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COLOURED QUIVERS FOR RIGID OBJECTS AND PARTIAL

TRIANGULATIONS: THE UNPUNCTURED CASE

ROBERT J. MARSH AND YANN PALU

Abstract. We associate a coloured quiver to a rigid object in a Hom-finite
2-Calabi–Yau triangulated category and to a partial triangulation on a marked
(unpunctured) Riemann surface. We show that, in the case where the category
is the generalised cluster category associated to a surface, the coloured quivers
coincide. We also show that compatible notions of mutation can be defined
and give an explicit description in the case of a disk. We show further that

Iyama-Yoshino reduction can be interpreted as cutting along an arc in the
surface.

Introduction

Let (S,M) be a pair consisting of a compact Riemann surface S with non-empty
boundary and a set M of marked points on the boundary of S, with at least one
marked point on each component of the boundary. We further assume that (S,M)
has no component homeomorphic to a monogon, digon, or triangle. A partial
triangulation R of (S,M) is a set of noncrossing simple arcs between the points in
M . We define a mutation of such triangulations, involving replacing an arc α of R

with a new arc depending on the surface and the rest of the partial triangulation.
This allows us to associate a coloured quiver to each partial triangulation of M in
a natural way. The coloured quiver is a directed graph in which each edge has an
associated colour which, in general, can be any integer.

Let C be a Hom-finite, 2-Calabi–Yau, Krull-Schmidt triangulated category over
a field k. A rigid object in C is an object R with no self-extensions, i.e. satisfying
Ext1C(R,R) = 0. Rigid objects in C can also be mutated. In this case the muta-
tion involves replacing an indecomposable summand X of R with a new summand
depending on the relationship between X and the rest of the summands of R. As
above, this allows us to associate a coloured quiver to each rigid object of C in a
natural way.

In [BZ] the authors study the generalised cluster category C(S,M) in the sense of
Amiot [Ami09] associated to a surface (S,M) as above. Such a category is triangu-
lated and satisfies the above requirements. It is shown in [BZ] that, given a choice
of (complete) triangulation of (S,M), there is a bijection between the simple arcs in
(S,M) (joining two points in M), up to homotopy, and the isomorphism classes of
rigid indecomposable objects in C(S,M). If Xα denotes the object corresponding to

an arc α then Ext1C(S,M)
(Xα, Xβ) = 0 if and only if α and β do not cross. It follows

that there is a bijection between partial triangulations of (S,M) and rigid objects
in C(S,M). Our main result is that the coloured quivers defined above coincide in
this situation and that the two notions of mutation are compatible.

Suppose that α is a simple arc in (S,M) as above. LetXα be the indecomposable
rigid object corresponding to α. Iyama-Yoshino [IY08] have associated (in a more
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general context) a subquotient category (C(S,M))Xα
to Xα which we refer to as the

Iyama-Yoshino reduction of C(S,M) at Xα. The Iyama-Yoshino reduction is again
triangulated. We show that (C(S,M))Xα

is equivalent to C(S,M)/α where (S,M)/α
denotes the new marked surface obtained from (S,M) by cutting along α.

By studying the combinatorics, we are able to give an explicit description of
the effect of mutation on coloured quivers associated to a disk with n marked
points. The corresponding cluster category in this case was introduced indepen-
dently in [CCS06] (in geometric terms) and in [BMR+06] as the cluster category
associated to a Dynkin quiver of type An−3. We also give a partial explicit descrip-
tion of coloured quiver mutation in the general case, together with a categorical
proof. In general, there are quite interesting phenomena: we give an example to
show that infinitely many colours can occur in one quiver, and also show that
zero-coloured 2-cycles can occur (in contrast to the situation in [BT09]).

We remark that in the case of a cluster tilting object T in an acyclic clus-
ter category the categorical mutation we define coincides with that considered
in [BMR+06]; also with that in the 2-Calabi-Yau case considered in [BIRS09, Pal09].
It also coincides in the maximal rigid case considered in [GLS06, BIRS09, IY08]. In
this case, the coloured quiver we consider here encodes the same information as the
matrix associated to T in [BMV10] provided there are no zero-coloured two-cycles.
With this restriction, the mutation of this matrix coincides [BMV10, 1.1] with the
mutation [FZ02] arising in the theory of cluster algebras. We note also that this
fact for the cluster tilting case was shown in [BIRS09] under the assumption that
there are no two-cycles or loops in the quiver of the endomorphism algebra; the
cluster category case was considered in [BMR08] and the stable module category
over a preprojective algebra was considered in [GLS06]. See also [BIRS] and [KY11],
where mutation of quivers with potential has been studied in a categorical context.
There has been a lot of work on this subject: see the survey [Kel10] for more details.

The geometric mutation of partial triangulations mentioned above specialises to
the usual flip of an arc in the triangulation case (see [FST08, Defn. 3.5]). Coloured
quivers similar to those considered here have been associated to m-cluster tilting
objects in an (m + 1)-Calabi-Yau category in [BT09] (in this case, the number of
colours is fixed at m + 1). The geometric mutation we define here should also be
compared with the geometric mutation for m-allowable arcs in a disk [BT09, Sect.
11]; see also the geometric model of the m-cluster category of type A in [BM08].

We also note that the 2-Calabi-Yau tilting theorem of Keller-Reiten [KR07, Prop.
2.1] (see also Koenig-Zhu [KZ08, Cor. 4.4] and Iyama-Yoshino [IY08, Prop. 6.2]) was
recently generalised [BM] to the general rigid object case, using Gabriel-Zisman lo-
calisation. This result (together with discussions with Aslak Bakke Buan) suggests
that mutation of general rigid objects should be considered.

The paper is organised as follows. In Section 1 we set up notation and recall the
results we need. In Section 2 we define the mutation and the coloured quiver of a
rigid object in a triangulated category. In Section 3 we define mutation and the
coloured quiver of a partial triangulation in a marked surface. In Section 4 we show
that cutting along an arc corresponds categorically to Iyama-Yoshino reduction. In
particular, the coloured quiver after cutting along an arc in a partial triangulation
can be obtained from the coloured quiver of the partial triangulation by deleting a
vertex. In Section 5 we show that, for a partial triangulation of a surface and the
corresponding rigid object in the cluster category of the surface, the two notions of
coloured quiver coincide. In Section 6 we show that mutation in the type A case can
be described purely in terms of the coloured quiver and give an explicit description.
We also give the example mentioned above in which the associated coloured quiver
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contains infinitely many colours. Finally, in Section 7, we give a partial explicit
description and categorical interpretation of coloured quiver mutation.

Acknowledgements Robert Marsh would like to thank Aslak Bakke Buan for
some helpful discussions. This work was supported by the Engineering and Physical
Sciences Research Council [grant number EP/G007497/1].

1. Preliminaries

1.1. Riemann surfaces. In this section, we recall some definitions and results
from [FST08] and [LF09].

We consider a pair (S,M) consisting of a compact Riemann surface with bound-
ary S and a finite set M of marked points on the boundary of S, with at least one
marked point on each boundary component. We refer to such a pair as a marked
surface. We fix, once and for all, an orientation of S, inducing the clockwise orien-
tation on each boundary component.

Note that:

• We do not assume the surface to be connected.
• We only consider unpunctured marked surfaces.

We will always assume that (S,M) does not have any component homeomorphic
to a monogon, a digon or a triangle.

Up to homeomorphism, each component of (S,M) is determined by the following
data:

• the genus g,
• the number of boundary components b and
• the number of marked points on each boundary component {n1, . . . , nb}.

An arc γ in (S,M) is (the isotopy class relative to endpoints of) a curve in
S whose endpoints belong to M , which does not intersect itself (except possibly
at endpoints) and which is not contractible to a point. The marked points on a
boundary component divide it into segments, and we say that an arc isotopic to an
arc along one of these segments is a boundary arc. The term arc will usually refer
to a non-boundary arc.

