
ar
X

iv
:1

01
2.

57
44

v1
 [

m
at

h.
N

A
]

 2
8

D
ec

 2
01

0

Multistep ε–algorithm, Shanks’ transformation, and

Lotka–Volterra system by Hirota’s method

Claude Brezinski∗ Yi He† Xing-Biao Hu‡ Michela Redivo–Zaglia§

Jian-Qing Sun†

Abstract

In this paper, we give a multistep extension of the ε–algorithm of Wynn, and we show

that it implements a multistep extension of the Shanks’ sequence transformation which is

defined by ratios of determinants. Reciprocally, the quantities defined in this transformation

can be recursively computed by the multistep ε–algorithm. The multistep ε–algorithm and

the multistep Shanks’ transformation are related to an extended discrete Lotka–Volterra

system. These results are obtained by using the Hirota’s bilinear method, a procedure quite

useful in the solution of nonlinear partial differential and difference equations.

1 The scenery

Let (Sn) be a sequence of numbers converging to S. If its convergence is slow, it can be trans-

formed, by a sequence transformation, into a set of new sequences {(T
(n)
k)}, depending on two

indexes k and n, and converging, under certain assumptions, faster to the same limit, that is such
that

lim
n→∞

T
(n)
k − S

Sn − S
= 0, or lim

k→∞

T
(n)
k − S

Sk − S
= 0, or both.

A well–known example of such a transformation is the Richardson extrapolation process,
which gives rise to the Romberg’s method for accelerating the convergence of the trapezoidal rule

∗Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques Pures et Appliquées, Université des

Sciences et Technologies de Lille, France, E–mail: Claude.Brezinski@univ-lille1.fr.
†LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, AMSS, Chinese

Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing, PR China. E–mail:

{heyi, sunjq}@lsec.cc.ac.cn,
‡LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, AMSS, Chinese

Academy of Sciences, Beijing, PR China, E–mail: hxb@lsec.cc.ac.cn.
§Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Italy. E–mail :

Michela.RedivoZaglia@unipd.it.

1

http://arxiv.org/abs/1012.5744v1

for approximating a definite integral. Let us mention that sequence transformations can also be
applied to diverging power sequences, thus leading, in some situations, to interesting results such
as analytic continuation (this is the case of the ε–algorithm which, applied to the partial sum of
a divergent power series, computes its Padé approximants).

In many sequence transformations, the terms of the new sequences can be expressed as ratios
of determinants, and there exists, in each particular case, a (usually nonlinear) recursive algorithm
for avoiding the computation of these determinants and implementing the transformation under
consideration [11, 38, 42–44].

The most well–known transformation of this type is due to Shanks [36, 37]. It can be imple-
mented via the ε–algorithm of Wynn [45]. Recently, a new recursive algorithm for accelerating
the convergence of sequences was derived by He, Hu, Sun and Weniger [14] from the lattice
Boussinesq equation. This algorithm resembles to the ε–algorithm, and it was proved that the
quantities it computes can be expressed as ratios of determinants, thus extending the Shanks’
sequence transformation. In this paper, inspired by this approach, we will extend further the ε–
algorithm, and we will show that it implements an extension of the Shanks’ transformation, thus
leading to a multistep ε–algorithm and a multistep Shanks’ transformation. The proof makes use
of the Hirota’s bilinear method [17] which was invented for resolving integrable nonlinear partial
differential or difference evolution equations having soliton solutions.

For some years now, there has been a great concern for convergence acceleration algorithms
among the community of mathematical physicists working on integrable systems, KdV and other
equations, soliton theory, Toda lattices, etc. [9, 24, 25, 31, 32]. These researchers are interested
by the fact that convergence acceleration algorithms are nonlinear difference equations in two
variables whose solutions are explicitly known. Determinants often play a central role in this
type of problems as exemplified, for example, in [41]. An important procedure for obtaining a
closed–form solution of soliton equations is the Hirota’s bilinear method [17] which consists in
writing the solution as a ratio, and then working with its numerator and its denominator.

In Section 2, we discuss the Shanks’ sequence transformation and its implementation by the
ε–algorithm of Wynn. The quantities involved in this transformation and in this algorithm are
expressed by ratios of Hankel determinants. In Section 3, we present our multistep extension of the
ε–algorithm, and the corresponding multistep extension of the Shanks’ transformation. Section 4
is devoted to some relations between determinants that will be useful for our purpose. The Hirota’s
bilinear method is presented in Section 5. In Section 6, we show that the quantities recursively
computed by the multistep ε–algorithm correspond to the ratios of determinants defining the
multistep Shanks’ transformation, and, reciprocally, in Section 7, we show that the multistep
Shanks’ transformation can be implemented by the multistep ε–algorithm. Finally, in Section 8,
the connection between an extended discrete hungry Lotka–Volterra system and the multistep
ε–algorithm is discussed. Hirota’s method is essential for obtaining these results. The paper ends
by some considerations on further researches.

2

2 The Shanks’ transformation and the ε–algorithm

The Shanks’ sequence transformation [36, 37] ek : (Sn) 7−→ {(ek(Sn))} consists in transforming a
given sequence (Sn) into the set of sequences {(ek(Sn))} whose terms are defined by

ek(Sn) =
Hk+1(Sn)

Hk(∆2Sn)
, k, n = 0, 1, . . . , (1)

where ∆ is the usual forward difference operator whose powers are defined by

∆i+1Sn = ∆iSn+1 −∆iSn

with ∆0Sn = Sn, and where Hk(un) denotes the Hankel determinant

Hk(un) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

un un+1 · · · un+k−1

un+1 un+2 · · · un+k

...
...

...
un+k−1 un+k · · · un+2k−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with H0(un) = 1.
Obviously, replacing each row, in this determinant, by its difference with the previous one,

repeating this operation several times, and performing it also on the columns, we have

Hk(un) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

un · · · un+k−1

∆un · · · ∆un+k−1

∆2un · · · ∆2un+k−1
...

...
∆k−1un · · · ∆k−1un+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

un ∆un · · · ∆k−1un

∆un ∆2un · · · ∆kun

...
...

∆k−1un ∆kun · · · ∆2k−2un

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The ε–algorithm is a recursive algorithm due to Wynn [45] for implementing the Shanks’
transformation without computing the Hankel determinants appearing in (1). Its rule is

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k, n = 0, 1, . . . (2)

with ε
(n)
−1 = 0 and ε

(n)
0 = Sn, for n = 0, 1, . . .

The connection between the ε–algorithm and the Shanks’ transformation is given by

ε
(n)
2k = ek(Sn) and ε

(n)
2k+1 =

1

ek(∆Sn)
, k, n = 0, 1, . . . (3)

Thus, the ε
(n)
2k+1’s are intermediate results, and we have

ε
(n)
2k =

Hk+1(Sn)

Hk(∆2Sn)
and ε

(n)
2k+1 =

Hk(∆
3Sn)

Hk+1(∆Sn)
.

3

The quantities ε
(n)
k are usually displayed in a two–dimensional array (the ε–array) where the

lower index k remains the same in a column of the table, and the upper index n is the same in
a descending diagonal. Thus, the rule (2) relates four quantities located at the four vertices of a
lozenge in three different columns and two descending diagonals as showed below

ε
(n)
k

ε
(n+1)
k−1 ε

(n)
k+1

ε
(n+1)
k

For implementing the ε–algorithm efficiently, the best technique, due to Wynn [47,48], consists
in storing the last ascending diagonal of the ε–array (in this diagonal the sum of the lower and the
upper indexes is constant), and to add, one by one, the terms of the sequence to be transformed.
Then, a new ascending diagonal is built step–by–step, by moving up the lozenge, and the new
diagonal gradually replaces the old one. The corresponding fortran subroutine can be found
in [11].

