
ar
X

iv
:1

01
2.

54
01

v1
  [

m
at

h.
G

T
] 

 2
4 

D
ec

 2
01

0

CONSTRUCTIONS OF SURFACE BUNDLES

WITH RANK TWO FUNDAMENTAL GROUPS

KAZUHIRO ICHIHARA AND MITSUHIKO TAKASAWA

Abstract. We give a construction of hyperbolic 3-manifolds with rank two
fundamental groups and report an experimental search to find such manifolds.
Our manifolds are all surface bundles over the circle with genus two surface
fiber. For the manifolds so obtained, we then examine whether they are of
Heegaard genus two or not. As a byproduct, we give an infinite family of
knots in the 3-sphere whose knot groups are of rank two.

1. Introduction

The Heegaard genus and the rank of the fundamental group are well-known and
well-studied complexities of 3-manifolds (see the next section for precise definitions).

As an extension of the famous Poincaré conjecture, Waldhausen had asked in
[27] whether the Heegaard genus of a compact orientable 3-manifold M is equal to
the rank of its fundamental group π1(M) or not. The Poincaré conjecture states
that it would be answered affirmatively in the simplest case; when M is closed, the
rank of π1(M) is zero if and only if the Heegaard genus of M is zero.

In general, the question was negatively answered in [3]. In fact, they gave a
family of closed 3-manifolds of Heegaard genus three with rank two fundamental
groups. Those 3-manifolds are Seifert fibered spaces, and the family was extended
to more wider one in [17]. Also such examples of graph manifolds were obtained in
[29]. However, as far as the authors know, no such examples are known for either
hyperbolic 3-manifolds or 3-manifolds with non-empty boundary [13, Problem 3.92].

In this paper, we give systematical and experimental constructions of hyperbolic
3-manifolds with rank two fundamental groups, and examine whether they are of
Heegaard genus two or not.

First, we will give a construction of surface bundles over the circle with genus
two fiber each of which has the fundamental group of rank two. With some ex-
ceptions, they will be shown to have pseudo-Anosov monodromies, and so, they
admit hyperbolic structure by [26] (see [19] for a detailed proof). Actually, for
these manifolds, we will verify that all of them are of Heegaard genus two.

We here remark that, in [11], a characterization of the monodromy maps for
closed orientable surface bundles with genus two Heegaard splittings is obtained.

As a byproduct, our construction yields an infinite family of knots in the 3-sphere
S3 whose knot groups are of rank two. Precisely we will give an infinite family of
hyperbolic, genus two, fibered knots in S3 with rank two knot groups. Also they
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all can be checked to have Heegaard genus two; that is, they are tunnel number
one knots. Thus they give supporting evidence for the conjecture raised in [21]:
A knot group has two generators and one relater if and only if the knot is tunnel
number one. See [13, Problem 1.10], [13, Problem 1.73] for related problems and
[2] for a partial solution. There are also known examples of knots in S3 which are
tunnel number one, genus two, fibered knots. They are given by two-bridge knots,
i.e., knots with bridge index 2. Here a bridge index of a knot in S3 is defined
as the minimal number of local maxima (or local minima) up to ambient isotopy.
Precisely, the knots are 51, 62, 63, 76, 77, 812, in the knot table [20], and also are
composite knots coming from trefoil and figure-eight knots. Actually it is easy to
see that two-bridge knots are tunnel number one by definition, and it is shown from
[8, Proposition 2] that these are only fibered knots of genus two among two-bridge
knots. Moreover, in [12, Corollary 5.4], Jong showed that they are only genus two
fibered knots among alternating knots.

Second, we report on computer experiments for finding examples of surface bun-
dles with rank two fundamental groups. In fact, we did generate over 100,000
hyperbolic surface bundles with rank two fundamental groups by computer, how-
ever we could not find examples of Heegaard genus more than two.
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4.1.

2. Preliminary

Throughout the paper, unless otherwise stated, all manifolds are assumed to be
connected and orientable. In this section, we use F to denote a closed surface and
M a compact 3-manifold with boundary ∂M .