The set of all (non-boundary) arcs in (S,M) is denoted by A0(S,M). Two arcs
are said to be non-crossing if their isotopy classes contain representatives which do
not cross, i.e. their crossing number is zero. If R is a collection of non-crossing arcs
in (S,M), we will denote by A0

R
(S,M) the set of arcs in (S,M) which do not cross

any arc in R and which do not belong to R.
A partial triangulation of (S,M) is a collection of non-crossing arcs. A maximal

collection of non-crossing arcs is called a triangulation. The number n of arcs in
any triangulation of a connected marked surface is given by the formula:

n = 6g + 3b+ c− 6,

where c is the number of marked points in M (see e.g. [FST08, Prop. 2.10]).
Let T be a triangulation. By [FST08, Sect. 4] and [LF09, Sect. 3] a quiver

Q = QT , together with a potential (a linear combination of cycles in QT up to
cyclic permutation) WT can be associated to T as follows. The vertices of Q are
the arcs of the triangulation. There is an arrow from γ to γ′ for each triangle in
which γ′ follows γ with respect to the orientation of S, and the potential WT is the
sum of all the 3-cycles; see Figure 1, where part of a triangulated surface is shown.

For an arrow a ∈ Q1, the cyclic derivative ∂a sends a cycle a1 · · · ad to the

sum
∑d

k=1 δaka ak+1 · · ·ada1 · · ·ak−1. It is extended to potentials by linearity. The
Jacobian algebra of the quiver with potential (QT ,WT ) is the quotient of the path
algebra kQT by the ideal generated by the cyclic derivatives ∂aWT , for all a ∈ Q1.
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αβ

γ

Figure 1. The quiver with potential associated to a triangulated
surface. The potential W = αβγ + · · · .

Theorem: Let T be a triangulation of a marked surface (S,M), and let T ′ be the
triangulation obtained by flipping T at an arc γ. Then:

(a) [LF09, Thm. 36] The Jacobian algebra J(QT ,WT ) is finite dimensional.
(b) [ABCJP10, Thm. 2.7] The Jacobian algebra J(QT ,WT ) is gentle and Goren-

stein of Gorenstein dimension 1.
(c) [FST08, Prop. 4.8] The quiver QT ′ is given by the Fomin–Zelevinsky mu-

tation of QT at the vertex corresponding to γ.
(d) [LF09, Thm. 30] The quiver with potential (QT ′ ,WT ′) is given by the QP

mutation (see [DWZ08, Sect. 5]) of (QT ,WT ) at the vertex corresponding
to γ.

1.2. Cluster categories associated with Riemann surfaces. Let k be a field.
If C is a triangulated category, we will usually denote its shift functor by Σ. All the
triangulated k-categories under consideration in this paper are assumed to be Krull–
Schmidt, Hom-finite (all morphism spaces are finite-dimensional k-vector spaces)
and admit non-zero rigid objects (objects R such that C(R,ΣR) = 0). All rigid
objects will be assumed basic (their summands are pairwise non-isomorphic). We
will assume moreover that the triangulated categories are 2-Calabi–Yau, so that
there are bifunctorial isomorphisms C(X,ΣY ) ≃ DC(Y,ΣX) for all objects X,Y ,
where D is the vector space duality D = Homk(−, k). A rigid object T is called a
cluster tilting object if, in addition, for all objectsX in C, C(X,ΣT ) = 0 = C(T,ΣX)
implies that X belongs to addT .

The main examples of such categories that we consider are the (generalised)
cluster categories associated with marked surfaces, the definition of which is recalled
in the following sections.

1.2.1. Ginzburg dg algebras. Let (Q,W ) be a quiver with potential (i.e. a QP). In
this paper, we are mostly interested in QPs arising from triangulations of marked
surfaces.

The Ginzburg dg-algebra Γ(Q,W ) is defined as follows: First define a graded
quiver Q. The vertices of Q are the vertices of Q, and the arrows are given as
follows:

• the arrows of Q, of degree 0;
• for each arrow α in Q from i to j, an arrow α∗ from j to i, of degree −1;
• for each vertex i in Q, a loop e∗i at i, of degree −2.

The underlying graded algebra of Γ(Q,W ) is the path algebra of the graded quiver
Q. It is equipped with the unique differential d sending

• the arrows of degree 0 and each ei to 0;
• the arrow α∗ to ∂αW , for each α ∈ Q1, and
• the loop e∗i to ei (

∑
α[α

∗, α]) ei, for i ∈ Q0.
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The cohomology of Γ(Q,W ) in degree zero is the Jacobian algebra J(Q,W ).

1.2.2. Generalised cluster categories. The cluster categories associated with acyclic
quivers were introduced in [CCS06] in the An case and in [BMR+06] in the acyclic
case. Amiot defined, in [Ami09], the generalised cluster categories, associated with
quivers with potentials whose Jacobian algebra is finite dimensional.

Let (Q,W ) be a quiver with potential such that the Jacobian algebra J(Q,W )
is finite dimensional, and let Γ = Γ(Q,W ) be the associated Ginzburg dg algebra.

Let DΓ be the derived category of Γ, and let DbΓ be the bounded derived cat-
egory. The perfect derived category per Γ is the smallest triangulated subcategory
of DΓ containing Γ and stable under taking direct summands.

Theorem [Kel09, Sect. 6]: The Ginzburg dg algebra Γ is homologically smooth and
3-Calabi–Yau as a bimodule. In particular, there is an inclusion DbΓ ⊂ per Γ.

Definition [Ami09, Sect. 3]: The (generalised) cluster category C(Q,W ) associated

with the quiver with potential (Q,W ) is the Verdier localisation per Γ/DbΓ.

This definition is motivated by the following:

Theorem [Ami09, Sect. 3]: The cluster category C(Q,W ) is Hom-finite and 2-
Calabi–Yau. Moreover, the image of Γ in C(Q,W ) is a cluster tilting object whose
endomorphism algebra is isomorphic to the Jacobian algebra J(Q,W ). If Q is
acyclic, then W = 0 and the triangulated categories C(Q,0) and CQ are equivalent.

We also recall the 2-Calabi-Yau tilting theorem which applies in this context:

Theorem [KR07, Prop. 2.1] Let C be a triangulated Hom-finite Krull-Schmidt
2-Calabi-Yau category over a field k. If T is a cluster tilting object in C, then
the functor C(T,Σ−) induces an equivalence between the category C/T and the
category of finite dimensional EndC(T )-modules.

Note that the assumption in the paper that k be algebraically closed is not
required for this result. We also note that this result has been generalised (see [IY08,
Prop. 6.2], [KZ08, Sect. 5.1]).

1.2.3. Cluster categories from surfaces. Let (S,M) be a marked surface, and let T

be a triangulation of (S,M). Let (Q,W ) be the quiver with potential associated
with T . The following particular case of a theorem of Keller–Yang shows that the
cluster category C(Q,W ) does not depend on the choice of a triangulation. Let T ′

be a triangulation of (S,M) obtained from T by a flip. Denote by (Q′,W ′) the
associated quiver with potential.

Theorem [KY11]: There is a triangle equivalence C(Q′,W ′) ≃ C(Q,W ).

Since any two triangulations of (S,M) are related by a sequence of flips, the
theorem above shows that the cluster category C(Q,W ) is independent of the choice
of the triangulation T . The resulting category is denoted C(S,M) and is called
the cluster category associated with the marked surface (S,M). (We refer also
to [BIRS, Theorem 5.1]).

These categories have been studied by Brüstle–Zhang in [BZ]. We now recall
those of their main results which will be used in the article.

Fix a triangulation T = {γ1, . . . , γm} of (S,M) with associated quiver with po-
tential (Q,W ). Let T = T1⊕· · ·⊕Tm be the image of Γ(Q,W ) under per Γ(Q,W )→
C(Q,W ) ≃ C(S,M). Note that T is a cluster tilting object.
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With each arc γ not in T is associated [ABCJP10, Proposition 4.2] an indecom-
posable J(Q,W )-module I(γ). Let Xγ be the unique (up to isomorphism) inde-
composable object in C(S,M) such that C(S,M)(T,ΣXγ) ≃ I(γ). Define Xγk

= Tk,
for k = 1, . . . ,m.

Theorem [BZ]:

• The map γ 7→ Xγ is a bijection between the arcs of (S,M) and the (isomor-
phism classes of) exceptional (i.e. indecomposable rigid) objects of C(S,M).

• For any two exceptional objects Xα and Xβ, we have Ext
1
C(S,M)

(Xα, Xβ) = 0

if and only if the arcs α and β do not cross.
• The shift functor of C(S,M) acts on the arcs of (S,M) by moving both end-
points clockwise along the boundary to the next marked points.

