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Abstract

We investigate intrinsic geometric properties of invariant sets of one-dimensional
conformal iterated function systems. We show that for such a set F' the fractal cur-
vature measures exist, if and only if the geometric potential function associated to F
is nonlattice. In this case we obtain that the fractal curvature measures are constant
multiples of the §-conformal measure, where ¢ is the Minkowski dimension of F'. More-
over, for the first fractal curvature measure, this constant factor coincides with the
Minkowski content of F'. We show that the existence of the fractal curvature measures
implies the existence of the Minkowski content but that the converse is not true in
general. That is, the Minkowski content may exist although the geometric potential
function associated to F' is lattice. Nevertheless, average versions of the fractal curva-
ture measures always exist and are also constant multiples of the §-conformal measure.
We give explicit formulae for the (average) fractal curvature measures and further in-
vestigate the particular situations of self-similar sets and C'™* images of self-similar
sets.

1 Brief Introduction

Notions of curvature are an important tool to describe the geometric structure of sets and
have been introduced and intensively studied for broad classes of sets. However, for sets of
a fractal nature, the classical notions of curvature are not fitting. Nevertheless, for these
sets it is desirable to have such a notion at hand.

Originally, the idea to characterise sets in terms of their curvature stems from the study
of smooth manifolds as well as from the theory of convex bodies with sufficiently smooth
boundaries. In Federer’s foundational text, Curvature Measures [Fed59], Federer localises,
extends and unifies the existing notions of curvature for the afore mentioned sets to sets
of positive reach. This is where he introduces curvature measures, which can be viewed
as a measure theoretical substitute for the notion of curvature in the non differentiability
situation. Federer’s curvature measures were studied and generalised in various ways. An
extension to finite unions of convex bodies is given in [Gro78| and [Sch80] and to finite unions
of sets of positive reach in [Z&§h84]. In [Win08] Winter extends the curvature measures to
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“fractal” sets in R?, which typically cannot be expressed as finite unions of sets with posi-
tive reach. These measures are referred to as fractal curvature measures and are defined as
weak limits of rescaled versions of the curvature measures introduced by Federer, Groemer
and Schneider. Winter also examines conditions for their existence in the self similar case.
However, fractal sets arising in geometry (for instance as limit sets of Fuchsian groups) or in
number theory (for instance as sets defined by Diophantine inequalities) are typically non
self-similar but rather self-conformal. In order to make use of the notion of curvature also
for this important class of fractal sets, we extend Winter’s examinations to the conformal
setting. In this way we contribute to the ongoing research on defining notions of curvature
for fractal sets. Our objects of study are nonempty compact sets which occur as the invari-
ant sets of finite conformal iterated function systems satisfying the open set condition as
considered in [MU96]. We refer to these sets as self-conformal sets (see Definition 3.2).

The paper is organised as follows. In Section 2 we state the main results and provide in this
way a complete answer to the question on the existence of the fractal curvature measures
for self-conformal sets. The precise definitions and background information as well as the
relevant properties and auxiliary results will be presented in Section 3. In Section 4 the proofs
of our main theorems for self-conformal sets (Theorem 2.6 and Theorem 2.8) are provided.
Finally, in Section 5, we conclude the paper by considering the special cases of self-similar
sets and C'*® images of self-similar sets and thus proving Theorem 2.9, Theorem 2.11,
Proposition 2.13, and Corollary 2.14.

2 Main Results

The introduction of the fractal curvature measures (see Section 3.1) relies on the definition
of scaling exponents, for which we require the following notation. Let A\° and A! respectively
denote the zero- and one-dimensional Lebesgue measure. For € > 0 we define Y; := {z €
R | infyey|z — y| < €} to be the e-parallel neighbourhood of Y C R and let Y denote the
boundary of Y.

Definition 2.1 For a compact set Y C R the 0-th and I-st curvature scaling exponents of
Y are respectively defined as

so(Y) = inf{t € R|'\°(Y.) = 0ase— 0} and
s1(Y) = inf{t e R| A (Y.) = 0ase— 0}

Definition 2.2 Let Y C R denote a compact set. Provided, the weak limit

v, ) i= w-lime* N9y, N ) /2
e—0
exists, we call it the 0-th fractal curvature measure of Y. Likewise the weak limit

cl v, ) = wlime I\ (v. n )

e—0

is called the 1-st fractal curvature measure, if it exists. Moreover, for a Borel set B C R we
set

Cl(v, B) = limsupe™® ™\ (Y. N B)/2,  CL(V,B):=1lim inf e IA\(9Y. N B)/2
E—r

e—0
af(Y, B) :=limsupe** I\ (Y. N B), and C!(V,B):= Hm%lea(Y))\l (Ye N B).
e—

e—0



The central question arising in this context is to identify those sets Y C R for which the
fractal curvature measures exist. In [Win08] it has been shown that the fractal curvature
measures exist for self-similar sets with positive Lebesgue measure as well as for self-similar
sets satisfying the open set condition which are nonlattice (see Definition 3.8). In the lattice
case, Winter shows that an average version of the fractal curvature measures exists, which
are defined as follows.

Definition 2.3 Let Y C R denote a compact set. Provided the weak limit exists, we let

) 1
Cly,) = WT-EIOnunTrl/T 97 IN(9Y. N )de/2

denote the 0-th average fractal curvature measure of Y. Likewise, the weak limit

1
cly, )= Vgp.grglunﬂ—l/T 27NN (Y. N -)de

is called the 1-st average fractal curvature measure of Y, if it exists.

We are able to provide a complete characterisation of the self-conformal sets for which the
(average) fractal curvature measures exist, generalising in this respect the results in [Win08].

As we will see, a self-conformal set is either a nonempty compact interval or has zero one-
dimensional Lebesgue measure (Proposition 3.4). To determine the fractal curvature scaling
exponents we have to distinguish these two cases.

Proposition 2.4 Let § denote the Minkowski dimension of a self-conformal set F. If
M(F) = 0, then so(F) = 6 and s1(F) = 6 — 1. If F is a nonempty compact interval,
then so(F) = s1(F) = 0.

Let us first consider the latter situation of the above proposition. As an immediate conse-
quence of Proposition 2.4 we obtain the following complete description.

Corollary 2.5 IfY C R is a nonempty compact interval, then both the 0-th and 1-st fractal
curvature measures exist and satisfy

clv,)y=X0yny/2 and CL(v,)=X(yYn.).

Let us now focus on self-conformal sets with zero one-dimensional Lebesgue measure. Fix
an iterated function system ® := {¢1,...,¢n}, N > 2, acting on a compact connected
set X C R which satisfies the open set condition and let F' denote the unique nonempty
compact invariant set of ®. For ¥ := {1,..., N} let (X°°,0) denote the full shift-space on N
symbols and let 7: 3°° — F be the natural code map as defined in Section 3. It turns out
that the fractal curvature measures of F' exist, if and only if the geometric potential function
§: X% — ¥ given by {(w) = —In[¢), (m(ow))| for w 1= wiwy--- € X, is nonlattice
(see Definition 3.7). In this case we call ® (resp. F') nonlattice, otherwise ® (resp. F') is
called lattice (see Definition 3.8). Before stating the main results we make the following
observation and definitions.

By applying ® to the convex hull of F one obtains a family of Q—1 gap intervals L', ..., L9~
which we call the primary gaps of F', where we have 2 < Q < N since A'(F) = 0. Given an
ne€Nandan w = w;---w, € X", let L}, ..., L27! respectively denote the images of the
primary gaps under the map ¢, := ¢, 0---0¢,, and call these sets the main gaps of ¢, F.



Further, letting § denote the Minkowski dimension of F', we call the unique probability
measure v supported on F', which satisfies

v(p;i XNg;X)=0fori#jeX and v(¢p,B)= / ¢, 1°dv (2.1)
B

for all w € |J,,cy X" =: X* and for all Borel sets B C F the 6-conformal measure associated
to ®. The statement on the uniqueness and existence is shown in [MU96] and goes back to
the work of [Pat76], [Sul79], and [DU91].

Finally, let H,,_,. denote the measure theoretical entropy of the shift-map with respect to
the unique shift-invariant Gibbs measure for the potential function —d¢ (see (3.2)).

The following theorem gives the complete answer to the question concerning the existence
of the fractal curvature measures for self-conformal sets.

Theorem 2.6 (Self-Conformal Sets) Let F' denote a self-conformal set associated to the
iterated function system ®. Assume that ® satisfies the open set condition and that \'(F) =
0. Let § denote the Minkowski dimension of F and let & denote the geometric potential
function associated to ®. Then the fractal curvature measures exist if and only if & is
nonlattice. Moreover, the following more specific results hold.

(i) The average fractal curvature measures always exist and are both constant multiples
of the d-conformal measure v associated to F, that is

~ —de ~
C({(F,'):;[ v() and C{(F,'):W'V('),

H—s¢ H—s¢

where the constant c is given by the well-defined limit

Q-1
c= lim >OOSILLP. (2.2)

weX™ 1=1

(ii) If ® is nonlattice, then both the 0-th and I-st fractal curvature measures exist and

satisfy C,J:(F, )= C‘,{(F, :) for k € {0,1}.

(iii) If ® is lattice, then neither the 0-th nor the 1-st fractal curvature measure exists.
Nevertheless, there exists a constant € € R such that Ui(F, B) <€ for every Borel set
B CR and k € {0,1}. Additionally, Ci(F, R) is positive for k € {0,1}.

Part (iii) in particular shows that the scaling exponents of F can alternatively be charac-
terised by so(F) = sup{t € R | e!A\(OF.) — oo as ¢ — 0} and s1(F) = sup{t € R |
e!AY(F.) — 0o as e — 0} respectively.

For AY(F) = 0, it follows from Proposition 2.4 that the Minkowski content M(F) of F
(see Definition 3.1) is obtained as the total mass of the 1-st fractal curvature measure,

namely M(F) = C{(F,R). Similarly, the average Minkowski content .//\/lv(F ) is given by
the total mass of the 1-st average fractal curvature measure, namely M(F) = C/ (F,R).
Moreover, for the upper and lower Minkowski content we have that M(F) = U'{ (F,R) and

M(F) = Q{ (F,R). Therefore, Theorem 2.6 immediately implies the following interesting
observation.

Corollary 2.7 (Self-Conformal Sets — Minkowski Content) Under the conditions of
Theorem 2.6 the following holds.



(i) The average Minkowski content exists and equals

. 21—5c
M(F) = )
(1 - 5)H#75§
where ¢ is the constant given in Equation (2.2).

(i1) If ® is nonlattice, then the Minkowski content M(F) of F exists and coincides with

(iii) In both the lattice and nonlattice case we have that

0< M(F) < M(F) < 0.

