra+1 defined above and we take for n ∈ N the map

n · ha .
= ⊕n

i=1ha : R2an → R
a+1.

In coordinate the map n · ha is written by:

(w, z) 7→ (2〈z, w〉, ‖w‖2 − ‖z‖2), w, z ∈ An.

Then for this map we have

i+ ≡ na, and (n · h̄a)∗Lna = n(h̄∗aLa) = h̄∗aLa ⊕ · · · ⊕ h̄∗aLa
︸ ︷︷ ︸

n

The solution of {n · ha = 0} on the sphere S2a−1 is diffeomorphic to the Stiefel
manifold of 2-frames in An, and it is a double cover of

n ·Ka
.
= {n · ha = 0} ⊂ P

2na−1.

We can proceed now to the calculation of the Z2-cohomology of n · Ka, using
Theorem 21: we only need to compute da+1, i.e. wa(nh̄

∗
aLa). Since wa(h̄

∗
aLa) =

wa,a 6= 0, and wk(h̄
∗
aLa) = 0 for k 6= 0, k 6= a, then we have

wa(nh̄
∗
aLa) = nmod 2 ∈ Z2 = Ha(Sa).

There are some cases in which the problem of describing the index function can
be reduced to a simpler problem; this is the case of a quadratic map defined by a
bilinear one. We start noticing the following.

Fact 4. Let L be a n × n real matrix and QL be the symmetric 2n × 2n matrix
defined by:

QL =

(
0 L
tL 0

)
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Then, setting qL for the quadratic form defined by x 7→ 〈x,QLx〉 we have:

i+(qL) = rk(L).

Proof. Let x = (z, w) ∈ R2n ≃ Rn ⊕ Rn; then QL ( z
w ) =

(
Lw
tLz

)
. Hence kerQL =

ker tL⊕ kerL and

dim(kerQL) = 2 dim(kerL).

Consider now the characteristic polynomial f of QL:

f(t) = det(QL − tI) = det(t2I − tLL) = (−1)n det(tLL− t2I) = (−1)ng(t2)
where g is the characteristic polynomial of tLL. Let now λ ∈ R be such that
g(λ) = 0; since tLL ≥ 0, then λ ≥ 0 and f(±

√
λ) = 0. Since QL is diagonalizable,

then for each one of its eigenvalues algebraic and geometric multiplicity coincide,
hence

i+(qL) = i−(qL) =
1

2
rk(QL).

It follows that

i+(qL) =
1

2
(2n− dim(kerQL)) = rk(L).

�

In particular if b : Rn × Rn → Rk+1 is a bilinear antisymmetric map whose
components are defined by

(x, y) 7→ 〈(x, y),
(

0 Bi
tBi 0

)

(x, y)〉

for certain real squared matrices Bi, i = 1, . . . , k + 1, then we can consider the
quadratic map

pb : R
2n → R

k+1

defined by (x, y) 7→ b(x, y). In this case we define for ω ∈ Sk the matrix ωB by

ωB = ω1B1 + · · ·+ ωk+1Bk+1.

By the previous fact we have

i+(ωpb) = rk(ωB).

Example 6. Let R8 be identified with the space of pairs of 2× 2 real matrices. We
apply the previous consideration to describe the topology of

Γ = {(X,Y ) ∈ R
8 : [X,Y ] = 0}.

Since the equation for Γ are homogeneous, it is a cone, and we can study the
homology of its projectivization

P(Γ) ⊂ P
7.

If we define V = {(X,Y ) ∈ R
8 : tr(X) = tr(Y ) = 0} and ΓV = Γ ∩ V, then it is

readily seen that

Γ = ΓV ⊕ R
2.

We proceed first to the computation of H∗(P(ΓV )) using the above theorems.
In coordinates (X,Y ) = ((

x y
z −x ) ,

(
w t
s −w

)
) we have

{[X,Y ] = 0} ∩ V = {tz − ys = xt− yw = sx− wz = 0}.
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Consider the following matrices

B1 =





0 0 0
0 −1 0
0 0 1



 , B2 =





0 0 1
−1 0 0
0 0 0



 , B3 =





0 1 0
0 0 0
−1 0 0





and the bilinear map b : R3 × R3 → R3 whose components are (x, y) 7→ 〈x,Biy〉.
Then pb : V → R3 equals the quadratic map defined by (X,Y ) 7→ [X,Y ] (we are
using the above notations for the quadratic map pb defined by a bilinear map b).
It follows that

ΓV = V ∩ Γ = {pb = 0}.
Using ωB for the matrix ω1B1 + ω2B2 + ω3B3, then by the previous fact we have

i+(ωpb) = rk(ωB) ∀ω ∈ S2.