Note that a bijection with these properties is not unique in general.
We note that our choice of an orientation of the Riemann surface differs from

that of [BZ], but coincides with that of [BT09, Section 11].
We extend the bijection in the first part of the previous Theorem to a bijection

between partial triangulations of (S,M) and rigid objects in C(S,M) in the obvious
way.

1.3. Iyama–Yoshino reduction. For an object X in a triangulated category C,
we write ⊥X for the full subcategory of C whose objects are those objects Y of C such
that HomC(Y,X) = 0. The subcategory X⊥ is similarly defined. For an additive
subcategory D of C, we write C/[D] for the quotient category whose objects are
the same as the objects of C with morphisms given by the morphisms of C modulo
those morphisms factoring through D. If D is the additive closure of an object X
in C then we just write C/X for C/[D].
Theorem: [IY08, 4.2, 4.7] Let C be a 2-Calabi-Yau triangulated category and R a
rigid object in C. Then the subfactor category ⊥(ΣR)/R of C is again a 2-Calabi-
Yau triangulated category.

We refer to the subfactor category ⊥(ΣR)/R as the Iyama-Yoshino reduction
of C at R and denote it CR. We denote its shift by ΣR and the quotient functor
⊥(ΣR) −→ CR by πR. See also [BIRS09, II.2.1].

We recall a result of Keller:

Theorem: [Kel09, 7.4] Let Q,W be a quiver with potential whose Jacobian algebra
is finite dimensional. Let i be a vertex of Q and let Pi be the image of the inde-
composable projective module over Γ(Q,W ) corresponding to i, under the quotient
functor Π : per(Γ(Q,W )) → CQ,W . Then the Iyama-Yoshino reduction of C(Q,W )

at Pi is triangle equivalent to C(Q′,W ′), where Q′ is Q with vertex i (and all incident
arrows) removed, and W ′ is W with all cycles passing through i deleted.

2. Coloured quivers for rigid objects

2.1. Mutation and coloured quivers of rigid objects. Let k be a field. Let
C be a k-linear Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated k-category.
Let R = R1⊕· · ·⊕Rm be a basic rigid object in C and let X be an indecomposable
rigid object in C Ext-orthogonal to R, i.e. such that C(X,ΣR) = 0 = C(R,ΣX).

For k = 1, . . . ,m and c ∈ Z, consider triangles

X(c) fc

−→ B(c) gc

−→ X(c+1) −→ ΣX(c)

where f c is a minimal left addR-approximation and gc is a minimal right addR-
approximation and where X(0) = X . These will be called the exchange triangles
for X with respect to R. They can be constructed using induction on c. We will
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often write κ
(c)
R X for X(c), and κ for κ(1); κRX will be referred to as the twist of

X with respect to R. Note that κκ(c) = κ(c+1) = κ(c)κ for all c.
These exchange triangles lift the triangles X(c) −→ 0 −→ ΣRX

(c) −→ ΣRX
(c)

in the Iyama–Yoshino reduction ⊥(ΣR)/R canonically to C. Therefore, X(c) is
indecomposable, rigid and Ext-orthogonal to addR for all c. This justifies the
following definition:

Definition: The mutation of R at Rk is the rigid object

µRk
R = R/Rk ⊕ κR/Rk

Rk.

We will often write µk for µRk
and call it the mutation at k.

We note that our use of Iyama–Yoshino to define the mutation above is similar
to that of [BØO, Sect. 3] where cluster tilting objects are mutated at a non-
indecomposable summand.

In [BT09], the authors associate coloured quivers to d-cluster–tilting objects
in (d + 1)-Calabi–Yau categories. Here we use the same definition to associate a
coloured quiver to R.

Definition: The coloured quiver Q = QR associated with the rigid object R is

defined as follows: The set of vertices is Q0 = {1, . . . ,m}. The set Q
(c)
1 (i, j) of

c-coloured arrows from i to j has cardinality given by the multiplicity of Rj in B
(c)
i ,

where

R
(c)
i

fc
i−→ B

(c)
i

gc
i−→ R

(c+1)
i −→ ΣR

(c)
i

are the exchange triangles as above for Ri with respect to R/Ri.

When the category C is a (generalised) cluster category, it is often the case
that a sequence of exchange triangles is periodic. With each vertex k of Q is
thus associated an integer dk (possibly infinite): the periodicity of the sequence of
exchange triangles for Rk. In order to avoid keeping infinitely many arrows starting
at each vertex when not necessary, the colours of the arrows starting at a vertex
k are considered as elements in Z/dk. Note that the periodicity depends on the
starting vertex.

Remark:

• Analogous definitions would apply to a functorially finite, strictly full rigid
subcategory R of C closed under direct sums and direct summands, such
that, for each indecomposable R ∈ R, the subcategory R \ R is again
functorially finite.
• Analogous definitions would also apply to rigid objects in a stably 2-Calabi–
Yau Frobenius category. The use of Iyama–Yoshino reduction would be
replaced by [BIRS09, Theorem I.2.6] (see also [GLS06, Lemma 5.1] and [AO,
Sect. 4]).

2.2. Mutation of rigid objects and Iyama–Yoshino reductions. The follow-
ing lemma shows that the mutation of rigid objects is well-behaved with respect to
Iyama–Yoshino reductions. This will turn out to be helpful in simplifying the proof
of Theorem 15 in Section 7.

Let R be a rigid object in C. Let CR = ⊥(ΣR)/(R) be the Iyama–Yoshino
reduction of C with respect to R, with shift ΣR.

Let T be a rigid object in C, containing R as a direct summand. Assume that Tk

is a summand of T but not of R, and consider the exchange triangle with respect
to T/Tk:

(∗) Tk
f−→ B

(0)
k

g−→ T
(1)
k

ε−→ ΣTk.

Here B
(0)
k belongs to addT , where T = Tk ⊕ T .
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Lemma 1. The induced morphism f is a minimal left πR(T )-approximation in CR.
Proof. The triangle (∗) in C induces a triangle

Tk

f
−→ B

(0)
k

g
−→ T

(1)
k −→ ΣRTk,

in CR. We have:

CR(Σ−1
R πR(T

(1)
k ), πR(T )) ≃ Ext1CR

(πR(T
(1)
k ), πR(T )) ≃ Ext1C(T

(1)
k , T ) = 0,

using [IY08, Lemma 4.8]. Hence, the morphism f is a left πR(T )-approximation.

It is left minimal since T
(1)
k is indecomposable in CR.

√

Remark: Write B
(0)
k = R

(0)
k ⊕ C

(0)
k , with C

(0)
k having no summands in common

with R. Then the morphism Tk
f ′

−→ C
(0)
k is not a left T/R-approximation in C in

general.

Let Q be the coloured quiver of T in C, and let Q be the coloured quiver of
πR(T ) in CR. Lemma 1 has the following immediate corollary:

Corollary 2. The coloured quiver Q is the full subquiver of Q with vertices corre-
sponding to the indecomposable summands of T/R.

Moreover, computing the minimal T -approximation f ∈ C in the triangle (∗)
amounts to computing the minimal add Tj-approximation of Tk in the Iyama–
Yoshino reduction CT/Tj

for all j 6= k. More precisely:

Lemma 3. Let R = R1 ⊕ · · · ⊕ Rm be a rigid object in C and let 1 ≤ k ≤ m. For
each j = 1, . . . ,m, let Cj denote the Iyama–Yoshino reduction of C with respect to

R/(Rk⊕Rj). For j 6= k, let fj : Rk −→ R
nj

j be a map in C be such that Rk

fj−→ R
nj

j

is a minimal left addRj-approximation in Cj. Then the morphism:

Rk
[fj ]−→

⊕

j 6=k

R
nj

j

is a minimal left addR/Rk-approximation in C.

Proof. Let i 6= k, and let Rk
f−→ Ri be an arbitrary morphism in C. Since fi is

an addRi-approximation in Ci, there are morphisms
⊕

j 6=k R
nj

j

g1−→ Ri, Rk
β1−→

⊕
j 6=i,k R

a
(1)
j

j and
⊕

j 6=i,k R
a
(1)
j

j
α1−→ Ri in C (for some a

(1)
j ) such that f = g1[fj ] +

α1β1. Note that α1 must be a radical map, as no summand of its domain is
isomorphic to Ri.

Reducing to Cj for some j 6= i, k, we see that the component β1,j of β1 mapping

to R
a
(1)
j

j factors through fj : Rk → R
nj

j up to a map factoring through add⊕l 6=j,kRl.