Since the quantities with an odd lower index are intermediate computations, they can be
eliminated, thus leading to the cross rule also due to Wynn [49]

1

ε
(n)
2k+4 − ε

(n+1)
2k+2

+
1

ε
(n+2)
2k − ε

(n+1)
2k+2

=
1

ε
(n+2)
2k+2 − ε

(n+1)
2k+2

+
1

ε
(n)
2k+2 − ε

(n+1)
2k+2

,

with the initial conditions ε
(n)
−2 = ∞ and ε

(n)
0 = Sn for n = 0, 1, . . . Obviously, it is also possible to

eliminate the ε
(n)
k ’s with an even lower index for obtaining a rule only involving quantities with a

lower odd index, although this is less useful from the numerical point of view.

The proof given by Wynn for his ε–algorithm was mostly a verification of the link between the
Shanks’ transformation and the algorithm, since he introduced the ratios of Hankel determinants
for ek(Sn) and ek(∆Sn) into the rule of the ε–algorithm, and he showed that the equality held by
making use of the Sylvester’s determinantal identity and the Schweins’ one which can be found,
for example, in [1] (see [8, pp. 142–143] for their proofs). The difficulty of the proof resided in
the nonlinearity of the algorithm. Of course, Wynn’s great merit was the idea of the ε–algorithm
itself, followed by this verification.

There are three approaches for linking a sequence transformation and a (usually nonlinear)
recursive algorithm for its implementation. By increasing order of complexity, they are

1. Verification: the transformation and the algorithm are both known, and one has to verify
that they lead to identical sequences. This is the way followed by Wynn in [45] when he
gave his ε–algorithm.

2. Derivation: only the transformation is known, and one has to derive an algorithm for
its implementation. This is the case, for example, of the E–transformation which is the
most general sequence transformation known so far, and which can be implemented by
the E–algorithm, an algorithm which appeared almost simultaneously in various contexts
[6, 13, 22, 35]. This was also certainly the way Wynn followed when he derived his ε–
algorithm, although it was not presented like that in his paper [45].

4

3. Proof: only the algorithm is known, and one has to guess a formula (that is a ratio of
determinants) for the transformation it is implementing, and to prove it. This was the
situation for the second generalization of the ε–algorithm proposed in [5], whose form was
obtained by Salam [33, 34]. Let us mention that the θ–algorithm [4] is an extrapolation
algorithm for which no determinantal formula is known yet, if it exists.

Now, after presenting the multistep ε–algorithm and the multistep Shanks’ transformation
(Section 3), we will show, with the help of determinantal identities (Section 4) and the Hirota’s
bilinear method (Section 5), how to go from the multistep ε–algorithm to the multistep Shanks’
transformation (Section 6), and back (Section 7).

3 The multistep ε–algorithm and the multistep Shanks’

transformation

Let m be a fixed strictly positive integer. We define the multistep ε–algorithm by the recursive
rule

ε
(n)
k+1,m = ε

(n+1)
k−m,m +

1
∏m

i=1(ε
(n+1)
k−m+i,m − ε

(n)
k−m+i,m)

, k, n = 0, 1, . . . , (4)

with the initial values

ε
(n)
−m,m = 0, ε

(n)
−m+1,m = ε

(n)
−m+2,m = · · · = ε

(n)
−1,m = n, ε

(n)
0,m = Sn, n = 0, 1, . . . (5)

Displaying these quantities in a double array similar to the ε–array, we see that this rule relates
2m + 2 quantities located in an extended lozenge covering m + 2 columns and two descending
diagonals as showed below

ε
(n)
k−m+1,m

ε
(n+1)
k−m,m ε

(n)
k−m+2,m

ε
(n+1)
k−m+1,m

. . .
. . .

. . .
. . . ε

(n)
k,m

ε
(n+1)
k−1,m ε

(n)
k+1,m

ε
(n+1)
k,m

The implementation of this algorithm using the technique of ascending diagonals, as described
above for the ε–algorithm of Wynn, is more difficult, and it requires the storage of m ascending
diagonals for computing the (m+ 1)th one.

5

In Section 6, we will prove that, for all k and n, it holds

ε
(n)
(m+1)k,m =

Hk+1(Sn)

Hk(∆m+1Sn)
, (6)

ε
(n)
(m+1)(k−1)+1,m =

Hk−1(∆
m+2Sn)

Hk(∆Sn)
, (7)

ε
(n)
(m+1)(k−1)+i,m

=
Φk+1(∆

i−1Sn)

Hk(∆iSn)
, i = 2, 3, . . . , m, (8)

where the determinants Hk and Φk, which depend on m, are defined by

Hk(un) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

un un+1 · · · un+k−1

∆mun ∆mun+1 · · · ∆mun+k−1

∆2mun ∆2mun+1 · · · ∆2mun+k−1
...

...
...

∆(k−1)mun ∆(k−1)mun+1 · · · ∆(k−1)mun+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, k = 1, 2, . . . , n = 0, 1, . . . ,

with H−1(un) = 0 and H0(un) = 1, and where

Φk(un) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n n+ 1 · · · n+ k − 1
un un+1 · · · un+k−1

∆mun ∆mun+1 · · · ∆mun+k−1

∆2mun ∆2mun+1 · · · ∆2mun+k−1
...

...
...

∆(k−2)mun ∆(k−2)mun+1 · · · ∆(k−2)mun+k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, k = 1, 2, . . . , n = 0, 1, . . . ,

with Φ−1(un) = 0 and Φ0(un) = 1.
Let us notice that, when m = 1, Hk(un) is identical to the usual Hankel determinant Hk(un).

For proving these determinantal identities, we will follow a procedure similar, although more
difficult, to the procedure used in [14] (which is based on the Hirota’s bilinear method) for deriving
a determinantal expression for a new acceleration algorithm obtained from the lattice Boussinesq
equation. However, instead of the Jacobi’s determinantal identity, we will only use the Sylvester’s
one (which is, in fact, the same after a permutation of rows and columns), and we will not use
the Schwein’s identity.

Let us now define the multistep Shanks’ transformation ek,m : (Sn) 7−→ {(ek,m(Sn))} by

ek,m(Sn) = ε
(n)
(m+1)k,m =

Hk+1(Sn)

Hk(∆m+1Sn)
, k, n = 0, 1, . . . (9)

Obviously, after proving (7), we will also have

ε
(n)
(m+1)k+1,m =

1

ek,m(∆Sn)
, k, n = 0, 1, . . . ,

6

a result similar to the second relation (3) for the ε–algorithm of Wynn. Thus, only the quantities

ε
(n)
k,m’s whose first lower index is a multiple of m+1 are interesting for the purpose of convergence
acceleration. All the other ones are intermediate computations. The computation of ek,m(Sn) =

ε
(n)
(m+1)k,m needs the knowledge of Sn, . . . , Sn+mk.

For simplicity, we will omit to indicate that all the symbols used in this paper depend on the
fixed integer m.

We see that, when m = 1, the algorithm (4) reduces to the ε–algorithm (2), and the trans-
formation (9) reduces to the Shanks’ transformation (1). When m = 2, the recursive rule (4)
reduces to the algorithm obtained in [14] from the lattice Boussinesq equation; see also [29, 30].

Let us mention that, due to (6), the multistep Shanks’ transformation can likewise be imple-
mented by the E–algorithm [6] with gi(n) = ∆imSn for i = 1, 2, . . ., and for all n, and that we

get, for all k and n, E
(n)
k = ek,m(Sn). Thus, by the fundamental property of the E–algorithm,

the kernel of the transformation (9) (that is the set of sequences which are transformed into a
constant sequence) is given by the

Theorem 1

A necessary and sufficient condition that, for all n, ek,m(Sn) = S is that there exist constants
a1, . . . , ak, ak 6= 0, such that, for all n,

Sn = S + a1∆
mSn + a2∆

2mSn + · · ·+ ak∆
kmSn.