It is important to remark that the fact that the fractal curvature measures do not exist in the
lattice case does not imply that the Minkowski content does not exist in this case. Indeed,
for a general self-conformal set, which is lattice, the Minkowski content may or may not
exist as we will see later. A sufficient condition under which the Minkowski content exists,
or more generally Q‘,ﬁ(F,B) = 6£ (F, B) for a Borel set B C R and k € {0,1}, is given in
the following theorem. For a Holder continuous function f € C(X°°) we let v¢ denote the
unique eigenmeasure corresponding to the eigenvalue 1 of the dual of the Perron-Frobenius
operator for the potential function f (see Section 3.4).

Theorem 2.8 (Self-Conformal Sets — Lattice Case) Assume that we are in the setting
of Theorem 2.6 and that £ is lattice. Let (,9p € C(X°°) denote the functions satisfying
E—( =1 —1oo, where ( takes values in a discrete subgroup of R which is generated
by a € R. Moreover, choose N1,Ns € Z such that ¥(X*°) C [Nia, N2a) and N2 — Ny is
minimal. Let B C ¢ be a Borel set which can be represented as a finite union of cylinder
sets and set B := 7B C R. If, for every t € [0,a), we have

Np—1
Z e %"y 50 ¢~ ((B) N [na, na + t))
n=N1
et Na—1 _
= G Y e o WB) Nna, (04 ), (23)
n=N1

then it follows that Qi(F,B) = U'}:(F,B) for k € {0,1}.

An example of a self-conformal set F', which satisfies Condition (2.3) for B = R is given in
Example 2.15. Theorem 2.8 then implies that F' is Minkowski measurable. However, in the
special case when F is a self-similar set, Condition (2.3) cannot be satisfied. In this case it
even turns out, that F' is Minkowski measurable if and only if F' is nonlattice. This is also

reflected in the following theorem, where also Q‘,ﬁ (F,B) and 6',]; (F,B) for k € {0,1} and a
Borel set B C R are considered in the lattice case.

Theorem 2.9 (Self-Similar Sets) Let F' denote a self-similar set associated to the iter-
ated function system ® = {¢1,...,dn}. Assume that @ satisfies the open set condition
and N (F) = 0. Further, let r1,...,ry denote the respective similarity ratios of the maps
@1,...,0N. Then the fractal curvature measures exist if and only if ® is nonlattice. Specif-
ically, the following holds.



(i) The average curvature measures of F exist and are given by

V(')a

&l(p) = 2o nS P b oneyl!
0 —6 3 e In(ri)r? (0 —1)8 3 ;cx In(ry)r?

where § denotes the Minkowski dimension of F and v denotes the §-conformal measure
associated to F'.

v() and CI(F,-) =

(ii) If ® is nonlattice, then the fractal curvature measures of F exist and are given by

Cl(F,-) = CI(F,") for k € {0,1}.

(ii) If @ is lattice, then the fractal curvature measures do not exist. What is more, for
every Borel set B C R for which F N B is nonempty and allows a representation as a
finite union of sets of the form ¢, F, where w € ¥*, we have that for k € {0,1}

0 < CL(F,B) < CL(F, B) < .

Note that v coincides with the §-dimensional Hausdorff measure normalised on F, that is

with HP (-0 F)/H (F).

Parts (i) and (ii) of Theorem 2.9 are straightforward consequences of Parts (i) and (ii) of The-
orem 2.6 and give handy formulae for computing the (average) fractal curvature measures
provided they exist. The existence of the fractal curvature measures under the assumptions
of Part (ii) of Theorem 2.9 and their average counterparts (Part (i) of Theorem 2.9) has also
been shown in Theorem 1.2.6 of [Win08]. However, the formulae for the coefficients of the
measures obtained in [Win08] are given by an integration over a certain “overlap function”
and appear to be much harder to determine explicitely. Part (iii) of Theorem 2.9 is not
covered by [Win08] and gives a new result.

For the Minkowski content Theorem 2.9 immediately implies the following corollary which
we state without a proof.

Corollary 2.10 (Self-Similar Sets — Minkowski Content) Under the conditions of The-
orem 2.9 the following holds.

(i) The average Minkowski content of F exists and is given by

M) = 2O RS
ECERI O

(i1) If ® is nonlattice, its Minkowski content M(F') exists and is equal to .//\/lv(F)

(iii) If @ is lattice, then
0< M(F) < M(F) < 0.

Part (ii) of Corollary 2.10 has been obtained in Proposition 4 of [Fal95] under the strong
seperation condition. Part (iii) of Corollary 2.10 has also been addressed in Theorem 8.36
of [LvF06].

Another special case of self-conformal sets are C'*® images of self-similar sets. For these
sets Parts (i) and (ii) of Theorem 2.6 yield interesting relationships between the (average)
fractal curvature measures of the self-similar set and of its C!*® image which are stated in
Parts (i) and (ii) of the following theorem.



Theorem 2.11 (C1+ Images) Let K C R denote a self-similar set for the iterated func-
tion system ® acting on X which satisfies the open set condition. Let § denote its Minkowski
dimension, denote by U D X a connected open neighbourhood of X in R and let g: U — R
be a CY(U) map, a > 0, for which |g'| is bounded away from 0. Assume that \'(K) =0
and set F:= g(K).

(i) The average fractal curvature measures of both K and F exist. Moreover, they are
absolutely continuous and for k € {0,1} their Radon-Nikodym derivatives are given by

~f .
dck(F7 )71 _ |g/og—

—_—"k\Vo 1|6'
dC,{(K,~) og

(i) If ® is nonlattice, then the fractal curvature measures of both K and F exist and are
absolutely continuous with Radon-Nikodym derivatives
dC{(F,")

_ | 1|6
dCT (K, ) o g1

’ —
gceg

3

for k € {0,1}.

(iii) If @ is lattice, then neither the curvature measures of K nor those of F' exist.

As an immediate consequence of Theorem 2.11 we obtain the following.

Corollary 2.12 (C'*t® Images — Minkowski Content) In the setting of Theorem 2.11
and letting v denote the d-conformal measure associated to K, we have the following.

(i) The average Minkowski content of both K and F exist and satisfy

N(P) = M(5) - [ g P
K
(i) If ® is nonlattice, then the Minkowski content of both K and F exist and satisfy
M(P) = M(EK) - [ |9
K

(#ii) Both in the lattice and nonlattice case we have that
0 < M(F) < M(F) < 0.

The results stated in Corollary 2.12 have recently been obtained in [FK11] also for higher
dimensions.

In the lattice case, C'*® images of self-similar sets play a crucial role as every lattice self-
conformal set is in fact a C1** image of a lattice self-similar set:

Proposition 2.13 Let F' denote a self-conformal set which is associated to the iterated
function system ® acting on X. Then there exists an open connected set U C R, a map
g € CYT(U) for some o > 0 and a lattice self-similar set K C U such that F = g(K).

In contrast to the self-similar setting, the Minkowski content of a C**® image of a lattice
self-similar set may or may not exist. It does exist if Condition (2.3) of Theorem 2.8 is
satisfied. When F is a C'*® image of a self-similar set, we can simplify Condition (2.3)
under certain normalisation assumptions and obtain the following corollary.



Corollary 2.14 (C't Images — Lattice Case) Let K C R denote a self-similar set for
the iterated function system ® acting on X which satisfies the open set condition. Let & be
its Minkowski dimension and let {x denote the geometric potential function associated to
®. Assume that \'(K) = 0 and that £k is lattice. Let a > 0 be maximal such that £ takes
values in aZ. Denote byl D X a connected open neighbourhood of X in R and let g: U — R
be a CY(U) map. Take g to be normalised such that ¢'(K) C (e=%,1] and set F := g(K).
Further, let B C R denote a Borel set and let v denote the d-conformal measure associated
to K. Then

(i) Qi(F,B) = Ui(F, B) for k € {0,1} if for every t € [0,a)

vol(g) Ny (B)N (7" 1]) = vo(g) ' (g'(B)). (2.4)

(i1) If we additionally assume that K C [0,1] and that ¢’ is invertible, monotonically
increasing and such that ¢'(1) = 1, then Qi(F,B) = U'}:(F,B) for k € {0,1} if ¢’
satisfies

v T % — 1/
g'(r) = ( (Bm(y’(lg)( Dy 1> (2.5)

forr eU. In fact, Equation (2.5) defines a positive §-Hdlder continuous function.

The above theorems enable us to construct examples for which the Minkowski content does
or does not exist.

Ezample 2.15 Let K be the Middle Third Cantor Set and let v denote the In 2/ In 3-conformal
measure associated to K. Let B C R denote a Borel set for which B N K is nonempty and
has a representation as a finite union of sets of the form ¢, F with w € ¥*.

i) By Theorem 2.9, we have that _' , < ,B). In particular, the Minkowski
i) By Th 2.9, we have that C{ (K, B) < Cy(K, B). 1 lar, the Minkowsk
content does not exist for K itself, where k € {0,1}.

(ii) A self-conformal set F' which is not self-similar, but for which Qi(F, B) < U'}; (F,B)
for k € {0,1} can be constructed in the following way. Take g: [-271,3-271] - R
definied by g(z) = (z + 1)? and set F := g(K). Then C/(F,B) < Cy(F,B) for
k € {0,1} follows directly from the proof of Part (iii) of Theorem 2.11 in Section 5.

(iii) For the following lattice self-conformal set the Minkowski content does exist. Let
f: R — R denote the Devil staircase function defined by f(r) := v((—o0,r]), define
the function g: R — R by g(z) = [*__(2 — f(y))~ ¥ ™m2dy and set F := g(K).
Then we have M(F) = M(F), although M(K) < M(K). This is a consequence of
Corollary 2.14.

3 Preliminaries

3.1 Fractal Curvature Measures

The work of [Gro78] and [Sch80] plays a vital role in the introduction of Winter’s fractal
curvature measures. In what follows, we focus on the construction in the one-dimensional



setting. For a set Y C R which is a finite union of compact convex sets, there exist two
curvature measures, namely the 0-th and the 1-st curvature measure of Y. Originally, these
measures were defined through a localised Steiner formula (see [Fed59] and [Sch80]), but an
equivalent and simpler characterisation is the following. The 1-st curvature measure of Y
equals A1(Y N ) and under the additional assumption that Y is the closure of its interior,
the 0-th curvature measure is equal to A\°(9Y N -)/2.