That is, we can write β1,j as ujfj +wjvj for some uj : R
nj

j → R
a
(1)
j

j , vj : Rk → Xj ,
and wj : Xj → Rk, where Xj ∈ add⊕l 6=j,kRl. Note that wj is a radical map, since
none of the summands in Xj are isomorphic to Rj .

Adding over all j for j 6= i, k, we obtain maps α2 : ⊕l 6=kR
a
(2)
l

l → ⊕j 6=i,kR
a
(1)
j

j ,

β2 : Rk → ⊕l 6=kR
a
(2)
l

l and γ2 : ⊕j 6=kR
nj

j → ⊕j 6=i,kR
a
(1)
j

j (for some a
(2)
l ) such that

β1 = α2β2 + γ2[fj ]. Setting g2 = α1γ2 we obtain α1β1 = α1α2β2 + g2[fj], so

f = g1[fj ] + α1β1 = α1α2β2 + (g1 + g2)[fj ].

Here, α2 is a radical map, since all of its summands, the wj , are radical. See
Figure 2.
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⊕j 6=kR
a
(r)
j

j αr

// · · · // ⊕j 6=kR
a
(2)
j

j α2

// ⊕j 6=i,kR
a
(1)
j

j α1

// Ri

· · ·

Rk
[fj ]

//

βr

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

β2

^^>>>>>>>>>>>>>>>>>

β1

OO

f

@@������������������
⊕j 6=kR

nj

j

g1,g2,...,gr

OO

Figure 2. Proof of Lemma 3

α

β

αβ

α

β

αβ

Figure 3. Composition of arcs

Iterating this step we construct, for all r ≥ 3, morphisms gr :
⊕

j 6=k R
nj

j −→ Ri,

αr :
⊕

j 6=k R
a
(r)
j

j −→ ⊕
j 6=k R

a
(r−1)
j

j , and βr : Rk −→
⊕

j 6=k R
a
(r)
j

j for r = 3, . . . n

(and some a
(r)
l ), such that f = βnαn · · ·α1 + (g1 + · · ·+ gn)[fj ] and each of the αi

is a radical map. Since C is Hom-finite, the radical of End(R) is nilpotent and the
composition βnαn · · ·α1 vanishes for n big enough. Therefore f factors through [fj ]
and [fj ] is a left addR/Rk-approximation in C. The left minimality of [fj] follows
from the left minimality of each fj.

√

3. Coloured quivers for partial triangulations

Let (S,M) be an unpunctured compact Riemann surface with boundary and
marked points. We will always assume that each boundary component contains at
least one marked point and that no component of (S,M) is a monogon, a digon or
a triangle.

3.1. Composition of arcs. Let α and β be two oriented arcs in (S,M) with
β(1) = α(0). The composition αβ is the arc given by

t 7−→
{

β(2t) if 0 ≤ t ≤ 1/2
α(2t− 1) if 1/2 ≤ t ≤ 1.

See Figure 3.
Note that the composition only makes sense for oriented arcs.

3.2. Twisting an arc with respect to a partial triangulation. In this section,
our aim is to generalise the flip of triangulations to the twist of an arc with respect
to a partial triangulation.

Let R be a partial triangulation of (S,M), i.e. a collection of non-crossing arcs
γ1, . . . , γm. Let α be an arc in (S,M) which does not cross R and does not belong
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αα

αs

αt

Figure 4. Orientation of αs and αt

α

κ(α)
γ1

γ2

Figure 5. An example of a twist

to R, i.e. α ∈ A0
R
(S,M). We define the twist of α with respect to R as follows:

Choose an orientation α of α. Consider the arcs of the partial triangulation R which
admit α(0) as an endpoint. Restrict to a neighbourhood of α(0) small enough not
to contain any loop. The orientation of the boundary containing α(0) induces an
ordering on the parts of the arcs included in the neighbourhood (see Figure 4). Let
αs be the arc, in R or boundary, which follows α in this ordering (note that it is
not allowed to be α itself). Similarly, define αt with respect to the endpoint α(1).
These will be called the arcs following α in R.

We give αs and αt the orientations αs and αt described in the local pictures of
Figure 4. Note that this orientation coincides with the orientation of the boundary
if αs or αt is a boundary arc.

For an oriented arc β, let [β] denote the underlying unoriented arc. Define the
twist of the arc α with respect to R to be the underlying unoriented arc of the
composition:

κR(α) = [αt α αs
−1].

See Figure 5 for an example of a twist. Note that the definition of the arc κR(α)
does not depend on the choice of an orientation for α. It is easy to check, using
a case-by-case analysis depending on whether or not α, αs, αt are loops and the
order in which they appear at their end-points, that κR(α) does not cross any arc
in R, i.e. that κR(α) ∈ A0

R
(S,M).

The twist with respect to R is invertible with inverse κ−1
R

, which can also be
defined similarly.
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3.3. Mutation of partial triangulations. Let R be a partial triangulation of
(S,M), and let γ ∈ R. Write R = R ⊔ {γ}. The mutation of R at γ is the partial
triangulation

µγR = R ⊔
{
κ

R
(γ)

}
.

If R is a triangulation, then, for γ ∈ R, µγR is the usual flip of R at the arc
γ ∈ R; see [FST08, Defn. 3.5].

3.4. Coloured quivers. Let α and β be two arcs in (S,M), and let R be a partial

triangulation not containing α. For all c ∈ Z, define the numbers q
(c)
R

(α, β) by:

qR(α, β) =






2 if β = αs = αt

1 if β ∈ {αs, αt} and αs 6= αt

0 otherwise,

q
(c)
R

(τ, τ ′) = qR(κc
R(τ), τ ′).

With a partial triangulation R = {γ1, . . . , γm}, we associate a coloured quiver
QR:

Definition The coloured quiver QR associated with the partial triangulation R

is defined as follows: The set of vertices is Q0 = {1, . . . ,m}. The set Q
(c)
1 (i, j)

of c-coloured arrows from vertex i to vertex j has cardinality q
(c)
Ri

(γi, γj), where

Ri = R \ {γi}.
Here also, the colours can be thought of as elements of Z/dk where dk is the

periodicity of twisting the arc corresponding to the starting vertex.
For an example of a coloured quiver associated to a partial triangulation of a

torus and the effect of mutation on the quiver, see Section 6.2.

4. Cutting along an arc and CY reduction

Let (S,M) be as in Section 3.

4.1. Cutting along an arc. Let α be an arc on (S,M) not homotopic to a point
or a boundary arc. Fix a representative of α, also denoted by α, whose inter-
section with the boundary of S consists only of its endpoints. Then the marked
surface obtained from (S,M) by cutting along the arc α is the Riemann surface
with boundary obtained by cutting along the arc α together with the image of the
marked points M after cutting. Up to homeomorphism, it does not depend on the
choice of representative of α. We will denote it by (S,M)/α. Note that if α is not a
loop, then each endpoint of α gives rise to two distinct marked points in (S,M)/α.
If α is a loop, its endpoint gives rise to three distinct marked points in (S,M)/α.

The resulting marked surface cannot contain a monogon as a connected com-
ponent, since α is not homotopic to a point. No connected component can be a
bigon, since α is not a boundary arc. If a component homeomorphic to a triangle
has been created, we remove it.

There is a natural bijection between the arcs on (S′,M ′) and the arcs of (S,M)
which do not cross the arc α. Moreover, the (partial) triangulations of (S′,M ′) cor-
respond, through this bijection, to the (partial) triangulations of (S,M) containing
the arc α.

Remark 4. The surface (S,M)/α can also be constructed as follows. Let T be a
triangulation of (S,M) containing α. The surface (S,M) is then obtained from the
triangles of the triangulation by gluing matching sides of triangles in a prescribed
orientation. The surface (S,M)/α is obtained from the same triangles by respecting
the same gluings except for the sides which correspond to α, which are not glued
together anymore.
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Given a collection R of non-crossing arcs, one can cut successively along each
arc. Whatever order is chosen yields the same new surface, by Remark 4. The
corresponding surface will be called the reduction of (S,M) with respect to R,
and will be denoted by (S,M)/R. We will denote the natural bijection between
A0

R
(S,M) and A0((S,M)/R) by πR.

4.2. Compatibility with CY reduction. Let R be a basic rigid object in C(S,M),

and let R be the associated partial triangulation. We denote by CR =⊥(ΣR)/(R)
the Calabi–Yau reduction of C(S,M) with respect to R, and by (S,M)/R the marked
surface obtained from (S,M) by cutting along the arcs of R.

