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Tropical varieties with polynomial weights
and corner loci of piecewise polynomials.

A. Esterov1 To S. M. Gusein-Zade on
the occasion of his 60th birthday

1 Introduction.

Counting Euler characteristics of the discriminant of the quadratic equation in terms of
Newton polytopes in two different ways, G. Gusev ([Gus]) found an unexpected relation for
mixed volumes of two polytopes S1 and S2 ⊂ Rn and the convex hull S of their union. For
instance, assuming n = 2 and denoting the mixed area of polygons P and Q by Vol(P,Q) =
Vol(P +Q)−Vol(P )−Vol(Q), this relation specializes to

Vol(S, S)− Vol(S, S1)− Vol(S, S2) + Vol(S1, S2) = 0.

We call it unexpected because it is not a priori invariant under parallel translations of S1. We
give an elementary proof and a multidimensional generalization of this equality as requested
in [Gus] (see Corollary 1.4 below), deducing it from the following fact (Theorem 1.2): the
mixed volume of polytopes only depends on the product of their support functions.

This dependence is a specialization of the isomorphism between two well known combi-
natorial models of the cohomology of toric varieties. In the second (independent) part of the
paper (Sections 2 and 3), we provide a new description of this isomorphism, generalizing the
well known construction of the corner locus of a piecewise-linear function. Although other
descriptions of this isomorphism are known (see e.g. [KP] or [Maz]), the new one has an
advantage of being directly applicable to non-rational polytopes, leads to a new proof and
a new form of the answer for Theorem 1.2, and involves new objects (tropical varieties with
polynomial weights and their corner loci, see Definition 2.4) that may be of independent
interest and have other applications (see e.g. Theorem 4.1: every tropical subvariety in a
tropical manifold M is locally the intersection of M with another tropical variety).

Gusev’s equality. To simplify notation, we denote the mixed volume of polytopes
A1, . . . , Ak in Rk by the monomial A1·. . .·Ak (this mixed volume is by definition the coefficient
of the monomial x1 . . . xk in the polynomial Vol(x1A1 + . . .+ xkAk) of variables x1, . . . , xk).
In the same way, for a homogeneous polynomial P (x1, . . . , xm) =

∑
ca1,...,amx

a1
1 . . . xam

m of
degree k, we define P (A1, . . . , Am) as

∑
ca1,...,amA

a1
1 . . . Aam

m .

Theorem 1.1 ([Gus]). For any two polytopes S1 and S2 ⊂ Rn and the convex hull S
of their union, we have (2n − 2)Sn =

∑n−1
i=1 2i

(
Sn−i
1 Si + Sn−iSi

2 − Sn−i
1 Si

2

)
.

We deduce this from the following fact. Denote the support function of a polytope
A ⊂ Rn by A(·) : (Rn)∗ → R, so that A(v) = maxa∈A v · a.

Theorem 1.2. There exists a linear function D on the space of conewise-polynomial
functions on (Rn)∗, such that

D
(
A1(·) . . .An(·)

)
= A1 . . . An

for every collection of polytopes A1, . . . , An in Rn.

1Partially supported by RFBR-10-01-00678 grant. E-mail address: esterov@mccme.ru
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Recall that a function f on Rm is said to be conewise-polynomial, if it is polynomial on
every piece of a finite subdivision of Rm into polyhedral cones with vertices at 0.

This theorem follows from a stronger fact about the product of support functions of
rational polytopes: Theorem 5.1 in [KP]. Note that the results of [KP] remain valid for
non-rational polytopes as well; to prove them in the non-rational setting, one should replace
the reference to Brion’s formula in [KP] with the reference to the combinatorial Riemann-
Roch formula of [KhP] (i.e. to replace summation over lattice points of a polyhedron with
integration over a polyhedron). The relation of Theorem 1.2 to the equivalence of certain
models of cohomology of toric varieties gives one more proof for free at the end of this section.

In general (for non-rational cones and polytopes) there is a following explicit formula
for D. For an (ordered) basis v1, . . . , vn in Rn, denote the cone generated by v1, . . . , vn by
〈v1, . . . , vn〉, and denote the Gram-Schmidt orthogonalization of v1, . . . , vn by v⊥1 , . . . , v

⊥
n (so

that v⊥1 , . . . , v
⊥
n is orthonormal, v⊥1 , . . . , v

⊥
i generate the same subspace as v1, . . . , vi do for

i = 1, . . . , n, and vi · v⊥i > 0). For a continuous conewise polynomial function f : Rn → R,
consider a simple complete fan Γ, on whose cones C ∈ Γ the function f coincide with
polynomials fC . Then Theorem 1.2 can be formulated as follows.

Proposition 1.3. Define D(f) as

1

n!

∑

〈v1,...,vn〉∈Γ

∂nf〈v1,...,vn〉

∂v⊥1 . . . ∂v⊥n
, (∗)

where the sum is taken over all ordered bases of unit vectors v1, . . . , vn, generating cones
from Γ. Then D(f) does not depend on the choice of the fan Γ, linearly depends on f , and

D
(
A1(·) . . .An(·)

)
equals the mixed volume of polytopes A1, . . . , An.

Sketch of the proof. Independence of subdivisions of Γ and linearity follow by

definition. Since D
(
A1(·) . . . An(·)

)
is a multilinear function of A1, . . . , An, it is enough

to check that D
(
An(·)

)
equals the volume of the polytope A. Let Γ1 ⊂ Rn be the set

of all external normal vectors to the faces of A of positive dimension, and let Γ2 be the
union of all rays from the origin, passing through the points of faces of A of codimension
greater than 1. If we assume for simplicity that the orthogonal complement to the affine
span of every (relatively open) face B ⊂ A intersects B, then Γ1 ∪ Γ2 subdivides A into
n-dimensional simplices that are in one to one correspondence with the terms of the sum
(∗), and these terms are equal to the volumes of the corresponding simplices. If we drop
the additional assumption, we can still in the same way construct certain simplices, whose
volumes are the terms of (∗) up to the sign, and whose characteristic functions, endowed
with the corresponding signs, sum up to the characteristic function of A. 2

Instead of making this explanation precise, we prefer to deduce the statement from a
certain more general machinery (see Theorem 3.2), developed in the next section.

Note that the existence of a function D in Theorem 1.2 (aside from its linearity) is
not obvious a priori, because the collection of polytopes is not uniquely determined by the
product of their support functions: the two different pairs of polygons on the following
picture have the same product of support functions (and, thus, the same mixed volume,
which is equal to 4).
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Picture 1.

Also note that the function D is not monotonous: if A, B and C are the segments in the
plane from the origin to the points (1, 0), (0, 1) and (1, 1) respectively, then A(·)B(·) < C(·)2,
although A ·B = 1 > C ·C = 0. It would be interesting to find out whether the function D
is continuous, and to extend Theorem 1.2 to convex bodies.

Corollary 1.4. For any polytopes B1, . . . , Bn in Rn and the convex hull B of their
union, we have (B − B1) . . . (B − Bn) = 0.