If Y C R is not a finite union of compact convex sets, but an arbitrary compact set, we still
have that the e-parallel neighbourhood Y. of Y is a finite union of convex compact sets, for
each ¢ > 0. Moreover, Y, is the closure of its interior, for each € > 0. Thus, the 0-th and
1-st curvature measures are defined on Yz and are equal to the measures \°(0Y- N-)/2 and
A(Y-N"). The fractal curvature measures now arise by taking the limit as € — 0. However,
before taking the limit, we observe that for a fractal set ' C R one typically obtains that
the number of boundary points of F. tends to infinity as ¢ — 0, whereas the volume of F_
tends to zero as € — 0. In order to obtain nontrivial measures, we need to introduce the
curvature scaling exponents so(F') and s1(F) as in Definition 2.1. By taking the weak limits
of the rescaled curvature measures £5°(F) . \(9F. N -)/2 and ' (F) . \(F.N ) as e — 0, we
obtain the fractal curvature measures CJ (F,-) and C{(F,-) (Definition 2.2), whenever the
weak limits exist. The average fractal curvature measures are gained by taking the weak
limit over the average rescaled curvature measures if these limits exist (Definition 2.3).

Besides extending the notions of curvature, the fractal curvature measures also provide a set
of geometric characteristics of a fractal set which can be used to distinguish fractal sets of
the same Minkowski dimension. More precisely, considering two fractal sets Fy, F» C [0, 1]
with {0,1} C F1, F> which are of the same Minkowski dimension, the 1-st fractal curvature
measure compares the local rate of decay of the lengths of the e-parallel neighbourhood
of F1 and F5. In this way it can be interpreted as “local fractal length”. Since, by the
inclusion exclusion principle, the above mentioned rate of decay correlates with the length
of the overlap of sets of the form (¢, F;)., where w € X™ for n € N and ¢ € {0,1}, the value
of the 1-st fractal curvature measure makes a statement on the distribution of the gaps.
That is, the more equally spread the gaps are over the fractal, the smaller is the fractal
curvature measure. Analogously, the value of the 0-th fractal curvature measure can be
interpreted as the “local fractal number of boundary points” or “local fractal Euler number”.
For further information on the geometric interpretation in higher dimensions, we refer to

[Win08], [LW07] and [KomO08].

3.2 Minkowski Content

Definition 3.1 Let Y C R and 4 be its Minkowski dimension. The upper Minkowski content
M(Y) and the lower Minkowski content M(Y) of Y are respectively defined as

M) = limsupe® 'AL(Y.) and
e—0

M(Y) = liminfe®IAY(YL).
e—0

If the upper and lower Minkowski contents coincide, we denote the common value by M(Y)
and call it the Minkowski content of Y. In case the Minkowski content exists, we call Y
Minkowski measurable. The average Minkowski content of Y is defined as the following limit
if it exists

1
M) = lim|InT|7' [ 7 2AN(YL)de.
T—0 T



The Minkowski content was proposed in [Man95] as a measure of “lacunarity” of a fractal
set. Indeed, the value of the Minkowski content allows to compare the lacunarity of sets of
the same Minkowski dimension.

Minkowski measurability has moreover attracted prominence in work related to the Weyl-
Berry conjecture on the distribution of eigenvalues of the Laplacian on domains with fractal
boundaries. We refer to Section 4 of [Fal95] for an overview and references concerning these
studies.

An additional motivation for studying the Minkowski content of fractal sets arises from non-
commutative geometry. In Connes’ seminal book [Con94] the notion of a noncommutative
fractal geometry is developed. There it is shown that the natural analogue of the volume of
a compact smooth Riemannian spin manifold for a fractal set in R is that of the Minkowski
content. This idea is also reflected in the works [GI03], [Sam10] and [FS11].

3.3 Self-Conformal Sets and the Shift-Space

Let X C R be a nonempty compact interval. We call ® :={¢;: X - X |i€ {1,...,N}} a
conformal iterated function system (cIFS) acting on X, provided N > 2 and ¢1,...,¢N are
differentiable contractions with a-Hoélder continuous derivatives ¢1,. .., ¢%, o > 0, where
|91, ..., ¢y shall be bounded away from both 0 and 1. The cIFS ® := {¢1,...,¢n} is
said to satisfy the open set condition (OSC) if there exists a nonempty open bounded set
O C R such that UY, ¢;(0) C O and ¢;(0) N ¢;(0) = @ for i,j € {1,...,N}, i # j.
Note, that in our context conformality in dimension one just means that the derivatives are
Holder continuous. This extra condition can be dropped in higher dimensions.

Definition 3.2 We call the unique nonempty compact invariant set F' of a cIFS & the
self-conformal set associated to ®.

Remark 3.8 One easily verifies that our definition of a cIFS coincides with the definition of
a finite conformal iterated function system in R given in [MU96].

Proposition 3.4 Let ® be a cIFS which satisfies the OSC and let F' be the self-conformal set
associated to ®. Then F' is either a nonempty compact interval or has zero one-dimensional
Lebesgue measure.

PROOF. Let ® := {¢1,...,dn}, define [a, b] to be the convex hull of F' and assume without
loss of generality that ¢1,...,¢n are ordered such that ¢1(a) < ¢2(a) < ... < ¢n(a). If
¢i([a, b)) Niy1([a,b]) # @ foralli € {1,..., N—1}, then clearly F' = [a, b]. Now assume that
there exists an ¢ € {1,..., N — 1} such that ¢;([a,b]) N ¢i+1([a,b]) = @. Then Proposition
4.4 of [MU96] gives that F has zero Lebesgue measure. O

It turnes out to be useful to view a self-conformal set on a symbolic level. For the following,
we fix a cIFS ® := {¢1,...,¢n} and let F' denote the self-conformal set associated to P.
We introduce the shift-space (3°°,0) as follows.

Set ¥ := {1,...,N} and call it the alphabet. Denote by X" the set of words of length
n € N over ¥ and by X% := |J, oy, X" the set of all finite words over ¥ containing the
empty word @. Further, let ¥°° be the code space which is the set of infinite words over
Y. The shift-map is then defined as the map o: ¥* U X — ¥* U X given by o(w) := @
for w e {BYUS o(wy-wp) == wa-wy, € X"t for wy---w, € X", where n > 2 and
olwiwg ++) = wawsg -+ € L™ for wiwg -+ € L. For a finite word w € ¥* we let n(w)
denote its length and define ¢ := id|x to be the identity map on X.

10



Note that X°° gives a coding of the self-conformal set F' as can be seen as follows. For
W= w1 Wy € X% we set ¢y, = Py 0---0 ¢y, and for w = wwe--- € T and n € N
we denote the initial word by w|, = wijws - -w,. For each w = wiws -+ € L the in-
tersection [, cy @wl, (X) contains exactly one point z,, € F' and gives rise to a surjection
m: % — F, w +— x, which we call the natural code map. Let F'"™9"¢ denote the set
of points of F' which have a unique preimage under 7. Because of the open set condition
F\ Funiawe g at most countable and thus FUM9% is nonempty. Moreover, x € Funidue
implies ¢;(x) € FUu™9ue for all i € ¥. The map 7 allows to view points in F"94¢ as infinite
words and vice versa. In order to have neater notation, we are going to omit the map =
from now on. For example, by ¢, (u) we actually mean ¢, (7(u)) for w € ¥* and u € X°°.

A key property of a cIFS is the bounded distortion property which is well used in the
study of conformal iterated function systems (see for instance [MU96]). However, we need
the following refinement of this statement, which we could not find in the literature and
therefore give a short proof. For a set Y C R let (Y') denote the convex hull of Y.

Lemma 3.5 (bounded distortion) There exists a sequence (pn)nen with p, > 0 for all
n € N and limy, o0 pp, = 1 such that for all w,u € ¥* and x,y € (¢, F) we have

/
A .
Pu) = g1 (y) = )

PROOF. Fix w € ¥* and let z,y € (¢, F) and u = uy -+ up(,) € X* be arbitrarily chosen.
Then

|0 ()] = exp (Y W@y, ($oru(@))]) < I8 () exp (D []d, (doru())] = o), (Gora(®))]])-
k=1 k=1

::A;C

Since |¢}| is a-Holder continuous and bounded away from 0, it follows that In|¢}| is a-Holder
continuous for each 7 € {1,...,N}. Let ¢; be the corresponding Hélder constant and set
¢ = maXe1,.. N} Gi- Moreover, let 7 < 1 be a common upper bound for the contraction
ratios of the maps ¢1,...,¢n. Without loss of generality we assume that F C [0,1]. Then
we have

Ay < elgra(@) = dora)” < c- (1 Hz =y
and thus

n(u) c .
S A<yt max s eyl =
k=1 -r — 7% wex I7y€(¢wF>

Since p,, converges to 0 as n — 00, p, ‘= exp(py) converges to 1 as n — oo. The estimate
for the lower bound can be obtained by just interchanging the roles of # and y. O

3.4 Perron-Frobenius Theory and the Geometric Potential Func-
tion
In order to give a precise formulation of the constants occuring in Theorem 2.6 and its

following theorems and corollaries and in order to set up some notation for the proofs in
Sections 4 and 5, we now introduce to the Perron-Frobenius theory.

Let > be equipped with the topology of pointwise convergence and let C(X*°) denote the
space of continuous real valued functions on 3. For f € C(£°),0 < a<landn €N

11



define

vary,(f) = sup{|f(w)— f(v)||w,uv € ¥ and w; = u; for all i € {1,...,n}},
[fla = supwn(f) and
n>0 «
Fa(27) = {f€CET)|[fla < oo}

Elements of F,(X°°) are called a-Hélder continuous functions on X*°. For f € C(X*)
define the Perron-Frobenius operator Lg: C(X%°) — C(X>°) by

Lip(a):= Y V()

Yy: oy==x

for z € ¥*° and let L} be the dual of Ly acting on the set of Borel probability measures on
¥°°. By Theorem 2. 16 and Corollary 2.17 of [Wal01] and Theorem 1.7 of [Bow08] for each
real valued Hélder continuous f € C(3°°) there exists a unique Borel probability measure vy
on X% such that Lvy = vyvy for some vy > 0. Moreover, 7y is uniquely determined by this
equation and satisfies v = exp(P(f)). Here P: C(X°>°) — C(X°°) denotes the topological
pressure function which for f € C(X°°) is defined by

n(w)

P(f):= nhﬁrrg()n n Z exp sup Zfoo

wenn “e[w _
(see Lemma 1.20 of [Bow08]), where [w] := {u € ¥ | u; = w; for 1 < i < n(w)} is the
w-cylinder set.
Further, there exists a unique strictly positive eigenfunction hy of Ly satisfying Lshy =
vshy. We take hy to be normalised so that [hydvy = 1. By uy we denote the o-invariant

probability measure defined by d” L = hy. This is the unique o-invariant Gibbs measure

for the potential function f. Addltlonally, under some normalisation assumptions we have
convergence of the iterates of the Perron-Frobenius operator to the projection onto its eigen-
function h¢. To be more precise we have

Tim (7L — [Ydvg by =0V € C(E®), (3.1)

where || - || denotes the supremum-norm on C(X°°).

Remark 3.6 The results on the Perron-Frobenius operator quoted above originate mainly
from the work of [Rue68].

