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Abstract

We investigate intrinsic geometric properties of invariant sets of one-dimensional
conformal iterated function systems. We show that for such a set F the fractal cur-
vature measures exist, if and only if the geometric potential function associated to F

is nonlattice. In this case we obtain that the fractal curvature measures are constant
multiples of the δ-conformal measure, where δ is the Minkowski dimension of F . More-
over, for the first fractal curvature measure, this constant factor coincides with the
Minkowski content of F . We show that the existence of the fractal curvature measures
implies the existence of the Minkowski content but that the converse is not true in
general. That is, the Minkowski content may exist although the geometric potential
function associated to F is lattice. Nevertheless, average versions of the fractal curva-
ture measures always exist and are also constant multiples of the δ-conformal measure.
We give explicit formulae for the (average) fractal curvature measures and further in-
vestigate the particular situations of self-similar sets and C

1+α images of self-similar
sets.

1 Brief Introduction

Notions of curvature are an important tool to describe the geometric structure of sets and
have been introduced and intensively studied for broad classes of sets. However, for sets of
a fractal nature, the classical notions of curvature are not fitting. Nevertheless, for these
sets it is desirable to have such a notion at hand.

Originally, the idea to characterise sets in terms of their curvature stems from the study
of smooth manifolds as well as from the theory of convex bodies with sufficiently smooth
boundaries. In Federer’s foundational text, Curvature Measures [Fed59], Federer localises,
extends and unifies the existing notions of curvature for the afore mentioned sets to sets
of positive reach. This is where he introduces curvature measures, which can be viewed
as a measure theoretical substitute for the notion of curvature in the non differentiability
situation. Federer’s curvature measures were studied and generalised in various ways. An
extension to finite unions of convex bodies is given in [Gro78] and [Sch80] and to finite unions
of sets of positive reach in [Zäh84]. In [Win08] Winter extends the curvature measures to
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“fractal” sets in Rd, which typically cannot be expressed as finite unions of sets with posi-
tive reach. These measures are referred to as fractal curvature measures and are defined as
weak limits of rescaled versions of the curvature measures introduced by Federer, Groemer
and Schneider. Winter also examines conditions for their existence in the self similar case.
However, fractal sets arising in geometry (for instance as limit sets of Fuchsian groups) or in
number theory (for instance as sets defined by Diophantine inequalities) are typically non
self-similar but rather self-conformal. In order to make use of the notion of curvature also
for this important class of fractal sets, we extend Winter’s examinations to the conformal
setting. In this way we contribute to the ongoing research on defining notions of curvature
for fractal sets. Our objects of study are nonempty compact sets which occur as the invari-
ant sets of finite conformal iterated function systems satisfying the open set condition as
considered in [MU96]. We refer to these sets as self-conformal sets (see Definition 3.2).

The paper is organised as follows. In Section 2 we state the main results and provide in this
way a complete answer to the question on the existence of the fractal curvature measures
for self-conformal sets. The precise definitions and background information as well as the
relevant properties and auxiliary results will be presented in Section 3. In Section 4 the proofs
of our main theorems for self-conformal sets (Theorem 2.6 and Theorem 2.8) are provided.
Finally, in Section 5, we conclude the paper by considering the special cases of self-similar
sets and C1+α images of self-similar sets and thus proving Theorem 2.9, Theorem 2.11,
Proposition 2.13, and Corollary 2.14.

2 Main Results

The introduction of the fractal curvature measures (see Section 3.1) relies on the definition
of scaling exponents, for which we require the following notation. Let λ0 and λ1 respectively
denote the zero- and one-dimensional Lebesgue measure. For ε > 0 we define Yε := {x ∈
R | infy∈Y |x − y| ≤ ε} to be the ε-parallel neighbourhood of Y ⊂ R and let ∂Y denote the
boundary of Y .

Definition 2.1 For a compact set Y ⊂ R the 0-th and 1-st curvature scaling exponents of
Y are respectively defined as

s0(Y ) := inf{t ∈ R | εtλ0(∂Yε) → 0 as ε→ 0} and

s1(Y ) := inf{t ∈ R | εtλ1(Yε) → 0 as ε→ 0}.

Definition 2.2 Let Y ⊂ R denote a compact set. Provided, the weak limit

Cf0 (Y, ·) := w-lim
ε→0

εs0(Y )λ0(∂Yε ∩ ·)/2

exists, we call it the 0-th fractal curvature measure of Y . Likewise the weak limit

Cf1 (Y, ·) := w-lim
ε→0

εs1(Y )λ1(Yε ∩ ·)

is called the 1-st fractal curvature measure, if it exists. Moreover, for a Borel set B ⊆ R we
set

C
f

0 (Y,B) := lim sup
ε→0

εs0(Y )λ0(∂Yε ∩B)/2, Cf0 (Y,B) := lim inf
ε→0

εs0(Y )λ0(∂Yε ∩B)/2

C
f

1 (Y,B) := lim sup
ε→0

εs1(Y )λ1(Yε ∩B), and Cf1 (Y,B) := lim inf
ε→0

εs1(Y )λ1(Yε ∩B).
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The central question arising in this context is to identify those sets Y ⊂ R for which the
fractal curvature measures exist. In [Win08] it has been shown that the fractal curvature
measures exist for self-similar sets with positive Lebesgue measure as well as for self-similar
sets satisfying the open set condition which are nonlattice (see Definition 3.8). In the lattice
case, Winter shows that an average version of the fractal curvature measures exists, which
are defined as follows.

Definition 2.3 Let Y ⊂ R denote a compact set. Provided the weak limit exists, we let

C̃f0 (Y, ·) := w-lim
T→0

|lnT |−1

∫ 1

T

εδ−1λ0(∂Yε ∩ ·)dε/2

denote the 0-th average fractal curvature measure of Y . Likewise, the weak limit

C̃f1 (Y, ·) := w-lim
T→0

|lnT |−1

∫ 1

T

εδ−2λ1(Yε ∩ ·)dε

is called the 1-st average fractal curvature measure of Y , if it exists.

We are able to provide a complete characterisation of the self-conformal sets for which the
(average) fractal curvature measures exist, generalising in this respect the results in [Win08].

As we will see, a self-conformal set is either a nonempty compact interval or has zero one-
dimensional Lebesgue measure (Proposition 3.4). To determine the fractal curvature scaling
exponents we have to distinguish these two cases.

Proposition 2.4 Let δ denote the Minkowski dimension of a self-conformal set F . If
λ1(F ) = 0, then s0(F ) = δ and s1(F ) = δ − 1. If F is a nonempty compact interval,
then s0(F ) = s1(F ) = 0.

Let us first consider the latter situation of the above proposition. As an immediate conse-
quence of Proposition 2.4 we obtain the following complete description.

Corollary 2.5 If Y ⊂ R is a nonempty compact interval, then both the 0-th and 1-st fractal
curvature measures exist and satisfy

Cf0 (Y, ·) = λ0(∂Y ∩ ·)/2 and Cf1 (Y, ·) = λ1(Y ∩ ·).

Let us now focus on self-conformal sets with zero one-dimensional Lebesgue measure. Fix
an iterated function system Φ := {φ1, . . . , φN}, N ≥ 2, acting on a compact connected
set X ⊂ R which satisfies the open set condition and let F denote the unique nonempty
compact invariant set of Φ. For Σ := {1, . . . , N} let (Σ∞, σ) denote the full shift-space on N
symbols and let π : Σ∞ → F be the natural code map as defined in Section 3. It turns out
that the fractal curvature measures of F exist, if and only if the geometric potential function
ξ : Σ∞ → Σ∞ given by ξ(ω) := − ln|φ′ω1

(π(σω))| for ω := ω1ω2 · · · ∈ Σ∞, is nonlattice
(see Definition 3.7). In this case we call Φ (resp. F ) nonlattice, otherwise Φ (resp. F ) is
called lattice (see Definition 3.8). Before stating the main results we make the following
observation and definitions.

By applying Φ to the convex hull of F one obtains a family ofQ−1 gap intervals L1, . . . , LQ−1,
which we call the primary gaps of F , where we have 2 ≤ Q ≤ N since λ1(F ) = 0. Given an
n ∈ N and an ω := ω1 · · ·ωn ∈ Σn, let L1

ω, . . . , L
Q−1
ω respectively denote the images of the

primary gaps under the map φω := φω1 ◦ · · · ◦φωn and call these sets the main gaps of φωF .
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Further, letting δ denote the Minkowski dimension of F , we call the unique probability
measure ν supported on F , which satisfies

ν(φiX ∩ φjX) = 0 for i 6= j ∈ Σ and ν(φωB) =

∫

B

|φ′ω |δdν (2.1)

for all ω ∈ ⋃n∈N
Σn =: Σ∗ and for all Borel sets B ⊆ F the δ-conformal measure associated

to Φ. The statement on the uniqueness and existence is shown in [MU96] and goes back to
the work of [Pat76], [Sul79], and [DU91].
Finally, let Hµ−δξ denote the measure theoretical entropy of the shift-map with respect to
the unique shift-invariant Gibbs measure for the potential function −δξ (see (3.2)).

The following theorem gives the complete answer to the question concerning the existence
of the fractal curvature measures for self-conformal sets.

Theorem 2.6 (Self-Conformal Sets) Let F denote a self-conformal set associated to the
iterated function system Φ. Assume that Φ satisfies the open set condition and that λ1(F ) =
0. Let δ denote the Minkowski dimension of F and let ξ denote the geometric potential
function associated to Φ. Then the fractal curvature measures exist if and only if ξ is
nonlattice. Moreover, the following more specific results hold.

(i) The average fractal curvature measures always exist and are both constant multiples
of the δ-conformal measure ν associated to F , that is

C̃f0 (F, ·) =
2−δc

Hµ−δξ

· ν(·) and C̃f1 (F, ·) =
21−δc

(1− δ)Hµ−δξ

· ν(·),

where the constant c is given by the well-defined limit

c := lim
n→∞

∑

ω∈Σn

Q−1∑

i=1

|Liω|δ. (2.2)

(ii) If Φ is nonlattice, then both the 0-th and 1-st fractal curvature measures exist and

satisfy Cfk (F, ·) = C̃fk (F, ·) for k ∈ {0, 1}.

(iii) If Φ is lattice, then neither the 0-th nor the 1-st fractal curvature measure exists.

Nevertheless, there exists a constant c ∈ R such that C
f

k(F,B) ≤ c for every Borel set

B ⊆ R and k ∈ {0, 1}. Additionally, Cfk(F,R) is positive for k ∈ {0, 1}.

Part (iii) in particular shows that the scaling exponents of F can alternatively be charac-
terised by s0(F ) = sup{t ∈ R | εtλ0(∂Fε) → ∞ as ε → 0} and s1(F ) = sup{t ∈ R |
εtλ1(Fε) → ∞ as ε→ 0} respectively.

For λ1(F ) = 0, it follows from Proposition 2.4 that the Minkowski content M(F ) of F
(see Definition 3.1) is obtained as the total mass of the 1-st fractal curvature measure,

namely M(F ) = Cf1 (F,R). Similarly, the average Minkowski content M̃(F ) is given by

the total mass of the 1-st average fractal curvature measure, namely M̃(F ) = C̃f1 (F,R).

Moreover, for the upper and lower Minkowski content we have that M(F ) = C
f

1 (F,R) and

M(F ) = Cf1 (F,R). Therefore, Theorem 2.6 immediately implies the following interesting
observation.

Corollary 2.7 (Self-Conformal Sets – Minkowski Content) Under the conditions of
Theorem 2.6 the following holds.

4



(i) The average Minkowski content exists and equals

M̃(F ) =
21−δc

(1− δ)Hµ−δξ

,

where c is the constant given in Equation (2.2).

(ii) If Φ is nonlattice, then the Minkowski content M(F ) of F exists and coincides with

M̃(F ).

(iii) In both the lattice and nonlattice case we have that

0 <M(F ) ≤ M(F ) <∞.

It is important to remark that the fact that the fractal curvature measures do not exist in the
lattice case does not imply that the Minkowski content does not exist in this case. Indeed,
for a general self-conformal set, which is lattice, the Minkowski content may or may not
exist as we will see later. A sufficient condition under which the Minkowski content exists,

or more generally Cfk(F,B) = C
f

k(F,B) for a Borel set B ⊆ R and k ∈ {0, 1}, is given in
the following theorem. For a Hölder continuous function f ∈ C(Σ∞) we let νf denote the
unique eigenmeasure corresponding to the eigenvalue 1 of the dual of the Perron-Frobenius
operator for the potential function f (see Section 3.4).