Proof. Since B(v) = maxi Bi(v) for every v ∈ (Rn)∗, we have
(
B(v) − B1(v)

)
. . .

(
B(v)− Bn(v)

)
= 0, and the desired equality follows by Theorem 1.2. 2

Proof of Theorem 1.1. Sum up the equality 2i(Sn−i − Sn−i
1 )(Si − Si

2) = 0 (which is
a special case of Corollary 1) over i = 1, . . . , n− 1. 2

We now show that Theorem 1.2 is a special case of the isomorphism between two well
known models for cohomology of toric varieties, which leads to an alternative proof of The-
orem 1.2 for rational polytopes and cones at the end of Section 1, and to the proof of
Proposition 1.3 in Section 3 (Theorem 3.2).

Cohomology ring of toric varieties and its Brion-Stanley description.
The set of all complete rational fans in Rn admits the following partial order relation:

Γ1 6 Γ2 if every cone of the fan Γ2 is contained in a cone of the fan Γ1. Denoting the
toric variety of a fan Γ by TΓ, the natural mapping TΓ2 → TΓ1 induces a homomorphism
of cohomology rings hΓ1,Γ2 : H ·(TΓ1) → H ·(TΓ2). The direct system of these rings and
homomorphisms gives rise to the direct limit

H = lim
→

H ·(TΓ).

Note that we get the same ring H, independently of which version of cohomology theory we
consider (e.g. singular cohomology, Chow cohomology or intersection cohomology; see e.g.
[Pa] for a good overview of this kind of results). There are two well-known ways to describe
this ring combinatorially.

Brion’s description of Chow rings [Br1] and Stanley’s description [St] of intersection
cohomology of toric varieties lead to the following one. Let PQ be the ring of continuous
piecewise-polynomial functions on Rn, whose domains of polynomiality are rational convex
polyhedral cones with the vertex 0. Denote its ideal, generated by linear functions, by LQ.
Then H = PQ/LQ.

Fulton-Kazarnovskii-McMullen-Sturmfels description.
One more combinatorial model for the cohomology ringH is given independently by many

authors, and is known as McMullen’s polytope weights [McM], Fulton–Sturmfels Minkowski
weights [FS], and Kazarnovskii’s c-fans [Kaz]. A k-dimensional weighted piecewise-linear
set is a pair (P, p), where the support set P ⊂ Rn is a union of finitely many rational k-
dimensional polyhedra (closed and not necessary bounded), and the weight p : P → R is a
locally constant function on the smooth locus of P . It is said to be homogeneous, if P is a
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union of polyhedral cones with the vertex 0. For a smooth point x of P , let NxP ⊂ Rn be the
codimension k subspace, orthogonal to the tangent space of P at x. The tropical intersection
number ◦i(Pi, pi) of transversal weighted piecewise-linear sets (Pi, pi) with

∑
i codimPi = n is

the sum of the products
∣∣∣Zn/(Zn∩⊕i NxPi)

∣∣∣·
∏

i pi(x) over all points x ∈ ∩iPi (transversality

means that all Pi are smooth at every point of their intersection, and the tangent planes are
transversal).

A weighted piecewise-linear set (P, p) is called a tropical variety, if, for every rational
subspace L ∈ Rn of the complementary dimension, the tropical intersection number (P, p) ◦
(L + x, 1) does not depend on the point x ∈ Rn (note that the intersection number makes
sense for almost all x). Arbitrary tropical varieties (Pi, pi) with

∑
i codimPi = n in Rn

intersect transversally when shifted by generic vectors xi ∈ Rn, and this intersection number

◦i
(
Pi+xi, pi(·−xi)

)
does not depend on the choice of xi. This allows to call it the intersection

number of the varieties (Pi, pi) and to denote it by ◦i(Pi, pi). See, for example, the two ways
to count the intersection number of a pair of tropical curves on the right of the following
picture; both ways lead to the same answer 4.

Picture 2.

The product (R, r) of tropical varieties (P, p) and (Q, q) is uniquely characterized by the
equality of the intersection numbers (R, r) ◦ (S, s) = (P, p) ◦ (Q, q) ◦ (S, s) for every tropical
variety (S, s) of the complementary dimension (the existence of such (R, r) is not clear, see a
more constructive definition in Section 2). In particular, if (P, p) and (Q, q) are homogeneous
tropical varieties of complimentary dimension, then their product is the 0-dimensional trop-

ical variety
(
{0}, (P, p) ◦ (Q, q)

)
. With respect to this multiplication, the natural addition

(P, p) + (Q, q) = (P ∪Q, p+ q), and the equivalence relation (P, 0) = (∅, 0) for every set P ,
homogeneous tropical varieties form a ring CQ, and we have CQ = H.

The isomorphism.
The isomorphisms PQ/LQ = H = CQ induce the isomorphism IQ : PQ/LQ → CQ of the

two combinatorial models for cohomology of toric varieties. There is one more well known
combinatorial model for H by Khovanskii and Pukhlikov, whose isomorphism with CQ is
combinatorially described in [KKh], but we do not need this construction here.

Explicit combinatorial constructions for the isomorphism IQ are given in [KP] and [Maz].
Its degree 1 component, sending conewise linear functions to homogeneous tropical hyper-
surfaces, is much simpler and admits the following well known description.

Definition 1.5. Assume that a continuous conewise linear function L : Rn → R

equals linear functions L+ and L− on complementary half-spaces H+ and H−, separated by
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a rational hyperplane P (such a function is called a book). Choose a vector v ∈ H+ that
generates the 1-dimensional lattice Zn/P , and define the (constant) function

p(x) = ∂vL+(x)− ∂vL−(x) for every x ∈ P.

The corner locus of L is defined as the pair (P, p) for p 6= 0 and (∅, 0) otherwise (i.e. for
linear L). It does not depend on the choice of v and is denoted by δL. For an arbitrary
continuous piecewise linear function L, whose domains of linearity are rational polyhedra,
its corner locus is the weighted piecewise-linear set δL, such that whenever L equals a book
B near some point, we have δL = δB near that point.

Lemma 1.6. 1) Corner loci, and only they, are tropical hypersurfaces.
2) The isomorphism IQ sends every conewise linear function to its corner locus.

For instance, the corner locus (P, p) of the support function of an integer polytope A
admits the following simple description: the set P contains all external normal covectors
to the edges of A, and the value of p at such a covector equals the integer length of the
corresponding edge. In this case, A is called the Newton polytope of the tropical hypersurface
(P, p), and the following tropical version of the Kouchnirenko-Bernstein theorem is well
known (note the absence of assumptions of general position):

Theorem 1.7 (Tropical Bernstein theorem). The intersection number of n tropical
hypersurfaces in Rn equals the mixed volume of their Newton polytopes, i.e. we have

δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . ·An).

Example. The support function of a triangle and its corner locus are shown on the left
of Picture 2. Thus, the pair of triangles on Picture 1 are the Newton polygons of the tropical
curves on the right of Picture 2, so the mixed area of the triangles equals the intersection
number of the curves.