A central object of our investigations is the geometric potential function associated to the
cIFS & and its property of being lattice or nonlattice, which we now define.

Definition 3.7 Two functions f1, fo € C(X°°) are called cohomologous, if there exists a
¥ € C(X°) such that f; — fo = ¢ — 9 oo. A function f € C(X*) is said to be a lattice
function, if f is cohomologous to a function taking values in a discrete subgroup of R.
Otherwise, we say that f is a nonlattice function.

The notion of being lattice or not carries over to ® and its self-conformal set ' by considering
the geometric potential function associated to ®:

12



Definition 3.8 Let F' denote the self-conformal set associated to the iterated function
system ® := {¢1,...,¢n} with associated code space £°°. Define the geometric potential
function to be the map £: ¥°° — R given by {(w) := —In|¢, (ow)| for w = wiws - -- € .
If ¢ is nonlattice, then we call ® (and also F') nonlattice. On the other hand, if £ is a lattice
function, then we call ® (and also F') lattice.

Remark 3.9 The geometric potential function £ associated to a cIFS @ := {¢1,...,0n}
satisfies £ € Fz(X>) for some & € (0,1). To see this, we let r < 1 be a common upper bound
for the contraction ratios of ¢1,...,¢n. Because of the a-Holder continuity of ¢/, ..., ¢y
we obtain that there exists a constant ¢ € R such that for every n € N we have var,(§) <
cr®=1) Thus, £ € Fz(X*), where @ := r® € (0,1).

For the geometric potential function £ € C(X°°) we introduce the measure theoretical entropy

H,,_,. of the shift-map o with respect to pu_s¢ as the integral

Hy 5 =90 §dp—se, (3.2)
ZOO
where ¢ is the Minkowski dimension of F. We remark that this is not the commonly used
definition of measure theoretical entropy but that this characterisation for the measure
theoretical entropy of o with respect to p—_se follows from Theorem 1.22 of [Bow08] and the
following result of [Bed88] which will also be needed in the proof of Theorem 2.6.

Theorem 3.10 The Minkowski as well as the Hausdorff dimension of F is equal to the
unique real number t > 0 such that P(—t§) = 0, where P denotes the topological pressure
function.

In what follows, we fix a cIFS ® := {¢1,...,¢n} acting on X and let a > 0 denote the com-
mon Holder exponent of ¢, ..., ¢y. By 0 we denote the corresponding Minkowski dimension
and by ¢ the geometric potential function. We are going to show that the eigenfunction h_s¢
of the Perron-Frobenius operator £_s¢ can be extended to an a-Hélder continuous function
on X. For that we let C(X) denote the set of real valued continuous functions on X and
define the operator £: C(X) — C(X) by

N
L(g) =) |6i°-godi
i=1

for g € Fo(X), where F,(X) is the set of real valued a-Holder continuous functions on X.

We remark that £ is an extended version of the Perron-Frobenius operator given in (3.1) to
functions which are defined on X.

Theorem 3.11 Let v be the §-conformal measure and & the geometric potential function
associated to the cIFS ® := {¢1,...,0n}. Let F denote the self-conformal set associated to
® and let § be its Minkowski dimension. Denote by w the natural code map and by « the
Hélder exponent of the functions ¢,...,¢. Then there exists a unique h € Fo(X) such
that

Lh=h, / hdv =1 and hlpom =h_g,
where h_se € C(X°°) is the unique eigenfunction of L_s¢ to the eigenvalue 1.

PROOF. We let 1 denote the constant one-function on X. By Lemma 6.1.1 of [MUO03] the
sequence (L™(1))nen is uniformly bounded and equicontinuous and thus so is the sequence
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(=130, ' £1(1))nen. Therefore, by Arzela-Ascoli, the sequence of averages exhibits an
accumulation point which we denote by h. Obviously £Lh = h and [ hdv = 1.

In order to show that h € F,(X) it suffices to show that f, :=n~* E;:Ol L£(1) is a-Holder
continuous for every n € N and that the Holder constants are uniformly bounded.

@ = )] = Y L@ - 16 @)l

i=0 wexnt
< nt Z Z exp <5Zln¢ (Poke I)) —exp <5ZIH Doy ((bakwy)) | .
i=0 wesi k=1

By hypotheses, In ¢} is a-Hoélder continuous for every i € {1,...,N}. Let ¢y, ..., cy denote
the respective Holder constants of In¢,...,In¢)y, set ¢ := max;=1_ n¢; and let 7 < 1 be
a common upper bound for the contraction ratios of ¢1,...,¢x. Applying the Mean Value
Theorem to exp and letting 6, denote the mean value corresponding to the w-summand, we
obtain the following set of inequalities.

n—1 A
|fn($) - fn(y)| < n_l Z Z eew : 5Zc|¢akwx - ¢U"wy|a

=0 wex?

DI I

=0 weX

IN

|z —y|*.

Since 6, lies between In|¢/, ()|° and In|¢/, (y)|°, there exists a 6,, € R such that |¢/,(6 (~ )°
e’». By definition of the J-conformal measure it can be easily seen that |¢/, (6.,

pov(¢F). Thus,

]
Fale) = Fuln)] < Pl =yl
——

=:c

Hence the Holder constant of each function f, is bounded by ¢. The uniqueness of h and
hlp om = h_s¢ have been shown in Theorem 6.1.2 of [MUO03]. O

3.5 Renewal Theory and Geometric Measure Theory

In the proof of Theorem 2.6 we are going to make use of a renewal theory argument for
counting measures in symbolic dynamics. For stating this we fix the following notations.

For a map f: ¥*° — R and n € N define the n-th ergodic sum to be S, f := Z;é fodk
and Sof := 0. Moreover, we call a function fi: (0,00) — R asymptotic to a function
f2:(0,00) = R as e — 0, in symbols fi(e) ~ fa(e) as e — 0, if lim._,o f1(e)/f2(e) = 1.
Similarly, we say that fi is asymptotic to fo as t — oo, in symbols f1(t) ~ fa(t) as t — oo,
if limt_,oo fl (t)/fg (t) =1

The following Proposition is a well-known fact which is for example stated in Proposition
2.1 of [Lalg9].

Proposition 3.12 Let f € F,(X%) for some 0 < a < 1 be such that for some n > 1 the
function S, f is strictly positive on ¥°°. Then there exists a unique s > 0 such that

v_sf =1, (3.3)
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The following two theorems play a crucial role in the proof of Theorem 2.6. The first of the
two theorems is Theorem 1 of [Lal89]. The second one is a refinement and generalisation of
Theorem 3 in [Lal89] and hence we will state a proof.

Proposition 3.13 (Lalley) Assume that f lies in Fo (2°°) for some 0 < o < 1, is nonlat-
tice and such that for some n > 1 the function S, f is strictly positive. Let g € Fy,(X°) be
nonnegative but not identically zero and s as in Equation (3.3). Then we have that

> Y o Ity
s, ra<ny ™ s [ fdu_sy

n=0y: oc"y=x

as t — oo uniformly for x € ¥°°.

For b € R we denote by [b] the smallest integer which is greater than or equal to b. |b]
shall denote the greatest integer which is less than or equal to b and by {b} we mean the
fractional part of b, that is {b} := b — |b].

Theorem 3.14 Assume that [ lies in Fo(3°°) for some 0 < a < 1 is lattice and such that
for some n > 1 the function S, f is strictly positive. Let (,¢b € C(X°°) denote functions
which satisfy

f-¢=tv-voo,
where € is a function taking values in a discrete subgroup of R. Let a denote the mazximal

positive real number such that {a=1{(z) | * € ¥} C Z. Further, let g € Fo(X>) be
nonnegative but not identically zero and s as in Equation (3.3). Then we have that

"wy);w(z)

ah_sc(x) [ gly)e ™ _ﬂdy_s ()
Z Z {S fw<ty ™ . f(gly_ eisa)fcdﬂfsg Sy (3.4)

n=0y: oc"y=x

as t — oo uniformly for x € ¥°°.

Remark 3.15 Proposition 3.13 and Theorem 3.14 are also valid in the more general situation
of (¥°°,0) being a subshift of finite type.

PROOF (OF THEOREM 3.14). For the proof we first assume that a = 1, which implies that
¢ is integer valued and not cohomologous to any function taking its values in a proper
subgroup of R. We remark, that under these assumptions a similar result is stated in
Theorem 3 of [Lal89]. However, there the exact asymptotic is not given. In order to obtain
the exact asymptotic, we first follow the lines of the proofs of Theorem 2 and Theorem 3 of
[Lal89] and then refine the last steps of the proof of Theorem 3 of [Lal89).

Lalley introduces the following functions for the definition of which we let ¢ € R and x € 3°°.

Nt = Y o0 e

n=0y: oc"y=x

N*(t,z) = Ns(t—1(x),z)
and for 8 € [0,1) and z € C the Fourier-Laplace transform

oo

N;(z,x) = Z e"*N*(n+ B, x).

n=—oo
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It is easy to verify that Ny (¢, z) satisfies a renewal equation (see Equation (2.2) in [Lal89])

Nf(t,{E) = Z Nf(t_f(y)vy)+g(x)]l{t20}

Yy: oy=x
from which one can deduce that N ; satisfies the following equation.

o2[6() 51

1—e*

Nj(z,2) = (I — L) g() , (3.5)
where I denotes the identity operator. We remark that Equation (3.5) differs slightly from
the respective equation in [Lal89], in that Lalley obtains z |¢(x) + 1 — ] as the exponent
of e whereas our calculations result in z [¢(z) — 8] being the right exponent of e.

By arguments in the proof of Theorem 2 of [Lal89] the function z + (I — L,¢) 1g(z) is
meromorphic in {z € C| 0 < Im(z) < 7, Re(z) < —s+ ¢} for some ¢ > 0 and the only

singularity in this region is a simple pole at z = —s with residue
(z) [ gdv_s
ICdN—sC

Since z — e*[¥(@)=F] ‘and z — (1 —e*)~" are holomorphic in {z € C | Re(z) < 0} we deduce
from this that z = Nj(z,2) is meromorphic in {z € C [ 0 < Im(z) < 7, Re(z) < —s + ¢}
for some € > 0 and that the only singularity in this region is a simple pole at z = —s with
residue

z) [ g(y) =W =Pldy_ . (y )
(1_6 S ICdN—sC B

Now, again following the lines of the proof of Theorem 2 of [Lal89), it follows that
N*(n+ B, x) ~ C(B,z)e™

as n — oo uniformly for « € 3°°. Thus for ¢ € (0, c0)

Np(t,z) = Nyp([v(x) +t]+{p( )+t}—¢(I),I):N*(n+ﬂ,$)

=n

C(B,x).

~ C(B)en = 0 a0 0
| =) e

as n — oo uniformly for x € ¥°°. This proves the case a = 1.