Theorem 2.8 (Self-Conformal Sets – Lattice Case) Assume that we are in the setting
of Theorem 2.6 and that ξ is lattice. Let ζ, ψ ∈ C(Σ∞) denote the functions satisfying
ξ − ζ = ψ − ψ ◦ σ, where ζ takes values in a discrete subgroup of R which is generated
by a ∈ R. Moreover, choose N1, N2 ∈ Z such that ψ(Σ∞) ⊆ [N1a,N2a) and N2 − N1 is

minimal. Let B̃ ⊆ Σ∞ be a Borel set which can be represented as a finite union of cylinder
sets and set B := πB̃ ⊂ R. If, for every t ∈ [0, a), we have

N2−1∑

n=N1

e−δanν−δζ ◦ ψ−1(ψ(B̃) ∩ [na, na+ t))

=
eδt − 1

eδa − 1

N2−1∑

n=N1

e−δanν−δζ ◦ ψ−1(ψ(B̃) ∩ [na, (n+ 1)a)), (2.3)

then it follows that Cfk(F,B) = C
f

k(F,B) for k ∈ {0, 1}.

An example of a self-conformal set F , which satisfies Condition (2.3) for B = R is given in
Example 2.15. Theorem 2.8 then implies that F is Minkowski measurable. However, in the
special case when F is a self-similar set, Condition (2.3) cannot be satisfied. In this case it
even turns out, that F is Minkowski measurable if and only if F is nonlattice. This is also

reflected in the following theorem, where also Cfk(F,B) and C
f

k(F,B) for k ∈ {0, 1} and a
Borel set B ⊆ R are considered in the lattice case.

Theorem 2.9 (Self-Similar Sets) Let F denote a self-similar set associated to the iter-
ated function system Φ := {φ1, . . . , φN}. Assume that Φ satisfies the open set condition
and λ1(F ) = 0. Further, let r1, . . . , rN denote the respective similarity ratios of the maps
φ1, . . . , φN . Then the fractal curvature measures exist if and only if Φ is nonlattice. Specif-
ically, the following holds.
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(i) The average curvature measures of F exist and are given by

C̃f0 (F, ·) =
2−δ

∑Q−1
i=1 |Li|δ

−δ∑i∈Σ ln(ri)rδi
· ν(·) and C̃f1 (F, ·) =

21−δ
∑Q−1

i=1 |Li|δ
(δ − 1)δ

∑
i∈Σ ln(ri)rδi

· ν(·),

where δ denotes the Minkowski dimension of F and ν denotes the δ-conformal measure
associated to F .

(ii) If Φ is nonlattice, then the fractal curvature measures of F exist and are given by

Cfk (F, ·) = C̃fk (F, ·) for k ∈ {0, 1}.

(iii) If Φ is lattice, then the fractal curvature measures do not exist. What is more, for
every Borel set B ⊆ R for which F ∩B is nonempty and allows a representation as a
finite union of sets of the form φωF , where ω ∈ Σ∗, we have that for k ∈ {0, 1}

0 < Cfk(F,B) < C
f

k(F,B) <∞.

Note that ν coincides with the δ-dimensional Hausdorff measure normalised on F , that is
with Hδ(· ∩ F )/Hδ(F ).

Parts (i) and (ii) of Theorem 2.9 are straightforward consequences of Parts (i) and (ii) of The-
orem 2.6 and give handy formulae for computing the (average) fractal curvature measures
provided they exist. The existence of the fractal curvature measures under the assumptions
of Part (ii) of Theorem 2.9 and their average counterparts (Part (i) of Theorem 2.9) has also
been shown in Theorem 1.2.6 of [Win08]. However, the formulae for the coefficients of the
measures obtained in [Win08] are given by an integration over a certain “overlap function”
and appear to be much harder to determine explicitely. Part (iii) of Theorem 2.9 is not
covered by [Win08] and gives a new result.

For the Minkowski content Theorem 2.9 immediately implies the following corollary which
we state without a proof.

Corollary 2.10 (Self-Similar Sets – Minkowski Content) Under the conditions of The-
orem 2.9 the following holds.

(i) The average Minkowski content of F exists and is given by

M̃(F ) =
21−δ

∑Q−1
i=1 |Li|δ

(δ − 1)δ
∑
i∈Σ ln(ri)rδi

.

(ii) If Φ is nonlattice, its Minkowski content M(F ) exists and is equal to M̃(F ).

(iii) If Φ is lattice, then
0 <M(F ) <M(F ) <∞.

Part (ii) of Corollary 2.10 has been obtained in Proposition 4 of [Fal95] under the strong
seperation condition. Part (iii) of Corollary 2.10 has also been addressed in Theorem 8.36
of [LvF06].

Another special case of self-conformal sets are C1+α images of self-similar sets. For these
sets Parts (i) and (ii) of Theorem 2.6 yield interesting relationships between the (average)
fractal curvature measures of the self-similar set and of its C1+α image which are stated in
Parts (i) and (ii) of the following theorem.
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Theorem 2.11 (C1+α Images) Let K ⊂ R denote a self-similar set for the iterated func-
tion system Φ acting on X which satisfies the open set condition. Let δ denote its Minkowski
dimension, denote by U ⊃ X a connected open neighbourhood of X in R and let g : U → R

be a C1+α(U) map, α > 0, for which |g′| is bounded away from 0. Assume that λ1(K) = 0
and set F := g(K).

(i) The average fractal curvature measures of both K and F exist. Moreover, they are
absolutely continuous and for k ∈ {0, 1} their Radon-Nikodym derivatives are given by

dC̃fk (F, ·)
dC̃fk (K, ·) ◦ g−1

= |g′ ◦ g−1|δ.

(ii) If Φ is nonlattice, then the fractal curvature measures of both K and F exist and are
absolutely continuous with Radon-Nikodym derivatives

dCfk (F, ·)
dCfk (K, ·) ◦ g−1

= |g′ ◦ g−1|δ,

for k ∈ {0, 1}.

(iii) If Φ is lattice, then neither the curvature measures of K nor those of F exist.

As an immediate consequence of Theorem 2.11 we obtain the following.

Corollary 2.12 (C1+α Images – Minkowski Content) In the setting of Theorem 2.11
and letting ν denote the δ-conformal measure associated to K, we have the following.

(i) The average Minkowski content of both K and F exist and satisfy

M̃(F ) = M̃(K) ·
∫

K

|g′|δdν.

(ii) If Φ is nonlattice, then the Minkowski content of both K and F exist and satisfy

M(F ) = M(K) ·
∫

K

|g′|δdν.

(iii) Both in the lattice and nonlattice case we have that

0 <M(F ) ≤ M(F ) <∞.

The results stated in Corollary 2.12 have recently been obtained in [FK11] also for higher
dimensions.

In the lattice case, C1+α images of self-similar sets play a crucial role as every lattice self-
conformal set is in fact a C1+α image of a lattice self-similar set:

Proposition 2.13 Let F denote a self-conformal set which is associated to the iterated
function system Φ acting on X. Then there exists an open connected set U ⊂ R, a map
g ∈ C1+α(U) for some α > 0 and a lattice self-similar set K ⊂ U such that F = g(K).

In contrast to the self-similar setting, the Minkowski content of a C1+α image of a lattice
self-similar set may or may not exist. It does exist if Condition (2.3) of Theorem 2.8 is
satisfied. When F is a C1+α image of a self-similar set, we can simplify Condition (2.3)
under certain normalisation assumptions and obtain the following corollary.
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Corollary 2.14 (C1+α Images – Lattice Case) Let K ⊂ R denote a self-similar set for
the iterated function system Φ acting on X which satisfies the open set condition. Let δ be
its Minkowski dimension and let ξK denote the geometric potential function associated to
Φ. Assume that λ1(K) = 0 and that ξK is lattice. Let a > 0 be maximal such that ξK takes
values in aZ. Denote by U ⊃ X a connected open neighbourhood of X in R and let g : U → R

be a C1(U) map. Take g to be normalised such that g′(K) ⊆ (e−a, 1] and set F := g(K).
Further, let B ⊆ R denote a Borel set and let ν denote the δ-conformal measure associated
to K. Then

(i) Cfk(F,B) = C
f

k(F,B) for k ∈ {0, 1} if for every t ∈ [0, a)

ν ◦ (g′)−1(g′(B) ∩ (e−t, 1]) =
eδt − 1

eδa − 1
ν ◦ (g′)−1(g′(B)). (2.4)

(ii) If we additionally assume that K ⊆ [0, 1] and that g′ is invertible, monotonically

increasing and such that g′(1) = 1, then Cfk(F,B) = C
f

k(F,B) for k ∈ {0, 1} if g′

satisfies

g′(r) =

(
ν(B ∩ (r, 1])(eδa − 1)

ν(B)
+ 1

)−1/δ

(2.5)

for r ∈ U . In fact, Equation (2.5) defines a positive δ-Hölder continuous function.

The above theorems enable us to construct examples for which the Minkowski content does
or does not exist.

Example 2.15 LetK be the Middle Third Cantor Set and let ν denote the ln 2/ ln 3-conformal
measure associated to K. Let B ⊆ R denote a Borel set for which B ∩K is nonempty and
has a representation as a finite union of sets of the form φωF with ω ∈ Σ∗.

(i) By Theorem 2.9, we have that Cfk(K,B) < C
f

k(K,B). In particular, the Minkowski
content does not exist for K itself, where k ∈ {0, 1}.

(ii) A self-conformal set F which is not self-similar, but for which Cfk(F,B) < C
f

k(F,B)
for k ∈ {0, 1} can be constructed in the following way. Take g : [−2−1, 3 · 2−1] → R

definied by g(x) = (x + 1)2 and set F := g(K). Then Cfk(F,B) < C
f

k(F,B) for
k ∈ {0, 1} follows directly from the proof of Part (iii) of Theorem 2.11 in Section 5.

(iii) For the following lattice self-conformal set the Minkowski content does exist. Let
f : R → R denote the Devil staircase function defined by f(r) := ν((−∞, r]), define
the function g : R → R by g(x) :=

∫ x
−∞

(2 − f(y))− ln 3/ ln 2dy and set F := g(K).

Then we have M(F ) = M(F ), although M(K) < M(K). This is a consequence of
Corollary 2.14.

3 Preliminaries

3.1 Fractal Curvature Measures

The work of [Gro78] and [Sch80] plays a vital role in the introduction of Winter’s fractal
curvature measures. In what follows, we focus on the construction in the one-dimensional
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setting. For a set Y ⊂ R which is a finite union of compact convex sets, there exist two
curvature measures, namely the 0-th and the 1-st curvature measure of Y . Originally, these
measures were defined through a localised Steiner formula (see [Fed59] and [Sch80]), but an
equivalent and simpler characterisation is the following. The 1-st curvature measure of Y
equals λ1(Y ∩ ·) and under the additional assumption that Y is the closure of its interior,
the 0-th curvature measure is equal to λ0(∂Y ∩ ·)/2.
If Y ⊂ R is not a finite union of compact convex sets, but an arbitrary compact set, we still
have that the ε-parallel neighbourhood Yε of Y is a finite union of convex compact sets, for
each ε > 0. Moreover, Yε is the closure of its interior, for each ε > 0. Thus, the 0-th and
1-st curvature measures are defined on Yε and are equal to the measures λ0(∂Yε ∩ ·)/2 and
λ1(Yε ∩·). The fractal curvature measures now arise by taking the limit as ε→ 0. However,
before taking the limit, we observe that for a fractal set F ⊂ R one typically obtains that
the number of boundary points of Fε tends to infinity as ε → 0, whereas the volume of Fε
tends to zero as ε → 0. In order to obtain nontrivial measures, we need to introduce the
curvature scaling exponents s0(F ) and s1(F ) as in Definition 2.1. By taking the weak limits
of the rescaled curvature measures εs0(F ) ·λ0(∂Fε∩ · )/2 and εs1(F ) ·λ1(Fε ∩ · ) as ε→ 0, we

obtain the fractal curvature measures Cf0 (F, ·) and Cf1 (F, ·) (Definition 2.2), whenever the
weak limits exist. The average fractal curvature measures are gained by taking the weak
limit over the average rescaled curvature measures if these limits exist (Definition 2.3).

Besides extending the notions of curvature, the fractal curvature measures also provide a set
of geometric characteristics of a fractal set which can be used to distinguish fractal sets of
the same Minkowski dimension. More precisely, considering two fractal sets F1, F2 ⊆ [0, 1]
with {0, 1} ⊆ F1, F2 which are of the same Minkowski dimension, the 1-st fractal curvature
measure compares the local rate of decay of the lengths of the ε-parallel neighbourhood
of F1 and F2. In this way it can be interpreted as “local fractal length”. Since, by the
inclusion exclusion principle, the above mentioned rate of decay correlates with the length
of the overlap of sets of the form (φωFi)ε, where ω ∈ Σn for n ∈ N and i ∈ {0, 1}, the value
of the 1-st fractal curvature measure makes a statement on the distribution of the gaps.
That is, the more equally spread the gaps are over the fractal, the smaller is the fractal
curvature measure. Analogously, the value of the 0-th fractal curvature measure can be
interpreted as the “local fractal number of boundary points” or “local fractal Euler number”.
For further information on the geometric interpretation in higher dimensions, we refer to
[Win08], [LW07] and [Kom08].

3.2 Minkowski Content

Definition 3.1 Let Y ⊂ R and δ be its Minkowski dimension. The upper Minkowski content
M(Y ) and the lower Minkowski content M(Y ) of Y are respectively defined as

M(Y ) := lim sup
ε→0

εδ−1λ1(Yε) and

M(Y ) := lim inf
ε→0

εδ−1λ1(Yε).