Proof of Theorem 1.2 for rational polytopes.
The isomorphism IQ maps a conewise polynomial F of degree n to a 0-dimensional

tropical variety ({0}, cF ), where 0 ∈ Rn is the origin and cF is a real number, depending on
F . We prove that the map, sending every conewise polynomial F to the constant cF , is the
desired function D, i.e.

IQ

(
A1(·) · . . . · An(·)

)
= ({0}, A1 · . . . ·An). (∗ )

For this, we firstly note that

IQ

(
A1(·) · . . . · An(·)

)
= IQ

(
A1(·)

)
· . . . · IQ

(
An(·)

)
,

for every collection of integer polytopes A1, . . . , An, because IQ is a ring isomorphism. Sec-
ondly, by Lemma 1.6(2) we have

IQ

(
Ai(·)

)
= δAi(·).

The two latter equalities together with Theorem 1.7 imply the desired equality (∗ ).
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2 Tropical varieties with polynomial weights.

It turns out that IQ acts on a conewise polynomial of arbitrary degree d as the d-th degree of
a certain corner locus operator, generalizing Definition 1.5 (see Definition 2.4 below), in the
same way as it is shown above for d = 1. To make this precise and applicable to non-rational
polytopes and cones, we need the notion of a tropical variety with polynomial weights, which
may be of independent interest. We introduce this notion here, and apply it to the study of
the isomorphism IQ in the next section.

Pseudovectors.
For an m-dimensional vector space M over R, an n-pseudovector V on M is a function

{orientations of M} →
n∧
M,

that assigns two opposite n-vectors Vα and Vβ, Vα + Vβ = 0, to the orientations α and β
of the space M . A 0-pseudovector on a 0-dimensional vector space is, by definition, a real
number. We denote the vector space of n-pseudovectors on M by Vn(M).

For a vector space L ⊃ M of dimension m + 1, a vector v ∈ L \ M , a pseudovector
V ∈ Vn(M), and an orientation α on M , we define the following objects on N .

The orientation α ∧ v on L is defined by the basis v1, . . . , vm, v, where v1, . . . , vm is an
α-oriented basis in M .

The pseudovector W ∈ Vn(L), defined by the equality Wα∧v = Vα, is denoted by V v.
The pseudovector U ∈ Vn+1(L), defined as Uα∧v = Vα ∧ v, is denoted by V ∧ v.
For orientations α and β of vectors spaces M and N , we define the orientation α ∧ β

of M ⊕ N by the basis u1, . . . , um, v1, . . . , vn, where (u1, . . . , um) and (v1, . . . , vn) are α and
β-oriented bases of M and N respectively. For pseudovectors X ∈ Vk(M) and Y ∈ Vl(N),
we define the wedge product X ∧ Y ∈ Vk+l(M ⊕N) by the equality (X ∧ Y )α∧β = Xα ∧ Yβ.

Remark. IfM is endowed with a metric (or with anm-dimensional lattice), then every
m-pseudovector V , in contrast to an m-vector, can be identified with the constant Vα

v1∧...∧vm ,
such that the basis v1, . . . , vm is α-oriented and orthonormal (or, respectively, generates the
lattice). This constant does not depend on the choice of the orientation α and the basis.
In the same way, every (m − 1)-pseudovector can be identified with a vector. Whenever
we introduce a metric in what follows, we always regard pseudovectors of the two highest
degrees as constants and vectors respectively.

Weighted fans.
A convex polyhedral cone in an m-dimensional vector space M is an intersection of its

subspace and finitely many open half-spaces. A union C of finitely many convex polyhedral
cones in M is called a smooth cone of codimension k, if every its point x has a neighborhood,
where C coincides with an (m − k)-dimensional plane. The orthogonal complement of this
plane is denoted by NxC (it is a k-dimensional plane in M∗).

An n-weighted pre-fan of codimension k in M is a pair (P, p), such that the support set
P is a smooth fan of codimension k, and the weight p is a locally polynomial pseudovector-
valued function with values p(x) ∈ Vm−n(NxP ); note that dependence of NxP on x is locally
constant.
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Definition 2.1. For n-weighted pre-fans (P, p) and (Q, q) of codimension k in M , we
define the sum (P, p) + (Q, q) as the pre-fan (R1 ⊔R2 ⊔ R, r), where

R1 = P \Q, and r = p on R1;

R2 = Q \ P , and r = q on R2;

R = {x ∈ P ∩Q | NxP = NxQ}, and r = p+ q on R.

Definition 2.2. An n-weighted fan of codimension k in M is an equivalence class of
n-weighted pre-fans of codimension k with respect to the following equivalence relation:

(P, p) ∼ (Q, q) ⇔ (P, p) + (R, 0) = (Q, q) + (R, 0) for some R ⊂ M.

By a weighted fan of codimension k we always mean a k-weighted fan of codimension k.

Denote the set of all weighted fans of codimension k in M , whose weights are local
polynomials of degree at most d, by Fd

k (M). This is an R-vector space with respect to the
summation of Definition 2.1 and the scalar multiplication c · (P, p) = (P, c · p).

Example. A 0-dimensional weighted fan in M is a pair ({0}, p), where p is a pseudo-
volume form on M (i.e. an m-pseudovector on M∗).

Example. A weighted fan of codimension 0 in M is represented by a pair (P, p), where
P is a complement of a union of hyperplanes, and p : P → R is locally polynomial.

Balance differential ∂ and corner locus differential δ.
A book in an m-dimensional vector space M is a preimage of an 1-dimensional smooth

cone (which is a union of finitely many open rays) in a vector space N under a projection
M → N . A point x ∈ C \ C is said to be in the stable boundary of a smooth k-dimensional
cone C ⊂ M , if it admits a neighborhood, where C coincides with a book. We denote the
stable boundary of C by ∂C, it is a smooth (k − 1)-dimensional cone.

For a weighted fan (P, p) of codimension k inM , consider a point x in the stable boundary
∂P . In a small neighborhood of x, the cone P splits into the union of connected components
Pi. For every i, we choose a small vector vi ∈ M and a covector ωi ∈ Nx∂P , such that
x+ vi ∈ Pi, the linear span of the vectors vi is transversal to Tx∂P , and ωi · vi = 1. For every
i, we denote the limits of p(y) and ∂vip(y), as y ∈ Pi tends to x, by qi and ri respectively.
Finally, we denote the sums of qωi

i and ri ∧ ωi over all i by q(x) and r(x) respectively (see
Subsection “Pseudovectors” for this notation).

Lemma 2.3. The pseudovector q(x) does not depend on the choice of the vectors vi.
If q = 0 in a neighborhood of x, then r(x) does not depend on the choice of the vectors vi
(otherwise it does).

We omit the proof, because it follows by definition.

