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YOSHIDA LIFTS AND SELMER GROUPS

SIEGFRIED BÖCHERER, NEIL DUMMIGAN, AND RAINER SCHULZE-PILLOT

Abstract. Let f and g, of weights k ′ > k ≥ 2, be normalised newforms for
Γ0(N), for square-free N > 1, such that, for each Atkin-Lehner involution,
the eigenvalues of f and g are equal. Let λ | ℓ be a large prime divisor of the

algebraic part of the near-central critical value L(f⊗g, k+k ′−2
2

). Under certain
hypotheses, we prove that λ is the modulus of a congruence between the Hecke
eigenvalues of a genus-two Yoshida lift of (Jacquet-Langlands correspondents
of) f and g (vector-valued in general), and a non-endoscopic genus-two cusp
form. In pursuit of this we also give a precise pullback formula for a genus-four
Eisenstein series, and a general formula for the Petersson norm of a Yoshida
lift.

Given such a congruence, using the 4-dimensional λ-adic Galois representa-
tion attached to a genus-two cusp form, we produce, in an appropriate Selmer
group, an element of order λ, as required by the Bloch-Kato conjecture on
values of L-functions. (Here we must assume that the Galois representation
takes values in GSp4.)

1. Introduction

This paper is about congruences between modular forms, modulo large prime
divisors of normalised critical values of L-functions. The first instance of this might
be considered to be Ramanujan’s congruence modulo 691 between the Hecke eigen-
values of the cusp form ∆ and an Eisenstein series of weight 12 for SL2(Z), the
prime 691 occurring in the critical value ζ(12). Congruences modulo p between
Eisenstein series and cusp forms (now of weight 2 and level p) were used by Ribet
[R1] to prove his converse to Herbrand’s theorem. Interpreting the congruence as
a reducibility modulo p of the 2-dimensional Galois representation attached to the
cusp form, he used the non-trivial extension of 1-dimensional factors to construct
elements of order p in the class group of Q(ζp). Mazur and Wiles [MW] developed
this idea further in their proof of Iwasawa’s main conjecture. When Bloch and Kato
[BK] proved most of their conjecture in the case of the Riemann zeta function, the
Mazur-Wiles theorem was the main ingredient.

Let f and g, of weights k ′ > k ≥ 2 be normalised newforms for Γ0(N), for square-
free N > 1, such that, for each Atkin-Lehner involution, the eigenvalues of f and
g are equal. Let λ | ℓ be a large prime divisor of the algebraic part of the near-

central critical value L(f⊗g, k+k ′−2
2

) (or equivalently of its partner L(f⊗g, k+k ′

2
)).

In this paper, we seek a congruence modulo λ between the Hecke eigenvalues of
a Yoshida lift F = Ff,g, and some other genus-2 Hecke eigenform G, of the same

weight Symj⊗detκ, where j = k− 2 and κ = 2+ k ′−k
2

, and level Γ
(2)
0 (N). (See §1.1

and later sections for definitions and notation.) Proposition 9.1 (and Corollary 9.2)
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is what we are able to prove. If p is any prime p ∤ ℓN (where λ | ℓ) and µG(p) is
the eigenvalue of the Hecke operator T(p) acting on G, then the congruence is

µG(p) ≡ ap(f) + p(k
′−k)/2ap(g) (mod λ).

Our proof is modelled on Katsurada’s approach to proving congruences between
Saito-Kurokawa lifts and non-lifts [Ka], modulo divisors of the near-central critical
values of Hecke L-functions of genus-1 cuspidal eigenforms of level 1. Thus we
consider a “pullback formula” for the restriction to H2×H2 of a genus-4 Eisenstein
series to which a certain differential operator has been applied. The coefficient of
F⊗ F is some constant times a value of the standard L-function of F, divided by the
Petersson norm of F.

Section 6 contains a proof of the required pullback formula, using differential
operators from [B1] and [BSY], and taking care to determine the precise constants
occurring. Section 8 contains the proof of a formula for the Petersson norm of
the Yoshida lift F, generalising [BS1], which dealt with the analogous case where

k ′ = k = 2 and F is scalar-valued of weight κ = 2. The value L(f⊗g, k+k ′

2
) appears

as a factor in this formula, thus introducing λ into a denominator in the pullback
formula. The congruence is then proved by some application of Hecke operators
to both sides. For this we need to know the integrality at λ of the left-hand-side
(dealt with in Section 7), and, more problematically, that some Fourier coefficient
of a canonical scaling of the Yoshida lift F is not divisible by λ. (At this point
Katsurada was able to use an explicit formula for the Fourier coefficients of a Saito-
Kurokawa lift.) What we need on Fourier coefficients of Yoshida lifts can be reduced
to a weak condition on non-divisibility by λ of certain normalised L-values, in the
case that N is prime, wN = −1 and k/2, k ′/2 are odd, using an averaging formula
from [BS5].

Brown [Br] used the Galois interpretation of congruences (of Hecke eigenvalues)
between Saito-Kurokawa lifts and non-lifts, to confirm a prediction of the Bloch-
Kato conjecture. Likewise, in the earlier sections of this paper we use congruences
between Yoshida lifts and non-lifts to produce non-zero elements of λ-torsion in
the appropriate Bloch-Kato Selmer group. (See Proposition 5.1.) The required
cohomology classes come from non-trivial extensions inside the mod λ reduction
of Weissauer’s 4-dimensional Galois representation attached to G. This mod λ
representation is reducible thanks to the congruence.

The work of Brown is easily extended to other (not necessarily near-central)
critical values of Lf(s) if one assumes a conjecture of Harder [Ha, vdG] on the exis-
tence of congruences involving vector-valued genus-2 cusp forms. It is not possible
likewise to extend the present work to other critical values of the tensor-product
L-function using genus-2 Siegel modular forms. The problem is that we have two
fixed parameters k ′ and k, not allowing any freedom to vary j and κ. This is
explained in more detail at the end of [Du2].

M. Agarwal and K. Klosin, independently of us, had the idea of using congru-
ences between Yoshida lifts and non-lifts to construct elements in Selmer groups,
to support the Bloch-Kato conjecture for tensor product L-functions at the near
central point [AK]. Their approach to proving such congruences is different, re-
sulting in different conditions, and covers the scalar-valued case (k = 2). They use
a Siegel-Eisenstein series with a character, as in [Br], and take pains to avoid our
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assumption (in Lemma 4.1 and Proposition 5.1) that λ is not a congruence prime
for f or g.

Acknowledgements. We thank M. Agarwal, J. Bergström, J. Jia, H. Katsurada,
K. Klosin, C. Poor and D. Yuen for helpful communications.

1.1. Definitions and notation. Let Hn be the Siegel upper half plane of n by
n complex symmetric matrices with positive-definite imaginary part. Let Γ (n) :=

Sp(n,Z) = Sp2n(Z) = {M ∈ GL2n(Z) : tMJM = J}, where J =

(
0n In
−In 0n

)
.

For M =

[
A B
C D

]
∈ Γ (n) and Z ∈ Hn, let M(Z) := (AZ + B)(CZ + D)−1 and

J(M,Z) := CZ+D. Let Γ
(n)

0 (N) be the subgroup of Γ (n) defined by the condition
N | C. Let V be the space of a finite-dimensional representation ρ of GL(n,C). A

holomorphic function f : Hn → V is said to belong to the space Mρ(Γ
(n)

0 (N)) of

Siegel modular forms of genus n and weight ρ, for Γ
(n)

0 (N), if

f(M(Z)) = ρ(J(M,Z))f(Z) ∀M ∈ Γ (n)

0 (N), Z ∈ Hn.

Such an f has a Fourier expansion

f(Z) =
∑

S≥0

a(S)e(Tr(SZ)) =
∑

S≥0

a(S, f)e(Tr(SZ)),

where the sum is over all positive semi-definite half-integral matrices, and e(z) :=
e2πiz.

Denote by Sρ(Γ
(n)

0 (N)), the subspace of cusp forms, those that vanish at the
boundary. They are also characterised by a(S, f) = 0 unless S is positive-definite.

When ρ is of the special form detk ⊗Symj(Cn) (where Cn is the standard represen-
tation of GLn(C)), the Petersson inner product will be as in §2 of [Koz], and when
also n = 2, the Hecke operators T(m), for (m,N) = 1, will be defined as in §2 of

[Ar], replacing Sp4(Z) by Γ
(2)
0 (N). For a Hecke eigenform F, the incomplete spinor

and standard L-functions L(N)(F, s, spin) and L(N)(F, s, St) may be defined in terms
of Satake parameters as in [An], see also §20 of [vdG].

2. Critical values of the tensor product L-function

Let f ∈ Sk ′(Γ0(N)), g ∈ Sk(Γ0(N)) be normalised newforms (with k ′ > k ≥ 2),
K some number field containing all the Hecke eigenvalues of f and g. Attached to
f is a “premotivic structure” Mf over Q with coefficients in K. Thus there are 2-
dimensional K-vector spacesMf,B andMf,dR (the Betti and de Rham realisations)
and, for each finite prime λ of OK, a 2-dimensional Kλ-vector space Mf,λ, the λ-
adic realisation. These come with various structures and comparison isomorphisms,
such as Mf,B ⊗K Kλ ≃ Mf,λ. See 1.1.1 of [DFG] for the precise definition of a
premotivic structure, and 1.6.2 of [DFG] for the construction of Mf, which uses
the cohomology, with, in general, non-constant coefficients, of modular curves, and
pieces cut out using Hecke correspondences.

On Mf,B there is an action of Gal(C/R), and the eigenspaces M±
f,B are 1-

dimensional. On Mf,dR there is a decreasing filtration, with Fj a 1-dimensional
space precisely for 1 ≤ j ≤ k ′ − 1. The de Rham isomorphism Mf,B ⊗K C ≃
Mf,dR ⊗K C induces isomorphisms between M±

f,B ⊗ C and (Mf,dR/F) ⊗ C, where
F := F1 = . . . = Fk

′−1. Define ω± to be the determinants of these isomorphisms.
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These depend on the choice of K-bases forM±
f,B andMf,dR/F, so should be viewed

as elements of C×/K×. In exactly the same way there is also a premotivic structure
Mg, but since k

′ > k, it turns out that it is the periods of f that will show up in
the formula for the periods of the rank-4 premotivic structure Mf⊗g :=Mf ⊗Mg.

The eigenspaces M±
f⊗g,B are 2-dimensional. On Mf⊗g,dR there is a decreasing

filtration, with Ft a 2-dimensional space precisely for k ≤ t ≤ k ′− 1. The de Rham
isomorphism Mf⊗g,B ⊗K C ≃ Mf⊗g,dR ⊗K C induces an isomorphism between

M±
f,B ⊗ C and (Mf⊗g,dR/F

′) ⊗ C, where F ′ := Fk = . . . = Fk
′−1. Define Ω± ∈

C×/K× to be the determinants of these isomorphisms.
For use in the next section, we shall choose an OK-submodule Mf,B, gener-

ating Mf,B over K, but not necessarily free, and likewise an OK[1/S]-submodule
Mf,dR, generating Mf,dR over K, where S is the set of primes dividing N(k ′!).
We take these as in 1.6.2 of [DFG]. They are part of the “S-integral premotivic
structure” associated to f, and are defined using integral models and integral coef-
ficients. Actually, it will be convenient to enlarge S so that OK[1/S] is a principal
ideal domain, then replace Mf,B and Mf,dR by their tensor products with the new
OK[1/S]. These will now be free, as will be any submodules, and the quotients we
consider. Choosing bases, and using these to calculate the above determinants, we
pin down the values of ω± (up to S-units). Setting Mf⊗g,B := Mf,B ⊗Mg,B and
Mf⊗g,dR := Mf,dR ⊗Mg,dR, similarly we pin down Ω± (up to S-units). We just
have to imagine not including in S any prime we care about.

For each prime λ of OK (say λ | ℓ), the λ-adic realisation Mf,λ comes with a
continuous linear action of Gal(Q/Q). For each prime number p 6= ℓ, the restriction
to Gal(Qp/Qp) may be used to define a local L-factor [det(I−Frob−1

p p−s|M
Ip
f,λ)]

−1

(which turns out to be independent of λ), and the Euler product is precisely Lf(s).
(Here Ip is an inertia subgroup at p, and Frobp is a Frobenius element reducing

to the generating pth-power automorphism in Gal(Fp/Fp).) In exactly the same
way we may use the Galois representation Mf⊗g,λ = Mf,λ ⊗Mg,λ to define the
tensor product L-function Lf⊗g(s). According to Deligne’s conjecture [De], for each
integer t in the critical range k ≤ t ≤ k ′ − 1,

Lf⊗g(t)/Ω(t) ∈ K,

where Ω(t) = (2πi)tΩ(−1)t is the Deligne period for the Tate twist Mf⊗g(t).
It is more convenient to use 〈f, f〉 than Ω±, so we consider the relation between

the two. Calculating as in (5.18) of [Hi], using Lemma 5.1.6 of [De] and the latter
part of 1.5.1 of [DFG], one recovers the well-known fact that, up to S-units,

(1) 〈f, f〉 = ik ′−1ω+ω−c(f),

where c(f), the “cohomology congruence ideal”, is, as the cup-product of basis
elements for Mf,B, an integral ideal. Moreover, calculating as in Lemma 5.1 of
[Du1], we find that

Ω+ = Ω− = 2(2πi)1−kω+ω−.

Hence Deligne’s conjecture is equivalent to

Lf⊗g(t)

π2t−(k−1)〈f, f〉 ∈ K



YOSHIDA LIFTS AND SELMER GROUPS 5

(for each integer k ≤ t ≤ k ′ − 1). This is known to be true, using Shimura’s
Rankin-Selberg integral for Lf⊗g(s) [Sh4]. In the next section we consider the
integral refinement of Deligne’s conjecture.

3. The Bloch-Kato conjecture

We shall need the elements Mf,λ of the S-integral premotivic structure, for each
prime λ of OK. These are as in 1.6.2 of [DFG]. For each λ, Mf,λ is a Gal(Q/Q)-
stable Oλ-lattice in Mf,λ. Similarly we have Mg,λ, and Mf⊗g,λ := Mf,λ ⊗Mg,λ.