If the upper and lower Minkowski contents coincide, we denote the common value by M(Y )
and call it the Minkowski content of Y . In case the Minkowski content exists, we call Y
Minkowski measurable. The average Minkowski content of Y is defined as the following limit
if it exists

M̃(Y ) := lim
T→0

|lnT |−1

∫ 1

T

εδ−2λ1(Yε)dε.
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The Minkowski content was proposed in [Man95] as a measure of “lacunarity” of a fractal
set. Indeed, the value of the Minkowski content allows to compare the lacunarity of sets of
the same Minkowski dimension.
Minkowski measurability has moreover attracted prominence in work related to the Weyl-
Berry conjecture on the distribution of eigenvalues of the Laplacian on domains with fractal
boundaries. We refer to Section 4 of [Fal95] for an overview and references concerning these
studies.
An additional motivation for studying the Minkowski content of fractal sets arises from non-
commutative geometry. In Connes’ seminal book [Con94] the notion of a noncommutative
fractal geometry is developed. There it is shown that the natural analogue of the volume of
a compact smooth Riemannian spin manifold for a fractal set in R is that of the Minkowski
content. This idea is also reflected in the works [GI03], [Sam10] and [FS11].

3.3 Self-Conformal Sets and the Shift-Space

Let X ⊂ R be a nonempty compact interval. We call Φ := {φi : X → X | i ∈ {1, . . . , N}} a
conformal iterated function system (cIFS) acting on X , provided N ≥ 2 and φ1, . . . , φN are
differentiable contractions with α-Hölder continuous derivatives φ′1, . . . , φ

′
N , α > 0, where

|φ′1|, . . . , |φ′N | shall be bounded away from both 0 and 1. The cIFS Φ := {φ1, . . . , φN} is
said to satisfy the open set condition (OSC) if there exists a nonempty open bounded set

O ⊂ R such that
⋃N
i=1 φi(O) ⊆ O and φi(O) ∩ φj(O) = ∅ for i, j ∈ {1, . . . , N}, i 6= j.

Note, that in our context conformality in dimension one just means that the derivatives are
Hölder continuous. This extra condition can be dropped in higher dimensions.

Definition 3.2 We call the unique nonempty compact invariant set F of a cIFS Φ the
self-conformal set associated to Φ.

Remark 3.3 One easily verifies that our definition of a cIFS coincides with the definition of
a finite conformal iterated function system in R given in [MU96].

Proposition 3.4 Let Φ be a cIFS which satisfies the OSC and let F be the self-conformal set
associated to Φ. Then F is either a nonempty compact interval or has zero one-dimensional
Lebesgue measure.

Proof. Let Φ := {φ1, . . . , φN}, define [a, b] to be the convex hull of F and assume without
loss of generality that φ1, . . . , φN are ordered such that φ1(a) < φ2(a) < . . . < φN (a). If
φi([a, b])∩φi+1([a, b]) 6= ∅ for all i ∈ {1, . . . , N−1}, then clearly F = [a, b]. Now assume that
there exists an i ∈ {1, . . . , N − 1} such that φi([a, b]) ∩ φi+1([a, b]) = ∅. Then Proposition
4.4 of [MU96] gives that F has zero Lebesgue measure. 2

It turnes out to be useful to view a self-conformal set on a symbolic level. For the following,
we fix a cIFS Φ := {φ1, . . . , φN} and let F denote the self-conformal set associated to Φ.
We introduce the shift-space (Σ∞, σ) as follows.

Set Σ := {1, . . . , N} and call it the alphabet. Denote by Σn the set of words of length
n ∈ N over Σ and by Σ∗ :=

⋃
n∈N0

Σn the set of all finite words over Σ containing the
empty word ∅. Further, let Σ∞ be the code space which is the set of infinite words over
Σ. The shift-map is then defined as the map σ : Σ∗ ∪ Σ∞ → Σ∗ ∪ Σ∞ given by σ(ω) := ∅

for ω ∈ {∅} ∪ Σ1, σ(ω1 · · ·ωn) := ω2 · · ·ωn ∈ Σn−1 for ω1 · · ·ωn ∈ Σn, where n ≥ 2 and
σ(ω1ω2 · · · ) := ω2ω3 · · · ∈ Σ∞ for ω1ω2 · · · ∈ Σ∞. For a finite word ω ∈ Σ∗ we let n(ω)
denote its length and define φ∅ := id|X to be the identity map on X .

10



Note that Σ∞ gives a coding of the self-conformal set F as can be seen as follows. For
ω = ω1 · · ·ωn ∈ Σ∗ we set φω := φω1 ◦ · · · ◦ φωn and for ω = ω1ω2 · · · ∈ Σ∞ and n ∈ N

we denote the initial word by ω|n := ω1ω2 · · ·ωn. For each ω = ω1ω2 · · · ∈ Σ∞ the in-
tersection

⋂
n∈N

φω|n(X) contains exactly one point xω ∈ F and gives rise to a surjection
π : Σ∞ → F, ω 7→ xω which we call the natural code map. Let F unique denote the set
of points of F which have a unique preimage under π. Because of the open set condition
F \ F unique is at most countable and thus F unique is nonempty. Moreover, x ∈ F unique

implies φi(x) ∈ F unique for all i ∈ Σ. The map π allows to view points in F unique as infinite
words and vice versa. In order to have neater notation, we are going to omit the map π
from now on. For example, by φω(u) we actually mean φω(π(u)) for ω ∈ Σ∗ and u ∈ Σ∞.

A key property of a cIFS is the bounded distortion property which is well used in the
study of conformal iterated function systems (see for instance [MU96]). However, we need
the following refinement of this statement, which we could not find in the literature and
therefore give a short proof. For a set Y ⊂ R let 〈Y 〉 denote the convex hull of Y .

Lemma 3.5 (bounded distortion) There exists a sequence (ρn)n∈N with ρn > 0 for all
n ∈ N and limn→∞ ρn = 1 such that for all ω, u ∈ Σ∗ and x, y ∈ 〈φωF 〉 we have

ρ−1
n(ω) ≤

|φ′u(x)|
|φ′u(y)|

≤ ρn(ω).

Proof. Fix ω ∈ Σ∗ and let x, y ∈ 〈φωF 〉 and u = u1 · · ·un(u) ∈ Σ∗ be arbitrarily chosen.
Then

|φ′u(x)| = exp
( n(u)∑

k=1

ln|φ′uk (φσku(x))|
)
≤ |φ′u(y)| exp

( n(u)∑

k=1

∣∣ ln|φ′uk(φσku(x))| − ln|φ′uk (φσku(y))|
∣∣

︸ ︷︷ ︸
=:Ak

)
.

Since |φ′i| is α-Hölder continuous and bounded away from 0, it follows that ln|φ′i| is α-Hölder
continuous for each i ∈ {1, . . . , N}. Let ci be the corresponding Hölder constant and set
c := maxi∈{1,...,N} ci. Moreover, let r < 1 be a common upper bound for the contraction
ratios of the maps φ1, . . . , φN . Without loss of generality we assume that F ⊆ [0, 1]. Then
we have

Ak ≤ c|φσku(x) − φσku(y)|α ≤ c ·
(
rn(u)−k|x− y|

)α

and thus
n(u)∑

k=1

Ak ≤ c

1− rα
|x− y|α ≤ c

1− rα
max
ω∈Σn

sup
x,y∈〈φωF 〉

|x− y|α =: ρ̃n.

Since ρ̃n converges to 0 as n → ∞, ρn := exp(ρ̃n) converges to 1 as n → ∞. The estimate
for the lower bound can be obtained by just interchanging the roles of x and y. 2

3.4 Perron-Frobenius Theory and the Geometric Potential Func-

tion

In order to give a precise formulation of the constants occuring in Theorem 2.6 and its
following theorems and corollaries and in order to set up some notation for the proofs in
Sections 4 and 5, we now introduce to the Perron-Frobenius theory.

Let Σ∞ be equipped with the topology of pointwise convergence and let C(Σ∞) denote the
space of continuous real valued functions on Σ∞. For f ∈ C(Σ∞), 0 < α < 1 and n ∈ N

11



define

varn(f) := sup{|f(ω)− f(u)| | ω, u ∈ Σ∞ and ωi = ui for all i ∈ {1, . . . , n}},

|f |α := sup
n≥0

varn(f)

αn
and

Fα(Σ∞) := {f ∈ C(Σ∞) | |f |α <∞}.

Elements of Fα(Σ∞) are called α-Hölder continuous functions on Σ∞. For f ∈ C(Σ∞)
define the Perron-Frobenius operator Lf : C(Σ∞) → C(Σ∞) by

Lfψ(x) :=
∑

y : σy=x

ef(y)ψ(y)

for x ∈ Σ∞ and let L∗
f be the dual of Lf acting on the set of Borel probability measures on

Σ∞. By Theorem 2.16 and Corollary 2.17 of [Wal01] and Theorem 1.7 of [Bow08] for each
real valued Hölder continuous f ∈ C(Σ∞) there exists a unique Borel probability measure νf
on Σ∞ such that L∗

fνf = γfνf for some γf > 0. Moreover, γf is uniquely determined by this
equation and satisfies γf = exp(P (f)). Here P : C(Σ∞) → C(Σ∞) denotes the topological
pressure function which for f ∈ C(Σ∞) is defined by

P (f) := lim
n→∞

n−1 ln
∑

ω∈Σn

exp sup
u∈[ω]

n(ω)∑

k=0

f ◦ σk(u),

(see Lemma 1.20 of [Bow08]), where [ω] := {u ∈ Σ∞ | ui = ωi for 1 ≤ i ≤ n(ω)} is the
ω-cylinder set.

Further, there exists a unique strictly positive eigenfunction hf of Lf satisfying Lfhf =
γfhf . We take hf to be normalised so that

∫
hfdνf = 1. By µf we denote the σ-invariant

probability measure defined by
dµf
dνf

= hf . This is the unique σ-invariant Gibbs measure

for the potential function f . Additionally, under some normalisation assumptions we have
convergence of the iterates of the Perron-Frobenius operator to the projection onto its eigen-
function hf . To be more precise we have

lim
m→∞

‖γ−mf Lmf ψ −
∫
ψdνf · hf‖ = 0 ∀ ψ ∈ C(Σ∞), (3.1)

where ‖ · ‖ denotes the supremum-norm on C(Σ∞).

Remark 3.6 The results on the Perron-Frobenius operator quoted above originate mainly
from the work of [Rue68].

A central object of our investigations is the geometric potential function associated to the
cIFS Φ and its property of being lattice or nonlattice, which we now define.

Definition 3.7 Two functions f1, f2 ∈ C(Σ∞) are called cohomologous, if there exists a
ψ ∈ C(Σ∞) such that f1 − f2 = ψ − ψ ◦ σ. A function f ∈ C(Σ∞) is said to be a lattice
function, if f is cohomologous to a function taking values in a discrete subgroup of R.
Otherwise, we say that f is a nonlattice function.

The notion of being lattice or not carries over to Φ and its self-conformal set F by considering
the geometric potential function associated to Φ:
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Definition 3.8 Let F denote the self-conformal set associated to the iterated function
system Φ := {φ1, . . . , φN} with associated code space Σ∞. Define the geometric potential
function to be the map ξ : Σ∞ → R given by ξ(ω) := − ln|φ′ω1

(σω)| for ω = ω1ω2 · · · ∈ Σ∞.
If ξ is nonlattice, then we call Φ (and also F ) nonlattice. On the other hand, if ξ is a lattice
function, then we call Φ (and also F ) lattice.

Remark 3.9 The geometric potential function ξ associated to a cIFS Φ := {φ1, . . . , φN}
satisfies ξ ∈ Fα̃(Σ∞) for some α̃ ∈ (0, 1). To see this, we let r < 1 be a common upper bound
for the contraction ratios of φ1, . . . , φN . Because of the α-Hölder continuity of φ′1, . . . , φ

′
N

we obtain that there exists a constant c ∈ R such that for every n ∈ N we have varn(ξ) ≤
crα(n−1). Thus, ξ ∈ Fα̃(Σ∞), where α̃ := rα ∈ (0, 1).

For the geometric potential function ξ ∈ C(Σ∞) we introduce themeasure theoretical entropy
Hµ−δξ of the shift-map σ with respect to µ−δξ as the integral

Hµ−δξ
:= δ

∫

Σ∞

ξdµ−δξ, (3.2)

where δ is the Minkowski dimension of F . We remark that this is not the commonly used
definition of measure theoretical entropy but that this characterisation for the measure
theoretical entropy of σ with respect to µ−δξ follows from Theorem 1.22 of [Bow08] and the
following result of [Bed88] which will also be needed in the proof of Theorem 2.6.

Theorem 3.10 The Minkowski as well as the Hausdorff dimension of F is equal to the
unique real number t > 0 such that P (−tξ) = 0, where P denotes the topological pressure
function.