2.1. A compression body C is defined as a compact 3-manifold obtained from
the product F × [0, 1] by attaching 2-handles on F × {1} and then capping off
the resulting 2-sphere boundary components by 3-handles. The subsurface of the
boundary ∂C corresponding to F × {0} is denoted by ∂+C, and then the residual
set ∂C − ∂+C is denoted by ∂−C. Under this setting, a handlebody is defined as a
compression body C with ∂−C = ∅.

By a Heegaard surface in M , we mean an embedded surface S in M which
separates M into a handlebody C1 and a compression body C2 with ∂M = ∂−C2

and S = ∂+C1 = ∂+C2. Such a splitting of M is called a Heegaard splitting. It
is well-known that every compact 3-manifold admits a Heegaard splitting. Thus
one can consider the minimal genus of Heegaard surfaces in M , which is called the
Heegaard genus of M .

If M admits a Heegaard surface of genus g, then, by the Van-Kampen’s theorem,
its fundamental group π1(M) admits a presentation with g generators. Since M
admits at least one Heegaard splitting, π1(M) is always finitely generated. Among
presentations of π1(M), one can consider the minimal number of generators, which
we call the rank of the group π1(M). It then follows that the rank of π1(M) is less
than or equal to the genus of any Heegaard surface in M .
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As we stated in the previous section, we consider the question whether the rank
of π1(M) is equal to the Heegaard genus of M or not. By the observation above,
this question is equivalent to that whether a presentation of π1(M) with minimal
number of generators is induced from a Heegaard splitting of M .

2.2. By a surface bundle, we mean a 3-manifold which fibers over the circle. Any
surface bundle with fiber F can be regarded as

(F × [0, 1])/{(x, 1) = (f(x), 0)}x∈F

with some orientation preserving homeomorphism f of F . This f is called the
monodromy of the surface bundle. Throughout the paper, the surface bundle with
monodromy f is denoted by Mf .

Note that if f and f ′ are isotopic, then Mf and Mf ′ are homeomorphic. Thus for
an element [f ] of the mapping class group of F , the surface bundle Mf is uniquely
determined. Also note that for any f and its conjugate gfg−1 by some g, Mf and
Mgfg−1 are homeomorphic. In fact, it was shown in [16] that when the rank of the
first homology is one, a surface bundle Mf is homeomorphic to another Mf ′ if and
only if f ′ is isotopic to a conjugate of f .

The question which we consider was answered affirmatively for torus bundles in
[25]: The Heegaard genus of a torus bundle over the circle is equal to the rank of
the fundamental group.

2.3. In the following, let F2 denote a closed orientable surface of genus two. Let
C1, C2, . . . , C5 be the simple closed curves on F2 depicted in Figure 1. For each i,
1 ≤ i ≤ 5, let Di denote the Dehn twist along Ci.

C1

C2
C3

C4

C5

Figure 1.

By [15], every orientation preserving homeomorphism of F2 is isotopic to a prod-
uct of a finite number of the Dehn twists D1, D2, D3, D4, D5 and their inverses.

3. Construction of surface bundle

Our first theorem is the following.

Theorem 3.1. Let n be an arbitrary integer and ε = (ε1, ε2, ε3, ε4) a quadruple of
integers εi each of which is either +1 or −1. Let Mε,n be the surface bundle over
the circle with monodromy

fε,n = D2
ε2 ◦D1

ε1 ◦D3
ε3 ◦D4

ε4 ◦D5
n.

Then the rank of π1(Mε,n) is always two and the Heegaard genus of Mε,n is also
two.
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Of course, the second assertion implies the first assertion, but we will directly
prove the first assertion without assuming the second assertion.

In fact, for the case of n = 0, the manifold Mε,0 is that obtained from a 2-bridge
knot in S3 by 0-surgery. Thus it naturally admits a Heegaard surface of genus two
and so the theorem follows immediately in this case. Our manifolds can be regarded
as an extension of the class of such manifolds.

The first assertion of the theorem follows from the next lemma.

Lemma 3.2. With the same notations as in Theorem 3.1, the rank of π1(Mε,n) is
always two.