Let us remind that the kernel of the Shanks’ transformation ekm : (Sn) 7−→ (ekm(Sn) = ε
(n)
2km)

is the set of sequences such that, for all n, Sn = S + b1∆Sn + · · ·+ bkm∆
kmSn, where b1, . . . , bkm,

bkm 6= 0, are constants. Thus, we have the

Corollary 1

The kernel to the multistep Shanks’ transformation ek,m is contained into the kernel of the Shanks’
transformation ekm.

Moreover, due to the connection with the E–algorithm, all the convergence and acceleration
results proved for it [6, 21] also hold for the multistep Shanks’ transformation.

In the next Sections, we will link the multistep Shanks’ transformation (9) and the multistep
ε–algorithm (4) by means of the Hirota’s bilinear method. First, in Section 4, some relations
between the determinants Hk(∆

iSn) and Φk(∆
iSn) will be established. We will only employ

the Sylsvester’s determinantal identity, contrarily to the proofs given in [45] and [14] where the
Schweins’ determinantal identity is also used. Then, Hirota’s bilinear method will be presented in
Section 5. In Section 6, we will show that the quantities computed by the multistep ε–algorithm
(4) are those defined in the multistep Shanks’ transformation (6)–(8). Conversely, in Section
7, we will prove that the multistep Shanks’ transformation (6)–(8) can be implemented by the
recursive rule (4) of the multistep ε–algorithm.

7

4 Relations between determinants

Let A be a square matrix, α, β, γ and δ numbers, a, b, c and d vectors of the same dimension as
A. Let M be the matrix

M =

α aT β
b A c
γ dT δ

 .

The Sylvester’s determinantal identity is

|M | · |A| =

∣

∣

∣

∣

α aT

b A

∣

∣

∣

∣

·

∣

∣

∣

∣

A c
dT δ

∣

∣

∣

∣

−

∣

∣

∣

∣

aT β
A c

∣

∣

∣

∣

·

∣

∣

∣

∣

b A
γ dT

∣

∣

∣

∣

.

Let us now prove some determinantal identities that will be useful in the sequel.

Lemma 1

Hk+1(∆Sn)Hk(∆
mSn+1) =Hk(∆

m+1Sn)Hk+1(Sn+1)−Hk(∆
m+1Sn+1)Hk+1(Sn). (10)

Proof: we consider the determinant

D1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
∆i+mSn ∆i+mSn+1 · · · ∆i+mSn+k+1

...
...

...
∆i+kmSn ∆i+kmSn+1 · · · ∆i+kmSn+k+1

∆iSn ∆iSn+1 · · · ∆iSn+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)kHk+1(∆
i+1Sn).

The second expression for D1 is obtained by replacing each column, from the last one, by its
difference with the previous one. Thus, we get a determinant whose first row only contains 0 except
in the first column where the element is equal to 1. Expanding this determinant with respect
to its first row, and putting its last row as the first one, we see that D1 = (−1)kHk+1(∆

i+1Sn).
Let us now apply the Sylvester’s identity to the first expression of D1, and perform a similar
manipulation on the rows and the columns of the other determinants, we obtain

Hk+1(∆
i+1Sn)Hk(∆

i+mSn+1)=Hk(∆
i+m+1Sn)Hk+1(∆

iSn+1)−Hk(∆
i+m+1Sn+1)Hk+1(∆

iSn).

Setting i = 0 in this relation, we get (10).

A similar identity, which will be used in the sequel, also holds if Sn is replaced by ∆Sn.

Lemma 2

Hk(∆
i+1Sn)Hk−1(∆

iSn+1) = Hk−1(∆
i+1Sn)Hk(∆

iSn+1)−Hk−1(∆
i+1Sn+1)Hk(∆

iSn). (11)

Proof: let D2 be the determinant obtained from D1 by replacing k by k−1, and moving the last
row to the second position. Replacing each column, from the last one, by its difference with the
previous one, we see that D2 = Hk(∆

i+1Sn), and, applying the Sylvester’s identity to it, we get
(11).

8

Lemma 3

Hk(∆Sn)Hk(∆
mSn+1)=Hk(∆

m+1Sn)Hk(Sn+1)−Hk+1(Sn)Hk−1(∆
m+1Sn+1). (12)

Proof: Setting i = m in (11), we have

Hk(∆
m+1Sn)Hk−1(∆

mSn+1) = Hk−1(∆
m+1Sn)Hk(∆

mSn+1)−Hk−1(∆
m+1Sn+1)Hk(∆

mSn). (13)

Applying now the Sylvester’s identity to the determinant Hk+1(∆
iSn), we get

Hk+1(∆
iSn)Hk−1(∆

i+mSn+1) = Hk(∆
iSn)Hk(∆

i+mSn+1)−Hk(∆
iSn+1)Hk(∆

i+mSn).

Setting i = 0 in this relation, we obtain

Hk+1(Sn)Hk−1(∆
mSn+1) = Hk(Sn)Hk(∆

mSn+1)−Hk(Sn+1)Hk(∆
mSn). (14)

Then, we multiply (13) by Hk(Sn+1), we multiply (14) by Hk−1(∆
m+1Sn+1), and we subtract.

It gives

Hk−1(∆
mSn+1)[Hk(∆

m+1Sn)Hk(Sn+1)−Hk+1(Sn)Hk−1(∆
m+1Sn+1)]

= Hk(∆
mSn+1)[Hk−1(∆

m+1Sn)Hk(Sn+1)−Hk(Sn)Hk−1(∆
m+1Sn+1)].

Using (10), we see that the bracket in the right hand side is equal to Hk(∆Sn)Hk−1(∆
mSn+1).

After simplifying both sides by Hk−1(∆
mSn+1), we obtain (12).

A similar identity, which will be used in the sequel, also holds if Sn is replaced by ∆Sn.

Lemma 4

Hk(∆
iSn+1)Hk−1(∆

i+2Sn) = Hk(∆
i+1Sn)Φk(∆

iSn+1)−Hk−1(∆
i+1Sn+1)Φk+1(∆

iSn). (15)

Proof: we consider the determinant

D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
∆iSn ∆iSn+1 · · · ∆iSn+k+1

∆i+mSn ∆i+mSn+1 · · · ∆i+mSn+k+1
...

...
...

∆i+(k−1)mSn ∆i+(k−1)mSn+1 · · · ∆i+(k−1)mSn+k+1

n n+ 1 · · · n+ k + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Obviously, we also have

D3 = (−1)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
n n+ 1 · · · n+ k + 1

∆iSn ∆iSn+1 · · · ∆iSn+k+1
...

...
...

∆i+(k−1)mSn ∆i+(k−1)mSn+1 · · · ∆i+(k−1)mSn+k+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
∆i+1Sn ∆i+1Sn+1 · · · ∆i+1Sn+k

...
...

...
∆i+1+(k−1)mSn ∆i+1+(k−1)mSn+1 · · · ∆i+1+(k−1)mSn+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)kHk(∆
i+2Sn).

9

We apply now the Sylvester’s identity to the first expression of D3 given above, and replace D3 by
(−1)kHk(∆

i+2Sn). We get, after similar manipulations on the columns of the other determinants,

Hk(∆
i+2Sn)Hk(∆

iSn+1) = Hk(∆
i+1Sn)Φk+1(∆

iSn+1)−Hk(∆
i+1Sn+1)Φk+1(∆

iSn). (16)

Then, we apply the Sylvester’s identity to the determinant Φk+1(∆
iSn). We get

Φk+1(∆
iSn)Hk−1(∆

iSn+1) = Φk(∆
iSn)Hk(∆

iSn+1)− Φk(∆
iSn+1)Hk(∆

iSn).