In what follows, we fix a cIFS Φ := {φ1, . . . , φN} acting on X and let α > 0 denote the com-
mon Hölder exponent of φ′1, . . . , φ

′
N . By δ we denote the corresponding Minkowski dimension

and by ξ the geometric potential function. We are going to show that the eigenfunction h−δξ
of the Perron-Frobenius operator L−δξ can be extended to an α-Hölder continuous function
on X . For that we let C(X) denote the set of real valued continuous functions on X and

define the operator L̃ : C(X) → C(X) by

L̃(g) :=
N∑

i=1

|φ′i|δ · g ◦ φi

for g ∈ Fα(X), where Fα(X) is the set of real valued α-Hölder continuous functions on X .

We remark that L̃ is an extended version of the Perron-Frobenius operator given in (3.1) to
functions which are defined on X .

Theorem 3.11 Let ν be the δ-conformal measure and ξ the geometric potential function
associated to the cIFS Φ := {φ1, . . . , φN}. Let F denote the self-conformal set associated to
Φ and let δ be its Minkowski dimension. Denote by π the natural code map and by α the
Hölder exponent of the functions φ′1, . . . , φ

′
N . Then there exists a unique h ∈ Fα(X) such

that

L̃h = h,

∫

Σ∞

hdν = 1 and h|F ◦ π = h−δξ,

where h−δξ ∈ C(Σ∞) is the unique eigenfunction of L−δξ to the eigenvalue 1.

Proof. We let 1 denote the constant one-function on X . By Lemma 6.1.1 of [MU03] the

sequence (L̃n(1))n∈N is uniformly bounded and equicontinuous and thus so is the sequence
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(n−1
∑n−1

i=0 L̃i(1))n∈N. Therefore, by Arzelà-Ascoli, the sequence of averages exhibits an

accumulation point which we denote by h. Obviously L̃h = h and
∫
hdν = 1.

In order to show that h ∈ Fα(X) it suffices to show that fn := n−1
∑n−1

i=0 L̃i(1) is α-Hölder
continuous for every n ∈ N and that the Hölder constants are uniformly bounded.

|fn(x)− fn(y)| =

∣∣∣∣∣n
−1

n−1∑

i=0

∑

ω∈Σi

|φ′ω(x)|δ − |φ′ω(y)|δ
∣∣∣∣∣

≤ n−1
n−1∑

i=0

∑

ω∈Σi

∣∣∣∣∣exp
(
δ

i∑

k=1

lnφ′ωk(φσkωx)

)
− exp

(
δ

i∑

k=1

lnφ′ωk(φσkωy)

)∣∣∣∣∣ .

By hypotheses, lnφ′i is α-Hölder continuous for every i ∈ {1, . . . , N}. Let c1, . . . , cN denote
the respective Hölder constants of lnφ′1, . . . , lnφ

′
N , set c := maxi=1,...,N ci and let r < 1 be

a common upper bound for the contraction ratios of φ1, . . . , φN . Applying the Mean Value
Theorem to exp and letting θω denote the mean value corresponding to the ω-summand, we
obtain the following set of inequalities.

|fn(x) − fn(y)| ≤ n−1
n−1∑

i=0

∑

ω∈Σi

eθω · δ
i∑

k=1

c|φσkωx− φσkωy|α

≤ n−1
n−1∑

i=0

∑

ω∈Σi

eθω · δc

1− rα
|x− y|α.

Since θω lies between ln|φ′ω(x)|δ and ln|φ′ω(y)|δ, there exists a θ̃ω ∈ R such that |φ′ω(θ̃ω)|δ =
eθω . By definition of the δ-conformal measure it can be easily seen that |φ′ω(θ̃ω)|δ ≤
ρ0ν(φωF ). Thus,

|fn(x) − fn(y)| ≤ ρ0δc

1− rα︸ ︷︷ ︸
=:c̃

|x− y|α.

Hence the Hölder constant of each function fn is bounded by c̃. The uniqueness of h and
h|F ◦ π = h−δξ have been shown in Theorem 6.1.2 of [MU03]. 2

3.5 Renewal Theory and Geometric Measure Theory

In the proof of Theorem 2.6 we are going to make use of a renewal theory argument for
counting measures in symbolic dynamics. For stating this we fix the following notations.

For a map f : Σ∞ → R and n ∈ N define the n-th ergodic sum to be Snf :=
∑n−1

k=0 f ◦ σk
and S0f := 0. Moreover, we call a function f1 : (0,∞) → R asymptotic to a function
f2 : (0,∞) → R as ε → 0, in symbols f1(ε) ∼ f2(ε) as ε → 0, if limε→0 f1(ε)/f2(ε) = 1.
Similarly, we say that f1 is asymptotic to f2 as t→ ∞, in symbols f1(t) ∼ f2(t) as t → ∞,
if limt→∞ f1(t)/f2(t) = 1.

The following Proposition is a well-known fact which is for example stated in Proposition
2.1 of [Lal89].

Proposition 3.12 Let f ∈ Fα(Σ∞) for some 0 < α < 1 be such that for some n ≥ 1 the
function Snf is strictly positive on Σ∞. Then there exists a unique s > 0 such that

γ−sf = 1. (3.3)
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The following two theorems play a crucial role in the proof of Theorem 2.6. The first of the
two theorems is Theorem 1 of [Lal89]. The second one is a refinement and generalisation of
Theorem 3 in [Lal89] and hence we will state a proof.

Proposition 3.13 (Lalley) Assume that f lies in Fα(Σ∞) for some 0 < α < 1, is nonlat-
tice and such that for some n ≥ 1 the function Snf is strictly positive. Let g ∈ Fα(Σ∞) be
nonnegative but not identically zero and s as in Equation (3.3). Then we have that

∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
∼

∫
gdν−sf

s
∫
fdµ−sf

h−sf (x)e
st

as t→ ∞ uniformly for x ∈ Σ∞.

For b ∈ R we denote by ⌈b⌉ the smallest integer which is greater than or equal to b. ⌊b⌋
shall denote the greatest integer which is less than or equal to b and by {b} we mean the
fractional part of b, that is {b} := b− ⌊b⌋.

Theorem 3.14 Assume that f lies in Fα(Σ∞) for some 0 < α < 1 is lattice and such that
for some n ≥ 1 the function Snf is strictly positive. Let ζ, ψ ∈ C(Σ∞) denote functions
which satisfy

f − ζ = ψ − ψ ◦ σ,
where ζ is a function taking values in a discrete subgroup of R. Let a denote the maximal
positive real number such that {a−1ζ(x) | x ∈ Σ∞} ⊆ Z. Further, let g ∈ Fα(Σ∞) be
nonnegative but not identically zero and s as in Equation (3.3). Then we have that

∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
∼ ah−sζ(x)

∫
g(y)e−sa⌈

ψ(y)−ψ(x)
a

− t
a⌉dν−sζ(y)

(1− e−sa)
∫
ζdµ−sζ

(3.4)

as t→ ∞ uniformly for x ∈ Σ∞.

Remark 3.15 Proposition 3.13 and Theorem 3.14 are also valid in the more general situation
of (Σ∞, σ) being a subshift of finite type.

Proof (of Theorem 3.14). For the proof we first assume that a = 1, which implies that
ζ is integer valued and not cohomologous to any function taking its values in a proper
subgroup of R. We remark, that under these assumptions a similar result is stated in
Theorem 3 of [Lal89]. However, there the exact asymptotic is not given. In order to obtain
the exact asymptotic, we first follow the lines of the proofs of Theorem 2 and Theorem 3 of
[Lal89] and then refine the last steps of the proof of Theorem 3 of [Lal89].

Lalley introduces the following functions for the definition of which we let t ∈ R and x ∈ Σ∞.

Nf(t, x) :=
∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
,

N∗(t, x) := Nf (t− ψ(x), x)

and for β ∈ [0, 1) and z ∈ C the Fourier-Laplace transform

N̂∗
β(z, x) :=

∞∑

n=−∞

enzN∗(n+ β, x).
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It is easy to verify that Nf (t, x) satisfies a renewal equation (see Equation (2.2) in [Lal89])

Nf (t, x) =
∑

y : σy=x

Nf (t− f(y), y) + g(x)1{t≥0}

from which one can deduce that N̂∗
β satisfies the following equation.

N̂∗
β(z, x) = (I − Lzζ)−1g(x)

ez⌈φ(x)−β⌉

1− ez
, (3.5)

where I denotes the identity operator. We remark that Equation (3.5) differs slightly from
the respective equation in [Lal89], in that Lalley obtains z ⌊φ(x) + 1− β⌋ as the exponent
of e whereas our calculations result in z ⌈φ(x) − β⌉ being the right exponent of e.

By arguments in the proof of Theorem 2 of [Lal89] the function z 7→ (I − Lzζ)−1g(x) is
meromorphic in {z ∈ C | 0 ≤ Im(z) ≤ π, Re(z) < −s + ε} for some ε > 0 and the only
singularity in this region is a simple pole at z = −s with residue

h−sζ(x)
∫
gdν−sζ∫

ζdµ−sζ
.

Since z 7→ ez⌈ψ(x)−β⌉ and z 7→ (1− ez)−1 are holomorphic in {z ∈ C | Re(z) < 0} we deduce
from this that z 7→ N̂∗

β(z, x) is meromorphic in {z ∈ C | 0 ≤ Im(z) ≤ π, Re(z) < −s + ε}
for some ε > 0 and that the only singularity in this region is a simple pole at z = −s with
residue

h−sζ(x)
∫
g(y)e−s⌈ψ(y)−β⌉dν−sζ(y)

(1− e−s)
∫
ζdµ−sζ

=: C(β, x).

Now, again following the lines of the proof of Theorem 2 of [Lal89], it follows that

N∗(n+ β, x) ∼ C(β, x)esn

as n→ ∞ uniformly for x ∈ Σ∞. Thus for t ∈ (0,∞)

Nf (t, x) = Nf (⌊ψ(x) + t⌋︸ ︷︷ ︸
=:n

+ {ψ(x) + t}︸ ︷︷ ︸
=:β

−ψ(x), x) = N∗(n+ β, x)

∼ C(β, x)esn =
h−sζ(x)

∫
g(y)e−s⌈ψ(y)−ψ(x)−t⌉dν−sζ(y)

(1− e−s)
∫
ζdµ−sζ

as n→ ∞ uniformly for x ∈ Σ∞. This proves the case a = 1.

The case that a 6= 1 is not covered in [Lal89]. If a > 0 is arbitrary, then we consider the
function a−1f = a−1ζ + a−1ψ −

(
a−1ψ

)
◦ σ. Since by Proposition 3.12, s from Equation

(3.3) is the unique positive real number such that γ−sf = 1, s̃ := as is the unique positive
real number satisfying γ−s̃a−1f = 1. Therefore, Equation (3.6) implies

∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
=

∞∑

n=0

∑

y : σny=x

g(y)1{Sna−1f(y)≤ta−1}

∼ h−sζ(x)
∫
g(y)e−sa⌈

ψ(y)−ψ(x)
a

− t
a⌉dν−sζ(y)

(1− e−as)
∫
a−1ζdµ−sζ

as t→ ∞ uniformly for x ∈ Σ∞. 2
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In view of the existence of the average fractal curvature measures the following corollary is
essential.

Corollary 3.16 Under the assumptions of Theorem 3.14

lim
T→∞

T−1

∫ T

0

e−st
∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
dt (3.6)

exists and equals

h−sf (x)
∫
gdν−sf

s
∫
fdµ−sf

.

Proof. First, observe that for two functions f1, f2 : (0,∞) → R which satisfy f1(t) ∼ f2(t)

as t → ∞, the existence of G1 := limT→∞ T−1
∫ T
0
f1(t)dt implies the existence of G2 :=

limT→∞ T−1
∫ T
0
f2(t)dt and G1 = G2. In view of Theorem 3.14, we hence consider the

function η : [0,∞) → R given by

η(t) := e−st
∫

Σ∞

g(y)e−sa⌈
ψ(y)−ψ(x)

a
− t
a⌉dν−sζ(y).

Since η(t+ a) = η(t) for all t ∈ (0,∞), η is periodic with period a. As η is moreover locally
integrable, this implies

lim
T→∞

T−1

∫ T

0

η(t)dt = lim
T→∞

T−1

( ⌊a−1T⌋−1∑

k=0

∫ T−ak

T−a(k+1)

η(t)dt+

∫ T−a⌊a−1T⌋

0

η(t)dt

)

= lim
T→∞

T−1
⌊
a−1T

⌋ ∫ a

0

η(t)dt = a−1

∫ a

0

η(t)dt.

Applying Fubini’s theorem yields

∫ a

0

η(t)dt =

∫

Σ∞

∫ a

0

e−stg(y)e−sa⌈
ψ(y)−ψ(x)

a
− t
a⌉dtdν−sζ(y).