Proof. Consider the oriented loops a1, a2, a3, a4 on F2 illustrated in Figure 2.

j

a1

O

a2

�

a3

�

a4

Figure 2.

We abuse the notations a1, a2, a3, a4 to denote the elements of the fundamental
group π1(F2) represented by the corresponding loops.

Let Φε,n be the isomorphism of π1(F2) induced by fε,n. Then it is well-known
that π1(Mε,n) decomposes as a semidirect product of π1(F2) and Z. Precisely,
π1(Mε,n) has the following presentation:

(1)
〈

a1, a2, a3, a4, t
∣

∣

∣ t−1ait = Φε,n(ai), (1 ≤ i ≤ 4), [a1, a2] = [a3, a4]
〉

,

where t denotes a generator of the infinite cyclic factor.

Claim 1. For each i ∈ {1, 2, 3}, the image of ai under Φε,n is represented by a
word which contains just one ai+1 (or (ai+1)

−1) and no letters aj (j > i+ 1).

Proof. We first describe the isomorphism Φε,n : π1(F2) → π1(F2) in detail. Let ∆i

denote the isomorphism of π1(F2) induced by the Dehn twists Di for 1 ≤ i ≤ 4.
Then

Φε,n = ∆2
ε2 ◦∆1

ε1 ◦∆3
ε3 ◦∆4

ε4 ◦∆5
n

holds.
By Figure 1 and 2, the actions of ∆i’s on aj ’s are described as follows.

(

∆i
ε(aj)

)

1≤i≤5,1≤j≤4
=













a1 a2(a1)
ε a3 a4

a1(a2)
−ε a2 a3 a4

a1 ((a3)
−1a1)

εa2 a3 ((a3)
−1a1)

εa4
a1 a2 a3(a4)

ε a4
a1 a2 a3 a4(a3)

−ε













,

where ε = ±1.
For a1, this implies that

Φε,n(a1) = ∆2
ε2 ◦∆1

ε1 ◦∆3
ε3 ◦∆4

ε4 ◦∆5
n(a1) = ∆2

ε2(a1) = a1(a2)
−ε2 .



SURFACE BUNDLES WITH RANK TWO FUNDAMENTAL GROUPS 5

Thus the claim holds for the case that i = 1.
For a2, we have

Φε,n(a2) = ∆2
ε2 ◦∆1

ε1 ◦∆3
ε3 ◦∆4

ε4 ◦∆5
n(a2) = ∆2

ε2 ◦∆1
ε1 ◦∆3

ε3(a2)

= ∆2
ε2 ◦∆1

ε1(((a3)
−1a1)

ε3a2).

From the matrix above, note that a3 is invariant under the isomorphisms (∆1)
±1,

(∆2)
±1 and the image of a1, a2 under (∆1)

±1, (∆2)
±1 are represented by the word

with letters a1, a2. Thus Φε,n(a2) = ∆2
ε2 ◦∆1

ε1(((a3)
−1a1)

εa2) is represented by
the word with a single letter a3 and the letters a1, a2.

Finally for a3, we have

Φε,n(a3) = ∆2
ε2 ◦∆1

ε1 ◦∆3
ε3 ◦∆4

ε4 ◦∆5
n(a3)

= ∆2
ε2 ◦∆1

ε1 ◦∆3
ε3 ◦∆4

ε4(a3)

= ∆2
ε2 ◦∆1

ε1(a3(((a3)
−1a1)

ε3a4)
ε4).

Again, from the matrix above, note that a4 is invariant under the isomorphisms
(∆1)

±1, (∆2)
±1 and the image of a1, a2, a3 under (∆1)

±1, (∆2)
±1 are represented

by the word with letters a1, a2, a3. Thus

Φε,n(a3) = ∆2
ε2 ◦∆1

ε1(a3(((a3)
−1a1)

ε3a4)
ε4)

is represented by the word with single letter a4 and the letters a1 , a2 and a3. �

The claim enables us to reduce the number of the generators of the presentation
(1), and we see that π1(Mε,n) is generated by a1 and t only. This completes the
proof of the lemma. �

Next we show that the Heegaard genus of Mε,n is also two independently from
Lemma 3.2.