Let Aλ := Mf⊗g,λ/Mf⊗g,λ, and A[λ] := Aλ[λ] the λ-torsion subgroup. Let

Ǎλ := M̌f⊗g,λ/M̌f⊗g,λ, where M̌f⊗g,λ and M̌f⊗g,λ are the vector space and Oλ-

lattice dual toMf⊗g,λ and Mf⊗g,λ respectively, with the natural Gal(Q/Q)-action.
Let A := ⊕λAλ, etc.

Following [BK] (Section 3), for p 6= ℓ (where λ | ℓ, including p = ∞) let

H1
f(Qp,Mf⊗g,λ(t)) = ker

(
H1(Dp,Mf⊗g,λ(t)) → H1(Ip,Mf⊗g,λ(t))

)
.

HereDp is a decomposition subgroup at a prime above p, Ip is the inertia subgroup,
and Mf⊗g,λ(t) is a Tate twist of Mf⊗g,λ, etc. The cohomology is for continuous
cocycles and coboundaries. For p = ℓ let

H1
f(Qℓ,Mf⊗g,λ(t)) = ker

(
H1(Dℓ,Mf⊗g,λ(t)) → H1(Dℓ,Mf⊗g,λ(t)⊗Qℓ

Bcrys)
)
.

(See Section 1 of [BK] or §2 of [Fo1] for the definition of Fontaine’s ring Bcrys.) Let
H1

f(Q,Mf⊗g,λ(t)) be the subspace of those elements of H1(Q,Mf⊗g,λ(t)) that, for
all primes p, have local restriction lying in H1

f(Qp,Mf⊗g,λ(t)). There is a natural
exact sequence

0 −−−−→ Mf⊗g,λ(t) −−−−→ Mf⊗g,λ(t)
π−−−−→ Aλ(t) −−−−→ 0.

LetH1
f (Qp, Aλ(t)) = π∗H1

f (Qp,Mf⊗g,λ(t)). Define the λ-Selmer groupH1
f (Q, Aλ(t))

to be the subgroup of elements of H1(Q, Aλ(t)) whose local restrictions lie in
H1

f(Qp, Aλ(t)) for all primes p. Note that the condition at p = ∞ is superflu-
ous unless ℓ = 2. Define the Shafarevich-Tate group

X(t) =
⊕

λ

H1
f(Q, Aλ(t))

π∗H1
f(Q,Mf⊗g,λ(t))

.

Tamagawa factors cp(t) may be defined as in 11.3 of [Fo2] (where the notation

is Tam0 . . .). The λ part (for ℓ 6= p) is trivial if A
Ip
λ is divisible (for example if

p ∤ N). The following is equivalent to the relevant cases of the Fontaine-Perrin-
Riou extension of the Bloch-Kato conjecture to arbitrary weights (i.e. not just
points right of the centre) and not-necessarily-rational coefficients. (This follows
from 11.4 of [Fo2].)

Conjecture 3.1. Suppose that k ≤ t ≤ k ′−1. Then we have the following equality
of fractional ideals of OK[1/S]:

(2)
Lf⊗g(t)

Ω(t)
=

∏
p≤∞ cp(t) #X(t)

#H0(Q, A(t))#H0(Q, Ǎ(1− t))
.

In other words,

(3)
Lf⊗g(t)

π2t−(k−1)〈f, f〉 =

∏
p≤∞ cp(t) #X(t)

#H0(Q, A(t))#H0(Q, Ǎ(1 − t))c(f)
.
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Let f =
∑
an(f)q

n etc. Let ρf : Gal(Q/Q) → Aut(Mf,λ) be the 2-dimensional
λ-adic Galois representation attached to f. Let ρf be its reduction (mod λ), which
is unambiguously defined if it is irreducible. Likewise ρg and ρg.

Lemma 3.2. (1) Suppose that ρf and ρg are irreducible, that ℓ > k ′ and ℓ ∤
N. Suppose (for some p || N) that there is no normalised newform h of
level dividing N/p and trivial character, of weight k ′ with aq(h) ≡ aq(f)

(mod λ) for all primes q ∤ ℓN, or of weight k with aq(h) ≡ aq(g) (mod λ)
for all primes q ∤ ℓN. Then the λ part of cp(t) is trivial (for any t).

(2) If λ | ℓ with ℓ ∤ N and ℓ > k ′ + k − 1 then the λ part of cℓ(t) is trivial (for
any t).

Proof. (1) Applying a level-lowering theorem (Theorem 1.1 of [Di], see also
[R2, R3]), ρf and ρg are both ramified at p. However, since p || N, the
action of Ip on each ofMf,λ andMg,λ is unipotent, by Theorem 7.5 of [L].
It follows that both ρf⊗ρg and ρf⊗ρg have Ip-fixed subspace of dimension

precisely 2, hence that A
Ip
λ is divisible. As noted above, this implies that

the λ-part of cp(t) is trivial.
(2) It follows from Lemma 5.7 of [DFG] (whose proof relies on an applica-

tion, at the end of Section 2.2, of the results of [Fa]) that Mf⊗g,λ is the

Oλ[Gal(Qℓ/Qℓ)]-module associated to the filtered φ-module Mf⊗g,dR⊗Oλ

(identified with the crystalline realisation) by the functor they call V. (This
property is part of the definition of an S-integral premotivic structure given
in Section 1.2 of [DFG].) Given this, the lemma follows from Theorem
4.1(iii) of [BK]. (That V is the same as the functor used in Theorem 4.1 of
[BK] follows from the first paragraph of 2(h) of [Fa].)

�

Corollary 3.3. Assume the conditions of Lemma 3.2, and also that (for some
k ≤ t ≤ k ′ − 1)

ordλ

(
Lf⊗g(t)

π2t−(k−1)〈f, f〉

)
> 0.

Then the Bloch-Kato conjecture predicts that ordλ(#X(t)) > 0, so predicts that
the Selmer group H1

f (Q, Aλ(t)) is non-trivial.

The goal of this paper is to construct (under further hypotheses) a non-zero

element of H1
f(Q, Aλ(t)), in the case that t is the near-central point t = k ′+k−2

2
.

Lemma 3.4. If ℓ ∤ N, ℓ > k ′−1 and k < t < k ′−1 then the λ-parts of #H0(Q, A(t))
and #H0(Q, Ǎ(1− t)) are trivial.

Proof. If not, then either A[λ](t) or Ǎ[λ](1 − t) would have a trivial composition
factor. The composition factors of ρf|Iℓ are either χ0, χ1−k (in the ordinary case,
with χ the cyclotomic character) or ψ1−k, ψℓ(1−k) (in the non-ordinary case, with
ψ a fundamental character of level 2). This follows from theorems of Deligne
and Fontaine, which are Theorems 2.5 and 2.6 of [Ed]. Noting that ψ has order
ℓ2 − 1, with ψℓ+1 = χ, the composition factors of (ρf ⊗ ρg)|Iℓ are of the form

ψa, ψb, ψc, ψd, with 1 − ℓ2 < a, b, c, d ≤ 0 and each of a, b, c, d congruent to
either 0, 1−k, 1−k ′ or 2−k−k ′ (mod ℓ). Twisting by t is the same as multiplying
by ψ(ℓ+1)t. This exponent is congruent to t (mod ℓ), and k < t < k ′ − 1. Adding
to this the possible values for a, b, c, d (mod ℓ) can never produce 0 or 1. Hence
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neither A[λ](t) nor Â[λ](1 − t) can have a trivial composition factor (even when
restricted to Iℓ). �

4. A 4-dimensional Galois representation

Let f, g be as in §§2,3, both of exact level N > 1. Let λ | ℓ be a divisor of
Lf⊗g(t)

π2t−(k−1)〈f,f〉 , with ℓ ∤ N(k ′)! and t = (k ′ + k − 2)/2. Now suppose that f and

g have the same Atkin-Lehner eigenvalues for each p | N, and let Ff,g be some
genus-2 Yoshida lift associated with a factorisation N = N1N2, as in §8 below. (It

is of type Symj⊗detκ, with j = k− 2, κ = 2+ k ′−k
2

. Note that j+ 2κ− 3 = k ′ − 1.)

Suppose that there is a cusp form G for Γ
(2)
0 (N), an eigenvector for all the local

Hecke algebras at p ∤ N, not itself a Yoshida lift of the same f and g, such that
there is a congruence (mod λ) of all Hecke eigenvalues (for p ∤ N) between G and
Ff,g. In particular, if µG(p) is the eigenvalue for T(p) on G (defined as in §2.1 of

[Ar], replacing Sp4(Z) by Γ
(2)
0 (N)), then

(4) µG(p) ≡ ap(f) + p(k
′−k)/2ap(g) (mod λ), for all p ∤ N.

Under certain additional hypotheses, we prove in §9 below, the existence of such a
G. (We enlarge K if necessary, to contain the Hecke eigenvalues of G.)

Let ΠG be an automorphic representation of GSp4(A) associated to G as in 3.2
of [Sc] and 3.5 of [AS]. (This ΠG is not necessarily uniquely determined by G, but
its local components at p ∤ N are.) By Theorem I of [We2], there is an associated
continuous, linear representation

ρG : Gal(Q/Q) → GL4(Qℓ).

By enlarging K if necessary, we may assume that it takes values in GL4(Kλ).

Lemma 4.1. Suppose that there exists a G as above. Suppose also that λ is not a
congruence prime for f in Sk ′(Γ0(N)) or g in Sk(Γ0(N)), that ℓ > k ′, and that ρf
and ρg are irreducible representations of Gal(Q/Q).

(1) ΠG is not a weak endoscopic lift.
(2) ΠG is not CAP.

By λ not being a congruence prime for f in Sk ′(Γ0(N)), we mean that there does
not exist a different Hecke eigenform h ∈ Sk ′(Γ0(N)), and a prime λ ′ dividing λ
in a sufficiently large extension, such that ap(h) ≡ ap(f) (mod λ ′) for all primes
p ∤ ℓN.

Proof. (1) If ΠG were a weak endoscopic lift then there would have to exist
newforms f ′ ∈ Sk ′(Γ0(N)), h ∈ Sk(Γ0(N)) such that µG(p) = ap(f

′) +
p(k

′−k)/2ap(h) for almost all primes p. (See the introduction of [We2] for
a precise definition of weak endoscopic lift, and (3) of Hypothesis A of [We2]
for this consequence.) We have then

ap(f
′) + p(k

′−k)/2ap(h) ≡ ap(f) + p(k
′−k)/2ap(g) (mod λ),

for almost all primes p. Consequently

ρf ⊕ ρg ((k − k ′)/2) ≃ ρf ′ ⊕ ρh((k − k ′)/2).

Now ρf ′ could not be isomorphic to ρg ((k − k
′)/2), since the restrictions

to Iℓ give different characters (using ℓ > k
′). The only way to reconcile the
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two sides of the above isomorphism is for ρf ≃ ρf ′ . Given that λ is not a
congruence prime for f in Sk ′(Γ0(N)), we must have f ′ = f, and similarly
h = g. It follows from (4) and (6) of Hypothesis A of [We2] that ΠG must
be associated to some Yoshida lift F ′f,g of f and g. (Those p | N for which

the local component is Π+
v rather than Π−

v are the divisors of N1.) By (6)
of Hypothesis A of [We2], the multiplicity of ΠG in the discrete spectrum
is one. By Lemmes 1.2.8 and 1.2.10 of [SU], the local representation Πp of
GSp(4,Qp), for p | N, is that labelled VIa in [Sc]. By Table 3 of [Sc], the

spaces of Γ
(2)
0 (Zp)-fixed vectors in Πp are 1-dimensional. It follows that

(up to scaling), G = F ′f,g, contrary to hypothesis.

(2) By Corollary 4.5 of [PS], ΠG could only be CAP for a Siegel parabolic
subgroup, but then, as on p.74 of [We2], we would have k = 2 and

µG(p) = ap(f
′) + χ(p)pk

′/2 + χ(p)p(k
′/2)−1,

for some newform f ′ ∈ Sk ′(Γ0(N)) and χ a quadratic or trivial character.

This is incompatible with µG(p) ≡ ap(f) + p
(k ′−k)/2ap(g) (mod λ) and

the irreducibility of ρf and ρg.
�

Note that the proof of Hypothesis A (on which Theorem I also depends) is not
in [We2], but has now appeared in [We3].

Lemma 4.2. Let G be as in Lemma 4.1. Then the representation ρG is irreducible.

Proof. Suppose that ρG is reducible. It cannot have any 1-dimensional composition
factor, since ρG has 2-dimensional irreducible composition factors ρf and ρg((k −
k ′)/2). (The factors are well-defined, even though ρG isn’t.) Looking at the list,
in 3.2.6 of [SU], of possibilities for the composition factors of ρG, we must be in
Cas B, (iv) or (v). But as in 3.2.6 of [SU], ΠG would be CAP in one case, a weak
endoscopic lift in the other, and both of these are ruled out by Lemma 4.1. �

Let V , a 4-dimensional vector space over Kλ, be the space of the representation
ρG. Choose a Gal(Q/Q)-invariant Oλ-lattice T in V , and let W := V/T . Let ρG be
the representation of Gal(Q/Q) on W[λ] ≃ T/λT . This depends on the choice of T ,
but we may choose T in such a way that ρG has ρg((k−k

′)/2) as a submodule and
ρf as a quotient. Assume that this has been done.

Lemma 4.3. T may be chosen in such a way that furthermore ρf is not a submodule
of ρG, i.e. so that the extension of ρf by ρg((k − k

′)/2) is not split.

Proof. We argue as in the proof of Proposition 2.1 of [R1]. Choose an Oλ-basis
for T , so that ρG(Gal(Q/Q)) ⊂ GL4(Oλ). Assuming the lemma is false, we prove

by induction that for all i ≥ 1 there exists Mi =

(
I2 Si
02 I2

)
∈ GL4(Oλ) such

that Mi ρG(Gal(Q/Q))M−1
i consists of matrices of the form

(
A λiB

λC D

)
, with

A,B,C,D ∈M2(Oλ). Then letting S = limSi andM =

(
I2 S
02 I2

)
,MρG(Gal(Q/Q))M−1

consists of matrices of the form

(
A 02
λC D

)
, contradicting the irreducibility of ρG.
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By assumption, ρf is a submodule of ρG (i.e. ρG is semi-simple), so we haveM1.
This is the base step. Now suppose that we haveMi. We must try to produceMi+1.