Define E(y) := a{a−1 (ψ(y)− ψ(x))}. This is the unique real number in [0, a) such that
a−1 (ψ(y)− ψ(x)− E(y)) ∈ Z. Since a−1t ∈ [0, 1) for t ∈ [0, a), we hence have

∫ a

0

η(t)dt

=

∫

Σ∞

(∫ E(y)

0

e−stg(y)e−sa⌈
ψ(y)−ψ(x)

a ⌉dt+
∫ a

E(y)

e−stg(y)e−sa⌊
ψ(y)−ψ(x)

a ⌋dt
)
dν−sζ(y)

=

∫

Σ∞

g(y)

s

(
e−sa⌈

ψ(y)−ψ(x)
a ⌉(1− e−sE(y)

)
+ e−sa⌊

ψ(y)−ψ(x)
a ⌋(e−sE(y) − e−sa

))
dν−sζ(y)

=
1− e−sa

s
esψ(x)

∫

Σ∞

g(y)e−sψ(y)dν−sζ(y),

where the last equality can be obtained by distinguishing the cases E(y) 6= 0 and E(y) = 0,
that is a−1 (ψ(y)− ψ(x)) ∈ Z. As by Theorem 3.14

e−st
∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
∼ ah−sζ(x)

(1− e−sa)
∫
ζdµ−sζ

η(t),
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the entering remark of this proof now implies

lim
T→∞

T−1

∫ T

0

e−st
∞∑

n=0

∑

y : σny=x

g(y)1{Snf(y)≤t}
dt =

esψ(x)h−sζ(x)

s
∫
ζdµ−sζ

∫
g(y)e−sψ(y)dν−sζ(y).

Finally, one easily verifies that esψh−sζ = h−sf , e
−sψdν−sζ = dν−sf and

∫
ζdµ−sζ =∫

fdµ−sf , which completes the proof. 2

In order to prove Theorem 2.8 the following Lemma which is closely related to Theorem 3.14
is needed.

Lemma 3.17 Assume that we are in the setting of Theorem 3.14. Further, let B ⊆ Σ∞

be a nonempty Borel set such that 1B ∈ Fα(Σ∞). Let N1, N2 ∈ Z be such that ψ(Σ∞) ⊆
[N1a,N2a) and N2 −N1 is minimal. Define the function ηB : (0,∞) → R by

ηB(t) := e−st
∫

Σ∞

1B(y)e
−sa⌈ψ(y)−ψ(x)

a
− t
a⌉dν−sζ(y).

Then limt→∞ ηB(t) exists if and only if for every t ∈ [0, a) we have

N2−1∑

n=N1

e−sanν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, na+ t)

)

=
est − 1

esa − 1

N2−1∑

n=N1

e−sanν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, (n+ 1)a)

)
.

Proof. ηB is a periodic function with period a, meaning ηB(t+a) = ηB(t) for all t ∈ (0,∞).
Therefore, limt→∞ ηB(t) exists if and only if ηB is a constant function. For t ∈ [ψ(x), ψ(x)+
a) we have

ηB(t− ψ(x)) = esψ(x)−st
∫

Σ∞

1B(y)e
−sa⌈ψ(y)−t

a ⌉dν−sζ(y)

= esψ(x)−st
N2−1∑

n=N1

∫ (n+1)a

na

1ψ(B)(y)e
−sa⌈ y−ta ⌉dν−sζ ◦ ψ−1(y)

= esψ(x)−st+sa⌊ ta⌋
N2−1∑

n=N1

e−san
(
ν−sζ ◦ ψ−1

(
ψ(B) ∩ [na, na+ a{a−1t}]

)

+e−saν−sζ ◦ ψ−1
(
ψ(B) ∩ (na+ a{a−1t}, (n+ 1)a)

))

= esψ(x)−sa{
t
a
}
N2−1∑

n=N1

e−san
(
(1− e−sa)ν−sζ ◦ ψ−1

(
ψ(B) ∩ [na, na+ a{a−1t}]

)

+e−saν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, (n+ 1)a)

))
.

Thus, limt→∞ ηB(t) exists if and only if there is a c̃ ∈ R such that for every t ∈ [0, a) we
have ηB(t− ψ(x)) = c̃, that is

N2−1∑

n=N1

e−sanν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, na+ t]

)

= (1− e−sa)−1

(
c̃est−sψ(x) − e−sa

N2−1∑

n=N1

e−sanν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, (n+ 1)a)

))
.
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Taking the limit as t tends to a we hence obtain

c̃ = esψ(x)−sa
N2−1∑

n=N1

e−sanν−sζ ◦ ψ−1
(
ψ(B) ∩ [na, (n+ 1)a)

)

which proves the statement. 2

Another important tool in the proofs of our results is a relationship between the 0-th and
the 1-st (average) fractal curvature measures. In order to show that the existence of the
0-th fractal curvature measure implies the existence of the 1-st fractal curvature measure
we use Corollary 3.2 of [RW] which is a higher dimensional and more general version of the
following theorem.

Theorem 3.18 (Rataj, Winter) Let Y ⊂ R be compact and such that λ1(Y ) = 0. Then

lim inf
ε→0

εδλ0(∂Yε)

1− δ
≤ lim inf

ε→0
εδ−1λ1(Yε) ≤ lim sup

ε→0
εδ−1λ1(Yε) ≤ lim sup

ε→0

εδλ0(∂Yε)

1− δ
.

The proof is based on an interesting relationship between the derivative d
dελ

1(Fε) which
exists Lebesgue almost everywhere and the quantity λ0(∂Fε) which was established in [Sta76]
for arbitrary bounded subsets of Rd and builds on the work of [Kne51].

For the results on the average fractal curvature measures we use Part (ii) of Lemma 4.6 of
[RW] which is a higher dimensional version of

Proposition 3.19 (Rataj, Winter) Let Y ⊂ R be compact and such that its Minkowski
dimension δ is less than 1, that is δ < 1. If M(Y ) <∞, then

lim sup
T→0

|lnT |−1

∫ 1

T

εδ−2λ1(Yε)dε = (1− δ)−1 lim sup
T→0

|lnT |−1

∫ 1

T

εδ−1λ0(Yε)dε and

lim inf
T→0

|lnT |−1

∫ 1

T

εδ−2λ1(Yε)dε = (1− δ)−1 lim inf
T→0

|lnT |−1

∫ 1

T

εδ−1λ0(Yε)dε.

Finally, we also need the following result, which goes back to Stachó and is stated in Corollary
2.5 of [RW].

Proposition 3.20 (Stachó) Let Y ⊂ R be compact. Then the function ε 7→ λ1(Yε) is
differentiable for all but a countable number of ε > 0 with differential

d

dε
λ1(Yε) = λ0(∂Yε).

4 Proofs of Theorem 2.6 and Theorem 2.8

We start by making the following observations which are needed in the proofs of all three
parts of Theorem 2.6 and of Theorem 2.8.

Without loss of generality we assume that {0, 1} ⊂ F ⊆ [0, 1] as otherwise the result follows
by rescaling. We start by giving the proof for the 0-th fractal curvature measure. For that
we fix an ε > 0 and consider the expression λ0(∂Fε ∩ (−∞, b ]) for some b ∈ R. Since λ0 is
the counting measure, λ0(∂Fε ∩ (−∞, b ]) gives the number of endpoints of the connected
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components of Fε in (−∞, b ]. This number can be obtained by looking at how many
complementary intervals of lengths greater than or equal to 2ε exist in (−∞, b ]:

λ0
(
∂Fε ∩ (−∞, b ]

)
/2 =

Q−1∑

i=1

#{ω ∈ Σ∗ | Liω ⊆ (−∞, b ], |Liω| ≥ 2ε}
︸ ︷︷ ︸

=:Ξ(ε)

+c1/2, (4.1)

where c1 ∈ {0, 1, 2} depends on the value of b . Next, we need to find appropriate bounds
for Ξ(ε). For this, we choose an m ∈ N such that for all ω ∈ Σm all main gaps L1

ω, . . . , L
Q−1
ω

of the sets φω(F ) are greater than or equal to 2ε and set

Ξiω(ε) := #{u ∈ Σ∗ | Liuω ⊆ (−∞, b ], |Liuω| ≥ 2ε}
for each ω ∈ Σm and i ∈ {1, . . . , Q− 1}. We have the following connection.

Q−1∑

i=1

∑

ω∈Σm

Ξiω(ε) ≤ Ξ(ε) ≤
Q−1∑

i=1

∑

ω∈Σm

Ξiω(ε) +

m∑

j=1

(Q− 1) ·N j−1. (4.2)

For the following, we fix b ∈ R \ F . Then F ∩ (−∞, b ] can be expressed as a finite union of
sets of the form φκF , where κ ∈ Σ∗. To be more precise, let l ∈ N be minimal such that
there exist κ1, . . . , κl ∈ Σ∗ satisfying

(i) F ∩ (−∞, b ] =
⋃l
j=1 φκjF and

(ii) φκiF ∩ φκjF contains at most one point for all i 6= j, where i, j ∈ {1, . . . , l}.

Then for Z :=
⋃l
j=1[κj ] the function 1Z is Hölder continuous. Making use of the existence of

the bounded distortion constant ρn(ω) of Φ on φωF (see Lemma 3.5), we can give estimates
for Ξiω(ε), namely for an arbitrary x ∈ F unique we have

Ξiω(ε) ≤
∞∑

n=0

∑

u∈Σn

1Z(uωx)1{|φ′
u(φωx)|·ρn(ω)·|Liω|≥2ε}

︸ ︷︷ ︸
=:A

i

ω(x,ε,Z)

+c2(Z), (4.3)

where we need to insert the constant c2(Z) because of the following reason. Liuω ⊆ (−∞, b ]
does not necessarily imply uωx ∈ Z for an arbitrary x ∈ F unique. However, if n(u) ≥
maxj=1,...,l n(κj), either [uω] ⊆ Z or [uω] ∩ Z = ∅ obtains. Hence, there are only finitely
many u ∈ Σ∗ such that Liuω ⊆ (−∞, b ] does not imply uωx ∈ Z for all x ∈ F unique. Letting
c2(Z) ∈ R denote this finite number shows that Equation (4.3) is true for all ε > 0. Likewise,
there exists a constant c2(Z) ∈ R such that for all ε > 0

Ξiω(ε) ≥
∞∑

n=0

∑

u∈Σn

1Z(uωx) · 1{|φ′
u(φωx)|·ρ

−1
n(ω)

·|Liω|≥2ε}

︸ ︷︷ ︸
=:Aiω(x,ε,Z)

−c2(Z). (4.4)

Combining Equations (4.1)-(4.4) we obtain that for all m ∈ N

C
f

0 (F, (−∞, b ]) ≤ lim sup
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

A
i

ω(x, ε, Z) and (4.5)

Cf0 (F, (−∞, b ]) ≥ lim inf
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

Aiω(x, ε, Z). (4.6)
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We now want to apply Proposition 3.13 and Theorem 3.14 respectively to get asymptotics

for both the expressions A
i

ω(x, ε, Z) and A
i
ω(x, ε, Z). For this note that

∑

u∈Σn

1Z(uωx) · 1{|φ′
u(φωx)|·ρ

±1
n(ω)

·|Liω|≥2ε} =
∑

y : σny=ωx

1Z(y) · 1{
∑
n
k=1 − ln|φ′

yk
(σky)|≤− ln 2ε

|Liω|ρ±1
n(ω)

}

=
∑

y : σny=ωx

1Z(y) · 1{Snξ(y)≤− ln 2ε

|Liω |ρ±1
n(ω)

}. (4.7)

The hypotheses and Remark 3.9 imply that the geometric potential function ξ is Hölder
continuous and strictly positive. The unique s > 0 for which γ−sξ = 1, is precisely the
Minkowski dimension δ of F , which results by combining the fact that γ−sξ = exp(P (−sξ))
for each s > 0 and Theorem 3.10.

Before we distinguish between the lattice and nonlattice case and give the proof of Theo-
rem 2.6, we prove the following Lemma, which is needed in the proofs of all three parts of
Theorem 2.6.

Lemma 4.1 For an arbitrary x ∈ F unique and Υ ∈ R we have that

(i) Υ ≤
Q−1∑

i=1

∑

ω∈Σm

h−δξ(ωx)
(
|Liω|ρm

)δ ∀m ∈ N implies Υ ≤ lim inf
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ

and

(ii) Υ ≥
Q−1∑

i=1

∑

ω∈Σm

h−δξ(ωx)
(
|Liω|ρ−1

m

)δ ∀m ∈ N implies Υ ≥ lim sup
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ.

Proof. We are first going to approximate the eigenfunction h−δξ of the Perron-Frobenius
operator L−δξ. For that we claim that Ln−δξ1(x) =

∑
u∈Σn |φ′u(x)|δ for each x ∈ Σ∞, where

1 is the constant one-function. This can be easily seen by induction. Since Ln−δξ1 converges
uniformly to the eigenfunction h−δξ when taking n→ ∞ (see (3.1)) we have that

∀t > 0 ∃M ∈ N : ∀n ≥M, ∀x ∈ Σ∞ :

∣∣∣∣
∑

u∈Σn

|φ′u(x)|δ − h−δξ(x)

∣∣∣∣ < t.

Furthermore, through Lemma 3.5 we know that

∀t′ > 0 ∃M ′ ∈ N : ∀m ≥M ′ : |ρm − 1| < t′.