Definition 2.4. The k-weighted fan (∂P, q) and the (k − 1)-weighted fan (∂P, r) are
denoted by ∂(P, p) and δ(P, p), and are called the balance and the corner locus of the fan
(P, p). If ∂(P, p) = 0, then (P, p) is said to be a polynomially weighted tropical variety, and
δ(P, p) is well defined (by Lemma 2.3).
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Remark. If M is endowed with a metric, then the weight q can be considered real-
valued, r can be considered vector-valued, and the overall Definition 2.3 becomes more
elementary. However, we prefer not to do so, because we have to expose the same tropical
variety to many different metrics for different purposes in what follows (the standard metric
in the proof of Theorem 2.6, a not so standard one in the proof of Theorem 2.13, and the
“integer metric” to identify our corner locus with the classical one of Definition 1.5).

Remark. Although we only admit piecewise polynomial weights for weighted fans,
everything will work with piecewise smooth weights as well. One example of where piecewise
smooth weights are relevant is kindly provided by D. Siersma. If F (x) is the distance from
a point x ∈ Rn to a finite set A ⊂ Rn, then the function F : Rn → R is piecewise smooth,
and its k-th corner locus δkF is a well defined tropical variety (P, p). One can easily verify
that P is the codimension k skeleton of the Voronoi diagram of A, and critical points of p
coincide with those of the distance function F contained in P .

Many assertions in this section are straightforward generalizations to the case of polyno-
mial weights of what is known about conventional tropical varieties with constant weights.
Since the proof of such assertions repeats the case of constant weights word by word, we
omit the proof and refer the reader to canonical papers like [FS], [Kaz] or [Mi] for details.
The only sources of new information are the assertions about the corner locus differential δ.

Lemma 2.5. 1) We have ∂(P, p) = 0 for a weighted fan of codimension 0 in M , if and
only if the function p : P → R extends to a continuous function on M .

2) The kernel and the image of δ : F1
0 (M) ∩ ker ∂ → F0

1 (M) are equal to {(M, l) | l is a
linear function on M} and F0

1 (M) ∩ ker ∂ respectively.

Part 2 is a new formulation of Lemma 1.6.
Proof of Part 1. Continuity of p at points of ∂P is equivalent to the equality ∂(P, p) =

0 by definition of ∂(P, p). Continuity at other points follows from a toy version of the
Riemann removable singularity theorem: if a real piecewise-polynomial function is continuous
outside of a set of codimension 2, then it is continuous everywhere. 2

Corner loci are tropical varieties.

Theorem 2.6. If (P, p) is a polynomially weighted tropical variety, then so is its corner
locus δ(P, p).

Proof. The statement can be reduced to the case of tropical (2-dimensional) surfaces
with linear weights in the following three steps.

1) We consider a tropical variety (P, p) ∈ Fd
k (M) and wish to prove that the weight

of ∂δ(P, p) vanishes at an arbitrary point x ∈ ∂∂P . In a neighborhood of such point,
P coincides with a preimage of a smooth 2-dimensional cone under a surjection of vector
spaces M → M ′. Thus, without loss in generality, we assume that P equals such a preimage,
and x = 0.

2) A linear section S of the projection M → M ′ of Step (1) contains the tropical (2-
dimensional) surface (P ′, p′) = (P ∩S, p|S), and if we prove the equality ∂δ(P ′, p′) = 0, then
vanishing of the weight of ∂δ(P, p) at 0 will follow. Thus, without loss in generality, we
assume that (P, p) is a tropical (2-dimensional) surface.
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3) If all the partial derivatives of the weight p(y) tend to 0, as y ∈ P tends to 0, then so
does r(y) as y ∈ ∂P tends to 0 (in the notation of Definition 2.4). Thus, we can delete all
monomials of p except for those of degree 1, i.e. assume without loss of generality that the
tropical surface (P, p) has linear weights, ∂δ(P, p) = ({0}, c) is a zero-dimensional tropical
variety, and we wish to prove that c = 0.

In the latter assumptions we introduce a metric in M , identifying vectors with covectors,
pseudomultivectors of maximal degree with constants, and pseudomultivectors of second
maximal degree with vectors (see Remark in Subsection “Pseudovectors”). In particular,
the weight p becomes a real-valued function, the weight of ∂(P, p) becomes a vector-valued
function, and we rewrite the desired statement in this “down to earth” setting as follows.

Let ∂P consist of rays generated by unit vectors vi, and P consist of relative interiors of
closed 2-dimensional convex polyhedral cones Cα. For every cone Cα, generated by vectors
vi and vj, introduce vectors vi,α, vj,α and pα in its vector span, such that:
vi,α is defined by the conditions |vi| = 1, vi,α · vi = 0 and vi,α · vj > 0,
vj,α is defined in the same way, with i and j interchanged,
pα is defined by the equality pα · x = p(x) for every x ∈ Cα.

In this notation, the equality ∂(P, p) = 0 at a point vi ∈ ∂P is written as

∑

α : vi∈Cα

(vi · pα)vi,α = 0, (∗i)

and the desired equality ∂δ(P, p) = 0 is written as

∑

α, i : vi∈Cα

(vi,α · pα)vi = 0.

Summing up the equalities (∗i) over all i, and collecting terms with the same α, we have

∑

α, i, j : i6=j,
vi∈Cα, vj∈Cα

(vi · pα)vi,α + (vj · pα)vj,α = 0.

This equality coincides with the desired

∑

α, i, j : i6=j,
vi∈Cα, vj∈Cα

(vi,α · pα)vi + (vj,α · pα)vj = 0

because of the following identity. 2

Lemma 2.7. If (u, u′) and (v, v′) are two orthonormal bases of opposite orientation in
R2, then, for any vector p, we have

(u · p)u′ + (v · p)v′ = (u′ · p)u+ (v′ · p)v.

Products and restrictions.
The cartesian product of weighted fans (P, p) in M and (Q, q) in N is the weighted fan

(P ×Q, p ∧ q) ∈ M ⊕N . It is denoted by (P, p)× (Q, q).

9



Lemma 2.8.
1) If F and G are polynomially weighted tropical varieties, then so is F ×G.
2) In this case, we have the Leibnitz rule δ(F ×G) = (δF )×G+ F × (δG).

We omit the proof, because both statements follow by definition.
A pair of smooth cones in M is said to be bookwise, if they are preimages of smooth

cones of complementary dimension in a vector space N under a projection M → N , and
their union is not contained in a hypersurface. A point x ∈ P ∩ Q is said to be in the
stable intersection P ∩s Q of smooth cones P and Q in M , if, in a small neighborhood
of x, the pair (P,Q) coincides with a bookwise pair of cones. In this neighborhood, the
smooth cones P and Q split into the union of their connected components ⊔iPi and ⊔jQj

respectively. Pick a small (relatively to the radius of the neighborhood) vector ε ∈ M in

general position with respect to P and Q, and define εi,j =

{
1 if Pi + ε intersects Qj

0 otherwise
(the assumption of general position is that the intersections (Pi + ε) ∩ Qj are transversal,
and P ∩ ∂Q = ∂P ∩Q = ∅ in the neighborhood of x).