Let ωQb the symmetric matrix associated to ωpb by the rule (ωpb)(x) = 〈x, ωQbx〉.
Then

ωQb =

(
0 ωB

tωB 0

)

The matrix ωB, for ω = (ω1, ω2, ω3) ∈ S2 has the following form:




0 ω3 ω2

−ω2 −ω1 0
−ω3 0 ω1





and we immediatly see that rk(ωB) = 2 for ω 6= 0; this gives

i+(ωpb) = 2 ∀ω ∈ S2.

Since i+ ≡ 2, we can apply Theorem 21; letting (Er , dr) be the spectral sequence of
Theorem A converging toHn−∗(P(ΓV )), we have the following picture for E2 = E3 :

Z2 0 0 0
Z2 0 0 0
Z2 0 0 0
Z2 0 0 0
0 0 0 Z2

0 0 0 Z2

Consider the section σ : S2 → S2 × R6 defined for ω = (ω1, ω2, ω3) ∈ S2 by:

σ(ω) = (ω2, 0, ω1,−ω1ω3, ω2ω3, ω
2
1 + ω2

2).

Since for every ω ∈ S2

(ωQb)σ(ω) = σ(ω)

then it follows that σ is a section of the bundle p̄∗bL2. The index sum of the zeroes
of σ (which occur only at (0, 0, 1), (0, 0,−1) ∈ S2) is even, thus the euler class e of
p̄∗bL2 is even. This implies

w2(p̄
∗
bL2) = emod 2 = 0.

Thus by Theorem 21 we have d3 ≡ 0 and E2 = E3 = E∞. It follows that the only
nonzero homology groups of P(ΓV ) are:

H0(P(ΓV )) = H3(P(ΓV )) = Z2 and H1(P(ΓV )) = H2(P(ΓV )) = (Z2)
2.

Actually since the equations for ΓV are given by the vanishing of the minors of the
matrix ( x z y

w s t ) , then ΓV is the Segre variety Σ2,1 ≃ P
1 × P

2.
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Notice also that in the case i+ ≡ µ if we take l+v = {t2v}t∈R, then we can easily
calculate the homology of Xl+v

= {x ∈ Pn : p(x) ∈ l+v }) (the preimage of a half

line): using Theorem 2 we immediatly see that E2 = E∞ which implies H∗(Xl+v
) ≃

H∗(P
n−µ).

Example 7. Consider the map p : R4 → R3 given by

(x0, x1, x2, x3) 7→ (x0x2 − x21, x0x3 − x1x2, x1x3 − x22).
Then C = {p = 0} ⊂ P3 is the rational normal curve, the so called twisted cu-
bic. In this case Ω = S2 and the set {ω ∈ Ω : ker(ωp) 6= 0} consists of two
disjoint ovals in S2, bounding two disks B1, B2. Then S

2 is the disjoint union of the
sets Int(B1), ∂B1, R, ∂B2, Int(B2), on which the function i+ is constant with value
respectively 2, 1, 2, 2, 2. Then

Ω1 = S2, Ω2 = S2\∂B1, Ω3 = ∅
and the second term of the spectral sequence (Er, dr) of Theorem A converging to
H3−∗(C) is the following:

Z2 0 0 0
Z2 0 0 0
0 Z2 0 0
0 0 0 Z2

The differential d2 : E1,1
2 → E3,0

2 is an isomorphism; hence E3 = E∞ has the
following picture:

Z2 0 0 0
Z2 0 0 0
0 0 0 0
0 0 0 0

From the previous, using Theorem C, we see that j∗ : H1(C) → H1(P
3) is an

isomorphism (we can check this fact also by noticing that, since C is a curve of
degree 3, then the intersection number of C with a generic hyperplane H ⊂ P3 is
odd).
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