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QUASI-SHAPE THEORY OF LOCALLY FINITE AND

PARACOMPACT SPACES

ANDREI V. PRASOLOV

Abstract. Shape theory works nice for (Hausdorff) paracompact spaces, but
for spaces with no separation axioms, it seems to be quite poor. However, for

finite and locally finite spaces their weak homotopy type is rather rich, and is
equivalent to the weak homotopy type of finite and locally finite polynedra,
respectively. In the paper there is proposed a variant of shape theory called
quasi-shape, which suits both paracompact and locally finite spaces, i.e. the
quas-shape is isomorphic to the weak homotopy type for locally finite spaces,
and is ♮-equivalent to the ordinary shape in the case of paracompact spaces.

1. Main construction

1.1. The connected component functor π. We need an appropriate definition
of

π : TOP −→ SETS

where TOP and SETS are the categories of topological spaces and sets, respec-
tively. Neither the usual functor π0 (the set of pathwise connected components)
nor π′

0 (the set of connected components) is suitable for our purposes. We will
introduce instead the following functor

π : TOP −→ pro-SETS :

π (X)U := U

for any open partition of X (i.e., a partition into open subsets). We say that U ≤ V
if V refines U . The set Part (X) of all open partitions of X is clearly directed, and
we obtain an inverse system of sets by defining

pU≤V : π (X)V −→ π (X)U

where

pU≤V (Y ) = Y ′,

Y ∈ V ,

Y ′ ∈ U ,

and Y ′ is the unique element of U , containing Y .
Let now

f : X −→ Y
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be a continuous mapping. Define

π (f) : π (X) −→ π (Y )

by the following. Let U be an open partition of Y , and let

V = ξ (U) = ξf (U) :=
{

Y ′ = f−1 (Y ) : Y ∈ U , Y ′ 6= ∅
}

.

V is clearly an open partition of X , and we have just defined a mapping

ξ = ξf : Part (Y ) −→ Part (X) .

There can be defined also a mapping

fU : π (X)V −→ π (Y )U

by

fU (Y ′) := Y

where

∅ 6= Y ′ = f−1 (Y ) .

It can be easily checked that the pair
(

ξf : Part (Y ) −→ Part (X) ,
(

fU : π (X)ξf (V) −→ π (Y )U : U ∈ Part (Y )
))

gives a well-defined morphism

π (f) : π (X) −→ π (Y )

in the category pro-SETS, and the correspondence f 7−→ π (f) defines a functor

π : TOP −→ pro-SETS.

Proposition 1.1. Let X be a locally connected space. Then π (X) is isomorphic
in the category pro-SETS to the set π′

0 (X) of connected components of X.

Proof. The set π′
0 (X) is an open partition of X which refines any other open parti-

tion. Therefore, Part (X) has a maximal element π′
0 (X), and π (X) is isomorphic

to the trivial pro-set π′
0 (X) indexed by a one-point index set, i.e. to the set

π′
0 (X). �

1.2. Quasi-shape. Let Cov (X) be the set of open coverings on X , pre-ordered
by the refinement relation. Analogously to Part (X), Cov (X) is a directed pre-

ordered set, while Part (X) is a directed ordered set. Let

U· = (U∗, d∗, s∗)

be a hypercovering on X (see [AM86], Definition 8.4), i.e. a simplicial space with
an augmentation

ε : U· −→ X,

and the following properties:

Hyper0:

ε0 : U0 −→ X

is an open covering;
Hypern:

Un+1 −→ (CosknU·)n+1

are open coverings, n ≥ 0.
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If U is an open covering, one can define the corresponding Čech hypercovering
by

Un =
∐

Ui∈U

(U0 ∩ U1 ∩ ... ∩ Un)

with the evident face (d∗) and degeneracy (s∗) mappings, where ∐ is the coproduct
in the category of topological spaces. For the Čech hypercovering, the mappings

Un+1 −→ (CosknU·)n+1 , n ≥ 0,

are homeomorphisms.

Remark 1.2. The Čech hypercoverings are used in the definition of ordinary shape
of a topological space, see [Mar00].

Definition 1.3. Let X be a topological space. The shape of X is the following
pro-space. Given a normal (i.e. admitting a partition of unity) covering U , let
NU (the Čech nerve of U) be a simplicial set with

(NU)n = {(U0, U1, ..., Un) : (Ui ∈ U)& (U0 ∩ U1 ∩ ... ∩ Un 6= ∅)}

with the evident face (d∗) and degeneracy (s∗) mappings. If V refines U , there exists
a unique (up to homotopy) mapping

pU≤V : NV −→ NU .

The correspondence

U 7−→ |NU|

where U runs over all normal coverings on X, and |NU| is the geometric realization
of NU , defines an object SH (X) in pro-H (TOP ) which is called the shape of X.

Let HCov (X) be the following category: the objects are hypercoverings on X ,
and the morphisms from U· to V· are homotopy classes of simplicial mappings

U· −→ V·

This category is co-filtering. Given a hypercovering U·, let

Γ (U·, π) = |π (U·)|

where |π (U·)| is the geometric realization of the simplicial pro-set π (U·). Varying
U·, one gets an object

U· 7−→ |π (U·)|

in pro-H (pro-TOP ). Finally, applying the canonical functor

pro-H (pro-TOP ) −→ pro- (pro-H (TOP )) −→ pro-H (TOP ) ,

one gets an object QSH (X) in pro-H (TOP ) which will be called the quasi-shape
of X .