If P and Q are the support sets of weighted fans (P, p) and (Q, q), then denote the limits
of p(y) and q(z), as y ∈ Pi and z ∈ Qj tend to x, by pi and qj respectively. Denote the sum∑

i,j εi,j · pi ∧ qj by s(x) for every x ∈ P ∩s Q, observe that P ∩s Q is a smooth cone, and
s(x) is a pseudomultivector in Nx(P ∩s Q).

Definition 2.9. The weighted fan (P ∩sQ, s) is called the intersection product of the
weighted fans (P, p) and (Q, q), and is denoted by (P, p) · (Q, q).

Lemma 2.10. 1) If F and G are polynomially weighted tropical varieties, then so is
F ·G, and its definition does not depend on the choice of ε.

2) Intersection product is associative.

We omit the proof as it repeats the one for tropical varieties with constant weights.
We are particularly interested in the following special case of the intersection product.

Definition 2.11. Let F be a polynomially weighted tropical variety inM , and L ⊂ M
be a subspace of codimension l. Choose an arbitrary l-pseudovector w 6= 0 in N0L, and
denote the intersection product of the tropical varieties F and (L,w) by (P, p). Then the
pair (P, p/w) can be regarded as a polynomially weighted tropical variety in L, does not
depend on the choice of ω, is said to be the restriction of F to the plane L, and is denoted
F |L.

Lemma 2.10.2 specializes to this case as follows:

Lemma 2.12. For any vector subspaces K ⊂ L ⊂ M , we have (F |L)|K = F |K.

Restrictions of corner loci.

Theorem 2.13. We have δ(F |L) = (δF )|L.

Proof. The statement can be reduced to the case of tropical (2-dimensional) surfaces
with linear weights in the following four steps.

10



1) If the statement is proved for L being a hypersurface, then, in general case, we can
choose a complete flag L = Ll ⊂ Ll−1 ⊂ . . . ⊂ L0 = M and observe that

δ(F |L) =
(
δ(F |Ll

)
)∣∣

Ll
=

(
δ(F |Ll−1

)
)∣∣

Ll
= . . . =

(
δ(F |L0)

)∣∣
Ll

= (δF )|L

by Lemma 2.12. Thus, without loss in generality, we assume that L is a hypersurface.
2) We consider a tropical variety F = (P, p) ∈ Fd

k (M) and wish to prove that the weights
of δ(F |L) and (δF )|L are equal at an arbitrary point x ∈ ∂P ∩s L. In a neighborhood of
such point, P coincides with a preimage of a smooth 2-dimensional cone under a surjection
of vector spaces M → M ′, whose kernel is contained in L. Thus, without loss in generality,
we assume that P equals such a preimage, and x = 0.

3) A linear section S of the projection M → M ′ contains the tropical (2-dimensional)
surface F ′ = (P ∩ S, p|S) and the hypersurface L′ = L ∩ S. If we prove the equality
δ(F ′|L′) = (δF ′)|L′, then equality of the weights of δ(F |L) and (δF )|L at 0 will follow. Thus,
without loss in generality, we assume that F = (P, p) is a tropical surface.

4) If all the partial derivatives of the weight p(y) tend to 0, as y ∈ P tends to 0, then so
does r(y) as y ∈ ∂P tends to 0 (in the notation of Definition 2.4). Thus, we can delete all
monomials of p except for those of degree 1, i.e. assume without loss of generality that the
tropical surface F = (P, p) has linear weights, L is a hypersurface, δ(F |L)−(δF )|L = ({0}, c)
is a zero-dimensional tropical variety, and we wish to prove that c = 0.

In the latter assumptions we represent L as the zero set of a linear function l : M → R,
introduce a metric G0 in L, and extend it to a (non-constant) metric G on {l > 0} uniquely
defined by the following conditions:

– every ray from the origin is orthogonal to the affine plane {l = c} for every c > 0;
– the restriction of G to the affine plane {l = c} coincides with the metric G0;
– the restriction of G to every ray from the origin coincides with dl2.
The metric G identifies vectors with covectors, pseudomultivectors of maximal degree with

constants, and pseudomultivectors of second maximal degree with vectors (see Subsection
“Pseudovectors” for details). In particular, the weight p on the smooth cone P ∩ {l > 0}
becomes a real-valued function, and we rewrite the desired statement in this “down to earth”
(i.e. non-invariant) setting as follows.

Let ∂P ∩{l > 0} consist of rays generated by vectors vi ∈ {l = 1}, let P ∩{l > 0} consist
of relative interiors of closed 2-dimensional convex polyhedral cones Cα, and let Lα be the
line of intersection of L with the vector span of Cα. The restriction of p to Cα is a linear
real valued function on the vector span of Cα, and we denote its restriction to Lα by pα.
For each of the generators vi of the cone Cα, we pick the unit vector vi,α ∈ Lα, such that
vi,α + tvi ∈ Cα for t → +∞.

In this notation, the desired equality δ(F |L) = (δF )|L is written as

∑

i

∑

α : vi∈Cα

pα(vi,α) =
∑

i, α : vi∈Cα
dim(Cα∩L)=1

pα(vi,α).

The left hand side of this equality can be reduced to the right hand side by cancelling the
pair of terms

pα(vi,α) + pα(vj,α) = 0

11



for every cone Cα, whose generators vi and vj are not contained in L. 2

Differential ring of polynomially weighted tropical varieties.
The operation of intersection product can be expressed in terms of cartesian product and

restriction as usual:

Lemma 2.14. Identifying the diagonal D of the sum M ⊕M with the space M itself,
we have (F ×G)|D = F ·G for every pair of polynomially weighted tropical varieties F and
G in M .

We omit the proof, because it follows by definition.

Theorem 2.15. If F and G are polynomially weighted tropical varieties in M , then
δ(F ·G) = δF ·G+ F · δG.

Proof. By Lemma 2.14, the general case can be reduced to the case of G = (L, c), where
L ⊂ M is a vector subspace and the weight c is a constant. This special case constitutes the
statement of Theorem 2.13. 2

Let Kd
k be the space of all polynomially weighted tropical varieties (P, p) in the vector

space M , such that codimP = k, and p is locally a homogeneous polynomial of degree d.
The direct sum of the spaces Kd

k over all d > 0 and k = 0, . . . , m is denoted by K and is
called the ring of tropical varieties with polynomial weights. We summarize the results of
this section as follows.

Corollary 2.16. K =
⊕

Kd
k is a bigraded differential ring with the multiplication

· : Kc
k ⊕Kd

l → Kc+d
k+l

of Definition 2.9 and the corner locus derivation

δ : Kd
k → Kd−1

k+1.