Let P =

(
I2 02
02 λI2

)
. Then PiMi ρG(Gal(Q/Q))M−1

i P−i consists of matrices of

the form

(
A B

λi+1C D

)
. Now let U be a matrix of the form

(
I2 B ′

02 I2

)
such that

UPiMi ρG(Gal(Q/Q))M−1
i P−iU−1 consists of matrices of the form

(
Ã λB̃

λi+1C̃ D̃

)
.

This exists because we are assuming that not only ρG, but any other reduction with
submodule ρg((k − k

′)/2), is semi-simple. Now just let Mi+1 = P−iUPiMi. Note

that since P−iUPi =

(
I2 λiB ′

02 I2

)
, it is clear thatMi+1 is of the form

(
I2 Si+1

02 I2

)
,

with Si+1 ≡ Si (mod λi). �

We remark that, though the first T chosen may give semi-simple ρG, the lemma
shows there will be another choice that gives a non-trivial extension. Compare with
the situation for 5-torsion on elliptic curves in the isogeny class of conductor 11.

5. A non-zero element in a Bloch-Kato Selmer group

Let G be as in the previous section. Then by Lemma 4.3, ρG is a non-trivial
extension of ρf by ρg((k − k

′)/2):

0 −−−−→ ρg((k − k
′)/2) −−−−→ ρG −−−−→ ρf −−−−→ 0.

Applying HomFλ
(ρf, ) to the exact sequence, and pulling back the inclusion of the

trivial module in HomFλ
(ρf, ρf), we get a non-trivial extension of the trivial module

by Hom(ρf, ρg((k−k
′)/2). Thus we get a non-zero class inH1(Q,HomFλ

(ρf, ρg((k−

k ′)/2))), in the standard way. (Lifting the identity to a section s ∈ HomFλ
(ρf, ρG),

a representing cocycle is g 7→ g.s− s, where (g.s)(x) = g(s(g−1(x))).)
Now the dual of ρf is ρf(k

′ − 1), so

HomFλ
(ρf, ρg((k−k

′)/2))) ≃ ρf(k ′−1)⊗ρg((k−k ′)/2) ≃ ρf⊗ρg((k ′+k−2)/2).

In the notation of §3, this is A[λ]((k ′ + k − 2)/2). So we have a non-zero class
c ∈ H1(Q, A[λ]((k ′ + k − 2)/2)). By Lemma 3.4, H0(Q, Aλ((k

′ + k − 2)/2)) is
trivial, so we get a non-zero class d ∈ H1(Q, Aλ((k

′ + k − 2)/2)), the image of c
under the map induced by inclusion.

Proposition 5.1. Let f ∈ Sk ′(Γ0(N)), g ∈ Sk(Γ0(N)) be normalised newforms of
square-free level N > 1, with k ′ > k ≥ 2. Suppose that at each prime p | N, f
and g share the eigenvalue of the Atkin-Lehner involution. Let λ | ℓ be a divisor

of
Lf⊗g((k

′+k−2)/2)

πk ′−1〈f,f〉 , with ℓ ∤ N and ℓ > 3k ′+k−2
2

. Suppose also that λ is not a

congruence prime for f in Sk ′(Γ0(N)) or g in Sk(Γ0(N)), and that ρf and ρg are

irreducible representations of Gal(Q/Q). With G ∈ Sρ(Γ (2)0 (N)) as above, suppose

that the representation ρG : Gal(Q/Q) → GL4(Kλ) takes values in GSp4(Kλ). Then
the Bloch-Kato Selmer group H1

f(Q, Aλ((k
′ + k − 2)/2)) is non-zero.

Proof. We will show that the non-zero element d ∈ H1(Q, Aλ((k
′ + k − 2)/2))

satisfies resp(d) ∈ H1
f (Qp, Aλ((k

′ + k − 2)/2)) for each prime p.
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(1) If p ∤ ℓN then ρG|Ip is trivial, so certainly

0 −−−−→ ρg((k − k
′)/2)|Ip −−−−→ ρG|Ip −−−−→ ρf|Ip −−−−→ 0

splits, showing that resp(c) ∈ ker(H1(Qp, A[λ]((k
′+k−2)/2)) → H1(Ip, A[λ]((k

′+
k−2)/2))), hence that resp(d) ∈ ker(H1(Qp, Aλ((k

′+k−2)/2)) → H1(Ip, Aλ((k
′+

k−2)/2))). Since A
Ip
λ is divisible (in this case the whole of Aλ), this shows

that resp(d) ∈ H1
f(Qp, Aλ((k

′ + k − 2)/2)), as in Lemma 7.4 of [Br].
(2) If p = ℓ then we may prove resp(d) ∈ H1

f (Qp, Aλ((k
′ +k− 2)/2)) just as in

Lemma 7.2 of [Du1]. Since ℓ ∤ N, ρG|Dℓ
is crystalline; see Theorem 3.2(ii)

of [U], which refers to [Fa] and [CF]. It is for this case that we need the

condition ℓ > 3k ′+k−2
2

. This 3k ′+k−2
2

arises as the span of the “weights”
{1− k ′, 0} of ρ∗f and {(k ′ − k)/2, (k ′ + k − 2)/2} of ρg((k − k

′)/2). See the
proof of Lemma 7.2 of [Du1] for comparison.

(3) Now consider the case that p | N. As in the proof of Lemma 3.2(1), the
action of Ip on Mf,λ/λMf,λ and Mg,λ/λMg,λ is non-trivial and unipotent.
Hence we may choose a basis forW[λ] (notation as in the previous section)

such that for any σ ∈ Ip, ρG(σ) is represented by exp(tℓ(σ)Ñ), with tℓ :

Ip → Zℓ(1) the standard tamely ramified character and Ñ of the form

Ñ =

(
A B
02 A

)
, with A =

(
0 1
0 0

)
. By Theorem 2.2.5(1) of [GT], Ñ2 = 0.

To see that the conditions of that theorem are satisfied here, firstly ρG is
irreducible by Lemma 4.2, secondly ρG is symplectic by hypothesis. Lastly,
given that the local component Πp of ΠG has a non-zero vector fixed by

Γ
(2)
0 (Zp) but none fixed by GSp4(Zp), an inspection of Table 3 in [Sc]
reveals that it is always the case that either the subspace of Πp fixed by

the Siegel parahoric Γ
(2)
0 (Zp), or that fixed by a Klingen parahoric, is 1-

dimensional. (Note that if Πp had a non-zero vector fixed by GSp4(Zp)

then, by Theorem I of [We2], ρG would be unramified at p, contrary to ρG
having ρf as a subfactor.)

Since Ñ2 = 0, B must be of the form B =

(
0 b
0 0

)
. Writing elements of

HomFλ
(ρf, ρg((k − k ′)/2)) as 2-by-2 matrices in the obvious way, a short

calculation shows that c|Ip is represented by the cocycle σ 7→
(
0 tℓ(σ)b
0 0

)
,

which is the coboundary σ 7→ σ

((
0 0

0 b

))
−

(
0 0

0 b

)
. Since c|Ip = 0,

d|Ip = 0. As already noted in the proof of Lemma 3.2, A
Ip
λ is divisible, so

we may deduce as in (1) that resp(d) ∈ H1
f (Qp, Aλ((k

′ + k − 2)/2)).

�

Remark 5.2. If ΠG has multiplicity one in the discrete spectrum, then the condi-
tion about ρG being symplectic is satisfied, by Theorem IV of [We2]. (The symplectic
form comes from Poincaré duality.) It is expected always to hold. See the discussion
following 6.4 in [Du1] for more on this.
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6. The doubling method with differential operators

We mainly recall some properties of the doubling method in the setting of holo-
morphic Siegel modular forms (with invariant differential operators). As long as
one does not insist on explict constants and explict Γ -factors, everything works
more generally for arbitrary polynomial representations as automorphy factors, see
[BS3, I1].

6.1. Construction of holomorphic differential operators. We construct holo-
morphic differential operators on H2n with certain equivariance properties. We
combine the constructions from [B1] and [BSY]; a similar strategy was also used
by [Koz].
We decompose Z ∈ H2n as

Z = (zij) =

(
z1 z2
zt2 z4

)
(z1, z4 ∈ Hn).

We also use the natural embedding Sp(n)× Sp(n) →֒ Sp(2n), defined by

(M1,M2) 7→M
↑

1·M
↓

2 :=




A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2


 , Mi =

(
Ai Bi

Ci Di

)
∈ Sp(n).

The differential operator matrix ∂ = (∂ij) with ∂ij =
1+δij

2
∂

∂zij
will then be de-

composed in block matrices of size n, denoted by

∂ =

(
∂1 ∂2
∂t2 ∂4

)
.

We realize the symmetric tensor representation σν := Symν of GL(n,C) in the
usual way on the space Vν := C[X1, . . . Xn]ν (of homogeneous polynomials of degree
ν). For Vν -valued functions f on Hn, α,β ∈ C and M ∈ Sp(n,R) we define the
slash-operator by

(f |α,β,σν
M)(z) := det(cz + d)−α det(cz̄ + d)−βσν(cz + d)

−1f(M〈z〉).
We may ignore the ambiguity of the powers α,β ∈ C most of the time. If β = 0 or
ν = 0 we just omit them from the slash operator.

Proposition 6.1. For nonnegative integers µ, ν there is a (nonzero) holomorphic
differential operator Dα(µ, ν) mapping scalar-valued C∞ functions F on H2n to
Vν ⊗ Vν-valued functions on Hn × Hn, satisfying

(5) Dα(µ, ν)(F |α,β (M
↑

1M
↓

2) = (Dα(µ, ν)(F)) |
z1

α+µ,β,σν
M1 |z4

α+µ,β,σν
M2

for all M1,M2 ∈ Sp(n,R); the upper index at the slash operator indicates, for
which variables Mi is applied.

More precisely, there is a Vν⊗Vν -valued nonzero polynomial Q(α,T) = Q
(µ,ν)
α (T)

in the variables α and T (where T is a symmetric 2n × 2n matrix of variables),
with rational coefficients, such that

Dα(µ, ν) = Q
(µ,ν)
α (∂ij) |z2=0 .

The differential operator Dα(µ, ν) has the additional symmetry property

Dα(µ, ν)(F | V) = Dα(µ, ν)(F)
⋆,
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where V is the operator defined on functions on H2n by

F 7−→ (F | V)

((
z1 z2
zt2 z4

))
= F

((
z4 zt2
z2 z1

))

and for a function g on Hn × Hn we put g⋆(z,w) := g(w, z).

Remark 6.2. We allow arbitrary “complex weights” α here; note that there is no
ambiguity in this as long as we use the same branch of log det(CZ + D) to define
the det(CZ+D)s on both sides of (5).
Note also that the differential operators do not depend at all on β.

Proof. We recall from [B1] the existence of an explicitly given differential operator

Dα = (−1)nCn

(
α− n +

1

2

)
det(∂2) + ... + det(z2) · det(∂ij)

with

Cn(s) := s

(
s +

1

2

)
. . .

(
s+

n − 1

2

)
=
Γn(s+

n+1
2

)

Γn(s+
n−1
2

)


Γn(s) = π

n(n−1)

4

n−1∏

j=0

Γ

(
s−

j

2

)
 .

This operator is compatible with the action of Sp(n,R) × Sp(n,R) →֒ Sp(2n,R),
increasing the weight α by one (without restriction!), i.e.

Dα(F |α,β M
↑
1 ·M↓

2) = (DαF) |α+1,β M
↑
1 ·M↓

2, (Mi ∈ Sp(n,R))
We put

Dµ
α := Dα+µ−1 ◦ · · · ◦ Dα.

Remark 6.3. The combinatorics of this operator is not known explictly for general
µ.

The second type of differential operators maps scalar-valued functions on H2n

to C[X1, . . . , Xn]ν ⊗C[Y1, . . . , Yn]ν-valued functions on Hn ×Hn, changing the au-
tomorphy factor from detα on GL(2n,C) to (detα ⊗Symν) ⊠ (detα ⊗Symν) on
GL(n,C)×GL(n,C). This operator was introduced in [BSY]; it is a special feature
that we know the combinatorics in this case quite explictly:

(6)

Lνα :=
1

(2πi)να[ν]


 ∑

0≤2j≤ν

1

j!(ν− 2j)!(2 − α− ν)[j]
(D↑D↓)

j(D −D↑ −D↓)
ν−2j




z2=0

;

here we use the same notation as in [BSY]:

α[j] = α(α+ 1) . . . (α + j− 1) =
Γ(α+ j)

Γ(α)

D = ∂[(X1, . . . , Xn, Y1, . . . , Yn)
t]

D↑ = ∂[(X1, . . . , Xn, 0, . . . , 0)
t]

D↓ = ∂[(0, . . . , 0; Y1, . . . , Yn)
t],

where A[x] := xtAx; we remark that

D−D↑ −D↓ = (X1, . . . Xn; 0, . . . 0) · ∂2 · (0, . . . , 0; Y1, . . . Yn)t.
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In [BSY] the weight was a natural number k, but everything works also for arbitrary
complex α instead. (Due to the normalization of [BSY], we have to omit certain
finitely many α.)
We put

Dα(µ, ν) := L
ν
α+µ ◦ Dµ

α.

This operator has all the requested properties, except for the fact that the coeffi-
cients are not polynomials in α but rational functions. �

6.2. Some combinatorics. Then we consider the function hα,β defined on H2n

by

hα,β(Z) := det(z1 + z2 + z
t
2 + z4)

−αdet(z1 + z2 + z
t
2 + z4)

−β

and we note that (following [BCG])

Dµ
αhα,β = Aα,µ · hα+µ,β

with

Aα,µ =
Γn(α + µ)

Γn(α)

Γn(α + µ− n
2
)

Γn(α− n
2
)

and also

Lναhα,β = Bα,νσν(z1 + z4)
−1
(∑

XiYi

)ν
det(z1 + z4)

−αdet(z1 + z4)
−β

with

Bα,ν =
1

(−2πi)νν!