Theorem 1.4. The correspondence above gives a well-defined functor

QSH : TOP −→ pro-H (TOP ) ,

which factors through the homotopy category H (TOP ):

QSH : TOP −→ H (TOP ) −→ pro-H (TOP ) .

Remark 1.5. The functor from H (TOP ) to pro-H (TOP ) will be denoted QSH

as well
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2. Comparison

Let X be a locally finite space (see [McC66], p. 466). It means that every point
has a finite neighborhood. Due to [McC66], Theorem 2, there exists a simplicial
set K (X), functorially dependent on X , and a weak homotopy equivalence

|K (X)| −→ X.

Let us consider the functor above as a functor to pro-H (TOP ):

X 7−→ |K (X)| : LF -TOP −→ TOP ⊆ pro-H (TOP )

where LF -TOP is the full subcategory of locally finite spaces.

Example 2.1. Let X be a so called 4-point circle, i.e. a space with four points
{a, b, c, d} and the following topology

τ = {X,∅, {a} , {c} , {a, b, c} , {a, d, c} , {a, c}} .

Then |K (X)| is homeomorphic to an ordinary circle S1.

Theorem 2.2. On the category

LF -TOP ⊆ TOP,

there exists a natural isomorphism

|K (X)| ≈ QSH (X) .

Remark 2.3. The shape of a locally finite (even a finite) space differs significantly
from |K (X)|. Say, the space from Example 2.1 has the shape of a point.

Let now X be a Hausdorff paracompact space. We will simply call such spaces
paracompact. Remind that a ♮-equivalence between pro-spaces is a mapping

f : X −→ Y

in pro-H (TOP ) inducing an isomorphism of pro-sets

π0 (f) : π0 (X) −→ π0 (Y) ,

and isomorphisms of pro-groups

πn (f) : πn

(

X, f−1 (y)
)

−→ πn (Y, y) , n ≥ 1,

for any point y −→ Y. It is known [AM86] that the canonical morphism

Xα −→ (CosknXα)

is a ♮-equivalence between pro-spaces

X −→ Cosk (X) .

Theorem 2.4. Let X be a paracompact space. Then QSH (X) is naturally ♮-
equivalent to the ordinary shape SH (X) of X.
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3. Proofs

3.1. Proof of Theorem 1.4.

Proof. The crucial step is the following. Given two homotopic mappings

f, g : X ⇉ Y,

the corresponding morphisms:

QSH (f) = QSH (g) : QSH (X) −→ QSH (Y )

are equal in the category pro-H (TOP ). This, in turn is proved using compactness
of the unit interval and the technique of Proposition (8.11) from [AM86]: given a
hypercovering U· on Y , one constructs a sequence of truncated hypercoverings on
X , resulting in a hypercovering V· on X , which refines both f−1 (U·) and g−1 (U·),
and such that the corresponding morphisms

Γ (V·, π) −→ Γ (U·, π)

are equal in the category pro-H (TOP ). �

3.2. Proof of Theorem 2.2.

Proof. Introduce the following pre-order on X (see [McC66], p. 468):

x ≤ y ⇐⇒ Vy ⊆ Vx

where Vx is the minimal (finite) open neighborhood of x. Let now U· be the following
hypercovering:

Un =
∐

x0≤x1≤...≤xn

Vxn

with the evident face and degeneracy mappings. This hypercovering is clearly an
initial object in the category HCov (X). All spaces Vx are connected, therefore, for
each n, π (Un) is a set (i.e. a trivial pro-set). Finally, QSH (X) is a space (i.e. a
trivial pro-space) |K (X)| where K (X) is the following simplicial set:

K (X)n = {x0 ≤ x1 ≤ ... ≤ xn} .

The latter simplicial set is exactly the simplicial set K (X) from [McC66], Theorem
2. It follows that

QSH (X) ≈ |K (X)|

(homotopy equivalent) while

|K (X)|
weak
≈ X

(weak homotopy equivalent). �

3.3. Proof of Theorem 2.4.

Proof. There exists [AM86] a natural ♮-equivalence

QSH (X) −→ Cosk (QSH (X)) .

Let now construct a homotopy equivalence

Sh (X) −→ Cosk (QSH (X)) .

Let U· ∈ HCov (X), let n ∈ N and let

V· = Coskn (QSH (X)) = Coskn (Γ (U·, π)) .
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Consider the following open covering U on X :

U = (d0)
n
: Un −→ X.

Let us now consider the open partitions W0, W1, ... , Wn, of U0, U1, ... , Un,
involved in the construction of pro-sets π (U0), π (U1), ... , π (Un). Finally, since
X is paracompact, there exists a normal open covering V on X , refining U and all
coverings

(d0)
i
Wi, i = 0, 1, ..., n.

Denote the correspondence
(U., n,Wi) 7−→ V

by
ξ (U., n,Wi) = V .

Given V ∈ V , there exist unique elements Wi from Wi such that

V ⊆ (d0)
i
Wi.

This gives a well-defined mapping from the Čech nerve

ϕ(U.,n,Wi) : NV −→ Coskn (Γ (U·, π)) .

Finally, the pair (ξ, ϕ) gives the desired equivalence

SH (X) −→ Cosk (QSH (X))

in pro-H (TOP ). �
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