Proposition 5. The triangulated categories C(S,M)/R and CR are equivalent.

Proof. Complete the collection of arcs R to a triangulation T . Let (Q,W ) be the
QP associated with T . By definition, there is an equivalence of triangulated cate-
gories C(S,M) ≃ C(Q,W ). By [Kel09, Theorem 7.4] (see section 1.3), the category CR
is triangle equivalent to the cluster category C(Q′,W ′), where (Q′,W ′) is obtained
from (Q,W ) by deleting the vertices of Q which correspond to arcs in R, and all
adjacent arrows. On the other hand, the arcs in T not in R induce a triangula-
tion of the surface (S,M)/R. It follows from Remark 4 that (Q′,W ′) is the QP
associated with this triangulation. Thus C(S,M)/R is equivalent to C(Q′,W ′).

√

Remark: Lemma 7 shows that the equivalence above is well-behaved with respect
to well-chosen bijections between arcs and exceptional objects.

Figure 6 shows the effect of cutting along an arc in a triangulation of a torus
with a single boundary component containing two marked points. We cut along the
red arc (numbered 3) and obtain a cylinder with four marked points as shown, with
triangulation given by the remaining arcs. In the last step, the cylinder has been
rotated around to get a simpler picture. The effect on the corresponding quiver
with potential is shown in Figure 7.

Proposition 6. Let (S,M) be a marked surface and R a partial triangulation of
(S,M). Let R′ be a collection of arcs containing R. Then the coloured quiver
associated to πR(R′ \R) in (S,M)/R coincides with the coloured quiver associated
to R′ in (S,M) with the vertices corresponding to R and all arrows incident with
them removed.

Proof. It is clear that the vertices of each coloured quiver correspond to the arcs
in R′ \ R. In the definition of the twist κR (see Section 3.2), no distinction is
made between arcs in R and boundary arcs. Then, looking at the definition of the
coloured quiver of a partial triangulation (see Section 3.4) we see that the arrows
between arcs in R′ \ R are the same when considered in either coloured quiver.
The result follows.

√

We now give an example. In Figure 8, we start with a partial triangulation of
a torus with a single boundary component with two marked points. This has been
obtained by removing arcs 4 and 5 from the triangulation considered in Figure 6.
As before, we cut along the red arc (numbered 3) and obtain a cylinder with
four marked points as shown, with a partial triangulation given by the remaining
arcs. Figure 9 gives the corresponding coloured quiver associated to the partial
triangulation in Figure 8, together with the new quiver obtained after cutting along
the red arc (numbered 3), i.e. with vertex 3 and all arrows incident with it removed.
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55555

Figure 6. Cutting along an arc, numbered 3, in a torus to get a
cylinder: triangulation case.

4
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2oo

��/
//
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��/
//

//
//

/
oo

• • 7→ •

3 // 1

WW////////

GG��������
5oo 1

WW////////

GG��������
5oo

Figure 7. The change in the quiver with potential from the cut
in Figure 6. The potential in each case is given by the sum of the
3-cycles containing black dots.

11

1

1

2

2

2

3 3

Figure 8. Cutting along an arc in a torus to get a cylinder: partial
triangulation case.

5. Compatibility

5.1. Compatibility of the mutations. Let R be a partial triangulation of (S,M).
Complete R to a triangulation T of (S,M), and let T be the associated cluster
tilting object in C = C(S,M). Let R be the direct summand of T corresponding to
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(0,0)
(0,1)

(0,1)

(0,1)(1,2)

(1,2)

(1,2)

(2,2)

1

1

2

2

3

Figure 9. The effect of cutting along arc 3 on the coloured quiver
of the partial triangulation in Figure 8.

R. We thus obtain a map α 7→ Xα between the arcs of (S,M) and the isomor-
phism classes of exceptional objects in C(S,M) (see section 1.2.3). We denote by πR

the bijection A0
R
(S,M) → A0

(
(S,M)/R

)
; recall also that πR denotes the functor

⊥(ΣR) → CR. Consider the partial triangulation πR(T \ R) of (S,M)/R. Note
that T ′ := πR(T ) is cluster tilting in C(S,M)/R ≃ CR by [IY08, Theorem 4.9]. This
cluster tilting object induces a bijection β 7→ Yβ between the arcs in (S,M)/R and
the exceptional objects in CR.

Lemma 7. Let α be an arc in A0
R
(S,M). Then the image of Xα under πR is

isomorphic to YπRα.

Proof. Using [JP, Proposition 3.5], the modules associated with πRXα and YπRα

are seen to be isomorphic.
√

Let α be an arc in (S,M) which is not in R and which does not cross R, i.e.
α ∈ A0

R
(S,M). Fix an orientation α of α and let αs and αt be the two (possibly

boundary) arcs following α in R (as defined in section 3.2). Recall that κR(α) is
defined to be [αtααs

−1].
If γ is any arc in (S,M) then recall we have (from [BZ]; see Section 1.2.3):

(1) ΣXγ = Xκφ(γ),

where φ denotes the empty set of arcs in (S,M). Thus κφ(α) is obtained from the
arc α by composition with the two boundary arcs which follow α (see Section 3.2).

The following corollary describes the twist of an arc in terms of the action of the
shift functor of an Iyama-Yoshino reduction.

Corollary 8. Under the bijection A0
R
(S,M)↔ A0

(
(S,M)/R

)
, the induced action

of the shift functor of C(S,M)/R on A0
R
(S,M) coincides with that of the twist κR.

In other words, we have a commutative diagram:

A0
(
(S,M)/R

) shift // A0
(
(S,M)/R

)

A0
R
(S,M)

πR

OO

κR // A0
R
(S,M).

πR

OO

Proof. Let α ∈ A0
R
(S,M). By (1), noting that R becomes part of the boundary of

(S,M)/R, we have ΣRYπR(α) ≃ YπRκR(α). The result follows.
√

We now have the ingredients we need in order to show that the two mutations
(of partial triangulations and rigid objects) are compatible.
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Proposition 9. Let R be the rigid object in C(S,M) associated with the partial

triangulation R as above. Let α be an arc in A0
R
(S,M). Then we have:

κRXα ≃ XκR(α) and µkR ≃ XµkR.

Proof. Since α does not cross R, it follows from [BZ] (see Section 1.2.3) that
Xα ∈ ⊥(ΣR). Similarly, XκR(α) ∈ ⊥(ΣR), since κR(α) does not cross R. By the
description of the shift ΣR of CR in [IY08, 4.1], πR(κR(Xα)) ≃ ΣR(πRXα) in CR. By
Lemma 7, ΣR(πRXα) ≃ ΣRYπR(α). By Corollary 8, we have ΣRYπR(α) ≃ YπRκR(α).
By Lemma 7, YπRκR(α) ≃ πRXκR

(α). Hence πR(κRXα) ≃ πR(XκR(α)).

Note that κRXα is an indecomposable object in ⊥(ΣR) which is not in addR
(see Section 2.1). Since κRα does not cross R and does not lie in R, the same
is true of XκR(α). It follows that κRXα ≃ XκR(α), proving the first part of the
Proposition. The second part follows.

√

5.2. Compatibility of the coloured quivers. As in the previous section, let
α ∈ A0

R
(S,M); we fix an orientation of α and let αs and αt be the two (possibly

boundary) arcs following α in R (as defined in section 3.2). Note that it is possible
that αs = αt. We choose a triangulation T of (S,M) containing R and α and let T
be the corresponding cluster tilting object, containing R and as a direct summand
and Xα as an indecomposable direct summand. Recall that Xγ = 0 if γ is a
boundary arc.

Lemma 10. There is a minimal left addR-approximation of Xα in C(S,M) of the
form

Xα −→ Xαs
⊕Xαt

.

Proof. By the 2-Calabi-Yau tilting theorem (see Section 1.2.2), the functor H =
C(T,Σ−) induces an equivalence between C/T and mod J(Q,W ). Hence H induces
an equivalence between Σ−1 addT and the category P of projective modules over
J(Q,W ). Let Pα = H(Σ−1Xα) for each arc α in T and let PR = H(Σ−1 addR).
Then it is enough to show that there is a minimal left PR-approximation of Pα in
mod J(Q,W ) of the form

Pα −→ Pαs
⊕ Pαt

.