Γ(2α − 2+ ν)

Γ(2α− 2)

Γ(α− 1)

Γ(α+ ν − 1)
,

following [BSY, Lemma 4.2].

For later purposes we summarize here some additional properties of these differen-
tial operators:
First we note that Dα(µ, ν) is a homogeneous polynomial (of degree nµ+ν) in the
partial derivatives; we decompose it as

Dα(µ, ν) = M+R,
where the “main term “ M denotes the part free of derivatives w.r.t. z1 or z4.

Lemma 6.4. a) All the monomials occuring in the “remainder term” R have
positive degree in the partial derivatives w.r.t. z1 and z4.
b) The “main term” M is of the form

M = Cα(µ, ν)
(
D −D↑ −D↓

)ν
det(∂2)

µ

with

Cα(µ, ν) =
1

(α + µ)[ν]ν!

µ−1∏

j=0

Cn

(
α− n +

µ+ ν ′ + j
2

) (
ν ′ :=

ν

n

)
.

c) For the polynomial Qµ,ν
α (T) with the symmetric matrix T =

(
T1 T2

Tt
2 T4

)
of

size 2n this means

(7) Qµ,ν
α (T) = Cα(µ, ν)

(
2(X1, . . . , Xn)T2(Y1, . . . , Yn)

t
)ν

det(T2)
µ + (∗) ,

where (*) contains only contributions with positive degree in T1 and T4.
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Proof. a) The formula (12) in [B1] shows that in Dα an entry of ∂1 always appears
together with an entry of ∂4. The same is then true for Dµ. Furthermore, the
explict formula (6) for Lνα+µ shows that only the contribution of j = 0 is free of
partial derivatives w.r.t. z1; it is at the same time the only contribution free of
derivatives w.r.t. z4.
b) We define an element M =M(X1, . . . , Xn; Y1, . . . , Yn) of Vν ⊗ Vν by

M := Dα(µ, ν)(exptr(z2)) = M(exptr(z2)).

The transformation properties of Dα(µ, ν), applied for
(
At 0

0 A−1

)↑

,

(
A 0
0 A−t

)↓

(A ∈ GL(n,R))

yield

M((X1, . . . , Xn) ·A; Y1, . . . , Yn) =M(X1, . . . , Xn; (Y1, . . . , Yn)A
t) (A ∈ GL(n,C)).

Such a vector in Vν⊗Vν is unique up to constants and is therefore a scalar multiple
of (

∑
XiYi)

ν, i.e. M = c · (2∑i XiYi)
ν for an appropriate constant c = Cα(µ, ν).

To understand M we study its action on those functions on H2n, which depend
only on z2; it is enough to look at functions of type fT (z2) := exptr(Tz2) with
T ∈ R(n,n), det(T) 6= 0. Then

Dα(µ, ν)fT = det(T)−αDα(µ, ν)(f1n
|α

(
T 0

0 T−t

)

= det(T)−α (Dα(µ, ν)f1n
) |z1

α+µ,ν

(
T 0
0 T−t

)

= det(T)µc · (2
∑

i

XiT
tYi)

ν

= c(D −D↑ −D↓)νdet(∂2)
µfT .

It remains to determine the coefficient Cα(µ, ν); we compute Ds(µ, ν)det(z2)
s in

two ways, using the standard formulas (see e.g. [BCG, Section 1])

det(∂2)det(z2)
s = Cn

( s
2

)
det(z2)

s−1

Dα det(z2)
s = (−1)nCn

( s
2

)
Cn(α− n+

s

2
)det(z2)

s−1.

Then

Dα(µ, ν)det(z2)
s = Cα(µ, ν)




µ−1∏

j=0

Cn

(
s− j

2

)
 {
(
D−D↑ −D↓

)ν
det(z2)

s−µ} |z2=0

and on the other hand

Dα(µ, ν)det(z2)
s = Lνα+µ(Dµ

α det(z2)
s)

=

µ−1∏

j=0

Cn

(
s − j

2

)
Cn

(
α− n +

s+ j

2

)
{Lνα+µ det(z2)

s−µ} |z2=0

=

µ−1∏

j=0

Cn

(
s − j

2

)
Cn

(
α− n +

s+ j

2

)
1

(α+ µ)[ν]ν!
{
(
D−D↑ −D↓

)ν
det(z2)

s−µ} |z2=0
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If ν = nν ′ is a multiple of n, then s := µ+ ν ′ gives nonzero contributions and we

get

Cα(µ, ν) =
1

(α+ µ)[ν]ν!

µ−1∏

j=0

Cn

(
α− n +

µ+ ν ′ + j
2

)
.

Actually, this formula makes sense (and is also valid) for arbitrary ν. �

6.3. Doubling method with the differential operators Dα(µ, ν). The in-
ner product (

∑
aiXi,

∑
biXi) =

∑
aibi on V1 := C[X1, . . . Xn]1 induces a “pro-

duit scalaire adapté” (see [Go]) on the ν-fold symmetric tensor product Vν =

Symν(V1) = C[X1, . . . Xn]ν by

{α1 · · · · · αν, β1 · · · · · βν} =
1

ν!

∑

τ

ν∏

j=1

(ατ(j), βj) (αi, βj ∈ V1),

where τ runs over the symmetric group of order ν. This inner product is invariant
under the action of unitary matrices via Symν.
Note that for all v ∈ C[X1, . . . , Xn]ν we have

{
v,
(∑

XiYi

)ν}
= ṽ,

where ṽ denotes the same polynomial as v, but with the variables Yi instead of the
Xi.
We describe here the general pullback formula for level N Eisenstein series (N
squarefree).
We put

G
(2n)

k (Z, s) =
∑

M∈Γ
(2n)

0
(N)∞\Γ

(2n)

0
(N)

det(CZ+D)−k−s det(CZ+D)−s.

For a cusp form F ∈ Sρ(Γ (n)

0 (N)) with ρ = detk+µ ⊗σν and z = x+iy,w = u+iv ∈
Hn we get

∫

Γ
(n)

0
(N)\Hn

{

ρ(
√
y)F(z), ρ(

√
y)Ds+k(µ, ν)G

(2n)

k

((
z 0

0 −w̄

)
, s̄

)
det(y)s det(v)s

}

dωn

(8) = γn(k, µ, ν, s)
∑

M

F(w) | TN(M)det(M)−k−2s.

Here dωn = det(y)−n−1dxdy,M runs over all (integral) elementary divisor matri-

ces of size n withM ≡ 0 mod N, and TN(M) denotes the Hecke operator associated

to the double coset Γ
(n)

0 (N)

(
0 −M−1

M 0

)
Γ
(n)

0 (N).

To compute the archimedean factor γ one should keep in mind that the unfolding
of the integral leads to an integration over Hn involving Dk+s(µ, ν)hk+s,s. Then γ
is naturally a product of (essentially) three factors

γn(k, µ, ν, s) = i
nk+nµ+ν2n(n−k−µ−2s−ν+1Ak+s,µBk+µ+s,νI(s+ k+ µ− n− 1, ν)
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with a Hua type integral

I(α, ν) =
π

n(n+1)

2

α + n+ ν

n−1∏

j=1

(2α + 2j+ 1)(n + j+ 2α)[ν]

(α + j)Γ(ν+ n + j+ 2α + 1)
.

We refer to [BSY, Sect.3], see also [B3, 2.2] for details.

6.4. Doubling method with the differential operators Dk(µ, ν). The differ-
ential operator Dk+s(µ, ν) was applied directly to the Eisenstein series of “weight”
k + s. If we use the Hecke summation not in s = 0 but in s1 := 2n+1

2
− k for an

Eisenstein series of degree 2n, we should better use a differential operator acting

on the weight k Eisenstein series E
(2n)

k := G
(2n)

k · (det ImZ)s to get holomorphic
modular forms (in particular theta series) after evaluating in s = s1. One might
try to use the calculations of Takayanagi [Tak]. Note however that the results of
[Tak] are applicable only for the case µ = 0; to incorporate the differential operator
Dµ

k there is quite complicated, see also [Koz]. We avoid this difficulty by observing
that the two types of differential operators are actually not that different:
By

F 7−→ Dk,s(µ, ν)(F) := det(y)s det(v)sDk+s(µ, ν)(det(Y)
−s × F)

we can define a new (nonholomorphic) differential operator mapping functions F on
H2n to C[X1, . . . , Xn]ν⊗C[Y1, . . . , Yn]ν valued functions on Hn×Hn; this operator
has exactly the same transformation properties as Dk(µ, ν).
Starting from the observation that Dk,s(µ, ν) maps holomorphic functions on H2n

to nearly holomorphic functions on Hn × Hn we get from the theory of Shimura
[Sh2, Sh3] in the same way as in [BCG, section 1] an operator identity

(9) Dk,s(µ, ν) =
∑

ρi,ρj

δ(z1)
ρj

⊗ δ(z4)
ρj

◦ Ds(ρi, ρj).

Here the ρi, ρj run over finitely many polynomial representations of GL(n,C) and
Ds(ρi, ρj) denotes a Vρ1

⊗ Vρj
-valued holomorphic differential operator (a poly-

nomial in the ∂i,j, evaluated at z2 = 0; it changes the automphy factor detk on

GL(2n,C) to (detk ⊗ρ1)⊠ (detk ⊗ρ2) on GL(n,C)×GL(n,C)). As is usual in the
theory of nearly holomorphic functions, we have to avoid finitely many weights k
here. Furthermore the δρi

, δρj
are non-holomorphic differential operators on Hn,

changing automorphy factors from detk ⊗ρ to detk+µ ⊗Symν. Actually, by invari-
ant theory, holomorphic differential operators Ds(ρi, ρj) with the transformation
properties described above only exist in the case ρi = ρj see [I1].

If δ
(z1)
ρ ⊗ δ(z4)

ρ is the identity, then ρ = detk+µ ⊗ Symν and (at least for k ≥ n)
Ds(ρ, ρ) is a scalar multiple of Dk(µ, ν), because the space of such differential op-
erators is one-dimensional. The decomposition (9) can then be rewritten as

(10) ps(k)Dk,s(µ, ν) = ds(k)Dk(µ, ν) +K
where ps(k) and ds(k) are polynomials in k and K is a nonholomorphic differen-
tial operator with the same transformation properties as Dk(µ, ν) and with the
additional property that K(F) is orthogonal to all holomorphic cusp forms in the
variables z1 or z4 (for any C∞ automorphic form on H2n with suitable growth
properties). Note that (10) holds now for all weights k, if we request the finitely
many exceptions from (9) to be among the zeroes of ps(k). We also observe that
Dk,s(µ, ν) is a homogeneous polynomial of degree nµ+ν in the variables (∂ij)|z2=0
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and the entries of y−1
1 and y−1

4 and K consists only of monomials whose joint degree

in ∂1 and y−1
1 as well as in ∂4 and y−1

4 are both positive, in particular, K cannot
contribute monomials that only involve entries of ∂2.

Therefore (as in [BCG]) we may compare the coefficients of det(∂2)
µ
(∑

i,j
∂

∂i,n+j
XiYj

)ν

on both sides: We get

ps(k)Ck+s(µ, ν) = ds(k)Ck(µ, ν).

From this we obtain a version of the pullback formula (8)

∫

Γ
(n)

0
(N)\Hn

{

ρ(
√
y)F(z), ρ(

√
y)Dk(µ, ν)E

(2n)

k

((
z 0

0 −w̄

)
, s̄

)}
dωn

(11) =
ps(k)

ds(k)
· γn(k, µ, ν, s)

∑

M

F | TN(M)det(M)−k−2s.

We need the result above for the pullback formula applied for a degree 4, weight

2 Eisenstein series at s1 = 1
2
: we consider the holomorphic modular form

E(4)
2 := Ress=s1E

(4)
2 (Z, s)

Then we get for a cusp form F ∈ Sρ(Γ (2)0 (N)), with ρ = det2+µ ⊗Symν,

〈F,D2(µ, ν)E(4)
2 (∗,−w̄)〉 = Ress=s1〈F,D2(µ, ν)E

(4)
2 (∗,−w̄)〉

= Ress=s1

ps(2)

ds(2)
〈F,D2+s(µ, ν)G

(4)
2 det(y)s det(v)s〉

= c · Ress=s1

(
∑

M

F(w) | TN(M)det(M)−2−2s

)
.(12)

The relevant constant is then

(13) c =
C2(µ, ν)

C2+ 1
2
(µ, ν)

γ2

(
2, µ, ν,

1

2

)
.

6.5. Standard-L-functions at s = 1 and s = 2, in particular for Yoshida

lifts of degree 2.

6.5.1. An Euler product. If F ∈ Sρ(Γ (n)

0 (N)) is an eigenform of all the Hecke opera-
tors TN(M) with eigenvalues λN(M), then the Dirichlet series of these eigenvalues

can be written in terms of the (good part of) the standard L-function D
(N)

F (s):

∑
λN(M)det(M)−s =

 ∑

det(M)|N∞

det(M)−s


× 1

ζ(N)(s)
∏n

i=1 ζ
(N)(2s − 2i)

D
(N)

F (s − n).

The integral representations studied above allow us to investigate (for degree 2)
the behaviour of such a standard L-function at s = 1 and s = 2; we remark that
s = 1 is not a critical value for the standard L-function! Note that with n = 2 in
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the formula just above, s−n = 1 when s = 3, which matches s = 1/2 (so 2s+2 = 3)
in (12).
If F is actually a Yoshida lift of level N associated to two elliptic cuspidal newforms

f ∈ Sk ′(Γ0(N)), g ∈ Sk(Γ0(N)), with k ′ ≥ k, then F ∈ Sρ(Γ
(2)
0 (N)) with ρ =

det2+
k ′−k

2 ⊗σk−2 is indeed an eigenform of all the Hecke operators TN(M):
(14)
∑

M

F | TN(M)det(M)−s =
λ

Nns
ζ(N)(s−2)L(N)

(
f⊗ g, s+ k ′ + k

2
− 3

)
ΛN(s−2)·F

where λ = ±Nn(n−1)/2 = ±N (with the sign depending only on N),

ΛN(s) =
∏

p|N

2∏

j=1

(1− p−s−2+j)−1

and

L(N)(f1 ⊗ f2, s) :=
∏

p∤N

(1− αpβpp
−s)(1− αpβ

′
pp

−s)(1−α ′
pβpp

−s)(1−α ′
pβ

′
pp

−s).