Lemma 3.3. With the same notations as in Theorem 3.1, every Mε,n is of Hee-
gaard genus two.

Proof. To prove the lemma, we first create a surgery description of Mε,n.
Let L be the link defined as follows. Prepare five copies of annulus embedded

in S3 and plumb them. Denote by S the surface so obtained. The boundary of S
gives a two component link l0 ∪ l′0 in S3. Add five trivial components l1, l2, l3, l4, l5
piercing each plumbed annulus. Add more five trivial components l′1, l

′
2, l

′
3, l

′
4, l

′
5

such that they correspond to the cores of plumbed annuli and l′k is isotopic to the
meridian of lk (1 ≤ k ≤ 5) in the exterior of the link l0 ∪ l′0 ∪ l1 ∪ l2 ∪ l3 ∪ l4 ∪ l5.
See Figure 3.

Let L(r0, r
′
0, r1, r2, r3, r4, r5, r

′
1, r

′
2, r

′
3, r

′
4, r

′
5) denote the 3-manifold obtained by

Dehn surgery along the link L with surgery coefficient ri, r
′
j for li, l

′
j (0 ≤ i, j ≤ 5).

Claim 2. The manifold Mε,n is homeomorphic to L(0, 0, 0, 0, 0, 0, 0, ε1, ε2, ε3, ε4, 1/n).

Proof. First we consider the sublink L0 = l0 ∪ l′0 ∪ l1 ∪ l2 ∪ l3 ∪ l4 ∪ l5. Then it is
easily seen that L0(0, 0, 0, 0, 0, 0, 0) is homeomorphic to the product bundle F2×S1.
See [10] for example.

The remaining components l′1, l
′
2, l

′
3, l

′
4, l

′
5 are regarded as in the surgered mani-

fold. These can be isotoped to lie on surface fibers, and we can assume that l′k is
projected to Ck on F2 by the natural projection F2 × S1 → F2.

Now we regard F2×S1 as a surface bundle Mid. with trivial monodromy. Remark
that the preferred longitudes of the components l′1, l

′
2, l

′
3, l

′
4, l

′
5 in S3 are coincident
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-l0

6
l′0

-

-

-

-

-

l1

l2

l3

l4

l5

�

�

�

�

�

l′1

l′2

l′3

l′4

l′5

Figure 3. The link L

with the longitudes induced by the bundle structure of F2 × S1. Then it is known
that the 1/n-surgery on such a component l′k yields the manifoldMDk

n (see [24, 10]).
Note that the components l′1, l

′
3, l

′
5 are regarded as lying on the same fiber F2 ×

{1/3} and also l′2, l
′
4 as lying on F2×{2/3}. Thus L(0, 0, 0, 0, 0, 0, 0, ε1, ε2, ε3, ε4, 1/n)

is homeomorphic to MD1
ε1◦D3

ε3◦D5
n◦D2

ε2◦D4
ε4 . We note that

D1
ε1 ◦D3

ε3 ◦D5
n ◦D2

ε2 ◦D4
ε4 ∼ D1

ε1 ◦D3
ε3 ◦D5

n ◦D4
ε4 ◦D2

ε2

∼ D2
ε2 ◦D1

ε1 ◦D3
ε3 ◦D5

n ◦D4
ε4

∼ D5
n ◦D2

ε2 ◦D1
ε1 ◦D3

ε3 ◦D4
ε4

∼ D2
ε2 ◦D1

ε1 ◦D3
ε3 ◦D4

ε4 ◦D5
n ∼ fε,n,

where ∼ denotes suitable isotopy or conjugates. Thus MD1
ε1◦D3

ε3◦D5
n◦D2

ε2◦D4
ε4 is

homeomorphic to our manifold Mε,n.
�

By using the well-known modifications (see [20] for example), we can simplify
the surgery description obtained above to the one depicted in Figure 4.