The case that a # 1 is not covered in [Lal89]. If @ > 0 is arbitrary, then we consider the
function a='f = a7 ¢+ a1y — (a*1¢) o ¢. Since by Proposition 3.12, s from Equation
(3.3) is the unique positive real number such that y_s;y = 1, § := as is the unique positive
real number satisfying v_z,-1; = 1. Therefore, Equation (3.6) implies

Z Y I sz = Z Y I 0o p<tay

n=0y: o"y=w n=0y: oc"y=x

2) [ gly)e™ “ildv_ e (y)
(1 —€ as fa_lch—SC

as t — oo uniformly for x € ¥°°. O

w(y) #’(I
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In view of the existence of the average fractal curvature measures the following corollary is
essential.

Corollary 3.16 Under the assumptions of Theorem 3.1/
: —st
R ACD DD S I (36)
n y: ohy=x

exists and equals

host(x) [ gdv_sf

Sffdlufsf
ProoF. First, observe that for two functions fi, fg (0,00) — R which satisfy fi(t) ~ fa(t)
as t — oo, the existence of G = limg_,oo T 1 fo f1(t)dt implies the existence of Ga :=

limy_oo T71 fo fo(t)dt and G; = Go2. In view of Theorem 3.14, we hence consider the
function 7: [0,00) — R given by

Yy —v(z)
a

w0 = [ ol Hlav_cw).

Since n(t +a) = n(t) for all t € (0,00), n is periodic with period a. As 7 is moreover locally
integrable, this implies

T e R T—a|a'T]
lim T‘l/ n(t)dt = lim T—l( / dt+/ n(t dt)
= lim T7'|a _1TJ/ n(t)dt = a 1/ n(t)dt.
T—o0 0 0

Applying Fubini’s theorem yields

/ dt—/ / st _Sa[wm Y(z) Wdtdl/_sc(y).

Define E(y) := a{a™! (¥(y) — ¥ (z))}. This is the unique real number in [0,a) such that
a "t (P(y) —(z) — E(y)) € Z. Since a=t € [0,1) for t € [0,a), we hence have

/O "ot

B _ [ —() o e —w)
:/ (/0 (& Stg(y)e Sa|— a ‘|dt+/E< )6 Stg(y)e SaL a Jdt>dusc(y)
> y

_ / g(y) (e_sa[wmaw(z)] (1 . e—sE(y)) + e—saLMJ (e—sE(y) _ e_sa)>d7/—sC(y)

S

1 _ 6—511

S

eV (@) / g)e ' Wdv_y(y),

where the last equality can be obtained by distinguishing the cases E(y) # 0 and E(y) = 0,
that is a=* (¥(y) — ¢ (z)) € Z. As by Theorem 3.14

o ah_sc(x)
tz Z 11{5 f<tr ™ 1- e_sa)CdeM_sqﬁ(t)v

n=0y: oc"y=x

17



the entering remark of this proof now implies
esw(fﬂ)h_ (x)
lim 7 / ‘”Z > 9wt dt:isq/g(y)e‘w(”dh (v)-
o {Snf(y)<t} s¢
™= n=0y: c"y=x Sfcdﬂ—sc
Finally, one easily verifies that e*Vh_y = h_sp, e *Ydv_g = dv_gy and [(dp_s =
J fdp—sf, which completes the proof. O

In order to prove Theorem 2.8 the following Lemma which is closely related to Theorem 3.14
is needed.

Lemma 3.17 Assume that we are in the setting of Theorem 3.14. Further, let B C X
be a nonempty Borel set such that 1p € F_(X°°). Let N1, Ny € Z be such that 1(3>°) C
[N1a, Noa) and Ny — Ny is minimal. Define the function ng: (0,00) — R by

. Csa[t@ v ¢
ns(t) = e / 1, )e 22 -y (1),

Then lim;_,o0 np(t) exists if and only if for every t € [0,a) we have

No—1
Z e " "y_ge o7 (¥(B) N [na,na +t))
n=N1
| Nt
msany, ot (¥(B) N [na, (n + 1)a)).
n=N1

PROOF. np is a periodic function with period a, meaning ng(t+a) = ng(t) for all t € (0, c0).
Therefore, lim;_,o, np(t) exists if and only if g is a constant function. For ¢ € [(x), ¢ (z) +
a) we have

_salX@—t
nB(t_1/)(I)) _ esﬂl(m)*st/ ﬂB(y)e |— a ]dy,sg(y)
Na—1  (n+1)a et
_ bt Z/ 1y e ldv_c 0 v~ (y)
n= N1
N2—1
= esv(@—sthsal{] Z esm (y_sg o~ (¥(B) N [na,na + a{a™"t}])
n:N1

+e g o) (Y(B) N (na+a{a”'t}, (n+ 1)a)))

Np—1
= sV —sa{l} Z e sam <(1 — e *MY_gc 0 (¢(B) N [na, na + af{a”'t}])

n=N1
+e " v_gcotp" (¢(B) N [na, (n + 1)@))).

Thus, lim;_,« np(t) exists if and only if there is a ¢ € R such that for every ¢t € [0,a) we
have np(t — (x)) = ¢, that is

Ny—1
Z e " "y_ye o~ (¥(B) N [na, na + t])
n=N1
Ny—1
=(1- e—sa)—l (Eest—sw(w) _ gsa Z e My_gc o ¢—1(¢(B) N [na, (n + 1)@))).
n=N1
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Taking the limit as ¢ tends to a we hence obtain

Na—1
E=eV@me N ey oy (¥(B) N [na, (n + 1)a))
n:N1
which proves the statement. O

Another important tool in the proofs of our results is a relationship between the 0-th and
the 1-st (average) fractal curvature measures. In order to show that the existence of the
0-th fractal curvature measure implies the existence of the 1-st fractal curvature measure
we use Corollary 3.2 of [RW] which is a higher dimensional and more general version of the
following theorem.

Theorem 3.18 (Rataj, Winter) Let Y C R be compact and such that \*(Y) = 0. Then

60 Y. 510 v
timinf 3O i i 510 (3) < limsup AT (V7) < limsup 200,

e—0 — e—0 e—0 £e—0 1-6

The proof is based on an interesting relationship between the derivative d%/\l(Fg) which
exists Lebesgue almost everywhere and the quantity A\°(9F.) which was established in [Sta76]

for arbitrary bounded subsets of R? and builds on the work of [Kne51].
For the results on the average fractal curvature measures we use Part (ii) of Lemma 4.6 of

[RW] which is a higher dimensional version of

Proposition 3.19 (Rataj, Winter) Let Y C R be compact and such that its Minkowski
dimension 0 is less than 1, that is 6 < 1. If M(Y') < oo, then

1 1
1imsup|lnT|*1/ N Y )de = (1—6)*1limsup|1nT|*1/ 7 I\(Y)de  and
T—0 T T—0 T
1 1
1iminf|1nT|—1/ 2\ (Y)de = (1—5)—111minf|1nT|—1/ 27NV, )de.
T—0 T T—0 T

Finally, we also need the following result, which goes back to Staché and is stated in Corollary
2.5 of [RW].

Proposition 3.20 (Stachd) Let Y C R be compact. Then the function € — \'(Yz) is
differentiable for all but a countable number of € > 0 with differential

d 1 _ O
TN () = X072,

4 Proofs of Theorem 2.6 and Theorem 2.8

We start by making the following observations which are needed in the proofs of all three
parts of Theorem 2.6 and of Theorem 2.8.

Without loss of generality we assume that {0,1} C F C [0, 1] as otherwise the result follows
by rescaling. We start by giving the proof for the 0-th fractal curvature measure. For that
we fix an & > 0 and consider the expression A°(9F. N (—oc,b]) for some b € R. Since A" is
the counting measure, A\°(OF. N (—oo,b]) gives the number of endpoints of the connected

19



components of F. in (—oo,b]. This number can be obtained by looking at how many
complementary intervals of lengths greater than or equal to 2¢ exist in (—o0,b]:
Q-1
A (OF- N (—00,b])/2 =Y #{w € £* | L, C (—00,b], |LL| > 2} +¢1/2, (4.1)
i=1

=:E(e)

where ¢; € {0,1,2} depends on the value of b. Next, we need to find appropriate bounds

for Z(¢). For this, we choose an m € N such that for all w € ¥™ all main gaps L., ..., L2871
of the sets ¢, (F') are greater than or equal to 2¢ and set
Eu(e) = #{ue ¥ | Ly, C (~o0,b], [Liy| > 2¢}

for each w € ¥™ and i € {1,...,Q — 1}. We have the following connection.

m

Q-1 Q-1
YD ELE<EE <Y DY EE+Y (Q-1)- N (4.2)

i=1 weXm™m i=1 wexm Jj=1

For the following, we fix b € R\ F. Then F N (—00,b] can be expressed as a finite union of
sets of the form ¢, F, where k € ¥*. To be more precise, let [ € N be minimal such that
there exist x1,..., kK € X* satisfying

(i) FN(—c0,b]=U\_ ¢x,F and
(ii) ¢w;, F N ¢y, F contains at most one point for all i # j, where 4,5 € {1,...,[}.

Then for Z := Ué‘:l [k;] the function 1, is Holder continuous. Making use of the existence of
the bounded distortion constant p,,y of ® on ¢, F' (see Lemma 3.5), we can give estimates

for 2 (¢), namely for an arbitrary z € F'™94¢ we have

ELE) < D) U (wwr) g (gua)pn L 22e} F02(Z), (4.3)
n=0ueXxn

::ZL(I,E,Z)

where we need to insert the constant ¢ (Z) because of the following reason. Li  C (—00,b]
does not necessarily imply uwz € Z for an arbitrary z € F'dv  However, if n(u) >
max;=1,. ;n(k;), either [uw] C Z or [uw] N Z = & obtains. Hence, there are only finitely
many u € ¥* such that L, C (—oo,b] does not imply uwx € Z for all x € F'du, Letting
22(Z) € R denote this finite number shows that Equation (4.3) is true for all € > 0. Likewise,
there exists a constant ¢,(Z) € R such that for all e >0

Eh©) 2 D0 D M) By mypnt, nsiz2e) —2(2): (4.4)
n=0uexn"

=:Aj(z,5,2)

Combining Equations (4.1)-(4.4) we obtain that for all m € N

Q-1 )
Cy(F,(~00,b])) < limsupe® Y Y A (z,e,2) and (4.5)
e=0 i=1 wexm
Q-1
f _ s 5 i
Cl(F,(=o00,b]) > llinléle Z Z A (z,e,7). (4.6)

=1 wexm
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We now want to apply Proposition 3.13 and Theorem 3.14 respectively to get asymptotics
for both the expressions ZL (z,e,Z) and A’ (x,e,Z). For this note that

> 1y (uwa)- Lo, (sum)l-otl, ILil22e) = Yo Ly L, iy, (o*y)l<—1n TR
uex” Y: ony=wx w!Pn(w)
= Z 1,(y) - ]l{Snf(y)S—ln #} (4.7)
y: oty=wx w!Pn(w)

The hypotheses and Remark 3.9 imply that the geometric potential function £ is Holder
continuous and strictly positive. The unique s > 0 for which y_s¢ = 1, is precisely the
Minkowski dimension ¢ of F', which results by combining the fact that y_s¢ = exp(P(—s§))
for each s > 0 and Theorem 3.10.