Moreover F |ρ

(
02 −12

N · 12 02

)
is also an eigenfunction of all the TN(M) with

the same eigenvalues as F; for details on the facts mentioned above we refer to
[BS1, BS3].

6.5.2. A version of the pullback formula for the Eisenstein series attached to the
cusp zero. We can consider the same doubling method using the Eisenstein series

F
(2n)

k (Z, s) :=
∑

C,D

det(CZ+D)−k−s det(CZ̄+D)−s,

F(2n)

k (Z, s) := F
(2n)

k (Z, s)× det(Y)s,

where (C,D) runs over non-associated coprime symmetric pairs with the additional
condition “det(C) coprime to N” (this is the Eisenstein series “attached to the
cusp zero”). The reason for using both versions is that in our previous papers

[BS1, BS3] we mainly worked with E
(2n)

k , whereas the Fourier expansion is more

easily accessible for the Eisenstein series F(2n)

k .
The two doubling integrals are linked to each other by the elementary relation

E
(2n)

k (Z, s) |k

(
02n −12n

N · 12n 02n

)
= N−kn−2nsF(2n)

k (Z, s).

Due to this relation, substituting F for E in the doubling method just means (for
Yoshida-lifts) a modication by a power of N (the factor N−ns in (14) goes away).
For the case of arbitrary cusp forms we refer to [BCG, BKS].
We write down the relevant cases explicitly for the Yoshida lift F from above:
The residue of the standard L-function at s = 1 corresponds to a near center value
for L(f1 ⊗ f2, s):
The equation (12) then becomes (with F(4)

2 := Ress= 1
2
F(4)
2 )

(15)

〈
F,D2

(
k ′ − k
2

, k− 2

)
F(4)

2 (∗,−w̄)
〉
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= cλ
∏

p|N

(1 − p−1)ΛN(1)
1

ζ(N)(3)ζ(N)(4)ζ(N)(2)
L(N)

(
f⊗ g, k

′ + k
2

)
· F(w)

with

c =
C2(

k ′−k
2
, k− 2)

C2+ 1
2
(k

′−k
2
, k− 2)

· γ2
(
k ′ − k
2

, k− 2,
1

2

)
.

To treat the critical value of the standard L-function at s = 2, we can directly use

the formula (8), taking tacitly into account that F(4)
4 (Z) := F(4)

4 (Z, s) |s=0 defines
a holomorphic modular form (see [Sh1, Prop.10.1]) by Hecke summation.
This yields

〈
F,D4

(
k ′ − k
2

− 2, k − 2

)
F(4)

4 (∗,−w)
〉

(16)

= γ2

(
4,
k ′ − k
2

− 2, k − 2, 0

)
×

(±N) ΛN(2)
ζ(N)(2)

ζ(N)(4)ζ(N)(6)ζ(N)(4)
L(N)

(
f⊗ g, k

′ + k
2

+ 1

)
· F(w).

In the case of a general cusp form F ∈ Sρ(Γ
(2)
0 (N)), which we assume to be an

eigenfunction of the Hecke operators “away from N”, we can write
〈
F,D4

(
k ′ − k
2

− 2

)
F(4)

4 (∗,−w)
〉

= γ2

(
4,
k ′ − k

2
− 2, k − 2, 0

)
× D

(N)

f (2)

ζ(N)(4)ζ(N)(6)ζ(N)(4)
T (F)(w)

where T is an (infinite) sum of Hecke operators at the bad places.

7. Integrality properties

The known results about integrality of Fourier coefficients of Eisenstein series
are not sufficent for our purposes because they deal only with level one and large
weights. We do not aim at the most general case, but just describe how to adapt
the reasoning in [B4] to the cases necessary for our purposes.

7.1. The Eisenstein series. We collect some facts about the Fourier coefficients
of Eisenstein series

Fmk (Z) := Fm
k (Z, s)|s=0

for even m = 2n with k ≥ m+4
2

This function is known to define a holomorphic modular form with Fourier expan-
sion

Fkm(Z) =
∑

T≥0

akm(T,N)exp(2πitr(TZ)).

We first treat T of maximal rank. We denote by d(T) := (−1)n det(2T) the
discriminant of T and by χT the corresponding quadratic character, defined by

χT (.) :=
(

d(T)
.

)
.



20 SIEGFRIED BÖCHERER, NEIL DUMMIGAN, AND RAINER SCHULZE-PILLOT

Then akm(T,N) = 0 unless T > 0, see e.g. [BCG, prop.5.2].
If T > 0 then the Fourier coefficient is of type

akm(T) = Ak
m det(T)k−

m+1
2

∏

p∤N

αp(T, k)

where αp(T, k) denotes the usual local singular series and

Ak
m = (−1)

mk
2

2m

Γm(k)
πmk.

We can express the nonarchimedian part by a normalizing factor and polynomials
in p−k:

∏

p∤N

αp(T, k) =
1

ζ(N)(k)
∏n

j=1 ζ
(N)(2k − 2j)

×

∑

G

det(G)−2k+m−1L(N)(k − n, χT [G−1])
∏

p∤N

βp(T [G
−1], k).

Here G runs over

GL(n,Z)\{M ∈ Z(n,n) | det(M) coprime to N}

and the βp(T) denote the “normalized primitive local densities”. In general they
are polynomials in p−k with integer coefficients and they are equal to one for all p
coprime to d(T), see e.g. [B4].
Let fT be the conductor of the quadratic character χT and ηT the corresponding
primitive character. Then

L(N)(k − n, χT ) =
∏

p|N

(1 − χT (p)p
−k+n)L(k − n, χT )

=
∏

p|N

(1 − χT (p)p
−k+n)

∏

p|d(T)

(1− η(p)pn−k)L(k − n, ηT )

We quote from [B4] that
(
d(T)

fT

)k−m
2 ∏

p∤N

(1− ηT (p)p
n−k)βp(T, k) ∈ Z.

We may therefore just ignore this factor. Then as in [B4] we use the functional
equation of the Riemann zeta function and the Dirichlet L-functions attached to
quadratic characters.
We get (for 4 | k) that

akm(T,N) ∈
∏

p|N


(1− p−k)

n∏

j=1

(1− p−2k+2j)


 2n k

Bk

1

N ∗
2k−m

n∏

j=1

k− j

B2k−2j
· 1

Nk−n
·Z

Here the factor Nk−n takes care of the possible denominator arising from∏
p|N(1− χT (p)p

−k+n) and

N ∗
2k−m :=

∏

p|N2k−m

p1+νp(k−n),
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where N2k−m is the denominator of the Bernoulli number B2k−m.
If k ≡ 2 mod 4 there is a similar formula, see [B3].

In case of lower weights (i.e. m+4
2

≤ k ≤ m) we have to assure that Fourier coeffi-
cients of lower rank do not occur. For this we have to study the Fourier expansion
of Fkm(Z, s) near the point s = 0 (after analytic continuation). The analysis of
the order of singular series, Γ -factors and confluent hypergeometric functions done
mainly by Shimura [Sh1] (see also the very explicit counting of orders in Haruki’s
work [Har]) shows that indeed nontrivial Fourier coefficients occur only for T of
maximal rank.

Remark 7.1. The Fourier coefficients of F44(N) are in

∏

p|N

(
(1− p−4)2(1 − p−6)

) 9

2N2
· Z ⊆ 9

N16
· Z
[
1

2

]
.

7.2. The differential operators. By definition, the coefficients of the differential
operator Dµ

k are in Z[1/2]; here we view Dµ
k as a polynomial in the variables z2 and

∂ij.
Concerning the integrality properties of Lνk , we just remark that because of

(2− k− ν)[j] = (−1)j(k + ν− j− 1)[j] = (−1)j
(k + ν − 2)!

(k + ν− j− 1)!

it is sufficient to look at

(k + ν − j− 1)!

k[ν]j!(ν− 2j)!(k + ν − 2)!
(0 ≤ j ≤

[ν
2

]
).

Taking into account that ν!
j!(ν−2j)!

∈ Z and

(k+ ν− j− 1)!

(k + ν− 2)!
∈ 1

(k + ν− [ν
2
])...(k + ν− 2)

· Z

we see that the coefficients of Lνk are in

1

k[ν]ν!(k+ ν− 2)...(k + ν − [ν
2
])
· Z.

Putting things together, we see that Dk(µ, ν) has coefficients in

1

(k + µ)[ν]ν!(k+ µ+ ν − 2)...(k + µ+ ν− [ν
2
])

· Z [1/2] .

Remark 7.2. The Fourier coefficients of D4(µ, ν)F
4
4 are in

1

(4+ µ)[ν]ν!(4+ µ+ ν− 2)...(4 + µ+ ν− [ν
2
])
× 9

N16
Z [1/2] .

This remark does not claim, that the denominator given there is the best pos-
sible one, there may be additional cancelations of denominators coming from the
restriction.
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8. The Petersson norm of the Yoshida lift

Take f =
∑
anq

n, g =
∑
bnq

n as in the introduction, of weights k ′ and k
respectively and assume that for all primes p dividing the common (square-free)
level N of f, g both functions have the same Atkin-Lehner eigenvalue ǫp. Let
k ′ = 2ν1 + 2, k = 2ν2 + 2. Choose a factorization N = N1N2, where N1 is
the product of an odd number of prime factors, and let D = D(N1, N2) be the
definite quaternion algebra over Q, ramified at ∞ and the primes dividing N1. Let
R = R(N1, N2) be an Eichler order of level N = N1N2 in D(N1, N2) with (left)
ideal class number h.

We recall (and slightly modify) some notation from §1 of [BS3]: For ν ∈ N
let U

(0)
ν be the space of homogeneous harmonic polynomials of degree ν on R3

and view P ∈ U
(0)
ν as a polynomial on D

(0)
∞ = {x ∈ D∞|tr(x) = 0} by putting

P(
∑3

i=1 xiei) = P(x1, x2, x3) for an orthonormal basis {ei} of D
(0)
∞ with respect to

the norm form n on D. The representations τν of D×
∞/R

× of highest weight (ν) on

U
(0)
ν given by (τν(y))(P)(x) = P(y

−1xy) for ν ∈ N give all the isomorphism classes
of irreducible rational representations of D×

∞/R
×.

For an irreducible rational representation (Vτ, τ) (with τ = τν as above) of
D×

∞/R
× we denote by A(D×

A , R
×
A , τ) the space of functions φ : D×

A → Vτ satisfying

φ(γxu) = τ(u−1
∞ )φ(x) for γ ∈ D×

Q and u = u∞uf ∈ R×A , where R×A = D×
∞ ×

∏
p R

×
p is the adelic group of units of R. Let D×

A = ∪r
i=1D

×yiR
×
A be a double coset

decomposition with yi,∞ = 1 and n(yi) = 1. A function in A(D×
A , R

×
A , τ) is then

determined by its values at the yi. We put Iij = yiRy
−1
j , Ri = Iii and let ei

be the number of units of the order Ri. On the space A(D×
A , R

×
A , τ) we have for

p ∤ N Hecke operators T̃(p) defined by T̃(p)φ(x) =
∫

D×
p

φ(xy−1)χp(y)dy where χp

is the characteristic function of {y ∈ Rp|n(y) ∈ pZ×
p }. They commute with the

involutions w̃p and are given explicitly by T̃(p)φ(yi) =
r∑

j=1

Bν
ij(p)φ(yj), where the

Brandt matrix entry Bν
ij(p) is given as

Bij(p) = B
(ν)
ij (p) =

1

ej

∑

x∈yjRy−1
i

n(x)=p

τ(x) ,

hence is itself an endomorphism of the representation space U
(0)
ν of τ.

From [Ei, H-S, Shz, J-L] we know then that the essential part Aess(D
×
A , R

×
A , τ)

consisting of functions φ that are orthogonal (under the natural inner product) to
all ψ ∈ A(D×

A , (R
′
A)

×, τ) for orders R ′ strictly containing R is invariant under the

T̃(p) for p ∤ N and the w̃p for p∤N and hence has a basis of common eigenfunctions

of all the T̃(p) for p ∤ N. Moreover in Aess(D
×
A , R

×
A , τ) strong multiplicity one

holds, i.e., each system of eigenvalues of the T̃(p) for p ∤ N occurs at most once,
and the eigenfunctions are in one to one correspondence with the newforms in the
space S2+2ν(N) of elliptic cusp forms of weight 2 + 2ν for the group Γ0(N) that
are eigenfunctions of all Hecke operators (if τ is the trivial representation and R is
a maximal order one has to restrict here to functions orthogonal to the constant
function 1 on the quaternion side in order to obtain cusp forms on the modular
forms side).
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Let φ1 = φ
(N1,N2)

1 : D×
A → U

(0)
ν1

and φ2 = φ
(N1,N2)

2 : D×
A → U

(0)
ν2

correspond
to f and g respectively with respect to the choice of N1, N2 and hence of D =

D(N1, N2). Let F = Ff,g = Fφ1,φ2
(which of course also depends on the choice

of N1, N2) be the Yoshida lift; it takes values in the space Wρ of the symmetric

tensor representation ρ = detκ ⊗Symj(C2), j = k − 2, κ = 2 + k ′−k
2

and is a Siegel

cusp form F ∈ Sρ(Γ
(2)
0 (N)). To describe it explicitly we notice that the group

of proper similitudes of the quadratic form q(x) = n(x) on D (with associated
symmetric bilinear form B(x, y) = tr(xȳ), where tr denotes the reduced trace on
D) is isomorphic to (D××D×)/Z(D×) (as algebraic group) via (y, y ′) 7→ σy,y ′ with
σy,y ′(x) = yx(y ′)−1, the special orthogonal group is then the image of {(y, y ′) ∈
D× ×D× | n(y) = n(y ′)}.