To find a Heegaard surface, we perform surgeries on the four components with
surgery coefficients −εi (1 ≤ i ≤ 4) to obtain a two component link. For example,
the link corresponding to the case (ε1, ε2, ε3, ε4) = (−1, 1,−1,−1) is illustrated in
Figure 5.
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1/n−ε1 −ε3

−ε2 −ε4

0

Figure 4.

Figure 5.

Consider the boundary of the regular neighborhood of the non-trivial component
of the link together with the thickened arc illustrated in Figure 5. Then, by manip-
ulating the figure, one can check that the surface separates the link complement into
two homeomorphic compression bodies. This implies the surface becomes a genus
two Heegaard surface of the surgered manifold, i.e., of Mε,n. Thus the Heegaard
genus of Mε,n is at most two.

On the other hand, since our manifold Mε,n fibers over the circle with genus two
fiber, its fundamental group contains a non-abelian surface subgroup. This implies
that Mε,n fails to be S3, S2×S1, lens spaces; in particular, it fails to have Heegaard
genus one. Therefore the Heegaard genus of Mε,n is shown to be two. �

This completes the proof of Theorem 3.1.
As we stated in Section 1, most of our manifolds {Mε,n} are shown to be hyper-

bolic.

Proposition 3.4. With the same notations as in Theorem 3.1,

(1) for n = 0, the manifolds {Mε,0} are hyperbolic unless ε1 = ε2 = ε3 = ε4,
(2) for each ε, the manifolds {Mε,n} are hyperbolic with at most five exceptions.

Proof. We can see directly from Figure 4 that Mε,0 is obtained by 0-surgery along
the two-bridge knot with Conway’s normal form [2ε4,−2ε3, 2ε2,−2ε1]. Then, by
the classification of exceptional surgeries on two-bridge knots [6], we see that Mε,0
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is hyperbolic other than the corresponding knot is of genus one or a torus knot. All
our knots are of genus two, and so, the knot we have to exclude is the (2,5)-torus
knot. This corresponds to the case where ε1 = ε2 = ε3 = ε4.

Next, note that the homeomorphism fε,0 = D2
ε2 ◦ D1

ε1 ◦ D3
ε3 ◦ D4

ε4 of F2

is irreducible. Because, as we claimed above, each manifold Mε,0 is obtained by
0-surgery along a two-bridge knot of genus two, but such a 3-manifold is always
atoroidal by [6]. Thus (D2

ε2 ◦D1
ε1 ◦ D3

ε3 ◦ D4
ε4 , C5) fills F2 up, and so, we can

apply [5, Theorem 2.6]. This concludes the second assertion of the proposition. �

4. Fibered knots

As a byproduct of Lemma 3.2 and Lemma 3.3, we obtain an infinite family of
hyperbolic knots in the 3-sphere S3 whose knot groups are of rank two.

Proposition 4.1. Let n be an arbitrary integer and εi either +1 or −1 for i =

1, 2, 4 and ε3 = −ε1. Then the Montesinos knot M
(

1

2ε1
, 2ε2
4ε2n−1

, 2ε4
4ε3ε4−1

)

is always

hyperbolic, genus two, fibered knots in S3 with rank two knot group.

Proof. We consider the once-punctured surface bundles M ′
ε,n defined in the same

way as the manifold Mε,n in Theorem 3.1. Then its fundamental group is shown
to be of rank two in the same way as proving Lemma 3.2. As we explained in
the proof of Lemma 3.3, the manifold M ′

ε,n has obtained by surgery on the link
depicted in Figure 3. The surgery coefficients are the same as for Mε,n except for
that on l0. On l0, no filling is performed, i.e., it corresponds to a toral boundary.
This surgery description can be simplified, under the assumption that ε3 = −ε1, to
the one illustrated in Figure 6.

−ε1

−ε2

−ε3 = ε1

−ε4

1/n

Figure 6.

By performing surgeries, we obtain the Montesinos knotM
(

1

2ε1
, 2ε2
4ε2n−1

, 2ε4
4ε3ε4−1

)

from the unlabeled component.
Consequently the knot groups of our knots, which are isomorphic to the funda-

mental groups of M ′
ε,n, are shown to be of rank two.