3 The isomorphisms.

Denote the subring
⊕

d Kd
0 ofK by P, and the subring

⊕
k K0

k by C. Recall that all elements of
P have the form (M \Σ, f), where M is the ambient vector space, f : M → R is a continuous
conewise-polynomial function, and Σ is the set of points where f is not smooth. Thus, we will
always identify P with the ring of continuous conewise-polynomial functions on M . In P,
consider the ideal L, generated by all linear functions onM . If the vector spaceM is endowed
with an m-dimensional integer lattice, then, restricting our consideration to weighted cones,
whose support sets are unions of rational polyhedral cones, we obtain subrings KQ,PQ, CQ,LQ

of the rings K,P, C,L. Since, in the presence of the lattice, pseudomultivectors of the
maximal degree are identified with constants (see Subsection “Pseudovectors” of Section 2
for details), this definition of the rings CQ,PQ and LQ agrees with the one given in Section
1.

We give a combinatorial (i.e. not involving geometry and topology of toric varieties)
description of the isomorphism I : P/L → C and its specialization IQ : PQ/LQ → CQ, which
in particular gives a new explicit formula for the mixed volume of polytopes in terms of
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the product of their support functions. For the sake of completeness, we also recall the
construction of the isomorphisms H → PQ/LQ and H → CQ (where H is the direct limit
of the cohomology rings of m-dimensional toric varieties, as explained in Section 1). In the
next section, we discuss what happens to the isomorphism I : P/L → C, as we replace the
ambient vector space M with a tropical variety.

Isomorphism P/L → C.
Define the map I : P → C on Kd

0 as δd/d!.

Theorem 3.1. We have I(L) = 0, and I : P/L → C is a ring isomorphism.

Remark. If we pick a simple fan ∆, and restrict our consideration to polynomially
weighted tropical varieties, whose support sets are unions of cones from ∆, then the statement
remains valid, and the proof is the same.

Remark. Although the linear map δd : Kk
0 → Kk−d

d is surjective for d = k, and the
kernel of δd : Kd

k−d → K0
k is generated by linear functions for d = k, none of this remains

true for other values of d. For instance, introducing the standard metric dx2 + dy2 in
the coordinate plane, and thus representing weights of plane tropical curves as real-valued
functions, the restriction of the function |x| − |y| to the set {xy = 0} can be regarded as
a tropical curve F ∈ K1

1, and we have δF = 0. However, F cannot be represented as the
corner locus of a conewise quadratic function, and cannot be represented as

∑
i liFi for linear

functions li : R
2 → R and tropical curves Fi with constant weights. (The first statement can

be verified by definition, and the second one is true because otherwise F = δ(
∑

i liδ
(−1)Fi),

contradicting the first statement.) It would be interesting to explicitly describe the kernel
of δd : Kd

k−d → K0
k and the image of δd : Kk

0 → Kk−d
d .

Proof. Since δd+1(Kd
0) = 0, we have

δk+lF ·G =
∑

j

Cj
k+l · δjF · δk+l−jG = Ck

k+l · δkF · δlG

for every pair of tropical varieties F ∈ Kk
0 and G ∈ Kl

0, hence I is indeed a ring homomor-
phism. Since δ(M, l) = 0 for every linear function l, then I(L) = 0. Since the restriction of
I to the degree 1 is an isomorphism K1

0 → K0
1 by Lemma 2.5.2, and the ring C is generated

by K0
1 (see e.g. [Kaz]), then the homomorphism I is surjective.

The image M of the component Km
0 in the quotient P/L is 1-dimensional and generated

by the weighted fan L =
(
{l1 > 0, . . . , lm > 0}, l1 · . . . · lm

)
for a collection of linearly

independent linear functions l1, . . . , lm on M . The pairing F,G 7→ F ·G
L

∈ R on PQ/LQ is
perfect (see e.g. [Br2]), i.e. every non-zero element F ∈ P/L admits an element G ∈ P/L
of complementary dimension, such that F · G = c · L mod L for a non-zero number c.
Since I(L) is non-zero in C (one can readily compute I(L) explicitly by definition), then
I(F ) · I(G) = c · I(L) 6= 0, which implies that I(F ) is non-zero. Thus I is injective. 2

Proof of Proposition 1.3.
Introducing a metric in Rn and writing δn explicitly by definition, we note that the weight

of the zero-dimensional tropical variety δn(f) for a continuous conewise-polynomial function
f : Rn → R is exactly the sum in the statement of Proposition 1.3 (note that δn(f) is
even easier to compute, because some similar terms are collected). We can thus formulate
Proposition 1.3 as follows.
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Theorem 3.2. We have

δn

n!

(
A1(·) · . . . · An(·)

)
= ({0}, A1 · . . . ·An)

for every collection of polytopes A1, . . . , An in Rn.

Proof. We have

δn

n!

(
A1(·) · . . . ·An(·)

)
= I

(
A1(·) · . . . · An(·)

)
= I

(
A1(·)

)
· . . . · I

(
An(·)

)
,

for any collection of polytopes A1, . . . , An, because I is a ring isomorphism (see Theorem
3.1), and is defined as δn/n! for a homogeneous conewise polynomial of degree n. For
conewise-linear functions it is defined as δ, so we have

I
(
Ai(·)

)
= δAi(·).

The tropical Bernstein formula is valid for arbitrary tropical varieties with constant weights,
not only for rational ones (see e.g. [Kaz]):

δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . ·An).

These three equalities imply the desired one. 2

For instance, the mixed area of the pair of triangles on Picture 1 can be counted as
follows (their support functions are denoted by F and G):

Picture 3.

The count of the mixed area of the right pair of polygons on Picture 1 proceeds in the same
way, because the product of their support functions is the same as for the left pair.

Remark. The notion of corner loci of polynomially weighted tropical varieties simpli-
fies the proof of many known useful formulas for mixed volumes. To give an example, denote
the maximal face of a polytope A ⊂ Rn, on which a non-zero covector γ ∈ (Rn)∗ attains its
maximal value A(γ), by Aγ, note that the (n − 1)-dimensional mixed volume Aγ

2 · . . . · Aγ
n

makes sense for any polytopes A2, . . . , An in the euclidean space Rn, and let 〈γ〉 be the ray
generated by γ. Applying the tropical Kouchnirenko-Bernstein formula to both parts of the
equality

δA1(·) · . . . · δAn(·) = δ
(
A1(·)δA2(·) · . . . · δAn(·)

)
, (∗)
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we have δA1(·) · . . . · δAn(·) = ({0}, A1 · . . . · An) and δA2(·) · . . . · δAn(·) is the union of all
external normal rays to the facets of A2 + . . . + An, with the constant weight Aγ

2 · . . . · Aγ
n

associated to every ray 〈γ〉. As a result, the equality (∗) turns into the well known

A1 · . . . · An =
∑

|γ|=1

A1(γ)
(
Aγ

2 · . . . · Aγ
n

)
.