Before we distinguish between the lattice and nonlattice case and give the proof of Theo-
rem 2.6, we prove the following Lemma, which is needed in the proofs of all three parts of
Theorem 2.6.

Lemma 4.1 For an arbitrary x € F*"%¢ gnd T € R we have that

Q-1 Q-1
(i) T < Z Z h,gg(wx)(|qu|pm)6 vYm € N implies T < liminf Z Z |LLJ°
i=1 wesm TS wenm
and
Q-1 Q-1
(i) T > Z Z h_55(wx)(|Lfd|p;1)5 Ym e N implies T > limsup Z Z |LLJ°.
i=1 wexm M70 =1 wexm

ProoOF. We are first going to approximate the eigenfunction h_s¢ of the Perron-Frobenius
operator L£_s¢. For that we claim that L7 ;. 1(z) = > csm |¢!,(2)]° for each x € ¥, where
1 is the constant one-function. This can be easily seen by induction. Since £™ sel converges
uniformly to the eigenfunction h_se when taking n — oo (see (3.1)) we have that

Vt>03IM eN:Vn> M, Vo e X% | > |¢),(2)|° — h_se(x)| < t.

uexn

Furthermore, through Lemma 3.5 we know that
vt' >03IM e N:VYm > M": |p,, — 1| <t

Thus, for all n > M and m > M’

Q-1
T < YN hose(wn) (1L |om)"
=1 wedm
Q-1 ] s
Yy (zw;(qswxnm) (1Z510)
=1 weX™ \uexn
Q-1 _ Q-1 ) s
< YT D IOl D> D (I lem)
=1 weXm uexn 1=1 we¥xm
Q-1 Q-1
< (1+)PY S ST LA+ ST LP = An
i=1 wex™m yexn i=1 weXm
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Hence, for all ¢, >0

T < liminfliminf A, ,

m— 00 n—oo

) i |0
< (1+t) l%&fl%rggfz Z Z|Luw| + t(1+1t) hrnsupz Z |L,,1°.
i=1 weX™ uexn i=1 weX™
Q-1 i|8 Q-1 T - .
Because we have ) = "> v |LL|10 < D200 D enm 10L11° =t am, where || - || denotes

the supremum-norm on C(X), and the sequence (am)men is bounded by Lemma 4.2.12 of
[MUO03], letting ¢ and ¢’ tend to zero then gives the assertion.

The same arguments can be used in order to show that limsup,,_, . E Zwezm |LL)0 i
a lower bound in the second case. IZJ

The Nonlattice Case

PRrROOF (OF PART (ii) OF THEOREM 2.6). If 1, is identically zero, we immediately obtain
Cg(F, (=00,b]) = 0 = v(F N (—00,b]). Therefore, in the following, we assume that 1, is
not identically zero. Since 1, is Holder continuous, by combining equations (4.3), (4.4) and
(4.7), we see that Proposition 3.13 can be applied to ZZ) (z,e,Z) and A’ (z,¢, Z) giving the
following asymptotics.

i J1dv_se s 5

A, (e, Z) ~ m “hse(wz) - (26)°(|LL]pn(w))”  and (4.8)
i J1dv_se —&(17i1,~1 \?

Al Z) ~ —%—— . h_ (2 L 4.

_w(x,s, ) 6f§d/14—55 5£(W$) ( E) (| W|pn(w)) ( 9)

as ¢ — 0. We first put our focus on ﬁnding an upper bound for Ug(F, (—00,b]). Asin
the statement of this theorem set Hy,_;, := 0 [ £dju_se. Combining the Equations (4.5) and
(4.8), we obtain for x € F'au and all m € N

Z Z h_se(wz) |Ll |pm) /erD 1,dv_se.

/’L 3¢ =1 wexm

65( F,(—00,b])

Now an application of Lemma 4.1 implies

i |0
lm&fz Z |L,| / 1,dv_se. (4.10)

H—sg =1 wexm

Cy(F, (~00,b]) <

Analogously, one can conclude that

Qg(Fv (_007 b])

hmsupz Z |LL |‘5/ 1,dv_se. (4.11)
Z()O

H, sg MO0 L1 Lexm

Combining the inequalities (4.10) and (4.11) yields that all the limits occuring therein exist
and are equal. Moreover, the d-conformal measure introduced in (2.1) and v_s¢ satisfy the
relation v_s¢(1,,) = v((—o00,b]). Therefore,

Q-1
: i |0, _
dim Y Y LY v(F N (—o0,b])

H—s¢ wesn =1

C({(Fv (_Oovb]) =

22



holds for every b € R\ F. As R\ F is dense in R the assertion concerning the 0-th fractal
curvature measure follows. The result on the 1-st fractal curvature measure now follows by
applying Theorem 3.18, as for every b € R\ F’ we have that 0F.N(—o00,b] = 0 (F N (—0o0,b]),
for sufficiently small € > 0. O

The Lattice Case

In this part, £ is a lattice function. Therefore, there exist ¢, € C(X°°) such that
§-—C=v—voo

and such that ¢ is a function taking values in a discrete subgroup of R. Let a > 0 be

the maximal real number such that {a~!¢(z) | z € ¥} C Z. As in the nonlattice case,

the hypotheses and Remark 3.9 imply that & is Holder continuous and strictly positive.
Moreover, the unique s > 0 for which v_s = 1 is the Minkowski dimension ¢ of F'.

Since 1, is Holder continuous and since we can assume that 1, is not identically zero, by
combining equations (4.3), (4.4) and (4.7), we see that an application of Theorem 3.14 to

ZL (z,e,Z) and A’ (z,¢, Z) gives the following asymptotics.

—i _M[w(w*wmzw; 2 W
A, (r,6,2) ~ Ww(w)'/ Iy(ye ’ ol Tdv_se(y)  and(4.12)

P b(wn) 1y, 25%@)

A(e.e,2) ~ Walx)- / 1, o e @)

as € — 0 uniformly for x € ¥°°, where
ah_sc(wz)
(1 —e=0) [(dpu-sc

PROOF (OF PART (iii) OF THEOREM 2.6). The statement on the nonexistence of the frac-
tal curvature measures results by combining Part (iii) of Theorem 2.11 with Proposition 2.13.

W, (z) =

(4.14)

For the boundedness we first remark that O, o (F,-) is monotonically i 1ncreasmg as a function
in the second component Therefore, in order to find an upper bound for c! o (F,-) it suffices
to consider C’O (F,R). For all m € N we have

_ (4.5)
C’g(F,]R) < hmsup552 Z A (x,e,5%)
e—0 im1 wenm
(4.12) s _M[w(w wwn) 1y 1
=" limsupe Z Z W ( / e AT dv_s¢(y)
€0 =1 wexm
_Sa @)= ﬂf(wt)Jrll
< s Y ww [ s
e—0 im1 wesm
Q- wx i )
_ Z Z aedtwz)p JC(WI) (|Lw|pm> / e,&z)(y)dy_éc(y)'
i=1 GEm 76(1 f(dﬂﬂsg 2 I~

Note that h_se = €*¥h_s¢ and dv_s¢ = e *¥dv_sc. Hence, by Lemma 4.1

Q-1

276
C FR) < hmlnf LZ g a4

=!C9.
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¢o € (0,00) because Z?:_ll Swesm|LL|° < Z?:_ll > wesm |0L11° =: an, where || - || denotes
the supremum-norm on C(X) and the sequence (@ )men is bounded by Lemma 4.2.12 of
IMUO03].

That Qg (F,R) is positive can be seen by the following.

f ENE 0 — i 00
Cl(F,R) > llinléle Z Z Al (z,e,5%)

i=1 wexm
(4.13) s _M(w(y)—w(wzur;l E\IJL"(T) +1>
> a a K
> hgn_}lnfa Z Z W ( / e dv_s¢(y)
i=1 wexXm
QZ Z ah*(sc (LLJI) S (wz)— ( |LZ | > / 76¢(y)d ( )
= e e v_sc(y).
i=1 EEm (1- eiaa) f(d,ufgg 2pm oo <V

By using h_sc = e’¥h_sc and dv_se = e %¥dv_s; and Lemma 4.1, we hence obtain

2—56—511
>
(1 —e=9) [{dp—s¢

Q-1
CJ(F,R) > limsup Z Z |LLJ°
Mmoo =1 wexm™

The results on CJ(F,B) and U{(F,B) are now a straightforward application of Theo-
rem 3.18. O

PROOF (OF THEOREM 2.8). By Lemma 3.17 we know that

—y Y () w(“’z)_i_ll i25
A= lim 55/ 15(y)e a[ ° ot \Lw\Pdeuﬂsg(y)

e—0

exists for every w € ¥™ and ¢ € {1,...,Q — 1}. Moreover, the limit is independent of w
and 7. Therefore, applying the same arguments which lead to Equations (4.5) and (4.6) and
using Equations (4.12) and (4.13) we conclude

5
SEE < S Y W ('L 'f’m> A and
=1 wedm
cl(F,B) > |LZ| -A
—O( ’ ) - Z Z ’
i=1 wexm

where W, () is as defined in (4.14). Applying Lemma 4.1 and Theorem 3.18 then completes
the proof. O

Average Fractal Curvature Measures

PROOF (OF PART (i) OF THEOREM 2.6). If £ is nonlattice, Part (i) of Theorem 2.6 imme-
diately follows from Part (ii) of Theorem 2.6 and the fact that f(¢) ~ ¢ as e — 0 for some
constant ¢ € R implies limp_,o|In 7|71 f; e~ f(e)de = c for every locally integrable function
f:(0,00) = R.

Thus for the rest of the proof we assume that ¢ is lattice. We begin with showing the result
on the 0-th average fractal curvature measure.
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Observe that limz_,o|In 7|1 f; c£97 e = limp oo |T] 7} fOT ce~%dt = 0 for every constant
c € R. For a fixed m € N define M := min{|L{| | i € {1,...,Q — 1},w € ¥™}/2. From
Equations (4.2) and (4.3) we deduce the following.

1
D = limsup|2lnT|71/ 2 IN(AF. N (=00, b])de
T—0 T
M
< limsup|1nT|_1</ e~ 12 Z A (x,e,Z)de + = / =IN(QF. N (— oo,b])ds).
=0 T i=1 wexm™

Local integrability of the integrands implies that we have the following equation for all
m € N.