We denote by H the orthogonal group of (D,n), by H+ the special orthogonal
group and by K (resp. K+) the group of isometries (resp. isometries of determinant

1) of the lattice R in D. It is well known that the H+(R)-space U(0)
ν1

⊗ U
(0)
ν2

is
isomorphic to the H+(R)-space Uν1,ν2

of C[X1, X2]-valued harmonic forms on D2
∞

transforming according to the representation of GL2(R) of highest weight (ν1 +

ν2, ν1 − ν2); an intertwining map Ψ has been given in [BS5, Section 3]. It is also
well known [KV] that the representation λν1,ν2

of H+(R) on Uν1,ν2
is irreducible

of highest weight (ν1 +ν2, ν1−ν2). If ν1 > ν2 it can be extended in a unique way

to an irreducible representation of H(R) on the space Uν1,ν2,s := (U
(0)
ν1

⊗ U(0)
ν2

) ⊕
(U

(0)
ν2

⊗ U
(0)
ν1

) =: Uλ which we denote by (τ1 ⊗ τ2) =: λ for simplicity, on this

space σy,y ′ ∈ H+(R) acts via τ1(y)⊗ τ2(y ′) on the summand U
(0)
ν1

⊗U(0)
ν2

and via

τ2(y) ⊗ τ1(y ′) on the summand U
(0)
ν2

⊗ U(0)
ν1

. For ν1 = ν2 there are two possible
extensions to representations (τ1 ⊗ τ2)± on Uν1,ν2

; we denote this space with the
representation (τ1 ⊗ τ2)+ =: λ on it by Uλ again (and don’t consider the minus
variant in the sequel).

We recall then from [KV, We1, BS3] that the space Hq(ρ) consisting of all q-
pluriharmonic polynomials P :M4,2(C) →Wρ such that P(xg) = (ρ(gt))P(x) for all
g ∈ GL2(C) is isomorphic to (Uλ, λ) as a representation space of H(R). The space
Hq(ρ) carries an essentially unique H(R)-invariant scalar product 〈 , 〉Hq(ρ),
and in the usual way we can find a reproducing H(R) invariant kernel PGeg ∈
Hq(ρ) ⊗ Hq(ρ) (generalized Gegenbauer polynomial) , i. e., PGeg is a polynomial
on D2

∞ ⊕D2
∞ taking values in Wρ ⊗Wρ which as function of each of the variables

i) is a q-pluriharmonic polynomial in Hq(ρ),
ii) is symmetric in both variables
iii) satisfies PGeg(hx, hx̃) = PGeg(x, x̃) for h ∈ H(R)
iv) satisfies 〈PGeg(x, ·), P(·)〉Hq(ρ) = P(x) for all P ∈ Hq(ρ).

In fact, since such a polynomial is characterized by the first three properties up to
scalar multiples we can construct it (in a more general situtation) with the help of
the differential operator Dα(µ, ν) and the polynomial Qµ,ν

α from 6.1:
For k ∈ N and nonnegative integers µ, ν we define a polynomial map

P̃Geg

(k,µ,ν)
: C2k,n × C2k,n −→ Vν ⊗ Vν

by

P̃Geg

(k,µ,ν)
(Y1,Y2) := Q

(µ,ν)
k

((
Yt

1Y Yt
1Y2

Yt
2Y1 Yt

2Y2

))
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Then P̃Geg

(k,µ,ν)
is symmetric and pluriharmonic in Y1 and Y2, see [I1] ; moreover,

for A,B ∈ GL(n,C) we have

P̃Geg

(k,µ,ν)
(Y1 ·A,Y2 · B) = det(A)µ det(B)µσν(A)⊗ σν(B)(P̃Geg

(k,µ,ν)
(Y1,Y2).

For g ∈ O(2k,C) we get

P̃Geg

(k,µ,ν)
(gY1,Y2) = P̃Geg

(k,µ,ν)
(Y1, g

−1Y2).

If we consider a 2k-dimensional positive definite real quadratic space with pos-
itive definite quadratic form q and associated bilinear form B (so that B(x, x) =

2q(x)) we write q(x1, . . . , x2n) = (B(xi, xj)/2)i,j for (half) the 2n× 2n Gram ma-
trix associated to the 2n-tuple of vectors (x1, . . . , x2n) and put in a similar way as
above for (y,y ′) ∈ V2n

P
(k,µ,ν)
Geg (y,y ′) = Qµ,ν

k (q(y,y ′)),

this gives a nonzero polynomial with values in Vν ⊗ Vν which is symmetric in
the variables y,y ′, is q-pluriharmonic in each of the variables with the proper
transformation under the right action of GLn and is invariant under the diagonal
action of the orthogonal group of q; it is hence a scalar multiple of the Vν ⊗ Vν-
valued Gegenbauer polynomial on this space.

If we apply the differential operatorDk(µ, ν) to a degree 2n theta seriesΘ2n
S (Z) :=∑

R∈Z2k,2n exp 2πitr(RtSRZ) written in matrix notation we get

(Dk(µ, ν)Θ
2n
S )(z1, z4)

=
∑

R1,R2∈Z(2k,n)

(2πi)nµQ
(µ,ν)
k

((
S[R1] Rt1SR2
Rt2SR1 S[R2]

))
exp 2πitr(S[R1]z1 + S[R2]z4);

writing the theta series in lattice notation as the degree 2n theta series

θ
(2n)

Λ (Z) =
∑

x∈Λ2n

exp(2πitr(q(x)Z))

of a lattice Λ on V we obtain in the same way

Dk(µ, ν)θ
(2n)

Λ (z1, z4)

= (2πi)nµ
∑

(y,y ′)∈Λ2n

PGeg(y,y
′) exp(2πitr(q(y)z1 + q(y ′)z4))

= (2πi)nµ
∑

(y)∈Λn

θ
(n,ν)
Λ (z4)(y) exp(2πitr(q(y)z1)),

(17)

where we have written

(18) θ
(n,ν)
Λ (z4)(y) :=

∑

(y ′)∈Λn

PGeg(y,y
′) exp(2πitr(q(y ′)z4)).

Going through the construction above in our quaternionic situation with Vν =

Wρ we see that we can normalize the scalar product on Hq(ρ) in such a way that
the polynomial PGeg obtained in the way just described is indeed the reproducing
kernel for this space. We choose this normalization in what follows and write

θij,ρ(Z)(x̃) :=
∑

x∈(yiRy−1
j

)2

PGeg(x, x̃) exp(2πitr(q(x̃)Z)) ∈Wρ ⊗Wρ
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(so that θij,ρ(Z) is (for each Z in the Siegel upper half space H2) an element of
Hq(ρ) ⊗Wρ.) For an arbitrary lattice Λ on D the theta series θΛ,ρ is defined
analogously as given in equation (18).
We denote by P the (essentially unique) isomorphism from Uλ to Hq(ρ). With
the help of the map Ψ from [BS5] mentioned above we can fix a normalization and

write P(R1 ⊗ R2) for Rj ∈ U(0)
νj

as

P(R1 ⊗ R2)(d1, d2)(X1, X2)

= (D(n(d1X1 + d2X2)
ν2τ2(d1X1 + d2X2)R2)R1)(Im(d1d2)),

(19)

where we associate as usual to a polynomial R ∈ C[t1, t2, t3]) the differential oper-
ator D(R) = R( ∂

∂t1
, ∂
∂t2
, ∂
∂t3

), set Im(d) = d− d̄ and write all vectors as coordinate
vectors with respect to an orthonormal basis.

Definition 8.1. With notation as above we define the Yoshida lift of (φ1, φ2), or
also of (f, g) with respect to (N1, N2), to be given by

F(Z) := Y(2)(φ1, φ2)(Z) :=

r∑

i,j=1

1

eiej
〈P(φ1(yi)⊗ φ2(yj)), θij,ρ(Z)〉Hq(ρ) ∈Wρ.

Lemma 8.2. (1) One has θij,ρ(Z)(x) = θji,ρ(Z)(x̄) (where x̄ = (x̄1, x̄2) de-
notes the quaternionic conjugate of the pair x = (x1, x2)).

(2)

2F(Z) = 2Y(2)(φ1, φ2, Z)

=

r∑

i,j=1

1

eiej

∑

x∈(yiRy−1
j

)2

P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj)))(x1, x2)×

× exp(2πitr(q(x)Z)).

(3) Denote by 〈F, θij,ρ〉Pet the Petersson product of the vector valued Siegel
modular forms F and θij,ρ. Then the function ξ : (yi, yj) 7→ 〈F, θij,ρ〉Pet ∈
Hq(ρ) has the symmetry property ξ(yi, yj)(x) = ξ(yj, yi)(x̄). It induces

a unique function, denoted by ξ̃, on H(A) satisfying ξ̃(σyi,yj
) = ξ(yi, yj)

and

ξ̃(γσk) = λ(k−1
∞ )ξ̃(σ) for σ ∈ H(A), γ ∈ H(Q), k = (kv)v ∈ H(RA),

where we denote by H(RA) the group of adelic isometries of the lattice R on
D.

Proof. This is easily seen to be a consequence of the fact that the lattice Iij =

yiRy
−1
j is the quaternionic conjugate of the lattice Iji = yjRy

−1
i and that quater-

nionic conjugation is an element of the (global) orthogonal, but not of the special
orthogonal group of (D,n). �

As in [BS1] we need to show that ξ is proportional to the function ξφ1,φ2
:

(yi, yj) 7→ φ1(yi) ⊗ φ2(yj) + φ2(yi)⊗ φ1(yj) that appears in our formula for the
Yoshida lifting, and to determine the factor of proportionality occurring.

Lemma 8.3. With notations as in the previous lemma one has

〈F, θij,ρ〉Pet = c5P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))
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and

〈F, F〉Pet = c5〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉,

with some constant c5 6= 0, where the latter inner product is the natural inner
product on Hq(ρ)-valued functions on D×

A × D×
A satisfying the usual invariance

properties under R×A and D×
Q, which is defined by

〈P(φ1⊗φ2),P(φ1⊗φ2)〉 =
r∑

i,j=1

1

eiej
〈P(φ1(yi)⊗φ2(yj)),P(φ1(yi)⊗φ2(yj))〉Hq(ρ).

Proof. The proof proceeds in essentially the same way as in [BS1]: We notice first
that the space of all ξ with the symmetry property mentioned (or equivalently

the space of functions ξ̃ on H(A) with the invariance property given) has a basis
consisting of the ξφ1,φ2

= ξφ2,φ1
, where (φ1, φ2) runs through the pairs of eigen-

forms in (A(D×
A , (RA)

×, τ1)× (A(D×
A , (RA)

×, τ2) and where the pairs are unordered
if ν1 = ν2.

The Hecke operators T ′
i (p) on the spaces A(D×

A , R
×
A , τi) (for i = 1, 2) via Brandt

matrices described above induce Hecke operators T̂(p) on the space of ξ as above
that are given by

ξ|T̂(p)(yi, yj) =

r∑

k=1

B̃
(right)

jk (p)ξ(yi, yk) +

r∑

l=1

B̃
(left)

il (p)ξ(yl, yj),

where for ν1 > ν2 we let B̃
(right)

jk (p) act on U = U
(0)
ν1

⊗ U(0)
ν2

⊕ U(0)
ν2

⊗ U
(0)
ν1

via

id⊗Bν2

jk (p)⊕ id⊗Bν1

jk (p) and B̃
(left)

il (p) as Bν1

jk (p)⊗ id⊕Bν2

jk (p)⊗ id, and where for

ν1 = ν2 the action of B̃(left), B̃(right) on U = U
(0)
ν1

⊗U(0)
ν2

is simply the action of the
Brandt matrix on the respective factor of the tensor product.

In the same way as sketched in [BS1, 10 b)] we obtain then (using the calculations
of Hecke operators from [Y1, Y2]) first

〈F, θij,ρ |T(p)〉Pet = ξ|T̂(p)(yi, yj).

Since, again by Yoshida’s computations of Hecke operators (see also [BS3]), we
know that F is an eigenfunction of T(p) with eigenvalue λp(f) + λp(g) this implies

that ξ is an eigenfunction with the same eigenvalue for T̂(p). A computation that
uses the eigenfunction property of φ1, φ2 for the action of the Hecke operators on
the spaces A(D×

A , (RA)
×, τ1),A(D×

A , (RA)
×, τ2) shows that the same is true for the

function ξφ1,φ2
.

Since φ1, φ2 are in the essential parts of A(D×
A , (RA)

×, τ1),A(D×
A , (RA)

×, τ2),
their eigenvalue systems occur with strong multiplicity one in these spaces, and as in
Section 10 of [BS1] we can conclude that that ξ and ξφ1,φ2

are indeed proportional,
i.e., we have

〈F, θij,ρ〉Pet = c5P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))

with some constant c5 6= 0.
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From this we see:

〈F, F〉Pet = 〈F,
r∑

i,j=1

1

eiej
〈P(φ1(yi)⊗ φ2(yj)), θij,ρ〉Hq(ρ)〉Pet

=

r∑

i,j=1

c5

eiej
〈P(φ1(yi)⊗ φ2(yj)),P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))〉Hq(ρ)

= c5〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉.
�

In order to compute the constant c5 we will first need the generalization of
Lemma 9.1 of [BS1] to the present situation:

Lemma 8.4. (1) If Λ is a lattice on some quaternion algebra D ′ with n(Λ) ⊆
Z, of level dividing N, and with disc(Λ) 6= N2 the theta series θΛ,ρ is

orthogonal to all Yoshida lifts Y(2)(φ1, φ2) of level N.
(2) If If Λ is a lattice on some quaternion algebra D ′ 6= D with n(Λ) ∈ Z, of

level N , and with disc(Λ) = N2 the theta series θΛ,ρ is orthogonal to all

Yoshida lifts Y(2)(φ1, φ2) of level N associated to D.

Proof. The proof of Lemma 9.1 of [BS1] unfortunately contains some misprints: In
line 4 on p. 81 the minus sign in front of the whole factor should not be there
and the exponent at p should be n(n + 1)/2 (which is equal to 3 in our present
situation), in line 5 the exponent at p should be n(n − 1)/2 (hence 1 in our case),
in line 9 the factor p in the right hand side of the equation should be omitted, and
in line 14 the exponent at p should be 1 instead of 3.