Thus, for all n ≥M and m ≥M ′

Υ ≤
Q−1∑

i=1

∑

ω∈Σm

h−δξ(ωx)
(
|Liω|ρm

)δ

≤
Q−1∑

i=1

∑

ω∈Σm

(
∑

u∈Σn

|φ′u(φωx)|δ + t

)
(
|Liω|ρm

)δ

≤
Q−1∑

i=1

∑

ω∈Σm

∑

u∈Σn

|φu(Liω)|δρ2δm + t

Q−1∑

i=1

∑

ω∈Σm

(
|Liω|ρm

)δ

≤ (1 + t′)
2δ
Q−1∑

i=1

∑

ω∈Σm

∑

u∈Σn

|Liuω|δ + t(1 + t′)δ
Q−1∑

i=1

∑

ω∈Σm

|Liω|δ =: Am,n
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Hence, for all t, t′ > 0

Υ ≤ lim inf
m→∞

lim inf
n→∞

Am,n

≤ (1 + t′)
2δ
lim inf
m→∞

lim inf
n→∞

Q−1∑

i=1

∑

ω∈Σm

∑

u∈Σn

|Liuω|δ + t(1 + t′)δ lim sup
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ.

Because we have
∑Q−1

i=1

∑
ω∈Σm |Liω|δ ≤ ∑Q−1

i=1

∑
ω∈Σm ‖φ′ω‖δ =: am, where ‖ · ‖ denotes

the supremum-norm on C(X), and the sequence (am)m∈N is bounded by Lemma 4.2.12 of
[MU03], letting t and t′ tend to zero then gives the assertion.

The same arguments can be used in order to show that lim supm→∞

∑Q−1
i=1

∑
ω∈Σm |Liω|δ is

a lower bound in the second case. 2

The Nonlattice Case

Proof (of Part (ii) of Theorem 2.6). If 1Z is identically zero, we immediately obtain

Cf0 (F, (−∞, b ]) = 0 = ν(F ∩ (−∞, b ]). Therefore, in the following, we assume that 1Z is
not identically zero. Since 1Z is Hölder continuous, by combining equations (4.3), (4.4) and

(4.7), we see that Proposition 3.13 can be applied to A
i

ω(x, ε, Z) and A
i
ω(x, ε, Z) giving the

following asymptotics.

A
i

ω(x, ε, Z) ∼
∫
1Zdν−δξ

δ
∫
ξdµ−δξ

· h−δξ(ωx) · (2ε)−δ
(
|Liω|ρn(ω)

)δ
and (4.8)

Aiω(x, ε, Z) ∼
∫
1Zdν−δξ

δ
∫
ξdµ−δξ

· h−δξ(ωx) · (2ε)−δ
(
|Liω|ρ−1

n(ω)

)δ
(4.9)

as ε → 0. We first put our focus on finding an upper bound for C
f

0 (F, (−∞, b ]). As in
the statement of this theorem set Hµ−δξ

:= δ
∫
ξdµ−δξ. Combining the Equations (4.5) and

(4.8), we obtain for x ∈ F unique and all m ∈ N

C
f

0 (F, (−∞, b ]) ≤ 2−δ

Hµ−δξ

Q−1∑

i=1

∑

ω∈Σm

h−δξ(ωx)
(
|Liω|ρm

)δ ∫

Σ∞

1Zdν−δξ.

Now an application of Lemma 4.1 implies

C
f

0 (F, (−∞, b ]) ≤ 2−δ

Hµ−δξ

lim inf
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ
∫

Σ∞

1Zdν−δξ. (4.10)

Analogously, one can conclude that

Cf0 (F, (−∞, b ]) ≥ 2−δ

Hµ−δξ

lim sup
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ
∫

Σ∞

1Zdν−δξ. (4.11)

Combining the inequalities (4.10) and (4.11) yields that all the limits occuring therein exist
and are equal. Moreover, the δ-conformal measure introduced in (2.1) and ν−δξ satisfy the
relation ν−δξ(1Z) = ν((−∞, b ]). Therefore,

Cf0 (F, (−∞, b ]) =
2−δ

Hµ−δξ

lim
n→∞

∑

ω∈Σn

Q−1∑

i=1

|Liω|δ · ν(F ∩ (−∞, b ])
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holds for every b ∈ R \ F . As R \ F is dense in R the assertion concerning the 0-th fractal
curvature measure follows. The result on the 1-st fractal curvature measure now follows by
applying Theorem 3.18, as for every b ∈ R\F we have that ∂Fε∩(−∞, b ] = ∂ (F ∩ (−∞, b ])ε
for sufficiently small ε > 0. 2

The Lattice Case

In this part, ξ is a lattice function. Therefore, there exist ζ, ψ ∈ C(Σ∞) such that

ξ − ζ = ψ − ψ ◦ σ

and such that ζ is a function taking values in a discrete subgroup of R. Let a > 0 be
the maximal real number such that {a−1ζ(x) | x ∈ Σ∞} ⊆ Z. As in the nonlattice case,
the hypotheses and Remark 3.9 imply that ξ is Hölder continuous and strictly positive.
Moreover, the unique s > 0 for which γ−sξ = 1 is the Minkowski dimension δ of F .

Since 1Z is Hölder continuous and since we can assume that 1Z is not identically zero, by
combining equations (4.3), (4.4) and (4.7), we see that an application of Theorem 3.14 to

A
i

ω(x, ε, Z) and A
i
ω(x, ε, Z) gives the following asymptotics.

A
i

ω(x, ε, Z) ∼ Wω(x) ·
∫

Σ∞

1Z(y)e
−δa

⌈
ψ(y)−ψ(ωx)

a
+ 1
a
ln 2ε

|Liω|ρn(ω)

⌉

dν−δζ(y) and(4.12)

Aiω(x, ε, Z) ∼ Wω(x) ·
∫

Σ∞

1Z(y)e
−δa

⌈
ψ(y)−ψ(ωx)

a
+ 1
a
ln

2ερn(ω)

|Liω|

⌉

dν−δζ(y) (4.13)

as ε→ 0 uniformly for x ∈ Σ∞, where

Wω(x) :=
ah−δζ(ωx)

(1 − e−δa)
∫
ζdµ−δζ

. (4.14)

Proof (of Part (iii) of Theorem 2.6). The statement on the nonexistence of the frac-
tal curvature measures results by combining Part (iii) of Theorem 2.11 with Proposition 2.13.

For the boundedness we first remark that C
f

0 (F, ·) is monotonically increasing as a function

in the second component. Therefore, in order to find an upper bound for C
f

0 (F, ·) it suffices

to consider C
f

0 (F,R). For all m ∈ N we have

C
f

0 (F,R)
(4.5)

≤ lim sup
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

A
i

ω(x, ε,Σ
∞)

(4.12)
= lim sup

ε→0
εδ

Q−1∑

i=1

∑

ω∈Σm

Wω(x) ·
∫

Σ∞

e
−δa

⌈
ψ(y)−ψ(ωx)

a
+ 1
a
ln 2ε

|Liω|ρm

⌉

dν−δζ(y)

≤ lim sup
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

Wω(x) ·
∫

Σ∞

e
−δa

(
ψ(y)−ψ(ωx)

a
+ 1
a
ln 2ε

|Liω |ρm

)

dν−δζ(y)

=

Q−1∑

i=1

∑

ω∈Σm

aeδψ(ωx)h−δζ(ωx)

(1− e−δa)
∫
ζdµ−δζ

( |Liω|ρm
2

)δ ∫

Σ∞

e−δψ(y)dν−δζ(y).

Note that h−δξ = eδψh−δζ and dν−δξ = e−δψdν−δζ . Hence, by Lemma 4.1

C
f

0 (F,R) ≤ lim inf
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ
a2−δ

(1− e−δa)
∫
ζdµ−δζ

=: c0.
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c0 ∈ (0,∞) because
∑Q−1

i=1

∑
ω∈Σm |Liω|δ ≤

∑Q−1
i=1

∑
ω∈Σm ‖φ′ω‖δ =: am, where ‖ · ‖ denotes

the supremum-norm on C(X) and the sequence (am)m∈N is bounded by Lemma 4.2.12 of
[MU03].

That Cf0 (F,R) is positive can be seen by the following.

Cf0 (F,R) ≥ lim inf
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

Aiω(x, ε,Σ
∞)

(4.13)

≥ lim inf
ε→0

εδ
Q−1∑

i=1

∑

ω∈Σm

Wω(x) ·
∫

Σ∞

e
−δa

(
ψ(y)−ψ(ωx)

a
+ 1
a
ln

2ερn(ω)

|Liω |
+1

)

dν−δζ(y)

=

Q−1∑

i=1

∑

ω∈Σm

ah−δζ(ωx)

(1 − e−δa)
∫
ζdµ−δζ

eδψ(ωx)−δa
( |Liω|
2ρm

)δ ∫

Σ∞

e−δψ(y)dν−δζ(y).

By using h−δξ = eδψh−δζ and dν−δξ = e−δψdν−δζ and Lemma 4.1, we hence obtain

Cf0 (F,R) ≥ lim sup
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ
a2−δe−δa

(1− e−δa)
∫
ζdµ−δζ

> 0.

The results on Cf1 (F,B) and C
f

1 (F,B) are now a straightforward application of Theo-
rem 3.18. 2

Proof (of Theorem 2.8). By Lemma 3.17 we know that

A := lim
ε→0

εδ
∫

Σ∞

1B̃(y)e
−δa

⌈
ψ(y)−ψ(ωx)

a
+ 1
a
ln 2ε

|Liω|ρm

⌉

dν−δζ(y)

exists for every ω ∈ Σm and i ∈ {1, . . . , Q − 1}. Moreover, the limit is independent of ω
and i. Therefore, applying the same arguments which lead to Equations (4.5) and (4.6) and
using Equations (4.12) and (4.13) we conclude

C
f

0 (F,B) ≤
Q−1∑

i=1

∑

ω∈Σm

Wω(x)

( |Liω|ρm
2

)δ
· A and

Cf0 (F,B) ≥
Q−1∑

i=1

∑

ω∈Σm

Wω(x)

( |Liω|
2ρm

)δ
· A,

whereWω(x) is as defined in (4.14). Applying Lemma 4.1 and Theorem 3.18 then completes
the proof. 2

Average Fractal Curvature Measures

Proof (of Part (i) of Theorem 2.6). If ξ is nonlattice, Part (i) of Theorem 2.6 imme-
diately follows from Part (ii) of Theorem 2.6 and the fact that f(ε) ∼ c as ε → 0 for some

constant c ∈ R implies limT→0|lnT |−1
∫ 1

T ε
−1f(ε)dε = c for every locally integrable function

f : (0,∞) → R.

Thus for the rest of the proof we assume that ξ is lattice. We begin with showing the result
on the 0-th average fractal curvature measure.
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Observe that limT→0|lnT |−1
∫ 1

T
cεδ−1dε = limT→∞|T |−1

∫ T
0
ce−δtdt = 0 for every constant

c ∈ R. For a fixed m ∈ N define M := min{|Liω| | i ∈ {1, . . . , Q − 1}, ω ∈ Σm}/2. From
Equations (4.2) and (4.3) we deduce the following.

D := lim sup
T→0

|2 lnT |−1

∫ 1

T

εδ−1λ0(∂Fε ∩ (−∞, b ])dε

≤ lim sup
T→0

|lnT |−1

(∫ M

T

εδ−1

Q−1∑

i=1

∑

ω∈Σm

A
i

ω(x, ε, Z)dε+
1

2

∫ 1

M

εδ−1λ0(∂Fε ∩ (−∞, b ])dε

)
.

Local integrability of the integrands implies that we have the following equation for all
m ∈ N.

D ≤ lim sup
T→0

|lnT |−1

∫ 1

T

εδ−1

Q−1∑

i=1

∑

ω∈Σm

A
i

ω(x, ε, Z)dε

= lim sup
T→∞

T−1

Q−1∑

i=1

∑

ω∈Σm

∫ T

0

e−δtA
i

ω(x, e
−t, Z)dt

(4.7)
= lim sup

T→∞
T−1

Q−1∑

i=1

∑

ω∈Σm

∫ T

0

e−δt
∞∑

n=0

∑

y : σny=ωx

1Z(y) · 1{Snξ(y)≤t−ln 2

|Liω|ρm
}dt

≤ lim sup
T→∞

Q−1∑

i=1

∑

ω∈Σm

( |Liω|ρm
2

)δ T − ln 2
|Liω|ρm

T
·

(
T − ln

2

|Liω|ρm

)−1 ∫ T−ln 2

|Liω|ρm

0

e−δt
∞∑

n=0

∑

y : σny=ωx

1Z(y) · 1{Snξ(y)≤t}
dt

=

Q−1∑

i=1

∑

ω∈Σm

( |Liω|ρm
2

)δ
h−δξ(ωx)

∫
1Zdν−δξ

δ
∫
ξdµ−δξ

. (4.15)

The last equality is an application of Corollary 3.16. Because (4.15) holds for all m ∈ N,
applying Lemma 4.1 yields

lim sup
T→0

|2 lnT |−1

∫ 1

T

εδ−1λ0(∂Fε ∩ (−∞, b ])dε

≤ 2−δ
∫
1Zdν−δξ

δ
∫
ξdµ−δξ

lim inf
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ. (4.16)

Analogous estimates give

lim inf
T→0

|2 lnT |−1

∫ 1

T

εδ−1λ0(∂Fε ∩ (−∞, b ])dε

≥ 2−δ
∫
1Zdν−δξ

δ
∫
ξdµ−δξ

lim sup
m→∞

Q−1∑

i=1

∑

ω∈Σm

|Liω|δ. (4.17)

Equations (4.16) and (4.17) together imply that for every b ∈ R \ F

lim
T→0

|2 lnT |−1

∫ 1

T

εδ−1λ0(∂Fε ∩ (−∞, b ])dε =
2−δc

Hµ−δξ

ν(F ∩ (−∞, b ]),
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where the constant c := limm→∞

∑Q−1
i=1

∑
ω∈Σm |Liω|δ is defined as in Equation (2.2). Since

R \F is dense in R, the statement on the 0-th average fractal curvature measure in Part (i)
of Theorem 2.6 follows.