We multiply this identity by Hk−1(∆
i+1Sn+1), we multiply (11) by Φk(∆

iSn+1), and we sub-
tract. It gives

Hk−1(∆
iSn+1)[Φk+1(∆

iSn)Hk−1(∆
i+1Sn+1)−Hk(∆

i+1Sn)Φk(∆
iSn+1)]

= Hk(∆
iSn+1)[Φk(∆

iSn)Hk−1(∆
i+1Sn+1)−Hk−1(∆

i+1Sn)Φk(∆
iSn+1)].

Using (16), we see that the bracket in the right hand side is equal to−Hk−1(∆
i+2Sn)Hk−1(∆

iSn+1).
After simplifying both sides by Hk−1(∆

iSn+1), we obtain (15).

Lemma 5

Hk(∆Sn)Hk−2(∆
m+1Sn+1) = Hk−1(∆

m+1Sn+1)Hk−1(∆Sn)−Hk−1(∆
m+1Sn)Hk−1(∆Sn+1). (17)

Proof: we consider the determinant

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn Sn+1 · · · Sn+k

1 1 · · · 1
∆mSn ∆mSn+1 · · · ∆mSn+k

...
...

...
∆(k−1)mSn ∆(k−1)mSn+1 · · · ∆(k−1)mSn+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

After exchanging the first row and the second row, we see that D4 = −Hk(∆Sn). Let us now
apply the Sylvester’s identity to D4, and perform a similar manipulation on the first and second
row of the various determinants. We obtain (17).

5 The Hirota’s bilinear method

The Hirota’s bilinear method [17] is a technique which could be much useful for solving certain
nonlinear differential and difference equations. It consists in expressing the unknown as a ratio
and, then, in treating separately the numerator and the denominator.

We will now apply this method to the multistep ε–algorithm, and set

ε
(n)
k,m =

Gn
k

F n
k

. (18)

We first have the

10

Lemma 6

(F n
k+m+1G

n+1
k − F n+1

k Gn
k+m+1)

m
∏

i=1

(F n
k+iG

n+1
k+i − F n+1

k+i G
n
k+i) = −F n

k+1F
n+1
k+m

m
∏

i=1

F n
k+i+1F

n+1
k+i−1. (19)

Proof:

Plugging (18) into the recursive rule (4) of the ε–algorithm, we get

Gn
k+1

F n
k+1

−
Gn+1

k−m

F n+1
k−m

=
1

∏m

i=1

(

Gn+1
k−m+i

F n+1
k−m+i

−
Gn

k−m+i

F n
k−m+i

)

F n+1
k−mG

n
k+1 − F n

k+1G
n+1
k−m

F n
k+1F

n+1
k−m

=

∏m

i=1 F
n
k−m+iF

n+1
k−m+i

∏m

i=1(F
n
k−m+iG

n+1
k−m+i − F n+1

k−m+iG
n
k−m+i)

. (20)

Now, we cross–multiply the numerator of one side by the denominator of the other side, and
we equate both sides. Replacing k by k + m and changing the sign, the equation (20) becomes
(19) since

F n
k+m+1F

n+1
k

m
∏

i=1

F n
k+iF

n+1
k+i =

m+1
∏

i=1

F n
k+i

m
∏

i=0

F n+1
k+i .

The second preliminary result is contained in the

Lemma 7

If the following relations hold

F n
(m+1)k+1G

n+1
(m+1)k+1 − F n+1

(m+1)k+1G
n
(m+1)k+1 = −F n

(m+1)k+2F
n+1
(m+1)k, (21)

F n
(m+1)k+1G

n+1
(m+1)(k−1)+1 − F n+1

(m+1)(k−1)+1G
n
(m+1)k+1 = −F n

(m+1)(k−1)+2F
n+1
(m+1)k, (22)

and, for i = 2, . . . , m+ 1,

F n
(m+1)k+iG

n+1
(m+1)k+i

− F n+1
(m+1)k+i

Gn
(m+1)k+i = F n

(m+1)k+i+1F
n+1
(m+1)k+i−1, (23)

F n
(m+1)k+iG

n+1
(m+1)(k−1)+i

− F n+1
(m+1)(k−1)+i

Gn
(m+1)k+i = F n

(m+1)(k−1)+i+1F
n+1
(m+1)k+i−1, (24)

then (19) follows.

Proof:

Let us first notice that, taking i = 1 in (23) and (24) gives (21) and (22), respectively, after a
change in the signs of their right hand sides.

Let us separate (19) into the product of two relations, and prove that each of the following
formulae holds separately

m
∏

i=1

(F n
k+iG

n+1
k+i − F n+1

k+i G
n
k+i) = ±

m
∏

i=1

F n
k+i+1F

n+1
k+i−1, (25)

11

which are the products appearing in both sides of (19), and

F n
k+m+1G

n+1
k − F n+1

k Gn
k+m+1 = ∓F n

k+1F
n+1
k+m, (26)

which are its remaining parts. Then, multiplying together (25) and (26), we will obtain (19), but
we must notice that the signs used in (25) and (26) have to be opposite.

Let us assume that (21)–(24) hold true. The proofs of the relations (25) and (26) have to be
separated into three cases according to the value of k in (19).

• k replaced by (m+ 1)k in (25) and (26).
◦ Multiplying together the relations (23) for i = 2, . . . , m, and then multiplying each of its

sides by the corresponding side of (21) (which brings a change in the sign) proves (25), with the
sign −, when k is replaced by (m+ 1)k in (25).

◦ Replacing k by (m+ 1)k in (26), with the sign +, gives

F n
(m+1)(k+1)G

n+1
(m+1)k − F n+1

(m+1)kG
n
(m+1)(k+1) = F n

(m+1)k+1F
n+1
(m+1)k+m

,

which is (24) for i = m+ 1.
◦ We get (19) by multiplying together the two relations.

• k replaced by (m+ 1)k + 1 in (25) and (26).
◦ Multiplying together the relations (23) for i = 2, . . . , m+1. The result is the same as adding

1 to all the lower indexes, and making the product for i = 1, . . . , m, which is (25) with the sign
+.

◦ Replace k by (m+ 1)k + 1 in (26), with the sign −. It is exactly (22) with k + 1 instead of
k.

◦ Multiplying together the two relations, we obtain (19).

• k replaced by (m+ 1)k + j, for j = 2, . . . , m, in (25) and (26).
◦ Let 2 ≤ j ≤ m be fixed. Let us write that (23) holds with 2 ≤ i + j ≤ m + 1 instead of i,

that is for i = 1, . . . , m− j + 1,

F n
(m+1)k+i+jG

n+1
(m+1)k+i+j

− F n+1
(m+1)k+i+j

Gn
(m+1)k+i+j = F n

(m+1)k+i+j+1F
n+1
(m+1)k+i+j−1.

Multiply together these relations for i = 1, . . . , m − j + 1, and, then, make their product
for i = m − j + 2, . . . , m. When i = m − j + 2, the left hand side of this expression be-
comes F n

(m+1)k+m+2G
n+1
(m+1)k+m+2 − F n+1

(m+1)k+m+2G
n
(m+1)k+m+2, and its right hand side is equal to

F n
(m+1)k+m+3F

n+1
(m+1)k+m+1, that is, respectively, F

n
(m+1)(k+1)+1G

n+1
(m+1)(k+1)+1−F n+1

(m+1)(k+1)+1G
n
(m+1)(k+1)+1,

and F n
(m+1)(k+1)+2F

n+1
(m+1)(k+1). Thus, by (21) with k replaced by k + 1, these two expressions are

equal after changing the sign in one side. For i = m− j + 3, we have

F n
(m+1)k+m+3G

n+1
(m+1)k+m+3 − F n+1

(m+1)k+m+3G
n
(m+1)k+m+3 = F n

(m+1)k+m+4F
n+1
(m+1)k+m+2,

that is

F n
(m+1)(k+1)+2G

n+1
(m+1)(k+1)+2 − F n+1

(m+1)(k+1)+2G
n
(m+1)(k+1)+2 = F n

(m+1)(k+1)+3F
n+1
(m+1)(k+1)+1,

12

which is (23) with k + 1 instead of k. And so on until i = m. Thus in the products from
i = m− j + 2 to m, the sign is changed in one, and only one, of the expressions due to (21), and
we finally obtain (25) with the sign −.