We recall that J(Q,W ) is gentle (see Section 1.1). In particular, the defining
relations are all zero-relations. Let γ1, γ2, . . . , γj be the arcs in T incident with
α(0) which are after α in the order induced by the orientation of the boundary at
α(0) (and listed in that order); see Section 3.2. Similarly, let δ1, δ2, . . . , δk be the
arcs in T around α(1) which are after α in the order induced by the orientation of
the boundary at α(1).

Because of the zero-relations in J(Q,W ), the only non-zero paths in Q starting
at α are paths:

α −→ γ1 −→ γ2 −→ · · · −→ γj

and
α −→ δ1 −→ δ2 −→ · · · −→ δk.

Thus the only non-zero morphisms from Pα to some indecomposable projective
module lie in the composition chains:

Pα −→ Pγ1 −→ Pγ2 −→ · · · −→ Pγj

and
Pα −→ Pδ1 −→ Pδ2 −→ · · · −→ Pδk ,

or are linear combinations of these (noting that the chains may overlap).
If αt is a boundary arc, but αs is not, then αs occurs in the first chain above.

It is easy to see that the non-zero map Pα −→ Pαs
coming from the chain of

compositions is a left minimal PR-approximation and we are done. The argument
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is similar if αs is a boundary arc but αt is not. If both αs and αt are boundary
arcs then the zero map is a left minimal PR-approximation.

We are left with the case where neither αs nor αt is a boundary arc. Thus αs = γi
for some i while αt = δi′ for some i′. Let fs and ft be the non-zero morphisms
arising from the above chains of compositions and let f : Pα −→ Pαs

⊕ Pαt
be

the map with components fs, ft. It follows from the above that f is a left PR-
approximation of Pα. It remains to check that f is left minimal.

We note that if we had fs = kh for some h : Pα −→ Pβ and k : Pβ −→ Pαs
for

some β ∈ R then k would have to be an isomorphism since the path in Q from α
to αs is not equal to any other path in Q from α to αs, and αs is the first arc in R

appearing along this path. A similar statement holds for ft.
If f were not left minimal, a summand of form 0 −→ Pαs

(respectively, 0 −→ Pαt
)

would split off and we would have a left PR-approximation of the form gs : Pα −→
Pαs

(respectively, gt : Pα −→ Pαt
). We consider only the first case (the second case

requires a similar argument). In this case, ft factors through gs, i.e. ft = vgs for
some map v : Pαs

→ Pαt
. By the above, v is an isomorphism and gs = v−1ft.

Again, since gs is a left PR-approximation, we also have that fs factors through
gs, i.e. fs = wgs for some w : Pαs

−→ Pαt
. By the above, w is an isomorphism.

Hence we have fs = wv−1ft where wv
−1 is an isomorphism. This is a contradiction

since fs and ft arise from two different paths starting at α. The result is proved.
√

Theorem 11. Let R be the rigid object in C(S,M) associated with the partial trian-
gulation R. Then the coloured quivers QR and QR coincide.

Proof. By Proposition 9, it is enough to prove that the sets of 0-coloured arrows
coincide. This follows from Lemma 10.

√

6. Some examples

6.1. The An case. In this section, we assume that the category C is the cluster
category of type An.

Suppose that R is a basic rigid object in C. In Section 2.1 we have associated a
coloured quiver Q with R. If Rk is an indecomposable direct summand of R then

the rigid object µkR also has a coloured quiver, Q̃, associated with it, and we can

ask if Q̃ can be computed from Q. This is known in the d-cluster-tilting object case
of a d+1-Calabi-Yau category [BT09, Thm. 2.1] but is not known for a general rigid
object. In Section 7 we will indicate some results in this direction with a categorical
proof, but here we give a complete answer for the cluster category of type A using
a combinatorial (geometric) proof. In this case, the corresponding surface is a
disk with n + 3 marked points (see [CCS06]), which we shall denote (S,M); as
usual, we denote by R the set of noncrossing arcs in (S,M) corresponding to the
indecomposable direct summands of R.

The following is easy to check (di was defined in section 2.1):

Lemma 12. Let i ∈ I. Then

(a) di = max{c ≥ 0 : q
(c)
ij 6= 0}+min{c ≥ 0 : q

(c)
ji 6= 0}+ 1.

(b) For all c ∈ Z, q
(c)
ii = 0.

Let Ri be a summand of R and let αi denote the corresponding arc in (S,M). If
the arc corresponding to Ri in (S,M)/(R \αi) is a diameter of a 2d-sided polygon
for some d then twisting αi with respect to R \Ri has order d, while in all other
cases the order of this twisting coincides with the number of sides of the polygon.
See Figure 10 for an example.

It is easy to see that this situation occurs if and only if for any j such that i and

j are ends of a common arrow in Q, there is a unique colour c such that q
(c)
ij 6= 0,
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α

β

Figure 10. The arc α has order 3 under twisting and lies in a
hexagon, while the arc β has order 5 and lies in a pentagon.

and thus this can be detected in Q. This irregularity makes it difficult to compute
the new coloured quiver after mutation of R at an arc. But, since it is detectable
in Q, we can make a first pass and add second arrows between i and j to Q in such
cases. We do this when computing the coloured quiver Q of R by continuing to
mutate R at αi a further d times and adding the new arrows arising to Q; see step
(ii) below. At the end, this procedure must be reversed.

Thus, given a coloured quiver Q of a rigid object and vertex k as above, we

consider the following algorithm to define a new quiver Q̃. The letters i, j always
refer to distinct vertices.

Type A algorithm:

(i) Compute di for all i ∈ I using the formula in Lemma 12.

(ii) For any pair of vertices i, j for which there is a unique c with q
(c)
ij 6= 0, set

q
(c+di)
ij = 1. For all such i arising in this way, replace di with 2di.
We note that after this step, for any two vertices i, j, there will either

be no arrows between i and j or exactly two arrows in each direction. In
the latter case, we indicate the two colours in a given direction by l ≤ l′

for some letter l and we will write the colours as a pair labelling a single
arrow.

(iii) Suppose we have the following arrows:

i
(a,a′) //

k
(0,b′)

oo j
(c,c′) //

k
(d,d′)

oo

where d 6= 0. Add the following arrows:

i
(d,d+a′−a) //

j
(c,c′)

oo

and cancel any pairs of arrows between i and j in the same direction whose
colours differ by 1.

(iv) Suppose we have the following full subquiver of Q where j 6= k:

k
(0,b′) //

i
(a,a′)

oo
(d,d′) //

j
(c,c′)

oo .
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Then change the arrows between i and j to:

i
(d,d+b′) //

j
(c,c′)

oo .

(v) Apply the following rule to all vertices i with an arrow to or from k:

i
(a,a′) //

k
(b,b′)

oo 7→





i
(a+1,a′+1) //

k
(b−1,b′−1)

oo if b 6= 0;

i
(0,a′−a) //

k
(b′−1,a+b′)

oo if b = 0.

If b = 0 then di is replaced with di + b′ − a = b′ + a′ − a.
(vi) Whenever we have arrows:

i

(c,c+ 1
2di) //

j
(d,d′)

oo ,

remove the arrow with colour c+ 1
2di and replace di with

1
2di.

Proposition 13. Let R =
⊕

i∈I Ri be a rigid object in the cluster category of type

An, with associated quiver Q. Let Rk be a summand of R and let Q̃ denote the

quiver of µk(R). Then Q̃ can be computed using the above algorithm.

Proof. Let Γ be the quiver obtained from Q after Step (ii) of the algorithm has

been applied and let Γ̃ be the quiver so obtained from Q̃. Since Step (vi) takes Γ̃

to Q̃ it is enough to show that Steps (iii) to (v) take Γ to Γ̃.
We consider each possible configuration of the arcs corresponding to the sum-

mands of R in the disc and check that in each case, the above rule gives the correct
answer. It is easy to check that the algorithm works in the case where there are no
arrows of colour zero starting at k. The other possible configurations are given in

Figures 11,12,13 and 14, together with the corresponding quivers Γ and Γ̃. In each
case, the label on part of the boundary indicates the number of boundary segments
between the two nearest arc ends on the boundary. (The black dot indicates the
end of arc k to indicate that this has changed after the mutation). Case I can be
regarded as an instance of Step (iii) with a = r, a′ = r + s, b = 0, b′ = q + t + 1,
c = t, c′ = p + t, d = q and d′ = q + r + 1, followed by Step (v). Case II can be
regarded as an instance of Step (iii) with a = q + t + 1, a′ = q + r + t+ 1, b = 0,
b′ = s, c = t, c′ = p + t, d = q + 1 and d′ = q + s + 1, followed by Step (v). Case
III can be regarded as instance of Step (iv) with a = s, a′ = q + s + t + 1, b = 0,
b′ = r, c = t, c′ = p+ t, d = q and d′ = q+ s+1, followed by Step (v). In Case IV,
only Step (v) is applied. The result follows.