For the statement on the 1-st average fractal curvature measure, we use Part (iii) of Theo-

rem 2.6 which says that C
f

0 (F, (−∞, b ]) < ∞ for every b ∈ R \ F . Applying Theorem 3.18
hence yields that M(F ∩ (−∞, b ]) < ∞ for every b ∈ R \ F . By the same arguments
that were used in the end of the proof of Part (ii), we can thus apply Proposition 3.19 to
F ∩ (−∞, b] and obtain the desired statement. 2

5 Special Cases

We start this section by a Lemma which is used in the proofs of Part (iii) of Theorem 2.9
and Theorem 2.11.

Lemma 5.1 Let F denote a self-conformal set associated to the cIFS Φ := {φ1, . . . , φN}.
Let δ denote the Minkowski dimension of F and let B ⊆ R denote a Borel set. Assume that
there exists a positive bounded periodic Borel-measurable function f : R+ → R+ which has
the following properties.

(i) f is not equal to an almost everywhere constant function.

(ii) There exists a constant c ∈ R such that for all t > 0 and m ∈ N there exists an M ∈ N

such that for all T ≥M

(1 − t)ρ−δm f(T − ln ρm)− ce−δT

≤ e−δTλ0(∂Fe−T ∩B) ≤ (1 + t)ρδmf(T + ln ρm) + ce−δT . (5.1)

Then for k ∈ {0, 1} we have

Cfk(F,B) < C
f

k(F,B).

Proof. We first cover the case k = 0. Since f is positive and not equal to an almost
everywhere constant function, there exist T̃1, T̃2 > 0 such that R := f(T̃2)/f(T̃1) > 1.
Choose m ∈ N so that ρ2δm <

√
R and choose t > 0 such that (1 + t)/(1 − t) <

√
R. Then

R̃ := (1 − t)ρ−δm f(T̃2) − (1 + t)ρ−δm f(T̃2) > 0. By Condition (ii) we can find an M ∈ N for
these t and m such that for all T ≥M Equation (5.1) is satisfied. Because of the periodicity

of f we can find T1, T2 ≥ M such that f(T̃1) = f(T1 + ln ρm) and f(T̃2) = f(T2 − ln ρm).

Moreover, we can assume that T1, T2 are so large that ce−δT1 + ce−δT2 ≤ R̃/2. Then

e−δT1λ0(∂Fe−T1 ∩B) ≤ (1 + t)ρδmf(T1 + ln ρm) + ce−δT1

≤ (1− t)ρ−δm f(T2 − ln ρm)− R̃/2− ce−δT2

< e−δT2λ0(∂Fe−T2 ∩B).

Because of the periodicity of f this proves the case k = 0. For k = 1 observe that the
function g : R+ → R+ defined by

g(T ) :=

∫ ∞

0

f(s+ T )e(δ−1)sds

is also periodic. Moreover g is not a constant function. Because if it was, then 0 = g(0)−g(T )
for all T ≥ 0. This would imply

∫∞

T
f(s)e(δ−1)sds = e(δ−1)T

∫∞

0
f(s)e(δ−1)sds for all T ≥ 0.
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Differentiating with respect to T would imply that f itself is constant almost everywhere
which is a contradiction. Using Stachó’s Theorem (Proposition 3.20), we obtain

e−T (δ−1)λ1(Fe−T ∩B) = e−T (δ−1)

∫ ∞

T

λ0(∂Fe−s ∩B)e−sds

≤ e−T (δ−1)(1 + t)ρδm

∫ ∞

T

f(s+ ln ρm)es(δ−1)ds+ ce−Tδ

= (1 + t)ρδmg(T + ln ρm) + ce−δT .

Analoguously we obtain

e−T (δ−1)λ1(Fe−T ∩B) ≥ (1− t)ρ−δm g(T − ln ρm)− ce−δT .

Therefore, the same arguments which were used in the proof of the case k = 0 imply that

lim inf
ε→0

εδ−1λ1(Fε ∩B) < lim sup
ε→0

εδ−1λ1(Fε ∩B).
2

5.1 Self-Similar Sets; Proof of Theorem 2.9

Self-similar sets satisfying the open set condition form a special class of self-conformal sets,
namely those which are generated by an iterated function system Φ consisting of similarities
φ1, . . . , φN . We let r1, . . . , rN denote the respective similarity ratios of φ1, . . . , φN and set
rω := rω1 · · · rωn for a finite word ω = ω1 · · ·ωn ∈ Σn. When considering self-similar sets
some of the formulae simplify significantly:

(i) The geometric potential function is constant on the one-cylinders meaning ξ(ω) =
− ln rω1 for ω = ω1ω2 · · · ∈ Σ∞.

(ii) The unique σ-invariant Gibbs measure µ−δξ for the potential function −δξ coincides
with the δ-dimensional normalised Hausdorff measure on F . Thus, µ−δξ([i]) = rδi ,
where [i] shall denote the cylinder of i ∈ Σ. Therefore we have that Hµ−δξ =

−∑i∈Σ ln(ri)r
δ
i .

(iii) The lengths of the main gaps of φωF are just multiples of the lengths of the primary
gaps of F , that is |Liω| = rω |Li| for each i ∈ {1, . . . , Q− 1} and ω ∈ Σ∗.

(iv) By the Moran-Hutchinson formula (see e. g. Theorem 9.3 of [Fal03]) we have that∑
ω∈Σn r

δ
ω = 1 for each n ∈ N.

Combining (i)-(iv) with Theorem 2.6, we obtain Parts (i) and (ii) of Theorem 2.9.

In order to prove Part (iii) of Theorem 2.9 which actually is a stronger result than that of
Part (iii) of Theorem 2.6, we are going to make use of the asymptotics (4.12) and (4.13)
that we obtained for self-conformal sets.

Proof (of Part (iii) of Theorem 2.9). As F ∩ B has got a representation as a finite
nonempty union of sets of the form φωF with ω ∈ Σ∗ \ {∅}, there is a set Z ⊆ Σ∞ which is
a finite union of cylinder sets and which satisfies πZ = F ∩B. Then 1Z is Hölder continuous

which allows an application of Theorem 3.14 to A
i

ω(x, e
−T , Z) and Aiω(x, e

−T , Z) which leads
to Equations (4.12) and (4.13).
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The geometric potential function of a lattice self-similar set itself takes values in a discrete
subgroup of R. Thus, ψ is a constant function and ζ = ξ. Moreover, one easily verifies that
h−δξ ≡ 1 and |Liω| = rω|Li|. For these reasons, the formulae (4.12) and (4.13) simplify to

A
i

ω(x, e
−T , Z) ∼ arδω

(1− e−δa)Hµ−δξ

· e
−δa

⌈
1
a
ln 2e−T

|Li|ρn(ω)

⌉ ∫

Σ∞

1Z(y)dν−δξ(y)

=
arδων(B)

(1− e−δa)Hµ−δξ

· e
−δa

⌈
1
a
ln 2e−T

|Li|ρn(ω)

⌉

and (5.2)

Aiω(x, e
−T , Z) ∼ arδων(B)

(1− e−δa)Hµ−δξ

· e
−δa

⌈
1
a
ln

2e−T ρn(ω)

|Li|

⌉

. (5.3)

Here, we have also used that ln rω ∈ aZ for every ω ∈ Σ∗. Now, by arguments of the
beginning of Section 4, there exists a constant c ∈ R such that for every m ∈ N and T ≥M ,
where M ∈ N is chosen such that all main gaps of the sets φωF for ω ∈ Σm in B are greater
than or equal to 2e−M , we have

e−δT
Q−1∑

i=1

∑

ω∈Σm

Aiω(x, e
−T , Z) ≤ e−δTλ0(∂Fe−T ∩B) ≤ e−δT

Q−1∑

i=1

∑

ω∈Σm

A
i

ω(x, e
−T , Z)+ce−δT .

Note that there is no need of substracting ce−δT on the left hand side of the above equation
as we are in the self-similar situation. We introduce the function f : R+ → R+ given by

f(T ) := e−δT
aν(B)

(1 − e−δa)Hµ−δξ

Q−1∑

i=1

e
−δa

⌈
1
a
ln 2e−T

|Li|

⌉

.

Because of the asymptotics in (5.2) and (5.3) we know that for all t > 0 there exists an

M̃ ∈ N such that for all T ≥ max{M̃,M} we have

(1− t)ρ−δm f(T − ln ρm) ≤ e−δTλ0(∂Fe−T ∩B) ≤ (1 + t)ρδmf(T + ln ρm) + ce−δT .

Clearly, f is a periodic function with period a. Moreover, f is piecewise continuous with a
finite number of discontinuities in an interval of length a. Additionally, on every interval
where f is continuous, f is stricly decreasing. Therefore f is not equal to an almost every-
where constant function. Thus, all conditions of Lemma 5.1 are satisfied which finishes the
proof. 2

5.2 C1+α Images of Self-Similar Sets; Proofs of Theorem 2.11, Propo-

sition 2.13 and Corollary 2.14

In this subsection we consider the case that F is an image of a self-similar set K ⊆ Y under
a conformal map g ∈ C1+α(U), where α > 0 and U is a convex neighbourhood of Y . We
assume that |g′| is bounded away from 0 on its domain of definition. Thus, g is bi-Lipschitz
and therefore the Minkowski dimension of F coincides with the Minkowski dimension of K
(see e. g. Corollary 2.4 of [Fal03]). We denote the common value by δ.

The similarities R1, . . . , RN generating K and the mappings φ1, . . . , φN generating F are
connected through the equations φi = g ◦Ri ◦ g−1 for each i ∈ Σ. If we let Hδ

K denote the
normalised δ-dimensional Hausdorff measure on K, that is Hδ

K(·) := Hδ(·∩K)/Hδ(K), and
let r1, . . . , rN denote the respective similarity ratios of R1, . . . , RN , we have the following
list of observations.
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(i) φi is differentiable for every i ∈ Σ with differential

φ′i(x) =
g′(Ri ◦ g−1(x))

g′(g−1(x))
· ri,

where x ∈ X and X is the nonempty compact interval which each φi is defined on.

(ii) The geometric potential function ξF associated to F is given by ξF (ω) = − ln|g′(g−1(ω))|+
ln|g′(g−1(σω))| − ln|rω1 |, where ω = ω1ω2 · · · ∈ Σ∗. The geometric potential function
ξK associated to K is given by ξK(ω) = − ln|rω1 |. Thus ξK is nonlattice, if and only
if ξF is nonlattice.

(iii) The unique σ-invariant Gibbs measure for the potential function −δξF is µ−δξF =
Hδ
K ◦ g−1, the one associated with −δξK is µ−δξK = Hδ

K .

(iv) From (ii) and (iii) we obtain

H−δξF =

∫

Σ∞

ξF dµ−δξF = −
∑

i∈Σ

ln|ri|rδi =
∫

Σ∞

ξKdµ−δξK = H−δξK .

Further, let L̃1, . . . , L̃Q−1 denote the primary gaps of K and L̃1
ω, . . . , L̃

Q−1
ω the main gaps of

RωK for each ω ∈ Σ∗. Similarly, L1, . . . , LQ−1 and L1
ω, . . . , L

Q−1
ω shall respectively denote

the primary gaps of F and the main gaps of φωF . Then

(v) Liω = g(L̃iω) for i ∈ {1, . . . , Q − 1} and ω ∈ Σ∗. Since furthermore |L̃iω| = rω|L̃i|, we
have

lim
n→∞

∑

ω∈Σn

Q−1∑

i=1

|Liω|δ = lim
n→∞

Q−1∑

i=1

∑

ω∈Σn

(
rω |L̃i| · |g′(xω)|

)δ
=

Q−1∑

i=1

|L̃i|δ
∫

K

|g′|δdHδ
K ,

where xω ∈ [ω] for each ω ∈ Σ∗. Note that the above line can be rigorously proven by
using the bounded distortion lemma (Lemma 3.5).

(vi) The δ-conformal measure νF associated to F and the δ-conformal measure νK associ-
ated to K are absolutely continuous with Radon-Nikodym derivative

dνF
dνK ◦ g−1

= |g′ ◦ g−1|δ
(∫

K

|g′|δdHδ
K

)−1

.