◦ Let us replace k by (m+ 1)k + j in (26), with the sign +. We get

F n
(m+1)(k+1)+jG

n+1
(m+1)k+j

− F n+1
(m+1)k+j

Gn
(m+1)(k+1)+j = F n

(m+1)k+jF
n+1
(m+1)(k+1)+j−1,

which is (24) when k is replaced by k + 1.
◦ The product of the two relations gives (19).

Thus, (19) have now been proved for all values of k.

Finally, we are able to prove the

Theorem 2

The relation (19) holds with the F n
k ’s and the Gn

k ’s given by the following relations, for k =
0, 1, . . .,

F n
(m+1)(k−1)+i = Hk(∆

iSn), i = 1, 2, . . . , m+ 1 (27)

Gn
(m+1)(k−1)+1 = Hk−1(∆

m+2Sn), Gn
(m+1)k = Hk+1(Sn), (28)

Gn
(m+1)(k−1)+i = Φk+1(∆

i−1Sn), i = 2, 3, . . . , m. (29)

Proof:

We are now able to prove (21)–(24), with the F n
k ’s and Gn

k ’s given by (27)–(29). Replacing the
determinants in (10) by their expressions, we obtain

F n
(m+1)(k+1)G

n+1
(m+1)(k+1) − F n+1

(m+1)(k+1)G
n
(m+1)(k+1) = F n

(m+1)(k+1)+1F
n+1
(m+1)k+m

which corresponds to (23) for the case i = m + 1. Replacing the determinants in (16) by their
expressions, we obtain the bilinear equation (23) for the cases i = 2, 3, . . . , m, which completes
the proof of the equation (23).

Replacing the determinants in (10) and (12), both with ∆Sn instead of Sn, by their expressions,
we see that the equations (21) and (22) are satisfied.

Then, replacing the determinants in (12) by their expressions, we obtain

F n
(m+1)kG

n+1
(m+1)(k−1) − F n+1

(m+1)(k−1)G
n
(m+1)k = F n

(m+1)(k−1)+1F
n+1
(m+1)(k−1)+m

which corresponds to (24) for the case i = m + 1, while replacing the determinants in (15) by
their expressions, we get the bilinear equation (24) for i = 2, 3, . . . , m, which completes the proof
for the equation (24).

Since the identities (21)–(24) hold, then (19) follows with the F n
k ’s and the Gn

k ’s given by
(27)– (29).

We also have the

Corollary 2

F n
k+m+1F

n+1
k−1 = F n

k F
n+1
k+m − F n

k+mF
n+1
k .

13

Proof:

Replacing the determinants in (11) by their expressions given by (27), and k by k+1, we obtain,
for i = 1, . . . , m, the following relation without any Gn

k

F n
(m+1)k+i+1F

n+1
(m+1)(k−1)+i

= F n
(m+1)(k−1)+i+1F

n+1
(m+1)k+i

− F n
(m+1)k+iF

n+1
(m+1)(k−1)+i+1.

Similarly, the determinantal identity (17) leads, after replacing k by k + 2, to

F n
(m+1)(k+1)+1F

n+1
(m+1)k = F n

(m+1)k+1F
n+1
(m+1)(k+1) − F n

(m+1)(k+1)F
n+1
(m+1)k+1,

which is the preceding relation for i = m + 1. Thus, changing mk into m, these two identities
can be gathered into the single formula of the Corollary.

6 From the multistep ε–algorithm to the multistep Shanks’

transformation

By comparing (6)–(8) with the determinantal formulae (27)–(29) of the Theorem 2 for the F n
k ’s

and the Gn
k ’s issued from the Hirota’s method, we are now able to give the determinantal formulae

for the multistep ε–algorithm. Consequently, from the Lemmas 6, 7, and the Theorem 2, we have
the

Theorem 3

The quantities ε
(n)
k,m computed by the multistep ε–algorithm (4), with the initializations (5), are

expressed by the ratios of determinants (6), (7), and (8).

Thus, starting from the determinantal identities between Hk(∆
iSn) and Φk(∆

iSn), we proved
that (21)–(24) are satisfied with the determinantal formulae (27)–(29) for the F n

k ’s and the Gn
k ’s.

Then, (19) followed, and we concluded that the determinantal expressions (6)–(8) for the ε
(n)
k,m’s

hold true. Notice that all these results were obtained without using the rule (4) of the multistep
ε–algorithm.

Let us remind that, as noticed in [2] and fully explained in [7], we have

ε
(n)
(m+1)k,m =

fk,m(Sn, . . . , Sn+(m+1)k)

Dfk,m(Sn, . . . , Sn+(m+1)k)
, ε

(n)
(m+1)k+1,m =

Dfk,m(∆Sn, . . . ,∆Sn+(m+1)k)

fk,m(∆Sn, . . . ,∆Sn+(m+1)k)
,

where fk,m is a function depending on (m + 1)k + 1 variables and such that D2fk,m ≡ 0, where
Dfk,m denotes the sum of the partial derivatives of fk,m. Thus, we obtain the following connection
with Hirota’s bilinear method

Gn
(m+1)k = fk,m(Sn, . . . , Sn+(m+1)k), F n

(m+1)k = Dfk,m(Sn, . . . , Sn+(m+1)k),

Gn
(m+1)k+1 = Dfk,m(∆Sn, . . . ,∆Sn+(m+1)k), F n

(m+1)k+1 = fk,m(∆Sn, . . . ,∆Sn+(m+1)k),

and, according to this theory, the multistep Shanks’ transformation is quasilinear that is ek,m(aSn+
b) = aek,m(Sn) + b, a result which can be seen directly from (9).

14

7 From the multistep Shanks’ transformation to the mul-

tistep ε–algorithm

We will show now how to derive the recursive rule (4) of the multistep ε–algorithm from the
definition (6)–(8) of the multistep Shanks’ transformation.

From the determinantal identity (12), we get

ε
(n)
(m+1)(k+1),m − ε

(n+1)
(m+1)k,m =

Hk+2(Sn)

Hk+1(∆m+1Sn)
−

Hk+1(Sn+1)

Hk(∆m+1Sn+1)

=
Hk+2(Sn)Hk(∆

m+1Sn+1)−Hk+1(Sn+1)Hk+1(∆
m+1Sn)

Hk+1(∆m+1Sn)Hk(∆m+1Sn+1)

= −
Hk+1(∆Sn)Hk+1(∆

mSn+1)

Hk+1(∆m+1Sn)Hk(∆m+1Sn+1)
. (30)

Similarly, by the identity (12) with Sn replaced by ∆Sn, we get

ε
(n)
(m+1)(k+1)+1,m − ε

(n+1)
(m+1)k+1,m =

Hk+1(∆
m+2Sn)

Hk+2(∆Sn)
−

Hk(∆
m+2Sn+1)

Hk+1(∆Sn+1)

=
Hk+1(∆

m+2Sn)Hk+1(∆Sn+1)−Hk(∆
m+2Sn+1)Hk+2(∆Sn)

Hk+2(∆Sn)Hk+1(∆Sn+1)

=
Hk+1(∆

2Sn)Hk+1(∆
m+1Sn+1)

Hk+2(∆Sn)Hk+1(∆Sn+1)
. (31)