Isomorphisms H → PQ/LQ and H → CQ.
The models PQ/LQ and CQ for the cohomology ring H are Poincare dual to each other in

the following sense. Pick a simple fan Γ in M , and consider a k-dimensional cohomological
cycle γ in the corresponding toric variety TΓ as an element of H. We have the following two
ways to describe γ explicitly. Let TC be the closure of the orbit of TΓ, corresponding to the
cone C ∈ Γ. The fundamental cycles of the subvarieties TC over all cones C generate the
homology group of TΓ, and their Poincare duals generate the cohomology. Represent γ as∑

C γC ·TC , γC ∈ R, and denote the intersection number γ ·TC ∈ R by γC for every cone C
of codimension k. Denote the collection of all such cones by Γk. Then the cycle γ is uniquely
determined by each of these two Poincare dual collections of numbers

(γC , C ∈ Γm−k) and (γC , C ∈ Γk).

The image of γ under the isomorphisms

IP : H → PQ/LQ and IC : H → CQ

can be described in terms of these two collections as follows.
For a rational subspace L ⊂ Rm, pick a basis v1, . . . , vl of the integer lattice L ∩ Zm and

the corresponding orientation α on L, and define a pseudovector e(L) on L by the equality
e(L)α = v1 ∧ . . . ∧ vl (this definition does not depend on the choice of v1, . . . , vl). Defining
P = ∪C∈ΓkC, and p(x) = γC · e(NxP ) for x ∈ C, we have

IC(γ) = (P, p).

For a simple cone C ⊂ Rm, generated by primitive linearly independent vectors v1, . . . , vl,
denote the polynomial function v1 ·. . .·vl : C → R by e(C), where linear functions vi : C → R

are dual to the vectors vj in the sense that vi ·vj = δij . Define q(x) = γC ·e(C) for s ∈ C, C ∈
Γm−k, then the function q on the union ∪C∈Γm−kC admits a unique continuous polynomial
extension of degree at most k onto every cone of the fan Γ. Gluing these extensions into
a continuous conewise-polynomial function q : M → R of degree at most k, and denoting
∪C∈Γ0C by Q, we have

IP (γ) = (Q, q).

4 Intersection theory on tropical varieties.

We first show that the intersection theory on a smooth tropical variety is locally induced from
the ambient vector space, and then discuss the general case. We use notation, introduced in
Section 2.
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Intersection theory on smooth tropical varieties.
A tropical variety with conewise-constant weights is considered smooth, if its support set

locally looks like a matroid fan (see e.g. [FR] for the definition). The first motivation for
this terminology is to see that the tropicalization of V ∩ (C \ {0})n for an affine subspace
V ⊂ Cn is a matroid fan.

Theorem 4.1. Let (P, p) and (Q, q) be tropical varieties with conewise-constant
weights, such that p 6= 0, and P is a matroid fan, containig Q. Then (Q, q) can be represented
as (P, p) · V for some tropical variety V with conewise-constant weights.

Remark. If we assume that q is conewise-polynomial of degree d, and allow V to have
conewise-polynomial weights of degree at most d, then both the statement and the proof
of the theorem remain valid. In this text, we restrict our attention to tropical varieties,
whose support sets consist of cones with vertices at the origin. One could also consider
“affine” tropical varieties, whose support sets are unions of arbitrary polyhedra of the same
dimension. If we assume that Q is “affine”, then both the statement and the proof of the
theorem remain valid. However, we cannot expect similar statement for “affine” P : if P is
the union of two parallel lines, and Q is a point on one of them, then (Q, q) = (P, p) · V is
impossible. Theorem 4.1 is also not valid for the simplest non-smooth tropical variety (see
the last example in this section).

The intersection theory on smooth tropical varieties, developed in [FR], [Al], [Sh], etc.,
is locally induced from the ambient space in the following sense:

The product of tropical varieties G1 and G2 in (P, p), as defined in [FR], [Al],

[Sh], equals G̃1 · G̃1 · (P, p) for tropical varieties G̃i such that Gi = G̃i · (P, p).
Such G̃i always locally exist by Theorem 4.1.

In particular, the isomorphism of Theorem 3.1 implies the following:

Corollary 4.2. The ring of tropical varieties in a matroid fan P (as constructed in
[FR], [Al] and [Sh]) is generated by the divisors of rational functions on P (in the terminology
of these works).

We recall that, for every linear map l : M → N of vector spaces, and for tropical
varieties F in M and G in N , one defines the image and the inverse image l∗F and l∗G, such
that l∗(F · l∗G) = l∗(F ) · G, and l∗ is a ring homomorphism (see e.g. [Mi] or [Kaz]). Let
i : M → M ×M be the diagonal inclusion of the ambient vector space M ⊃ P in the setting
of Theorem 4.1. We first prove its following special case.

Lemma 4.3. 1) If (P ′, p′) = (P, p)×(P, p), then its diagonal i∗(P, p) can be represented
as (P ′, p′) · Σ for some tropical variety Σ in M ⊕M .
2) The product of tropical varieties G1 and G2 in (P, p), as defined in [FR], [Al], [Sh], equals
(G1 ×G2) · Σ.

Proof. In [FR], continuous conewise-linear functions h1, . . . , hk on the closure of P
were constructed, such that δk(P ′, p′h1 . . . hk) = i∗(P, p). Extending the product h1 . . . hk to
a continuous conewise-polynomial function on M × M , we can consider this function as a
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codimension 0 tropical variety G with weights of degree k. Then (P ′, p′h1 . . . hk) = (P ′, p′)·G,
and δk(P ′, p′h1 . . . hk) = (P ′, p′) · δkG, so we can take Σ = δkG. 2

Since the diagonal of the square of (P, p) is represented as we need, the following abstract
nonsense argument extends this representation to all subvarieties of (P, p).

Proof of Theorem 4.1. Denote the tropical variety (P, p) by F , (Q, q) by G, and
(M, 1) by H . By [FR], Theorem 4.5(4), we have

(F ×G) · Σ = i∗G,

where Σ is constructed in Lemma 4.3. Let us now consider the diagonal inclusion j :
M ⊕ M → (M ⊕ M) ⊕ (M ⊕ M), the projection π : ⊕3M → ⊕2M that sends (b, c, d) to
(c, d − b), and π′ : ⊕4M → ⊕3M that sends (a, b, c, d) to (a, c, d − b), so that π′ = (id, π).
In this notation, the latter equality becomes

(F ×G× Σ) · j∗(H ×H) = j∗i∗G

by definition of the product. Note that j∗(H ×H) = π′∗i∗H , thus we have

(F ×G× Σ) · π′∗i∗H = j∗i∗G.

Applying π′
∗ to both sides, we have

(
F × π∗(G× Σ)

)
· i∗H = i∗G.

Denoting the restriction of π∗(G × Σ) to M ⊕ {0} ⊂ M ⊕ M by ΣG, Lemma 2.12 implies
that (F × ΣG) · i∗H = i∗G, which means the desired F · ΣG = G. 2

We now formalize the properties of (P, p) that we need for Theorem 4.1.

Definition 4.4. Let (P, p) be a k-dimensional tropical variety in a vector space M ,
with p conewise-constant and positive.
1) (P, p) is said to be normal, if P is the union of disjoint (relatively open) k-dimensional
cones, such that, for everym, everym cones with a common facet generate at least (m+k−2)-
dimensional space.
2) (P, p) is said to be diagonalizable, if P × P admits a conewise-polynomial (not necessary
continuous) weight q, such that (P × P, q) is tropical, and δk(P × P, q) = i∗(P, p).