(vii) Let Ỹ ⊂ U be a compact set which contains an open neighbourhood of X . Since |g′|
is bounded away from 0 on U , we obtain that θ := 2 ·max{|φ′i(x)| | x ∈ Ỹ , i ∈ Σ} is
finite and positive. Under the assumption that K satisfies λ1(K) = 0 and the OSC,
Φθ := {θ−1φ1, . . . , θ

−1φN} is a cIFS which satisfies the OSC. Hence, the invariant set
Fθ of Φθ is a self-conformal set.

(viii) By the definition of the 0-th and 1-st fractal curvature measures and using the ho-

mogenity property of the Lebesgue measure, we have that Cf0 (F, ·) = θδCf0 (Fθ, ·/θ)
and Cf1 (F, ·) = θδCf1 (Fθ, ·/θ), whenever they exist. The same equalities also obtain

for the average versions C̃f0 (F, ·) and C̃f1 (F, ·).

Using (i)-(viii) an application of Parts (i) and (ii) of Theorem 2.6 and Theorem 2.9 to K
and Fθ proves Parts (i) and (ii) of Theorem 2.11.
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Proof (of Part (iii) of Theorem 2.11). In order to show that there exists a Borel set

B ⊆ R for which Cfk(F,B) < C
f

k(F,B) for k ∈ {0, 1} we want to apply Lemma 5.1. To show
that the assumptions of Lemma 5.1 are satisfied, we make the following estimates which are
closely linked to the ones given in the beginning of Section 4.

Let κ ∈ Σ∗ \ {∅} be arbitrary. Fix an m ∈ N and choose M ∈ N so that for every ω ∈ Σm

all primary gaps of the sets φωF which lie in 〈φκF 〉 are of length greater than or equal to
2e−M . Then for all T ≥M we have

λ0 (∂Fe−T ∩ 〈φκF 〉) = 2

Q−1∑

i=1

#{ω ∈ Σ∗ | Liω ⊆ 〈φκF 〉, |Liω| ≥ 2e−T }

≤ 2
∑

ω∈Σm

Q−1∑

i=1

Ξiω(e
−T ) + 2

m−n(κ)−1∑

j=1

(Q − 1) ·N j−1

︸ ︷︷ ︸
=:cm

.

where we agree that
∑m−n(κ)−1
j=1 (Q− 1) ·N j−1 = 0 if m− n(κ)− 1 < 1 and where

Ξiω(e
−T ) := #{u ∈ Σ∗ | Liuω ⊆ 〈φκF 〉, |Liuω| ≥ 2e−T}.

Likewise

λ0 (∂Fe−T ∩ 〈φκF 〉) ≥ 2
∑

ω∈Σm

Q−1∑

i=1

Ξiω(e
−T ).

As before, we let L̃i and L̃iω denote the gaps of the self-similar set K and recall that
g ∈ C1+α(U). Let cg be the Hölder constant of g′ and kg > 0 such that |g′| ≥ kg. Then for
every ω ∈ Σn, where n ∈ N, and x, y ∈ RωK we have that

∣∣∣∣
g′(x)

g′(y)

∣∣∣∣ ≤
∣∣∣∣
g′(x)− g′(y)

g′(y)

∣∣∣∣+ 1 ≤ cg · |x− y|α
kg

+ 1 ≤ max
ω∈Σn

cg · rαω
kg

+ 1 =: pn.

Clearly, pn → 1 as n → ∞. Thus, for u ∈ Σ∗, ω ∈ Σm and i ∈ {1, . . . , Q − 1} we have for
an arbitrary x ∈ Kunique

|Liuω| = |gL̃iuω| ≤ |g′(Ruωx)|pn(ω)|L̃iω|ru = |(g ◦Ru)′(Rωx)|pn(ω)|L̃iω|
= |(φu ◦ g)′(Rωx)|pn(ω)|L̃iω| = |φ′u(gRωx)||g′(Rωx)|pn(ω)|L̃iω|
(ii)
= exp

(
−Sn(u)ξ(uωx)− ψ(ωx) + ln(pn(ω)|L̃iω|)

)
.

Therefore, for x ∈ Kunique

Ξiω(e
−T ) ≤ #{u ∈ Σ∗ | Liuω ⊆ 〈φκF 〉, Sn(u)ξ(uωx) ≤ − ln(2e−T ) + ln(pn(ω)|L̃iω|)− ψ(ωx)}.

Hence, by Theorem 3.14

λ0(∂Fe−T ∩ 〈φκF 〉) ≤ 2
∑

ω∈Σm

Q−1∑

i=1

∞∑

n=0

∑

y : σny=ωx

1[κ](y) · 1{Snξ(y)≤− ln(2e−T )+ln(pm|L̃iω|)−ψ(ωx)}
+ cm

∼ 2
∑

ω∈Σm

Q−1∑

i=1

ah−δζ(ωx)
∫
1[κ](y)e

−δa

⌈
ψ(y)−ψ(ωx)

a
+ 1
a
ln 2e−T

pm|L̃iω|
+ψ(ωx)

a

⌉

dν−δζ(y)

(1− e−δa)
∫
ζdµ−δζ

+ cm. (5.4)
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Define W := a
(
1− e−δa

)−1 (∫
ζdµ−δζ

)−1
and note that h−δζ ≡ 1, since ζ is the geometric

potential function of a self-similar set. Thus, using |L̃iω| = rω|L̃i| and that ln rω ∈ aZ for
every ω ∈ Σ∗, Equation (5.4) simplifies to

∑

ω∈Σm

Q−1∑

i=1

Wrδω

∫

Σ∞

1[κ](y)e
−δa

⌈
ψ(y)
a

+ 1
a
ln 2e−T

pm|L̃i|

⌉

dν−δζ(y)

=

Q−1∑

i=1

W

∫

Σ∞

1[κ](y)e
−δa

⌈
ψ(y)
a

+ 1
a
ln 2e−T

pm|L̃i|

⌉

dν−δζ(y).

Hence, for all t > 0 there exists an M̃ ≥M such that for all T ≥ M̃ we have

e−δTλ0(∂Fe−T ∩ 〈φκF 〉)

≤ (1 + t)e−δT 2

Q−1∑

i=1

W

∫

Σ∞

1[κ](y)e
−δa

⌈
ψ(y)
a

+ 1
a
ln 2e−T

pm|L̃i|

⌉

dν−δζ(y) + cme
−δT .

Defining the function f : R+ → R+ given by

f(T ) := e−δT 2

Q−1∑

i=1

W

∫

Σ∞

1[κ](y)e
−δa

⌈
ψ(y)
a

+ 1
a
ln 2e−T

|L̃i|

⌉

dν−δζ(y)

we thus have

e−δTλ0(∂Fe−T ∩ 〈φκF 〉) ≤ (1 + t)pδmf(T + ln pm) + cme
−δT .

Likewise,

e−δTλ0(∂Fe−T ∩ 〈φκF 〉) ≥ (1 − t)p−δm f(T − ln pm).

Clearly, f is periodic with period a. In order to apply Lemma 5.1 it remains to show
that f is not equal to an almost everywhere constant function. For that we let β :=

1 − max{{−a−1 ln|L̃i|} | i = 1, . . . , Q− 1} and β := max{{a−1 ln|L̃i|} | i = 1, . . . , Q− 1}
and consider the following three cases, of which at least one always obtains.

Case 1: D := {y ∈ Σ∞ | {a−1ψ(y)} < β} 6= ∅.
Since ψ ∈ C(Σ∞) and thus D is open, there exists a κ ∈ Σ∗ \ {∅} such that [κ] ⊆ D. For
n ∈ N and r ∈ (0, 1− β) define Tn(r) := a(n− β − r) + ln 2. Then

f(Tn(r)) = eδar · eδaβ21−δ
Q−1∑

i=1

W

∫

Σ∞

1[κ](y)e
−δa⌈ψ(y)

a
− 1
a
ln |L̃i|⌉−δadν−δζ(y).

This shows that f is strictly decreasing on (a(n− 1)+ ln 2, a(n− β) + ln 2) for every n ∈ N.
Therefore, f is not equal to an almost everywhere constant function.

Case 2: D := {y ∈ Σ∞ | {a−1ψ(y)} > β} 6= ∅.
Like in Case 1, there exists a κ ∈ Σ∗ \ {∅} such that [κ] ⊆ D. For n ∈ N and r ∈ (0, β) set
Tn(r) := a(n+ 1− r) + ln 2. Then

f(Tn(r)) = eδar · 21−δ
Q−1∑

i=1

W

∫

Σ∞

1[κ](y)e
−δa⌈ψ(y)

a
− 1
a
ln |L̃i|⌉dν−δζ(y).
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This shows that f is strictly decreasing on (a(n + 1 − β) + ln 2, a(n + 1) + ln 2) for every
n ∈ N. Therefore, f is not equal to an almost everywhere constant function.

If neither Case 1 nor Case 2 obtains, then Case 3 obtains which is the following.

Case 3: {y ∈ Σ∞ | β ≤ {a−1ψ(y)} ≤ β} = Σ∞.
Here, we can use Tn(r) := a(n− 1 + r) + ln 2 for n ∈ N and r ∈ (0, β) to obtain

f(Tn(r)) = e−δar ·W
Q−1∑

i=1

∫

Σ∞

1[κ](y)e
−δa⌈ψ(y)

a ⌉+2δadν−δζ(y).

This shows that f is strictly decreasing on (a(n − 1) + ln 2, a(n − 1 + β) + ln 2) for every
n ∈ N. Therefore, f is not equal to an almost everywhere constant function.

Thus, we can apply Lemma 5.1 in all three cases to obtain the desired statement. 2

Proof (of Proposition 2.13). Without loss of generality we may assume {0, 1} ⊆ F ⊆
[0, 1]. We let ξ denote the geometric potential function of Φ and let ζ, ψ ∈ C(Σ∞) be the
functions satisfying ξ − ζ = ψ − ψ ◦ σ, where ζ takes values in a discrete subgroup of R.
Moreover, π : Σ∞ → F shall denote the natural code map. We define ψ̃ := δ−1 lnh, where
h is the function which is uniquely defined through Theorem 3.11. ψ̃ satisfies the equation
ψ̃ ◦ π = ψ since h satisfies

h ◦ π = h−δξ =
dµ−δξ

dν−δξ
=

dµ−δζ

e−δψdν−δζ
= eδψ.

We define the function f : X → R by f(x) :=
∫ x
0 e

−ψ̃(y)dy for x ∈ X . As ψ̃ is α-Hölder

continuous, the Fundamental Theorem of Calculus implies that ψ̃ = − ln f ′. Moreover, the
continuity of ψ̃ implies that ψ̃ is bounded on X . Therefore, f ′ is bounded away from both 0
and ∞ and thus f is invertible. Define Y := f(X), set g := f−1 and extend g to a C1+α(U)
function on an open neighbourhood U of the compact set Y such that g′ > 0 on U . Define
Ri := g−1 ◦ φi ◦ g for i ∈ {1, . . . , N}. Then setting πK := π−1g, we have

− lnR′
ω1
(πKσω) = − ln f ′(φω1gπKσω)− lnφ′ω1

(gπKσω)− ln g′(πKσω)

= ψ̃(φω1πσω) + ξ(ω) + ln f ′(gπKσω)

= ξ(ω) + ψ(ω)− ψ ◦ σ(ω).

Thus, ζ(ω) = − lnR′
ω1
(πKσω) for ω ∈ Σ∞. Since ζ takes values in a discrete subgroup of

R and ξ and ψ are bounded on Σ∞, ζ in fact takes a finite number of values. Therefore, Ri
is piecewise linear for every i ∈ {1, . . . , N} with only a finite number of nondifferentiability
points. As furthermore every R′

i is α-Hölder continuous on Σ∞, we obtain a system of sim-
ilarities by iterating the system {R1, . . . , RN} a finite number of times. Thus, the invariant
set K of the iterated function system {R1, . . . , RN} is self-similar and lattice. Moreover,
F = g(K). 2

Proof (of Corollary 2.14). Let πK and πF respectively denote the natural code map
from Σ∞ to K and F respectively. Observe that π−1

F ◦ g = π−1
K and ν−δξK ◦ π−1

K = ν

and define B := πK(B̃). By Property (ii) of the beginning of this subsection, we see that
ψ = − ln g′ ◦ πK . Using this and the normalisation conditions given in Corollary 2.14, the
left hand side of Condition (2.3) simplifies to

ν−δξKπ
−1
K ◦ (g′)−1

(
g′ ◦ πK(B̃) ∩ exp(−t, 0]

)
= ν ◦ (g′)−1

(
g′(B) ∩ (e−t, 1]

)
.

32



The right hand side of Condition (2.3) simplifies to

eδt − 1

eδa − 1
ν−δξKπ

−1
K ◦ (g′)−1

(
g′ ◦ πK(B̃) ∩ exp(−a, 0]

)
=
eδt − 1

eδa − 1
ν ◦ (g′)−1(g′(B)).

This shows that Part (i) of Corollary 2.14. Part (ii) can be easily deduced from this by
substituting e−t = g′(r). 2
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