We also get the following relation from the identity (15)

ε
(n)
(m+1)(k+1)+i,m

− ε
(n+1)
(m+1)k+i,m

=
Φk+3(∆

i−1Sn)

Hk+2(∆iSn)
−

Φk+2(∆
i−1Sn+1)

Hk+1(∆iSn+1)

=
Φk+3(∆

i−1Sn)Hk+1(∆
iSn+1)− Φk+2(∆

i−1Sn+1)Hk+2(∆
iSn)

Hk+2(∆iSn)Hk+1(∆iSn+1)

= −
Hk+2(∆

i−1Sn+1)Hk+1(∆
i+1Sn)

Hk+2(∆iSn)Hk+1(∆iSn+1)
, i = 2, 3, . . . , m. (32)

Besides, from the identity (10), with ∆Sn instead of Sn, we get

ε
(n+1)
(m+1)k+1,m − ε

(n)
(m+1)k+1,m =

Hk(∆
m+2Sn+1)

Hk+1(∆Sn+1)
−

Hk(∆
m+2Sn)

Hk+1(∆Sn)

=
Hk(∆

m+2Sn+1)Hk+1(∆Sn)−Hk(∆
m+2Sn)Hk+1(∆Sn+1)

Hk+1(∆Sn+1)Hk+1(∆Sn)

= −
Hk+1(∆

2Sn)Hk(∆
m+1Sn+1)

Hk+1(∆Sn+1)Hk+1(∆Sn)
. (33)

15

From (10), we get

ε
(n+1)
(m+1)(k+1),m − ε

(n)
(m+1)(k+1),m =

Hk+2(Sn+1)

Hk+1(∆m+1Sn+1)
−

Hk+2(Sn)

Hk+1(∆m+1Sn)

=
Hk+2(Sn+1)Hk+1(∆

m+1Sn)−Hk+2(Sn)Hk+1(∆
m+1Sn)

Hk+1(∆m+1Sn+1)Hk+1(∆m+1Sn)

=
Hk+2(∆Sn)Hk+1(∆

mSn+1)

Hk+1(∆m+1Sn+1)Hk+1(∆m+1Sn)
. (34)

Finally, from the identity (16), we have, for i = 2, . . . , m,

ε
(n+1)
(m+1)k+i,m

− ε
(n)
(m+1)k+i,m

=
Φk+2(∆

i−1Sn+1)

Hk+1(∆iSn+1)
−

Φk+2(∆
i−1Sn)

Hk+1(∆iSn)

=
Φk+2(∆

i−1Sn+1)Hk+1(∆
iSn)− Φk+2(∆

i−1Sn)Hk+1(∆
iSn+1)

Hk+1(∆iSn+1)Hk+1(∆iSn)

=
Hk+1(∆

i+1Sn)Hk+1(∆
i−1Sn+1)

Hk+1(∆iSn+1)Hk+1(∆iSn)
. (35)

Then, from the formulae (33)–(35), we have

m
∏

i=1

(ε
(n+1)
(m+1)k+i,m

− ε
(n)
(m+1)k+i,m

) = −
Hk+1(∆

2Sn)Hk(∆
m+1Sn+1)

Hk+1(∆Sn+1)Hk+1(∆Sn)

m
∏

i=2

Hk+1(∆
i+1Sn)Hk+1(∆

i−1Sn+1)

Hk+1(∆iSn)Hk+1(∆iSn+1)

= −
Hk(∆

m+1Sn+1)Hk+1(∆
m+1Sn)

Hk+1(∆Sn)Hk+1(∆mSn+1)
. (36)

Comparing (30) and (36), we obtain the rule (4) of the multistep ε–algorithm where the lower
index k is replaced by (m+ 1)k + 1.

We can also derive the following formula

m+1
∏

i=2

(ε
(n+1)
(m+1)k+i,m

− ε
(n)
(m+1)k+i,m

) =
Hk+2(∆Sn)Hk+1(∆

mSn+1)

Hk+1(∆m+1Sn+1)Hk+1(∆m+1Sn)

m
∏

i=2

Hk+1(∆
i+1Sn)Hk+1(∆

i−1Sn+1)

Hk+1(∆iSn)Hk+1(∆iSn+1)

=
Hk+2(∆Sn)Hk+1(∆Sn+1)

Hk+1(∆2Sn)Hk+1(∆m+1Sn+1)
. (37)

Comparing (31) and (37), we obtain the rule (4) of the multistep ε–algorithm where the lower
index k is replaced by (m+ 1)k + 2.

16

Besides, we have, for i = 2, . . . , m,

m+i
∏

j=i+1

(ε
(n+1)
(m+1)k+j,m

− ε
(n)
(m+1)k+j,m

) =

m
∏

j=i+1

(ε
(n+1)
(m+1)k+j,m

− ε
(n)
(m+1)k+j,m

)
i−1
∏

j=2

(ε
(n+1)
(m+1)(k+1)+j,m

− ε
(n)
(m+1)(k+1)+j,m

)

· (ε
(n+1)
(m+1)(k+1),m − ε

(n)
(m+1)(k+1),m)(ε

(n+1)
(m+1)(k+1)+1,m − ε

(n)
(m+1)(k+1)+1,m)

= −

m
∏

j=i+1

Hk+1(∆
j+1Sn)Hk+1(∆

j−1Sn+1)

Hk+1(∆jSn+1)Hk+1(∆jSn)

i−1
∏

j=2

Hk+2(∆
j+1Sn)Hk+2(∆

j−1Sn+1)

Hk+2(∆jSn+1)Hk+2(∆jSn)

·
Hk+2(∆Sn)Hk+1(∆

mSn+1)

Hk+1(∆m+1Sn+1)Hk+1(∆m+1Sn)
·
Hk+2(∆

2Sn)Hk+1(∆
m+1Sn+1)

Hk+2(∆Sn+1)Hk+2(∆Sn)

= −
Hk+1(∆

iSn+1)Hk+2(∆
iSn)

Hk+1(∆i+1Sn)Hk+2(∆i−1Sn+1)
. (38)

Comparing (32) and (38), we obtain the rule (4) of the multistep ε–algorithm with the lower
index k replaced by (m+1)k+ i+1, for i = 2, 3, . . . , m. Therefore, the multistep ε–algorithm has
been derived from the definition (6), (7) and (8) of the multistep Shanks’ transformation, and we
have the

Theorem 4

The multistep Shanks’ transformation defined by (6), (7), and (8) can be implemented by the
recursive rules (4) of the multistep ε–algorithm, with the initializations (5).

8 An extended discrete Lotka–Volterra system

Recently, as explained in Section 1, it has been shown that integrable systems are closely related to
numerical algorithms. On one hand, some numerical algorithms are found to be soliton equations.
For example, one step of the QR–algorithm is equivalent to the time evolution of the finite non–
periodic Toda lattice [39]. The ε–algorithm is nothing but the fully–discrete potential KdV
equation, and the ρ–algorithm is considered to be the fully–discrete cylindrical KdV equations
or the Milne–Thomson equation, see [24, 26, 31, 41, 45]. On the other hand, integrable systems
can be used for designing new numerical algorithms. For example, the discrete Lotka–Volterra
system has applications in numerical algorithms for computing singular values [19, 20, 40], the
continuous–time Toda equation leads to a new algorithm for computing the Laplace transform of
a given analytic function [27], and the discrete relativistic Toda molecule equation leads to a new
Padé approximation algorithm for formal power series [23].