Lemma 4.5. If (P, p) is a normal tropical variety, and (P, q) is a tropical variety, then
q = ph for some continuous conewise-polynomial h : M → R.

Proof. If no m of vectors v0, . . . , vm in Rm are linearly independent, and
∑

i aivi =∑
i bivi = 0, then bi/ai does not depend on i. Applying this statement to the values of p

and q at a point of the boundary ∂P , we conclude that q/p is a continuous function on the
closure of P , and thus can be extended to the desired function h : M → R. 2

Corollary 4.6. If (P, p) is normal and diagonalizable, then every tropical variety
(Q, q) with conewise-constant weights and Q ⊂ P can be represented as (P, p) ·V for another
tropical variety V with conewise-constant weights.
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By the preceding lemma, the proof is the same as for Theorem 4.1.

Conjecture. Every normal tropical variety is diagonalizable.

Cohomology of tropical varieties.
Intersection theory on tropical varieties (see e.g. [Mi], [AR], [Katz]) can be formulated in

our terms as follows. Let F = (P, p) be a tropical variety with constant weights in a vector
space M , and consider the map m : K → K of multiplication by F , so that m(G) = F ·G.

Definition 4.7. The images m(K0
k) and m(Kd

0) are called the homology and the
equivariant cohomology of F , and are denoted by Hk(F ) and HHd(F ) respectively. The
map m brings the ring structure of the ring K to the direct sums H•(F ) =

⊕
k Hk(F ) and

HH•(F ) =
⊕

dHHd(F ), so that the product of m(G1) and m(G2) equals m(G1 · G2). We
always consider H•(F ) and HH•(F ) as rings with respect to this ring structure (not with
respect to the one induced by the inclusions H•(F ) ⊂ K and HH•(F ) ⊂ K). The Poincare
duality DF : HHd(F ) → Hd(F ) is defined as DF (G) = 1

d!
δd(G). The cohomology ring H•(F )

of the tropical variety F is the quotient of the equivariant cohomology HH•(F ) by the ideal
kerDF .

This definition makes sense because of the following facts.

Lemma 4.8. 1) If DF (g) = 0 then DF (g · h) = 0 for every h ∈ HH•(F ).
2) The induced map DF : H•(F ) → H•(F ) is a ring isomorphism.

Proof. Part 1 for deg h = c and multiplicativity ofDF follow from the equality δd+c(gh)·
F = δd(g) · δc(h) ·F , which follows from the Leibnitz rule for δ and from δd+1g = δc+1h = 0.
Surjectivity of DF follows from surjectivity in Theorem 3.1. 2

Example. If F = (M, 1) is the vector space of dimension m, then H•(F ) and HH•(F )
are the direct limits of cohomology and equivariant cohomology of m-dimensional toric va-
rieties (see Section 1 for details).

Example. In general, the group HH1(F ) is well known as the group of rational func-
tions on F ([AR]) or the group of mixed Minkowski weights ([Katz]), the degree 1 component
of DF is the intersection map, and H1(F ) is the group of Weil divisors. Note that H1(F )
is a non-trivial (in general) quotient of the group of Cartier divisors, see the second remark
after Theorem 3.1 for an example.

Example. In our notation, the self-intersection number of the classical line L = {x =
y, z = 0} on the tropical plane F = δmax(0, x, y, z) in R3 can be computed as follows.
Recall that the support set P of F is the regular part of the singular locus of max(0, x, y, z),
and that the standard metric x2 + y2 + z2 on R3 allows us to consider weights of tropical
varieties as numbers (rather than as pseudovectors). In [AR], the line (L, 1) is represented as
DF (g · F ), where a continuous conewise linear function g on R3 is uniquely defined on P by
the following two properties: its restriction to every connected component of P \L is linear,
and, on the boundary of these connected components, we have g(1, 1, 1) = g(0,−1, 0) =
g(0, 0,−1) = g(−1,−1, 0) = 0, g(1, 1, 0) = −1, g(−1, 0, 0) = 1. One checks by definition
that δ(g2 · F ) is the ray generated by (1, 1, 0) with the linear weight −

√
2x on it (this is the
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weight in the standard metric; the weight in the “integer metric” is −2x). Thus the desired

self-intersection number L ◦ L = DF (g
2 · F ) = 1

2
δ2(g2 · F ) = 1

2
∂(−

√
2x)

∂(x/
√
2)

equals −1, which

agrees with [AR].

Note that, in addition to Hd(F ) and Hd(F ), one can consider larger groups for the
tropical variety F = (P, p) (they will be non-trivial even for the trivial weight p = 0 on a
non-empty P ): the group Hd(F ) ⊃ Hd(F ) consists of all tropical varieties with constant
weights that are contained in P and have codimension d in it (it is usually called the group

of codimension d cycles on F ), the group HH
d
(F ) ⊃ HHd(F ) consists of all polynomially

weighted tropical varieties of the form (P, q) for a homogeneous (not necessarily continuous)

conewise polynomial q of degree d on P , the Poincare dual DF : HH
d
(F ) → Hd(F ) is

defined by DF (G) = 1
d!
δd(G), and the group H

d
(F ) ⊃ Hd(F ) is the quotient of HH

d
(F ) by

kerDF . These larger groups do not have a natural ring structure, although we still have the
following cap products.

Definition 4.9. The cap product of g ∈ H
d
(F ) and G ∈ Hk(F ) is

g ∩G = δd(g′ ·G) ∈ Hk−d(F ) for g = g′ · F ∈ Hd(F ), G ∈ Hk(F ), and

g ∩G = δd(g ·G′) ∈ Hk−d(F ) for g ∈ H
d
(F ), G = G′ · F ∈ Hk(F ).

If F is smooth, then H•(F ) = H•(F ) and H•(F ) = H
•
(F ) (see Theorem 4.1), and the

latter equality remains valid for normal F (see Lemma 4.5). However, it would be interesting
to study pairwise difference between the groups H•, H

•
and H• for arbitrary F , because

they may be different:

Example (B.Kazarnovskii). Let A be the union of two planes xz = 0 in R3, and
let L be the x-coordinate line. Then L ⊂ A cannot be represented as the product of the
tropical surface (A, 1) and another tropical surface with constant weights. However, this line

(L, 1) ∈ H1(A) is Poincare dual to (A, p) ∈ HH
1
(A), where p : A → R equals |y|/2 for z = 0

and equals z for z 6= 0.

This example implies that H1(A) 6= H1(A), although the Poincare duality DF : H
•
(A) →

H•(A) is still an isomorphism (by Theorem 3.1, applied to the planes x = 0 and z = 0). A
stronger version of the preceding conjecture is as follows (this, in particular, motivates the
second remark after Theorem 3.1):

Conjecture. The Poincare duality DF : H
•
(F ) → H•(F ) is an isomorphism for

every normal tropical variety F .
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