1 Q-1 )
lim su 1nT*1/ g1 ZL x,e,Z)de
moupln 7~ 1S S Ane,)

D <
i=1 wexm
= hmsupT 12 Z / *‘StA Z)dt
i=1 wexm
@n .. _
D nawt S Y [0S Y 10 e
T—o0 i=1 wexm n=0y: oc"y=wx !
‘LZ m —1ni—
< hmsupz 3 <| Llp ) T\Lw|ﬂm
T— 00 =1 wenm
T_1 2 -t Tﬁlnwumm st 1 1 q
ARy Z > 1) Tiseqnd
wlrm 0 n=0y: oc"y=wx
Q-1
_ <|L |pm) h_se(wz) [ 1 ,dv_ 5 (4.15)
=1 wez”l 5f§d:u’ (Sf

The last equality is an application of Corollary 3.16. Because (4.15) holds for all m € N,
applying Lemma 4.1 yields

1
1imsup|21nT|_1/ 27 IN(OF. N (=00, b])de
T—0 T

fﬂ dv_ 8¢ ! i 1S
< —_— hmlnf L|°. 4.16

Analogous estimates give

1
1iminf|21nT|*1/ 2 IN(AF. N (=00, b])de
T—0 T

f 1, dv_ 8¢ 5
lim sup L 4.17
5f§d/14 29 m—0o0 ; wGZEm| | ( )
Equations (4.16) and (4.17) together imply that for every b € R\ F

1 —0
lim |21n 7'~ 1/ SS=1N(F, N (=00, b])de = —— - 1(F N (=00, b]),
T

T—0
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where the constant ¢ := lim,, Z?:_ll > wesm|LL|° is defined as in Equation (2.2). Since
R\ F' is dense in R, the statement on the 0-th average fractal curvature measure in Part (i)
of Theorem 2.6 follows.

For the statement on the 1-st average fractal curvature measure, we use Part (iii) of Theo-

rem 2.6 which says that 65 (F, (—00,b]) < 0o for every b € R\ F. Applying Theorem 3.18
hence yields that M(F N (—00,b]) < oo for every b € R\ F. By the same arguments
that were used in the end of the proof of Part (ii), we can thus apply Proposition 3.19 to
F N (—o0,b] and obtain the desired statement. O

5 Special Cases

We start this section by a Lemma which is used in the proofs of Part (iii) of Theorem 2.9
and Theorem 2.11.

Lemma 5.1 Let F' denote a self-conformal set associated to the cIFS ® := {¢1,...,0N}.
Let § denote the Minkowski dimension of F' and let B C R denote a Borel set. Assume that
there exists a positive bounded periodic Borel-measurable function f: Rt — RT which has
the following properties.

(i) f is not equal to an almost everywhere constant function.

(ii) There exists a constant ¢ € R such that for allt > 0 and m € N there exists an M € N
such that for all T > M

(1= )py f(T =1 py,) = ce™T
< e TX(OF, -1 N B) < (L+ )pp, f(T + 1 pm) + e (5.1)

Then for k € {0,1} we have
CL(F,B) < Ty(F.B).

ProOOF. We first cover the case k = 0. Since f is positive and not equal to an almost
everywhere constant function, there exist Tj,T> > 0 such that R := f(Ty)/f(Ty) >

Choose m € N so that p2% < \/ﬁ and choose t > 0 such that (1 +¢)/(1 —t) < VR. Then
R:=(1-t)p;0 f(Ty) — (1 + t)p; 9 f(T3) > 0. By Condition (ii) we can find an M € N for
these t and m such that for all T > M Equation (5.1) is satisfied. Because of the periodicity
of f we can find Ty, Ty > M such that f(fl) = f(Th + Inp,,) and f(fg) = f(To — Inpp).
Moreover, we can assume that 77,75 are so large that ce 0 4 e < }N%/ 2. Then

e T\Y(QF, -, N B) (1+8)pS f(T1 +1npp,) + ce M
(1= o (T2 = Inpp) — R/2— ce™°"

e T2\ (QF,_r, N B).

AN VANVAN

Because of the periodicity of f this proves the case kK = 0. For k = 1 observe that the
function g: RT™ — RT defined by

= / f(s+T)e®Vsds
0

is also periodic. Moreover g is not a constant function. Because if it Was then 0 = g(0)—g(T)
for all T > 0. This would imply [ f(s)e®~1sds = e@=DT [ f(s 5 Dsds for all T > 0.

26



Differentiating with respect to T' would imply that f itself is constant almost everywhere
which is a contradiction. Using Staché’s Theorem (Proposition 3.20), we obtain

e TO-V\YF, -+ N B) = e_T(5_1)/ N(JF,-. N B)e *ds
T

< e_T(‘;_l)(l +t)p°, /OO f(s+1In pm)es(‘s_l)ds +ce”TO
= (14+1)p,9(T +1n pi) +ce™ T,
Analoguously we obtain
e TO=DNYF,_+NB) > (1—t)p;29(T —Inpy) — ce 7.
Therefore, the same arguments which were used in the proof of the case k = 0 imply that

liminf 2 'AY(F. N B) < limsupe® '\ (F. N B).
e—0 £—0 O

5.1 Self-Similar Sets; Proof of Theorem 2.9

Self-similar sets satisfying the open set condition form a special class of self-conformal sets,
namely those which are generated by an iterated function system ® consisting of similarities
O1,...,0n. Welet r1,..., 7y denote the respective similarity ratios of ¢1,...,¢n and set
Tw = Tw, * Ty, for a finite word w = w; - w, € ¥". When considering self-similar sets
some of the formulae simplify significantly:

(i) The geometric potential function is constant on the one-cylinders meaning &(w) =
—Inr,, forw=wiwy--- € T>.

(ii) The unique o-invariant Gibbs measure p_s¢ for the potential function —d§ coincides
with the §-dimensional normalised Hausdorff measure on F. Thus, p_s¢([i]) = ¢

where [i] shall denote the cylinder of i € ¥. Therefore we have that H, ,, =

= Yiex In(ri)ry.

(iii) The lengths of the main gaps of ¢, F' are just multiples of the lengths of the primary
gaps of F, that is |L¢,| = r,|L!| for each i € {1,...,Q — 1} and w € X*.

(iv) By the Moran-Hutchinson formula (see e.g. Theorem 9.3 of [Fal03]) we have that
> wesn o, =1 for each n € N.

Combining (i)-(iv) with Theorem 2.6, we obtain Parts (i) and (ii) of Theorem 2.9.
In order to prove Part (iii) of Theorem 2.9 which actually is a stronger result than that of

Part (iii) of Theorem 2.6, we are going to make use of the asymptotics (4.12) and (4.13)
that we obtained for self-conformal sets.

PROOF (OF PART (iii) OF THEOREM 2.9). As F' N B has got a representation as a finite
nonempty union of sets of the form ¢, F with w € ¥*\ {@}, there is a set Z C ¥*° which is
a finite union of cylinder sets and which satisfies 7Z = F'NB. Then 1 , is Hélder continuous
which allows an application of Theorem 3.14 to A, (z,e~7, Z) and A’ (x,e~T, Z) which leads
to Equations (4.12) and (4.13).
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The geometric potential function of a lattice self-similar set itself takes values in a discrete
subgroup of R. Thus, ¥ is a constant function and ¢ = £&. Moreover, one easily verifies that
h_se =1 and |L!| = ry|L*|. For these reasons, the formulae (4.12) and (4.13) simplify to

. 1) 1 2= T
—1 _ ar,, —da| = In —%
AW(ZE,G T7z) ~ W .e ’V | L \Pn(w)-‘ / ]lZ(y)dyiég(y)
H—s¢ el
g B —da|tiln 2.67T
H—s¢
s 14,26 Do)
. B —da| = In ————
AL(I,eiT,Z) CLTWV( ) e [a L% -‘ (5'3)

(1 - e_éa)HM—sg '

Here, we have also used that Inr, € aZ for every w € ¥*. Now, by arguments of the
beginning of Section 4, there exists a constant ¢ € R such that for every m € Nand T' > M,
where M € N is chosen such that all main gaps of the sets ¢, F for w € ¥ in B are greater
than or equal to 2¢™, we have

Q-1
TS S 0T 2) < TR, B < TS Y T Z)+ee

i=1 weXm =1 wexm

Note that there is no need of substracting ce ~°7 on the left hand side of the above equation

as we are in the self-similar situation. We introduce the function f: Rt — RT given by

Q-1 19, 2T
=t el

H—s¢ ;1

Because of the asymptotics in (5.2) and (5.3) we know that for all ¢ > 0 there exists an
M € N such that for all T > max{M, M} we have

(1=t)p, 2 f(T —Inpy) < e *TX(OF,-r N B) < (1 +t)p°, f(T +Inpp) + ce°T.

Clearly, f is a periodic function with period a. Moreover, f is piecewise continuous with a
finite number of discontinuities in an interval of length a. Additionally, on every interval
where f is continuous, f is stricly decreasing. Therefore f is not equal to an almost every-
where constant function. Thus, all conditions of Lemma 5.1 are satisfied which finishes the
proof. O

5.2 C'**Images of Self-Similar Sets; Proofs of Theorem 2.11, Propo-
sition 2.13 and Corollary 2.14

In this subsection we consider the case that F' is an image of a self-similar set K C Y under
a conformal map g € C***(U), where o > 0 and U is a convex neighbourhood of Y. We
assume that |¢| is bounded away from 0 on its domain of definition. Thus, g is bi-Lipschitz
and therefore the Minkowski dimension of F' coincides with the Minkowski dimension of K
(see e.g. Corollary 2.4 of [Fal03]). We denote the common value by §.

The similarities R1,..., Ry generating K and the mappings ¢1,...,¢n generating F' are
connected through the equations ¢; = g o R; o g~ ! for each i € . If we let 7{% denote the
normalised §-dimensional Hausdorff measure on K, that is H%(-) := HO(-NK)/H° (K ), and
let r1,...,rny denote the respective similarity ratios of Ry,..., Ry, we have the following
list of observations.

28



(i) ¢ is differentiable for every i € ¥ with differential

oy 9 (Riog (@)
H =g

where z € X and X is the nonempty compact interval which each ¢; is defined on.

* Ty

(ii) The geometric potential function £ associated to F is given by £r(w) = —In|g’ (g7 (w))|+
In|g’ (g~ (ow))| — In|ry, |, where w = wiws - - € ¥*. The geometric potential function
&k associated to K is given by {x(w) = —In|ry, |. Thus {x is nonlattice, if and only
if £F is nonlattice.

(iii) The unique o-invariant Gibbs measure for the potential function —d6&p is p_se, =
HS 0 g~!, the one associated with —8¢x is p_s¢,c = H.