In this section, we will show that there exist a Miura transformation between the multistep

ε–algorithm (4) and a discrete integrable system. In fact, if we set
(

a
(n)

k−m−1

2

)

−1

= ε
(n+1)
k,m − ε

(n)
k,m,

17

then equation (4) is transformed into the extended discrete Lotka–Volterra equation

m−1
∏

i=0

a
(n+1)

k−m−1

2
+i

−

m−1
∏

i=0

a
(n)

k−m−1

2
+i

=
1

a
(n)

k+m+1

2

−
1

a
(n+1)

k−m+1

2

. (39)

This equation can be considered as the time discretization, for N = −1, of

d

dt

(

m−1
∏

i=0

ak−m−1

2
+i

)

=

−N−1
∏

i=0

a−1
k+m+1

2
+i

−

−N−1
∏

i=0

a−1
k−m+1

2
−i
, m = 1, 2, . . . , N = −1,−2, . . . , (40)

which is called the extended Lotka–Volterra equation. This equation was first proposed in [28],
and it was developed in [18]. Indeed, with N = −1, (40) becomes

d

dt

(

m−1
∏

i=0

ak−m−1

2
+i

)

=
1

ak+m+1

2

−
1

ak−m+1

2

. (41)

Now, consider n as the discretization of t, and replace the derivative in the left hand side of (41)
by the forward difference ∆ acting on n. The left hand side becomes

m−1
∏

i=0

a
(n+1)

k−m−1

2
+i

−

m−1
∏

i=0

a
(n)

k−m−1

2
+i
.

Then, replace ak in the first term of the right hand side of (41) by a
(n)
k ,and, in its second term,

by a
(n+1)
k . We get (39).

Using the relations (21) and (23), we obtain the solution of (39)

a
(n)

(m+1)k+1−m−1

2

= −
1

ε
(n+1)
(m+1)k+1,m − ε

(n)
(m+1)k+1,m

= −
F n
(m+1)k+1F

n+1
(m+1)k+1

F n
(m+1)k+2F

n+1
(m+1)k

,

a
(n)

(m+1)k+i−m−1

2

=
1

ε
(n+1)
(m+1)k+i,m

− ε
(n)
(m+1)k+i,m

=
F n
(m+1)k+i

F n+1
(m+1)k+i

F n
(m+1)k+i+1F

n+1
(m+1)k+i−1

,

i = 2, . . . , m+ 1,

that is

a
(n)

(m+1)k−m−1

2

=
Hk(∆

m+1Sn)Hk(∆
m+1Sn+1)

Hk+1(∆Sn)Hk(∆mSn+1)
, (42)

a
(n)

(m+1)k−m−1

2
+1

= −
Hk+1(∆Sn)Hk+1(∆Sn+1)

Hk+1(∆2Sn)Hk(∆m+1Sn+1)
, (43)

a
(n)

(m+1)k−m−1

2
+j

=
Hk+1(∆

jSn)Hk+1(∆
jSn+1)

Hk+1(∆j+1Sn)Hk+1(∆j−1Sn+1)
, (44)

18

where j = 2, . . . , m, and k = −m+ 1,−m+ 2, . . ., with the initial values

a
(n)

−m−
m−1

2

= ∞, a
(n)

−m+1−m−1

2

= · · · = a
(n)

−1−m−1

2

= n, a
(n)

−
m−1

2

= 1/∆Sn. (45)

The difference equation (39), with the initial values (45), is said to be the integrable time
discretization of the extended Lotka–Volterra equation (40) in the sense that its solution is given
by (42)–(44). Conversely, the extended discrete Lotka–Volterra equation (40) can be seen as the
time continuation of (39) with the initializations (45).

Consider the particular case m = 1. Then, (4) reduces to the ε–algorithm and equation (39)
becomes

a
(n+1)
k − a

(n)
k =

1

a
(n)
k+1

−
1

a
(n+1)
k−1

.

By the dependent variable transformation

u
(n)
k

u
(n+1)
k−1

=
a
(n+1)
k−1

a
(n)
k+1

,

we obtain the discrete Lotka–Volterra equation

u
(n+1)
k

(

1 + u
(n+1)
k−1

)

= u
(n)
k

(

1 + u
(n)
k+1

)

. (46)

Then, the ε–algorithm can be transformed into the discrete Lotka–Volterra equation (46) through
the following Miura transformation

u
(n)
k

u
(n+1)
k−1

=
ε
(n+1)
k+1,1 − ε

(n)
k+1,1

ε
(n+2)
k−1,1 − ε

(n+1)
k−1,1

.

Thus, the ε–algorithm can be considered as the discrete Lotka–Volterra equation (46), and more
generally, the multistep ε–algorithm (4) is equivalent to the extended discrete Lotka–Volterra
equation (39).

9 Conclusion and future researches

Starting from the recursive rule (4) of the multistep ε–algorithm, we first obtained, from the
Hirota’s bilinear method, the coupled relations (21)–(24). Then, applying the Sylvester’s identity
to the determinants Hk(∆

iSn) and Φk(∆
iSn), we got the formulae (27)–(29) which express the

quantities ε
(n)
k,m as ratios of determinants. Thus, we were able to prove that the ε

(n)
k,m’s are defined

as ratios of determinants, and then to derive the recursive rule (4) of the multistep ε–algorithm,

with the initializations (5), from the determinantal formulae defining the quantities ε
(n)
k,m. It must

be noticed that, contrarily to the approaches of [45] and [14], we did not make use of the Schweins’

19

determinantal identity, but only of the Sylvester’s one. The difficult point was to find to which
determinants this identity had to be applied. Then, we showed that the multistep ε–algorithm
was related to an extended discrete Lotka–Volterra system.

Whenm = 1, the relations (8) disappear, and the Hirota’s bilinear method leads to a new proof
that the ε–algorithm of Wynn implements the Shanks’ sequence transformation and, reciprocally,
that the quantities computed by this algorithm are expressed by the ratios of Hankel determinants
defining the Shanks’ transformation.

The approach developed above could possibly be extended to other nonlinear convergence
acceleration algorithms such as, for example, the q-difference version of the ε–algorithm proposed
in [15], or its two generalizations given in [5], or the other one presented in [16], or the general
ε–algorithm of [12], or the ρ–algorithm [46], and the γ–algorithm which generalizes it [3]. Other
algorithms related to them, such as the qd, the η, the ω, and the rs–algorithms, and the g–
decomposition, could also possibly be treated in a similar way (see [11] for their definitions).
The quantities computed by these algorithms are all defined as ratios of determinants. These
extensions, as well as extensions to other acceleration algorithms, will be the subject of future
works. Let us mention that the confluent form of the multistep ε–algorithm is studied in [10]. It
leads to a multistep Lotka–Volterra equation.

Acknowledgements: This work was partially supported by the National Natural Science Foun-
dation of China (Grant no. 11071241), and the knowledge innovation program of LSEC and
the Institute of Computational Math., AMSS, CAS. C. Brezinski would like to thanks X.B. Hu,
the State Key Laboratory of Scientific and Engineering Computing (LSEC), and the Institute of
Computational Mathematics, AMSS, CAS, for inviting him for a stay during which part of this
work was done. The work of Michela Redivo–Zaglia was partially supported by MIUR, PRIN
grant no. 20083KLJEZ-003, and by University of Padova, Project 2008 no. CPDA089040.

References

[1] A.C. Aitken, Determinants and Matrices, Oliver and Boyd, Edinburgh and London, 1949.

[2] M.D. Benchiboun, Étude de Certaines Généralisations du ∆2 d’Aitken et Comparaison de
Procédés d’Accélération de la Convergence, Thèse de 3ème Cycle, Université des Sciences et
Techniques de Lille, 1987.

[3] C. Brezinski, Méthodes d’Accélération de la Convergence en Analyse Numérique, Thèse
d’État, Université Scientifique et Médicale de Grenoble, 1971.

[4] C. Brezinski, Accélération de suites à convergence logarithmique, C. R. Acad. Sci. Paris, Sér.
A, 273 (1971) 727–730.