√

6.2. An example with infinitely many colours. We consider again the example
from Figure 8, i.e. a torus with a single boundary component with two marked
points. We show again the partial triangulation of this surface in Figure 15. Several
copies are drawn to make it easier to see mutations at each of the arcs. The
corresponding coloured quiver is given below the surface: note that removing any
of the three arcs leaves a hexagon; it follows that mutation at any of the arcs has
order 3, and we get finitely many colours: 0, 1 and 2, appearing as labels on the
arrows.

Now suppose we mutate at arc 1. We obtain the partial triangulation in Fig-
ure 16; the corresponding quiver is given below the picture of the surface. Here, an
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(q,q+r+1)
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(q,q+s)

(t+1,p+t+1)

(q−1,q+r)

(q+t,q+r+t+1)

(0,s)

7→

Figure 11. Case I. Here we have p ≥ 2, q ≥ 1, r ≥ 1, s ≥ 2,
t ≥ 0. Note that di changes from r + s+ 1 to q + t+ s+ 1.

i

i i

i

j j

j j

k

k k

k

pp

q q

rr

s s− 1

t t+ 1

(t,p+t)

(q+1,q+s+1)

(0,s)

(q+t+1,q+r+t+1)

(t+1,p+t+1)

(t+1,p+t+1)

(q,q+r)

(q,q+s)

(s−1,q+s+t+1)

(0,r)

7→

Figure 12. Case II. Here we have p ≥ 2, q ≥ 0, r ≥ 2, s ≥ 2,
t ≥ 0. Note that di changes from q + r + t+ 2 to r + s.

arrow is labelled with Z to represent an infinite number of arrows, one coloured n
for each integer n. This infinity of arrows comes from mutating at arc number 2. If
we cut along the remaining arcs in the partial triangulation, we obtain a cylinder.
Then, after each mutation a small neighbourhood of the triangulation is the same
at each end (which explains the regularity), but as more and more mutations are
made the arc wraps itself more and more around the cylinder. Thus we see that,
even if the quiver is locally finite to start with, after a mutation it might not be.
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j j
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k

p p
q q

r r − 1

s s+ 1

t t

(t,p+t) (t,p+t)

(q,q+s+1)

(0,r)

(s,q+s+t+1)

(r−1,r+s)

(q,q+r)

(0,q+t+1)

7→

Figure 13. Case III. Here we have p ≥ 2, q ≥ 0, r ≥ 2, s ≥ 0,
t ≥ 0, q + t ≥ 1. Note that di changes from q + s + t + 2 to
q + r + t+ 1.

i1
i1

i1i1

i2i2

i2i2

k

k
k

k

p p

q q

r rs s

(q,q+s+1)

(0,r)

(0,p)(s,q+s+1)(s,p+s)

(0,q+1)

(0,s+1)

(q,q+r)

7→

Figure 14. Case IV. Here we have p ≥ 2, q ≥ 1, r ≥ 2, s ≥ 1.
Note that di1 changes from q + r + 1 to r + s+ 1 and di2 changes
from p+ s+ 1 to p+ q + 1.

Remark 14. We note that in the example in Figure 16, the coloured quiver contains
a two-cycle of arrows both coloured zero, a situation that does not arise in the
coloured quivers arising in m-cluster categories [BT09, Sect. 2].

7. Partial categorical interpretation

Let C be any Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated k-category.

Let Q be the coloured quiver associated with a rigid object R ∈ C. Let Q̃ be the
coloured quiver associated with µkR, for some k. The periodicity associated with

the vertex i of Q (resp. Q̃) is denoted by di (resp. d
′
i).
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12

3

(0,0)
(0,1)

(0,1)

(1,2)

(1,2)

(2,2)

12

3

Figure 15. A partial triangulation of a torus with a single bound-
ary component and two marked points and the corresponding
coloured quiver.

12

3

(0,1)

(1,2)

(0,2)

(0,2)

12

3

Z

Z

Figure 16. The result of mutating the partial triangulation in
Figure 15 at arc 1 and the corresponding coloured quiver.

Theorem 15. (i) We have:
• dk = d′k and

• for any j ∈ Q0 and any c ∈ Z/dk, q̃
(c)
k,j = q

(c+1)
k,j .

(ii) Let i, j ∈ Q0 be such that q
(0)
k,j = 0 = q

(0)
k,i . Then we have:

• d′i = di, d
′
j = dj ;
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• for any c ∈ Z/dj, q̃
(c)
j,k = q

(c−1)
j,k ;

• for any c ∈ Z/di, q̃
(c)
i,j = q

(c)
i,j .

We note that, for the cases covered by the theorem, the new coloured quiver
depends only on the old coloured quiver and not on the particular choice of rigid
object or category C.
7.1. Proof of Theorem 15. We break the proof of Theorem 15 down into smaller
steps, which we present as individual lemmas.

Let R ∈ C be rigid and let Q be the associated coloured quiver.

Lemma 16. We have d′k = dk and, for any c ∈ Z/dk and any j ∈ Q0,

q̃
(c)
k,j = q

(c+1)
k,j .

Proof. The exchange triangles for R
(1)
k can be deduced from those for Rk, so that

we have (R
(1)
k )(c) = R

(c+1)
k .

√

Lemma 17. Let j ∈ Q0 be such that q
(0)
k,j = 0. Then d′j = dj and for any c ∈ Z/dj

we have:
q̃
(c)
j,k = q

(c−1)
j,k .

Proof. By Corollary 2, we may assume that R = Rj ⊕Rk. Since q
(0)
k,j = 0, the first

exchange triangle for Rk with respect to Rj is:

Rk −→ 0 −→ R
(1)
k

=−→ ΣRk.

Let

. . . , R
(−1)
j −→ R

s−1

k −→ Rj −→ ΣR
(−1)
j , Rj −→ Rs0

k −→ R
(1)
j −→ ΣRj , . . .

be the exchange triangles for Rj with respect to Rk. Since q
(0)
k,j = 0, we have s−1 = 0

and Rj is isomorphic to ΣR
(−1)
j . The exchange triangles for Rj with respect to

R
(1)
k = ΣRk are thus obtained from those with respect to Rk by applying the shift

functor:
...

ΣR
(−3)
j −→ ΣR

s−3

k −→ ΣR
(−2)
j −→

ΣR
(−2)
j −→ ΣR

s−2

k −→ Rj −→
Rj −→ 0 −→ ΣRj −→

ΣRj −→ ΣRs0
k −→ ΣR

(1)
j −→

ΣR
(1)
j −→ ΣRs1

k −→ ΣR
(2)
j −→

... √

Lemma 18. Let i, j ∈ Q0 be such that q
(0)
k,j = 0 = q

(0)
k,i . Then, for any c ∈ Z/di, we

have:
q̃
(c)
i,j = q

(c)
i,j .

Proof. By Corollary 2, we may assume that R = Ri ⊕Rj ⊕Rk. Let

. . . , R
(−1)
i → R

t−1

j → Ri → ΣR
(−1)
i , Ri → Rs0

k ⊕Rt0
j → R

(1)
i → ΣRi , . . .

be the exchange triangles in C for Ri with respect to Rj ⊕ Rk. We denote by

R
(c)∗
i the twists of Ri with respect to µkR/Ri. Our assumptions have the following

consequences:
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(i) R
(1)
k = ΣRk and

(ii) the spaces C(Rk, Rj) and C(Rk, Ri) vanish.

Let C be the Iyama–Yoshino reduction of C with respect to ΣRk = R
(1)
k . The image

in C of a morphism f ∈ C is denoted f .
By induction on c ≥ 0, we are going to construct:

(a) A minimal left addRj-approximation R
(c)∗
i −→ Rtc

j in C;
(b) a triangle Xc+1 → R

(c+1)
i → R

(c+1)∗
i → ΣXc+1 in C, with Xc+1 in addRk;

(a’) a minimal right addRj-approximation R
t−c−1

j −→ R
(−c)∗
i in C and

(b’) a triangle X−c−1 → R
(−c−1)
i → R

(−c−1)∗
i → ΣX−c−1 in C, with X−c−1 in

addRk.