(iv) From (ii) and (iii) we obtain

H-s¢r :/E Erdu—see = = lnfrilr] :/E Sdp—see = Hosee.

€3

Further, let Zl, ey L9~ denote the primary gaps of K and Zolﬂ e ,fg_l the main gaps of
R K for each w € ¥*. Similarly, L!,..., L9~ and L.,..., L27! shall respectively denote
the primary gaps of F' and the main gaps of ¢, F. Then

(v) Li, = g(Li) for i € {1,...,Q — 1} and w € X*. Since furthermore |Li | = r,|Li|, we
have
Q

Q-1 ‘ Q-1 . 5 —1 .
LD D DITESS b D (TANFIER]) D SiIA R N

weXn =1 i=1 weXn i=1

where z,, € [w] for each w € ¥*. Note that the above line can be rigorously proven by
using the bounded distortion lemma (Lemma 3.5).

(vi) The é-conformal measure vp associated to F' and the d-conformal measure v associ-
ated to K are absolutely continuous with Radon-Nikodym derivative

dvp =116 / 16 3148 -
_— d .
dvg 0 g1 lg"0g™"| K|9| Hiy

(vii) Let Y C U be a compact set which contains an open neighbourhood of X. Since |¢/|
is bounded away from 0 on U, we obtain that 6 := 2 - max{|¢}(z)| |z € Y, i € £} is
finite and positive. Under the assumption that K satisfies A'(K) = 0 and the OSC,
Oy :={071¢1,...,071pn} is a cIFS which satisfies the OSC. Hence, the invariant set
Fy of @y is a self-conformal set.

(viii) By the definition of the 0-th and 1-st fractal curvature measures and using the ho-
mogenity property of the Lebesgue measure, we have that C’g(F, )= 950({(F9, -/6)
and CJ(F,.) = 6°C{ (Fy,-/0), whenever they exist. The same equalities also obtain
for the average versions 6({ (F,-) and éf(F, ).

Using (i)-(viii) an application of Parts (i) and (ii) of Theorem 2.6 and Theorem 2.9 to K
and Fy proves Parts (i) and (ii) of Theorem 2.11.
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PROOF (OF PART (iii) OF THEOREM 2.11). In order to show that there exists a Borel set

B C R for which C{(F, B) < Ui(F, B) for k € {0,1} we want to apply Lemma 5.1. To show
that the assumptions of Lemma 5.1 are satisfied, we make the following estimates which are
closely linked to the ones given in the beginning of Section 4.

Let k € ¥*\ {@} be arbitrary. Fix an m € N and choose M € N so that for every w € £™
all primary gaps of the sets ¢, F which lie in (¢, F) are of length greater than or equal to
2¢ M Then for all T > M we have

Q-1
2 #Hwe X | Ll C(puF), L, >2e7"}

=1

A (OF -7 N (¢nF))

mfn(n)fl

Q-
ZE; e ) > o(@-1)-NTL

j=1

IN

wen

=:iCm

where we agree that 7" "THQ = 1) - Ni=1 =0 if m — n(k) — 1 < 1 and where
Eu(e7h) == #{ue T | Ly, C(ouF), |Liyl 2 2¢7T}
Likewise

Q-1
N(OF -2 N (guF)) = 2 ) Y Ei(e)

wexm =1

As before, we let L and Efu denote the gaps of the self-similar set K and recall that
g € C**2(U). Let ¢, be the Holder constant of ¢’ and k, > 0 such that |g'| > k,. Then for
every w € X", where n € N, and z,y € R,K we have that

g (x) g'(x) —g'(y)
q'(y) g'(y)

cg - lx —yl® Cg TG
S PZYL < 1= pp.
R S

'—i—lS

Clearly, p, — 1 as n — oo. Thus, for u € ¥*, w € ¥™ and ¢ € {1,...,Q — 1} we have for
an arbitrary o € Kunidue

Lol = 19Liu] <19/ (Ruw)lPugoy | L lru = |(g © Ru) (Rut) pu(ey | L]
= |(¢u © 9)'(Ru)[pn(e)| L] = |61, (9Rw) |9’ (Rui) [P | LL|
2 exp (=S luwn) — P(wz) + (pa L))
Therefore, for x € K 1riaue
ZLe™) S #Hu € B | Ly € (dF), Spau€(uws) < —n(2e™") + In(pa(|LL]) — $(wa)}.
Hence, by Theorem 3.14

Q-
N(OF - N (¢ F)) <2 Y
wexm

i=1 n=0y: wT

Lah_sc(wz) [1,(y) et W01’/—64(31)

~ 2 Z Z (1—e o) ICdM—éc + Cmy-

wexm =1

_M[w(y)—w(mhr;ln 2e=T | w(wa)
a a
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Define W :=a (1 — 6_5“)_1 (f Cdu_gg)_l and note that h_sc = 1, since ( is the geometric
potential function of a self-similar set. Thus, using |L!| = r,|L?| and that Inr, € aZ for
every w € ¥*, Equation (5.4) simplifies to

Q-1 _
> > il /Em Lig (y)eﬂsa“g) tale pi'l‘i”wdkac(y)

wexm =1

Q! w(y) e~
=2 W/ ]l[n](y)e_éa[ S ’jn‘i”]dkac(y)-
i=1 i

Hence, for all £ > 0 there exists an M > M such that for all T' > M we have

e TN OF v N ($ F))

w(y)-'r%l 2e

0-1
— —da
§(1+t)€ 6Ty E W/m]l[ﬁ](y)e ( a
=1

Defining the function f: R™ — R given by

’P(y)_,’_%l ervT

Q-1
f(T) =2 ; W/zoo L (y)e_éa[ A 101’/—54(?/)

we thus have
e TXNOF, v N (¢ F)) < (14 t)p3, f(T + Inpy,) + cme 7.
Likewise,
e TNNOF,-x N (. F)) > (1 — t)p,.) f(T — Inpy,).

Clearly, f is periodic with period a. In order to apply Lemma 5.1 it remains to show
that f is not equal to an almost everywhere constant function. For that we let 3 :=
1 —max{{—a'In|L|} | i=1,...,Q —1} and B := max{{a*In|Li|} | i=1,...,Q — 1}
and consider the following three cases, of which at least one always obtains.

Cask 1: D:={y e > | {a "(y)} < B} # 2.
Since ¢ € C(X*°) and thus D is open, there exists a k € ¥* \ {&} such that [x] C D. For

n € Nand r € (0,1 — ) define T,,(r) :=a(n — f —r) + In2. Then

P (y)

Q-1
Bol— —oa —L1n|LY]-6a
FE) = e -T2 ST [ e T ),
i=1 -

This shows that f is strictly decreasing on (a(n — 1) +1In2,a(n — ) +1n2) for every n € N.
Therefore, f is not equal to an almost everywhere constant function.

CASE 2: D:={ye X | {a (y)} > B} # 2. -

Like in CASE 1, there exists a x € X* \ {@} such that [x] C D. For n € N and r € (0, ) set
T,.(r) :=a(n+1—7r)+1n2. Then

P (y)

Q-1 .
f(Tn<r>>:e5”~2l*5ZW/ gl P g ().
=1
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This shows that f is strictly decreasing on (a(n + 1 — ) +In2,a(n + 1) 4+ In2) for every
n € N. Therefore, f is not equal to an almost everywhere constant function.

If neither CASE 1 nor CASE 2 obtains, then CASE 3 obtains which is the following.

Casg 3: {y € > | B < {a "p(y)} < B} = E>.
Here, we can use T),(r) := a(n —147) +1n2 for n € N and r € (0, 3) to obtain

f(Tn(T)) —6ar WZ/ [K] 75a|—“’51y

This shows that f is strictly decreasing on (a(n — 1) +1n2,a(n — 1+ ) + In2) for every
n € N. Therefore, f is not equal to an almost everywhere constant function.

] +25adV76C (y)

Thus, we can apply Lemma 5.1 in all three cases to obtain the desired statement. |

PROOF (OF PROPOSITION 2.13). Without loss of generality we may assume {0,1} C F' C
[0,1]. We let & denote the geometric potential function of ® and let ¢, € C(X°°) be the
functions satisfying £ — ¢ = 9 — ¢ o o, where ( takes values in a discrete subgroup of R.
Moreover, : ¥° — F' shall denote the natural code map. We define ¢ := d~'In h, where
h is the function which is uniquely defined through Theorem 3.11. 1) satisfies the equation
1 om =1 since h satisfies

dp—se dp—s¢ 5

e 6 dV_(sg e_w’dy_(sc c
We define the function f: X — R by f(z) := fo Pl Ydy for z € X. As w is a-Holder
continuous, the Fundamental Theorem of Calculus implies that 1/) = —1In f’. Moreover, the

continuity of 1/) implies that 1/) is bounded on X. Therefore, f’ 1s bounded away from both 0
and oo and thus f is invertible. Define Y := f(X), set g := f~! and extend g to a C1T*(U)
function on an open neighbourhood U of the compact set Y such that ¢’ > 0 on U. Define
Ri:=g tog;ogforiec{l,...,N}. Then setting 7 := 7~ 'g, we have

—In Rén (rgow) = —1Inf'(¢o,grkow) —In gb:dl (grow) —Ing' (rrow)
= (¢, mow) + £(w) + In f' (g ow)
= {(w)+YWw)—Yoo(w).

Thus, ((w) = —In R}, (1xow) for w € £°°. Since ( takes values in a discrete subgroup of
R and £ and ¥ are bounded on X°°, ( in fact takes a finite number of values. Therefore, R;
is piecewise linear for every ¢ € {1,..., N} with only a finite number of nondifferentiability
points. As furthermore every R} is a-Holder continuous on ¥°°, we obtain a system of sim-
ilarities by iterating the system {Ri,..., Ry} a finite number of times. Thus, the invariant
set K of the iterated function system {Ri,..., Ry} is self-similar and lattice. Moreover,
F = ¢g(K). O

PROOF (OF COROLLARY 2.14). Let mx and 7p respectively denote the natural code map
from ¥°° to K and F respectively. Observe that w}l og = wl}l and v_s¢, © wl}l =v

and define B := WK(E). By Property (ii) of the beginning of this subsection, we see that
¥ = —Ing’ o mg. Using this and the normalisation conditions given in Corollary 2.14, the
left hand side of Condition (2.3) simplifies to

Vs o (g) 7 (g’ o Tk (B) N exp(—t, 0]) =vo(¢) (¢ (B)N(e"1]).
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The right hand side of Condition (2.3) simplifies to

6&—1 6t_1

eda — 1

Vst 0 ()7 (o o mie(B) Nexp(—a,0]) = S o ()" (g (B)).

eda — 1

This shows that Part (i) of Corollary 2.14. Part (ii) can be easily deduced from this by
substituting et = ¢'(r). 0
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