[5] C. Brezinski, Conditions d’application et de convergence de procédés d’extrapolation, Numer.
Math., 20 (1972) 64–79.

[6] C. Brezinski, A general extrapolation algorithm, Numer. Math., 35 (1980) 175–187.

20

[7] C. Brezinski, Quasi–linear extrapolation processes, in Numerical Mathematics. Singapore
1988, R.P. Agarwal et al. eds., ISNM vol.86, Birkhäuser, Basel, 1988, pp. 61–78.

[8] C. Brezinski, Biorthogonality and its Applications of Numerical Analysis, Marcel Dekker,
New York, 1992.

[9] C. Brezinski, Cross rules and non-Abelian lattice equations for the discrete and confluent
non-scalar epsilon-algorithms, J. Phys. A: Math. Theor., 43 (2010) 205201.

[10] C. Brezinski, Y. He, X.–B. Hu, J.–Q. Sun, H.–W. Tam, Confluent form of the multistep
ε-algorithm, and the relevant integrable system, submitted.

[11] C. Brezinski, M. Redivo–Zaglia, Extrapolation Methods. Theory and Practice, North–Holland,
Amsterdam, 1991.

[12] C. Carstensen, On a general epsilon algorithm, in Numerical and Applied Mathematics, C.
Brezinski ed., Baltzer, Basel, 1989, pp. 437–441.

[13] T. H̊avie, Generalized Neville type extrapolation schemes, BIT, 19 (1979) 204–213.

[14] Y. He, X.–B. Hu, J.–Q. Sun, E.J. Weniger, Convergence acceleration algorithm via the lattice
Boussinesq equation, submitted.

[15] Y. He, X.–B. Hu, H.–W. Tam, A q-difference version of the ε–algorithm, J. Phys. A: Math.
Theor., 42 (2009) 095202.

[16] Y. He, X.–B. Hu, H.–W. Tam, S. Tsujimoto, Convergence acceleration algorithms related to
a general E–transformation and its particular cases, submitted.

[17] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge,
1992.

[18] X.–B. Hu, R.K. Bullough, Bäcklund transformation and nonlinear superposition formula of
an extended Lotka–Volterra equation, J. Phys. A: Math. Gen., 30 (1997) 3635–3641.

[19] M. Iwasaki, Y. Nakamura, On the convergence of a solution of the discrete Lotka–Volterra
system, Inverse Problem, 18 (2002) 1569–1578.

[20] M. Iwasaki, Y. Nakamura, An application of the discrete Lotka–Volterra system with variable
step-size to singular value computation, Inverse Problems 20 (2004) 553–563.

[21] A. Matos, M. Prévost, Acceleration property for the columns of the E–algorithm, Numer.
Algorithms, 2 (1992) 393–408.

[22] G. Meinardus, G.D. Taylor, Lower estimates for the error of the best uniform approximation,
J. Approx. Theory, 16 (1976) 150–161.

21

[23] Y. Minesaki, Y. Nakamura, The discrete relativistic Toda molecule equation and a Padé
approximation algorithm, Numer. Algorithms, 27 (2001) 219-235.

[24] A. Nagai, J. Satsuma, Discrete soliton equations and convergence acceleration algorithms,
Phys. Letters A, 209 (1995) 305–312.

[25] A. Nagai, T. Tokihiro, J. Satsuma, The Toda molecule equation and the ε–algorithm, Math.
Comput., 67 (1998) 1565–1575.

[26] Y. Nakamura, ed., Applied Integrable Systems (in Japanese), Syokabo, Tokyo, 2000.

[27] Y. Nakamura, Calculating Laplace transforms in terms of the Toda molecule, SIAM J. Sci.
Comput. 20 (1999) 306–317.

[28] K. Narita, Soliton solution to extended Volterra equation, J. Phys. Soc. Japan, 51 (1982)
1682–1685.

[29] F.W. Nijhoff, Discrete Painlevé equations and symmetry reductions on the lattice, in Discrete
Integrable Geometry and Physics, A. Bobenko and R. Seiler eds., Clarendon Press, Oxford,
1999, pp. 209–234.

[30] F.W. Nijhoff, V.G. Papageorgiou, H.W. Capel, G.R.W. Quispel, The lattice Gel’fand–Dikii
hierarchy, Inverse Problems. 8(4), (1992) 597–621.

[31] V. Papageorgiou, B. Grammaticos, A. Ramani, Integrable lattices and convergence acceler-
ation algorithms, Phys. Letters A, 179 (1993) 111–115.

[32] V. Papageorgiou, B. Grammaticos, A. Ramani, Integrable difference equations and numerical
analysis algorithms, in Symmetries and Integrability of Difference Equations, D. Levi et al.
eds., CRM Proceedings and Lecture Notes, vol. 9, AMS, Providence, 1996, pp. 269–279.

[33] A. Salam, Extrapolation: Extension et Nouveaux Résultats, Thèse, Université des Sciences et
Technologies de Lille, 1993.

[34] A. Salam, On a generalization of the ε–algorithm, J. Comput. Appl. Math., 46 (1993) 455-
464.

[35] C. Schneider, Vereinfachte Rekursionen zur Richardson–Extrapolation in Spezialfällen, Nu-
mer. Math., 24 (1975) 177–184.

[36] D. Shanks, An analogy between transient and mathematical sequences and some nonlinear
sequence–to–sequence transforms suggested by it. Part I, Memorandum 9994, Naval Ord-
nance Laboratory, White Oak, July 1949.

[37] D. Shanks, Non linear transformations of divergent and slowly convergent sequences, J. Math.
Phys., 34 (1955) 1–42.

22

[38] A. Sidi, Practical Extrapolation Methods. Theory and Applications, Cambridge University
Press, Cambridge, 2003.

[39] W.W. Symes, The QR algorithm and scattering for the nonperiodic Toda lattice, Physica
4D (1982) 275–280.

[40] S. Tsujimoto, Y. Nakamura, M. Iwasaki, The discrete Lotka–Volterra system computes sin-
gular values, Inverse Problems 17 (2001) 53–58.

[41] R. Vein, P. Dale, Determinants and Their Applications in Mathematical Physics, Springer–
Verlag, New York, 1999.

[42] G. Walz, Asymptotics and Extrapolation, Akademie Verlag, Berlin, 1996.

[43] E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and
the summation of divergent series, Comp. Phys. Reports, 10 (1989) 189–371.

[44] J. Wimp, Sequence Transformations and Their Applications, Academic Press, New York,
1981.

[45] P. Wynn, On a device for computing the em(Sn) transformation, MTAC, 10 (1956) 91–96.

[46] P. Wynn, On a procrustean technique for the numerical transformation of slowly convergent
sequences and series, Proc. Cambridge Phil. Soc., 52 (1956) 663–671.

[47] P. Wynn, Acceleration techniques in numerical analysis, with particular references to prob-
lems in one independent variable, in Proc. IFIP Congress 62, Munich, 27 Aug.-1 Sept. 1962,
C.M. Popplewell ed., North–Holland, Amsterdam, 1962, pp. 149–156.

[48] P. Wynn, An arsenal of Algol procedures for the evaluation of continued fractions and for
effecting the epsilon algorithm, Chiffres, 4 (1966) 327–362.

[49] P. Wynn, Upon systems of recursions which obtain among the quotients of the Padé table,
Numer. Math., 8 (1966) 264–269.

23

	1 The scenery
	2 The Shanks' transformation and the –algorithm
	3 The multistep –algorithm and the multistep Shanks' transformation
	4 Relations between determinants
	5 The Hirota's bilinear method
	6 From the multistep –algorithm to the multistep Shanks' transformation
	7 From the multistep Shanks' transformation to the multistep –algorithm
	8 An extended discrete Lotka–Volterra system
	9 Conclusion and future researches