The result then follows from (a) and (a’) by Corollary 2.
Let us first prove that (a) and (b) hold for c = 0. Note that, by (ii), both Ri

and Rj belong to (Σ−1R
(1)
k )⊥, so that (a) makes sense. Let us denote by

[
f ′

f

]
the

map Ri → Rs0
k ⊕ Rt0

j . Since C(Rk, Rj) = 0, the map Ri
f−→ Rt0

j is a left addRj-

approximation in C, thus so is f in C. Let g ∈ EndC(R
t0
j ) be such that g f = f .

Then
[
1 0
0 g

] [f ′

f

]
−

[
f ′

f

]
factors through addΣRk. Since Ri belongs to ⊥(ΣRk), we

have in fact
[
1 0
0 g

] [f ′

f

]
=

[
f ′

f

]
. By minimality, g is an isomorphism. Thus f is left-

minimal. By Lemma 3 and Lemma 17, the first exchange triangle with respect to
µkR for Ri is

Ri −→ Rt0
j −→ R

(1)∗
i −→ ΣRi.

The triangle (b) is easily constructed by applying the octahedral axiom to the

composition Ri −→ Rs0
k ⊕ Rt0

j

proj−→ Rt0
j as follows:

Rs0
k

��

Rs0
k

��
Ri

// Rs0
k ⊕Rt0

j
//

��

R
(1)
i

//

��

ΣRi

Ri
// Rt0

j
//

0

��

R
(1)∗
i

//

��

ΣRi

ΣRs0
k ΣRs0

k .

Assume that (a) and (b) hold for some c, and let us first prove that (a) holds for

c + 1. Note that, by construction, R
(c+1)∗
i belongs to R⊥

k = Σ−1(R
(1)
k )⊥ and so

does Rj , by (ii), so (a) makes sense. Write X for Xc+1. Since X belongs to addRk,

the space C(X,Rj) vanishes and the morphism R
(c+1)
i → R

sc+1

k ⊕ R
tc+1

j induces a
morphism of triangles:

X //

���
�

� R
(c+1)
i

//

��

R
(c+1)∗
i

//

m

���
�
�

ΣX

���
�

�

R
sc+1

k
// Rsc+1

k ⊕R
tc+1

j
// Rtc+1

j
0 // ΣRsc+1

k .
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We claim that m is a minimal left addRj-approximation in C. Let f belong to

C(R(c+1)∗
i , Rj). The following diagram illustrates the proof:

Σ−1R
(c+2)
i

v

��

R
(c+1)
i

q //

u

��

R
(c+1)∗
i

p //

m

��
f

��3
33

33
33

33
33

33
33

33
ΣX

R
sc+1

k ⊕R
tc+1

j
π

2
//

��
a 11

D
G

J
O

T
Y ] _ a b

R
tc+1

j

b

,,

3

E
T Y

R
(c+2)
i

Rj

where π2 denotes the second projection. Since the space C(R(c+2)
i ,ΣRj) vanishes,

we have fqv = 0 and there exists a morphism a such that fq = au. By (ii), the
morphism a factors through π2. Let b be such that a = bπ2. We then have
fq = bπ2u = bmq, and the morphism f − bm factors through p. Since the object
X belongs to addRk, this implies that f − bm lies in the ideal (ΣRk). That is m

is a left addRj-approximation in C. Let g ∈ EndC(R
tc+1

j ) be such that gm = m,

that is gm − m belongs to the ideal (ΣRk). This implies that the composition

(m− gm)q vanishes since C(R(c+1)
i ,ΣRk) = 0. Let h ∈ C(ΣX,R

tc+1

j ) be such that
gm = m+ hp. We have: gmq = mq + hpq = mq. Since mq = π2u is left minimal,
the morphism g is an isomorphism in C, thus so is g in C. Hence (a) holds for c+1.

Let us now prove that (b) holds for c+ 1. By Lemma 3, Lemma 17 and (a) for

c + 1, we have a minimal left addRj ⊕ ΣRk approximation of R
(c+1)∗
i in C of the

form [mr ] for some r : R
(c+1)∗
i −→ ΣRsc

k , which we complete to an exchange triangle

R
(c+1)∗
i

[mr ]−→ R
tc+1

j ⊕ ΣRsc
k −→ R

(c+2)∗
i −→ ΣR

(c+1)∗
i .

Complete the commutative square

R
(c+1)
i

u //

q

��

R
tc+1

j ⊕R
sc+1

k

[1 0
0 0]

��

R
(c+1)∗
i

[mr ] // Rtc+1

j ⊕ ΣRsc
k

to a commutative diagram

R
(c+1)
i

u //

q

��

R
tc+1

j ⊕R
sc+1

k
//

[1 0
0 0]

��

R
(c+2)
i

//

��

ΣR
(c+1)
i

R
(c+1)∗
i

��

[mr ] // Rtc+1

j ⊕ ΣRsc
k

��

// R(c+2)∗
i

//

��

ΣR
(c+1)∗
i

ΣX //

��

ΣR
sc+1

k ⊕ ΣRsc
k

//

��

ΣY
η //

��

Σ2X

ΣR
(c+1)
i

ΣR
tc+1

j ⊕ ΣR
sc+1

k ΣR
(c+2)
i
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whose rows and columns are triangles. By construction, R
(c+2)∗
i belongs to ⊥(Σ2Rk).

Moreover, C(ΣR(c+2)
i ,Σ2Rk) ≃ C(R(c+2)

i ,ΣRk) = 0. Thus ΣY also belongs to
the extension-closed subcategory ⊥(Σ2Rk), and the morphism η vanishes, since
X ∈ addRk. As a consequence, the triangle in the third row splits and Y belongs
to addRk. Define Xc+2 to be Y . Then we see that (b) has been shown.

The statements (a’) and (b’) can be deduced from (a) and (b) by duality:
Consider in the category Cop the object Ri ⊕Rj ⊕ ΣRk.
It is a rigid object:

Cop(Ri,Σ
opΣRk) = Cop(Ri, Rk)

= C(Rk, Ri)

= 0,

and similarly, Cop(Rj ,Σ
opΣRk) = 0. Moreover, it satisfies the assumptions we

made to prove (a) and (b):

Cop(ΣRk, Ri) = C(Ri,ΣRk)

= 0.

Note that µopΣRk = Rk, R
(c)op
i = R

(−c)∗
i and R

(c)∗op
i = R

(−c)
i .

Therefore, there are triangles in C

Yc+1 ←− R
(−c−1)∗
i ←− R

(−c−1)
i ←− Σ−1Yc+1

with Yc+1 in addΣRk. Let X−c−1 = Σ−1Yc+1, to get the triangles (b’).

By (a) applied to Cop, there are minimal right addRj approximations R
(−c)
i ←

R
topc
j in CRk

= ⊥(ΣRk)/(Rk). This proves that we have topc = t−c−1. Written in C,
the exchange triangles in Cop for Ri with respect to Rj ⊕ ΣRk are of the form:

R
(−c)∗
i ←− R

topc
j ⊕ (ΣRk)

sopc ←− R
(−c−1)∗
i ←− Σ−1R

(−c)∗
i .

By Lemma 3, we thus have minimal right addRj approximations R
(−c)∗
i ← R

t−c−1

j

in C. √
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[BZ] Thomas Brüstle and Jie Zhang. On the cluster category of a marked surface. Preprint
arXiv:1005.2422v2 [math.RT].

[CCS06] P. Caldero, F. Chapoton, and R. Schiffler. Quivers with relations arising from clusters
(An case). Trans. Amer. Math. Soc., 358(3):1347–1364 (electronic), 2006.

[DWZ08] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. Quivers with potentials and
their representations. I. Mutations. Selecta Math. (N.S.), 14(1):59–119, 2008.

[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangu-
lated surfaces. I. Cluster complexes. Acta Math., 201(1):83–146, 2008.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer.
Math. Soc., 15(2):497–529 (electronic), 2002.

[GLS06] Christof Geiß, Bernard Leclerc, and Jan Schröer. Rigid modules over preprojective
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