Apart from these corrections the argument given there carries over to our situ-
ation unchanged. In particular, the results from Section 7 of [BS1] that were used
in the proof of that lemma remain true and their proof carries over if one uses the
reformulation of Evdokimov’s result from [Ev] sketched in Section 4 of [BS3]. �

We recall from [BS1] that we have

E(4)
2 (Z1, Z2) =

t∑

r=1

αr

∑

{Kr}

1

|O(Kr)|
θ
(2)
Kr

(Z1)θ
(2)
Kr

(Z2),

where we denote by L1, . . . , Lt representatives of the genera of lattices of rank 4,
square discriminant and level dividing N = N1N2, the summation over {Kr} runs
over a set of representatives of the isometry classes in the genus of Lr and αr are
some constants that are explicitly determined in [BS1].

Hence by (18) we obtain
(
D2

(
k ′ − k

2
− 2, k − 2

)
(E(4)

2 )

)
(Z1, Z2)

= c3

t∑

r=1

αr

∑

{Kr}

1

|O(Kr)|

∑

(x1,x2)∈K2
r×K2

r

PGeg(x1,x2) exp(2πitr(q(x1)Z1 + q(x2)Z2))

with c3 = (2πi)k
′−k, and similarly for the Eisenstein series F(4)

2 attached to the
cusp zero, with the αr replaced by βr as in [BS1].
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The reproducing property of PGeg implies then
∑

(x1,x2)∈K2
r×K2

r

PGeg(x1,x2) exp(2πitr(q(x1)Z1 + q(x2)Z2))

= 〈〈θK,ρ(Z1)(u1)⊗ θK,ρ(Z2)(u2), PGeg(u1,u2)〉Hq(ρ)〉Hq(ρ).

Using the fact that by Lemma 8.4 the Yoshida lifting F is orthogonal to all θK,ρ

where K is not in the genus of the given Eichler order of level N1N2 we see that

the part of the sum for D(F(4)
2 )(Z1, Z2) which contributes to the Petersson product

with F can be written as

c3β1

∑

i,j

1

eiej
〈〈θij,ρ(Z1)(u1)⊗ θij,ρ(Z2)(u2), PGeg(u1,u2)〉Hq(ρ)〉Hq(ρ).

We further recall that by (15) we have

〈F,D(F(4)
2 )(∗,−w̄)〉Pet = c4L(N)

(
f⊗ g, k + k

′

2

)
F(w)

with

c4 = λ
∏

p|N

(1−p−1)ΛN(1)
1

ζ(N)(3)ζ(N)(4)ζ(N)(2)

C2

(
k ′−k

2
, k − 2

)

C2+ 1
2

(
k ′−k

2
, k − 2

) ·γ2
(
k ′ − k
2

, k − 2,
1

2

)
.

Proposition 8.5. With notations as above we have

〈F, F〉Pet =
c4

2c3β1
L(N)

(
f⊗ g, k+ k

′

2

)
〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉.

Proof. From what we saw above and using Lemma 8.3 we get

〈F,D(F(4)
2 )(∗,−Z̄)〉Pet

= c3β1

∑

i,j

1

eiej
〈〈F(∗), θij,ρ(−Z̄)(u1)⊗ 〈θij,ρ(∗)(u2)〉Pet, PGeg(u1,u2)〉Hq(ρ)〉Hq(ρ)

= c5c3β1

∑

i,j

1

eiej
〈〈θij,ρ(−Z̄)⊗ P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj)), PGeg〉Hq(ρ)〉Hq(ρ)

= c5c3α1

∑

i,j

1

eiej
〈θij,ρ(Z),P(φ1(yi)⊗ φ2(yj) + φ2(yi)⊗ φ1(yj))〉Hq(ρ)

= 2c3c5β1F.

Comparing with

〈F,D(F(4)
2 )(∗,−Z̄))〉Pet = c4L(N)

(
f⊗ g, k + k

′

2

)
F(Z)

we obtain

c5 =
c4L

(N)(f⊗ g, k+k ′

2
)

2β1c3
,

which together with Lemma 8.3 yields the assertion. �

In order to make use of the above proposition in the next section we will also
need to compare 〈P(φ1 ⊗φ2),P(φ1 ⊗φ2)〉 with 〈φ1, φ1〉〈φ2, φ2〉, where we have

〈φµ, φµ〉 =
∑r

i=1
〈φµ(yi),φµ(yi)〉µ

ei
for µ = 1, 2, with 〈 , 〉µ denoting the (suit-

ably normalized, see below) scalar product on U
(0)
νµ .
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Lemma 8.6. Write G̃
(ν)
a (x) = (B(a, x))ν for a, x ∈ D(0)

C := D
(0)
∞ ⊗C with n(a) = 0

and let ν1 ≥ ν2. Then

(1)

P(
˜
G

(ν1)
a ⊗˜

G
(ν2)
a )(d1, d2)(X1, X2)

=
ν1!

ν2!
(B(a, d1)X1 + B(a, d2)X2)

2ν2
˜

G
(ν1−ν2)
a (Im(d1d2)).

(20)

(2) For a ∈ D
(0)
C as above there is b ∈ DC := D ⊗ C with ab = 0, ab̄ =

a, n(b) = 0, and for such a b we have

lim
λ→0

1

λν1−ν2
PGeg((a, a+ λb), (d1, d2))(Y1, Y2, X1, X2)

= c6(B(a, d1)X1 + B(a, d2)X2)
2ν2

˜
G

(ν1−ν2)
a (Im(d1d2).

(21)

with c6 = C2(ν1 − ν2, 2ν2) as in Lemma 6.4.

Proof. (1) From the formula for the map P in equation (19) we get

P(G(ν1)
a ⊗G(ν2)

a )(d1, d2)(X1, X2)

=
ν1!

ν2!
(B(a, (d1X1 + d2X2)a(d1X1 + d2X2)))

ν2G(ν1−ν2)
a (Im(d1d2)).

Using ā = −a, a2 = 0 and xa = ax̄−B(a, x) for x ∈ DC we get B(a, yax̄) =
B(a, x)B(a, y) for x, y ∈ DC. We extend this identity to the polynomial
ring, insert for x, y one of d1X1, d2X2 and obtain B(a, (d1X1+d2X2)a(d1X1+

d2X2)) = (B(a, d1)X1 + B(a, d2)X2)
2, which yields the assertion.

(2) For simplicity we identify DC with the matrix ring M2(C) and fix a =(
0 1
0 0

)
, b =

(
1 0
0 0

)
(we will need this Lemma only for one particular choice

of a, b). Equation (7) in Lemma 6.4 gives us

PGeg((a, a+ λb), (d1, d2))(Y1, Y2, X1, X2)

= c6

(
(Y1, Y2)

(
B(a, d1) B(a, d2)

B(a + λb, d1) B(a + λb, d2)

)(
X1

X2

))2ν2

× det
(( B(a, d1) B(a, d2)

B(a+ λb, d1) B(a + λb, d2)

))ν1−ν2
.

Dividing by λν1−ν2 and taking the limit for λ→ 0 we get

c6((Y1 + Y2)(B(a, d1)X1 + B(a, d2)X2))
2ν2 det

((B(a, d1) B(a, d2)
B(b, d1) B(b, d2)

))ν1−ν2
.

Computing the determinant for our choice of a, b, writing d1, d2 as ma-
trices

(
x1 x2
x3 x4

)
,
(
y1 y2
y3 y4

)
and using that quaternionic conjugation sends a

matrix
(
x1 x2
x3 x4

)
to its classical adjoint

(
x4 −x2
−x3 x1

)
one checks that both

det(. . . )ν1−ν2 and
˜

G
(ν1−ν2)
a (Im(d1d2)) evaluate to (x3y4 − x4y3)

ν1−ν2 ,
which proves the assertion.

�
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Proposition 8.7. Let R1 ∈ U(0)
ν1
, R2 ∈ U(0)

ν2
be given and let the scalar products

〈 , 〉µ on U
(0)
νµ for µ = 1, 2 be normalized such that the Gegenbauer polynomial

G(νµ)(x, y) =
2νµ

Γ(1/2)

[νµ/2]∑

j=0

(−1)j
1

j
!(νµ−2j)!Γ(νµ− j+

1

2
)(tr(xȳ))νµ−2j(n(x)n(y))j

(see [BS5, p. 47]) is the reproducing kernel for U
(0)
νµ

. Then one has

〈P(R1 ⊗ R2),P(R1 ⊗ R2)〉Hq(ρ) = c7〈R1, R1〉1〈R2, R2〉2
with c7 = c6

ν1!
ν2!

(
2ν1

ν1

)(
2ν2

ν2

)
.

Proof. Since P is an intertwining map between finite dimensional irreducible uni-
tary representations of the compact orthogonal group it is clear that the right
hand side and the left hand side of the asserted equality are proportional. It suf-
fices therefore to evaluate both sides for a particular choice of R1, R2. We choose

R1 = G
(ν1)
a , R2 = G

(ν2)
a with G

(νµ)
a (y) = G(νµ)(a, y). The reproducing property of

the Gegenbauer polynomial gives

〈PGeg(a, a+ λb),P(G(ν1)
a ⊗G(ν2)

a )〉Hq(ρ) = (P(G(ν1)
a ⊗G(ν2)

a ))c(a, a+ λb),

where we denote by the exponent c at (P(G
(ν1)
a ⊗ G(ν2)

a )) complex conjugation of
the coefficients of this polynomial (in order to avoid confusion with quaternionic
conjugation). With the particular choice of a, b form the previous lemma we obtain,
using ab̄ = a and a2 = 0 and writing ac for the vector obtained from a by complex
conjugation of the coordinates with respect to an orthonormal basis of D∞,

1

λν1−ν2
(P(G(ν1)

a ⊗G(ν2)
a ))c(a, a+ λb)

=

(
2ν1

ν1

)(
2ν2

ν2

)
(B(ac, a))2ν2(B(ac, Im(a(a+ λb))))ν1−ν2

=

(
2ν1

ν1

)(
2ν2

ν2

)
(B(ac, a))ν1+ν2

= (G(ν1)
a )(ac)(G(ν2)

a )(ac)

= 〈G(ν1)
a , G(ν1)

a 〉1〈G(ν2)
a , G(ν2)

a 〉2.
Inserting the formulas from Lemma 8.6 proves the assertion. �

Corollary 8.8. With notations as in Proposition 8.5 and P normalized as above
one has

〈F, F〉Pet =
c4c7

2c3β1
L(N)

(
f⊗ g, k + k

′

2

)
〈φ1, φ1〉1〈φ2, φ2〉2

Let F be a Yoshida lift of f and g as above and define Fcan = F√
〈P(φ1⊗φ2),P(φ1⊗φ2)〉

.

Any rescaling of φ1, φ2 or P affects the numerator and denominator in the same
way, so this may be viewed as a canonical choice of scaling of F. We can now express
this canonical choice of F explicitly.

Proposition 8.9. Let φ
(0)
1 , φ

(0)
2 be normalized by 〈φ(0)

1 , φ
(0)
1 〉1 = 〈φ(0)

2 , φ
(0)
2 〉2 =

1and let P be normalized as above. Then one has

Fcan =
1

c7
Y2(φ

(0)
1 , φ

(0)
2 ).



YOSHIDA LIFTS AND SELMER GROUPS 31

Note that the Fourier coefficients of Fcan are algebraic. From the results of
[BS5, BS4] it is clear that the square of the (scalar valued) average over matrices
T of fixed fundamental discriminant −d of the Fourier coefficients A(F, T) ∈Wρ of
the Yoshida lifting Fcan is proportional to the product of the central critical values
of the twists with the quadratic character χ−d of the L-functions of the elliptic
modular forms f and g; notice that the averaging procedure for the Wρ-valued

Fourier coefficients involves a scalar product of A(F, T) with the vector ρ(T−1/2)v0,
where v0 is anOn(R)-invariant vector inWρ. We can nowmake this proportionality
as explicit as the result of [BS2] for the scalar valued case.

Proposition 8.10. Assume that ν1, ν2 are even and that both f, g have a +-sign
in the functional equation. Choose N1, N2 such that the (common) Atkin-Lehner
eigenvalue ǫp of f, g at p is −1 if and only if p | N1. Let −d < 0 be a fundamental

discriminant with (−d
p
)ǫp = 1 for all primes p dividing Nd = N/ gcd(N,d). We

let F = Fcan be the canonical Yoshida lifting of f, g with respect to N1, N2 and put

a(F, d) =

√
d

2

∑

{T}

discT=−d

1

ǫ(T)

∫

T [x]≤1

A(F, T)(x1, x2)dx1dx2

where A(F, T) is the Fourier coefficient at T of F, the summation is over integral
equivalence classes of T , and ǫ(T) is the number of automorphs (units) of T , i.e.,
the number of g ∈ GL2(Z) with tgTg = T .

Then one has
(22)

(a(F, d))2 = c8
L(1 + ν1, f)L(, 1 + ν2, g)L(1 + ν1, f⊗ χ−d)L(1 + ν2, g⊗ χ−d)

〈f, f〉〈g, g〉
with c−1

8 = 26(ν2 + 1)
2π2+2ν1+2ν2 .

Proof. Corollary 4.3 of [BS5] gives

(
d

4

)ν1+ν2
2

σ0(Nd)a(F, d) =
c

2
a(W(φ1), d)a(W(φ2), d),

where the a(W(φµ), d) are the Fourier coefficients of the Waldspurger liftings

W(φµ) =
r∑

j=1

1
ej

∑

x∈Lj

φ(yj)(x) exp(2πin(x)z) associated to the lattices Lj = D
(0)∩

(Z1+ 2Rj) and where c = (−1)ν22π
2ν2+2

. Inserting the explicit version of Waldspurger’s

theorem from [Koh, BS4] gives the assertion. �

Remark 8.11. (1) The restrictive conditions on f, g,N1, d in the proposition
are chosen in order to to prevent that a(F, d) becomes zero for trivial rea-
sons.

(2) Since
√
d
2

∫

T [x]≤1

xi1x
j
2dx1dx2 is zero for i or j odd and equal to

π
2∫

0

cosi(α) sinj(α)dα =
Γ(i1 +

1
2
)Γ(j1 +

1
2
)

2Γ(i1 + j1 + 1)

for even i = 2i1, j = 2j1, we have:
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If for a prime λ not dividing 2ν2! and some j ∈ N one has λj ∤ a(F, d)/π,
then there is some T of discriminant −d such that λj does not divide all
coefficients of the polynomial A(F, T).

9. A congruence of Hecke eigenvalues

As above, let f and g be cuspidal Hecke eigenforms for Γ0(N), of weights k ′ > k ≥
2. For critical k ≤ t < k ′, define Lalg(f⊗ g, t) := L(f⊗g,t)

π2t−(k−1)〈f,f〉 . (Alternatively one

could divide by a canonical Deligne period–it makes no difference to the proposition
below.) Let K be a number field containing all the Hecke eigenvalues of f and g.

Let F be a Yoshida lift of f and g, lying in Sρ(Γ
(2)
0 (N)) say, and define as in the

previous section Fcan = F√
〈P(φ1⊗φ2),P(φ1⊗φ2)〉

. In fact we have such an F and Fcan

for each factorisation N = N1N2 with an odd number of prime factors in N1, and
we label these Fi and Fi,can for 1 ≤ i ≤ u, say. Note that by Lemma 8.4, these
different Yoshida lifts of the same f and g are mutually orthogonal with respect to
the Petersson inner product. Let’s say F = F1 arbitrarily.

As in §2.1 of [Ar] the operators T(m), for (m,N) = 1 (generated over Z by the
T(p) and T(p2), see (2.2) of [Ar]) are self-adjoint for the Petersson inner prod-

uct, and commute amongst themselves, so Sρ(Γ
(2)
0 (N)) has a basis of simultaneous

eigenvectors for such T(m). Also, these T(m), acting on elements of Sρ(Γ
(2)
0 (N)),

preserve integrality (at any given prime) of Fourier coefficients, by (2.13) of [Sa].

If G ∈ Sρ(Γ
(2)
0 (N)) is an eigenform (for the T(m), with (m,N) = 1), then the

Hecke eigenvalues for G are algebraic integers. This follows from Theorem I of
[We2], which says that the characteristic polynomial of ρG(Frob

−1
p ) (c.f. §4 above)

is 1− µG(p)X+ (µG(p)
2 − µG(p

2) − pk
′−2)X2 − pk

′−1µG(p)X
3 + p2(k

′−1)X4 (c.f.

(2.2) of [Ar]), and that the eigenvalues of ρG(Frob
−1
p ) are algebraic integers. More-

over, as p varies for fixed G, the µG(p) and µG(p
2) generate a finite extension of

Q.

Proposition 9.1. Suppose that k ′−k ≥ 6. Suppose that λ is a prime of K such that

ordλ

(
Lalg

(
f⊗ g, k ′+k

2

))
> 0 but ordλ

(
Lalg

(
f⊗ g, k ′+k

2
+ 1
))

= 0, and let ℓ be

the rational prime that λ divides. Suppose that ℓ ∤ N and ℓ > k ′ − 2. Assume that
there exist a half-integral symmetric 2-by-2 matrix A, and an integer 0 ≤ b ≤ k− 2
such that, if for 1 ≤ i ≤ u, ai denotes the coefficient of the monomial xbyk−2−b

in the A-Fourier coefficient in Fi,can, then ordλ(
∑u

i=1 a
2
i ) ≤ 0. Then there is a

cusp form G ∈ Sρ(Γ (2)0 (N)), an eigenvector for all the T(m), with (m,N) = 1, not
itself a Yoshida lift of the same f and g, such that there is a congruence of Hecke
eigenvalues between G and F:

µG(m) ≡ µF(m) (mod λ), for all (m,N) = 1.

(We make K sufficiently large to contain the Hecke eigenvalues of G.)

Proof. Since k ′−k ≥ 6, k ′−k
2

−2 > 0, so D4

(
k ′−k

2
− 2, k − 2

)
F(4)

4 (Z,W) is a cusp

form. Let {F1, F2, . . . , Fr} be a basis of Sρ(Γ
(2)
0 (N)) consisting of eigenforms for all

the local Hecke algebras at p ∤ N, with F1, . . . , Fu the Yoshida lifts of f and g, as
above.
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It is easy to show that D4

(
k ′−k

2
− 2, k − 2

)
F(4)

4 (Z,W) =
∑r

i,j=1 ci,jFi(Z)Fj(W),

for some ci,j. By (16), c1,1 is equal to the right hand side of (16), divided by
F(w)〈F, F〉, and c1,j = 0 for j 6= 1. Similarly for all the ci,i for 1 ≤ i ≤ u. Using
Proposition 8.5, we find

(23) c1,1 = c ′
Lalg

(
f⊗ g, k ′+k

2
+ 1
)

Lalg
(
f⊗ g, k ′+k

2

)
〈P(φ1 ⊗ φ2),P(φ1 ⊗ φ2)〉

,

where
(24)

c ′ = γ2

(
4,
k ′ − k
2

− 2, k − 2, 0

)
(±N)ΛN(2)

ζ(N)(2)π2

ζ(N)(4)ζ(N)(6)ζ(N)(4)

∏

p|N

(1− p−3)

(1− p−1)
.

(The last term takes into account the fact that we have passed from incomplete to
complete L-functions.)

We now choose A and b as in the statement of the proposition. For u+1 ≤ i ≤ r
let a ′

i be the coefficient of xbyk−2−b in the A-Fourier coefficient of Fi . Imitating §4
of [Ka], let F4,ρ,A(Z) be the coefficient of xbwy

k−2−b
w in the coefficient of e(Tr(AW))

in

D4

(
k ′−k

2
− 2, k − 2

)
F(4)

4 (Z,W). Then

(25) F4,ρ,A(Z) =

u∑

i=1

eiFi,can(Z) +
∑

i≥u+1

e ′iFi(Z),

where, for 1 ≤ i ≤ u, ei = c ′
Lalg

(

f⊗g,k
′+k
2

+1
)

Lalg(f⊗g,k
′+k
2 )

ai. Careful checking of all the things

that go into c ′ shows that it is a rational number, and that it follows from ℓ > k ′−2
that ordℓ(c

′) ≤ 0. The coefficients of F4,ρ,A are integral at λ, by Remarks 7.1 and
7.2. Given all this, we can apply the method of Lemma 5.1 of [Ka], to deduce that
there is a congruence (mod λ) of Hecke eigenvalues (for all T(m), with (m,N) = 1)
between F and some other Fi = G, say, with i ≥ u+ 1.

In a little more detail, we suppose that no such G exists, so that for each u+1 ≤
i ≤ r there exists an mi, with (mi, N) = 1, such that if µFi

(mi) is the eigenvalue
of T(mi) on Fi then µFi

(mi) 6≡ µF(mi) (mod λ). (We may enlarge K to contain all
the Hecke eigenvalues for all the Fi.) Applying

∏r
i=u+1(T(mi) − µFi

(mi)) to both
sides of (25), we get something on the left that is integral at λ. On the right all
the Fi terms, for i ≥ u+ 1, disappear, while the remaining terms get multiplied by∏r

i=u+1(µF(mi) − µFi
(mi)), which is not divisible by λ, so on the right-hand-side

the coefficient of xbzy
k−2−b
z in the coefficient of e(Tr(AZ)), namely

c ′
r∏

i=u+1

(µF(mi) − µFi
(mi))

Lalg

(
f⊗ g, k ′+k

2
+ 1
)

Lalg
(
f⊗ g, k ′+k

2

)
(

u∑

i=1

a2i

)
,

is non-integral at λ, which is a contradiction. �

Using Proposition 8.10 and Remark 8.11(2), we obtain the following.

Corollary 9.2. Suppose that k ′ − k ≥ 6, with k/2 and k ′/2 odd, that N is prime,
and that the common eigenvalue wN for f and g is −1. Suppose that λ is a prime of

K such that ordλ

(
Lalg

(
f⊗ g, k ′+k

2

))
> 0 but ordλ

(
Lalg

(
f⊗ g, k ′+k

2
+ 1
))

= 0,
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with ℓ ∤ N and ℓ > k ′−2, where ℓ is the rational prime that λ divides. Suppose that
there is some fundamental discriminant −d < 0 that is a quadratic residue modulo
p for all primes p dividing Nd = N/ gcd(N,d), such that

ordλ

(
L(k ′/2, f)L(k ′/2, f⊗ χ−d)

πk
′〈f, f〉

L(k/2, g)L(k/2, g ⊗ χ−d)

πk〈g, g〉

)
≤ 0.

Then there is a cusp form G ∈ Sρ(Γ (2)0 (N)), an eigenvector for all the T(m), with
(m,N) = 1, not a multiple of F, such that there is a congruence of Hecke eigenvalues
between G and F:

µG(m) ≡ µF(m) (mod λ), for all (m,N) = 1.

(We make K sufficiently large to contain the Hecke eigenvalues of G.)

9.1. Examples.

(1) When k = 2 and k ′ = 4 (so j = 0 and κ = 3), one may check that, for N =

23, 29, 31, 37 or 43, the dimension of S3(Γ
(2)
0 (N)) (2, 4, 4, 9, 14 respectively,

using Theorem 2.2 in [I2]) is the same as that of the subspace spanned by
Yoshida lifts of f ∈ S4(Γ0(N)) and g ∈ S2(Γ0(N)). This appears to leave
no room for G (recall Lemma 4.1). However, we calculated Lalg(f ⊗ g, 3)
in the case N = 23, using Theorem 2 of [Sh4] and Stein’s tables [St]. (The

two choices for g are conjugate over Q(
√
5).) For the near-central value,

this calculation involves an Eisenstein series of weight 2, to which a non-
holomorphic adjustment must be made. The result was that Lalg(f⊗g, 3) =
32/3, so there is in fact no divisor λ, dividing a large prime ℓ, for which a
congruence with some G is required.

(2) The previous paragraph leaves open the possibility that the condition k ′ −
k ≥ 6, in Proposition 9.1, is purely technical. However, the following
example shows that it is essential. Let k = 2 and k ′ = 6 (so j = 0 and κ = 4)
and N = 11. As is well-known, S2(Γ0(11)) is 1-dimensional, spanned by
g = q−2q2−q3+ . . ., for which w11 = −1. Using [St], dimS6(Γ0(11)) = 4,
with the w11 = −1 eigenspace 3-dimensional, spanned by the embeddings
of a newform f = q+βq2+ . . ., where β3−90β+188 = 0. The discriminant
of this polynomial is 243319 · 239. Using Theorem 2 of [Sh4] we find that

Lalg(f ⊗ g, 4) = −45α
3

, with Norm(α) = − 17·76157
24345211219·239 . In fact α is

divisible by the prime ideals (17, β + 1) and (76157, β + 74208).

The dimension of S4(Γ
(2)
0 (11)) is 7, from the table in §2.4 of [I2]. This

fact was also obtained by Poor and Yuen, who gave an explicit basis for this
space using theta series, [PY]. We are indebted to D. Yuen for calculating
for us a Hecke eigenbasis, which included the three Yoshida lifts, a non-lift
with rational eigenvalues, and three conjugate non-lifts with eigenvalues
and Fourier coefficients in the same cubic field as f and the Yoshida lifts.
He looked for congruences modulo primes dividing 17 or 76157 (or any other
large primes), but found that there were none, though it appears that each
Yoshida lift has Fourier coefficients (not just Hecke eigenvalues) congruent
mod 5 to those of a corresponding non-lift (suitably normalised).

(3) We should expect that any example of f and g we look at, with prime level
N, common wN = −1, weights k ′ > k ≥ 2 with k ′ − k ≥ 6 and k ′/2, k/2
odd, is very likely to satisfy the remaining condition of Corollary 9.2, for
some λ. It seems though that finding an example where one can directly
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observe the congruence guaranteed by Corollary 9.2 would be difficult. Al-

ready for k = 2, k ′ = 10 and N = 11 we have dimS6(Γ
(2)
0 (11)) = 31 (from

the table in 7-11 of [Has]). For us, f and g are of level N > 1, and Yoshida
lifts do not exist at level 1. However, recently J. Bergström (in collabora-
tion with C. Faber and G. van der Geer) has found experimentally what
appear to be eleven examples of congruences of exactly the same shape,
but for f and g of level 1. For example, it appears that there is a genus-2
cusp form of level 1 and weight Sym20 ⊗ det5 such that

µG(p) ≡ ap(f) + p3ap(g) (mod λ),

with λ | 227, where f and g are cuspidal Hecke eigenforms of genus 1,
level 1 and weights k ′ = 28, k = 22 respectively. Bergström et. al. have
checked this for p ≤ 17. Using Theorem 2 of [Sh4], we have checked that

L(f⊗ g, 25) = 427π29

108(24!)
·α(f, f), with Norm(α) = 7.17.227

2.36.54.131.139
. In two more

examples, with (k ′, k, ℓ) = (28, 18, 223) and (28, 20, 2647), we have likewise
checked that the prime occurring in the modulus of an apparent congruence
also appears in the near-central tensor-product L-value, in accord with the
Bloch-Kato conjecture. We are grateful to Bergström for permission to
mention his unpublished data.
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[B2] S. Böcherer, Siegel modular forms and theta series, AMS Proc. Symp. Pure Math., Vol. 49
(1989), part 2, 3–17.
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[BS5] S. Böcherer, R. Schulze-Pillot, Mellin transforms of vector valued theta series attached to
quaternion algebras, Math. Nachr. 169 (1994), 31–57.

[Br] J. Brown, Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compositio
Math. 143 (2007), 290–322.

[CF] C.-L. Chai, G. Faltings, Degeneration of Abelian Varieties, Ergeb. Math. Grenzgeb. (3),
Vol. 22, Springer, Berlin, 1990.

[De] P. Deligne, Valeurs de Fonctions L et Périodes d’Intégrales, AMS Proc. Symp. Pure Math.,
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