The fact that the knots are of genus two and fibered can be checked directly.
Consider the diagram of the knot which is naturally obtained from Figure 6 by
performing surgeries (an example is depicted in Figure 7). Let S be the Seifert
surface obtained from this diagram by Seifert’s algorithm. One can see that two
Hopf bands are deplumbed from S, and the surface so obtained is modified to the
connected sum of two Hopf bands by Stallings twists. This shows that S is a fiber



SURFACE BUNDLES WITH RANK TWO FUNDAMENTAL GROUPS 9

Figure 7. (ε1, ε2, ε3, ε4, n) = (1, 1,−1, 1, 2)

surface. See [9] for example. Since S is of genus two and any fiber surface is minimal
genus (see [7] for example), all our knots are of genus two.

While it is known which Montesinos knots are hyperbolic [4, 18], here we show
that our knots are hyperbolic directly. First note that our knots are all unknotting
number one as the diagram considered above shows. By [14], no torus knot of
genus two has unknotting number one, and so, none of our knots are torus knots.
Also note that our knots are all at most three bridge as the diagram shows. This
implies that if our knots are satellite, then they must be composite ([23]), but it is
impossible by [22]. �

In fact, they are all tunnel number one knots, meaning that, the exteriors admit
a genus two Heegaard surface. Their unknotting tunnels place in the corresponding
position to the thickened arc illustrated in Figure 5.

5. Computer Experiments

In this section, we show some examples of 3-manifolds with 2-generator funda-
mental groups which are found by computer experiments. All examples are surface
bundles over the circle with genus two surface fiber.

Recall that the Dehn twists D1, D2, · · · , D5 generate the mapping class group
of a closed surface of genus two. We fix this generating system and describe the
monodromy of surface bundles in terms of the word of these generators.

In the first experiment, we compute the rank of the fundamental group for all
closed/once-punctured surface bundles with monodromy up to word length 5. There
is a table of the representative elements of all conjugacy classes of monodromies up
to word length 4 in [1]. As an extension of the result, we can obtain such a list up to
length 5, which is now available at http://www.is.titech.ac.jp/~takasawa/MCG/.
In fact, there are 172 nontrivial representative elements. To compute the rank of
the fundamental group of the manifold, we implement the algorithm in [10], which
constructs a surgery description of the surface bundle from the monodromy. Then
we use SnapPea [28] to compute the fundamental group of the manifold. Note that
in general, it is difficult to determine the rank of the fundamental group. However,
in this case, if there is a presentation which has just 2-generator, we can say the
rank is 2. The result of the experiment is shown in Table 1. There are 30 distinct
examples which have 2-generator fundamental groups. For some examples the first
Betti number β1 equals to 2, however they are torus sums of two Seifert manifolds.
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Table 1.

closed once-punctured
monodromy volume rank of π1 β1 volume rank of π1 β1

D1D2D3 0.000002 2 2 0.000077 2 2
D1D2D

−1
3 3.663862 2 2 3.663872 2 2

D1D
−1
2 D3 5.333490 2 2 5.333605 2 2

D1D2D3D4 0.000000 2 1 0.000000 2 1
D1D2D3D

−1
4 4.400833 2 1 3.770830 2 1

D1D2D
−1
3 D−1

4 5.693021 2 1 4.059766 2 1
D1D

−1
2 D3D4 7.084926 2 1 6.180274 2 1

D1D
−1
2 D3D

−1
4 8.935857 2 1 7.646593 2 1

D1D
−1
2 D−1

3 D4 7.643375 2 1 6.332667 2 1
D2

1D2D3D4 0.000000 2 1 0.000000 2 1
D2

1D2D3D
−1
4 4.921483 2 1 3.970290 2 1

D2
1D2D

−1
3 D4 7.967261 3 1 6.788090 2 1

D2
1D2D

−1
3 D−1

4 6.577943 2 1 4.765940 2 1
D2

1D
−1
2 D3D4 8.118328 2 1 7.023949 2 1

D2
1D

−1
2 D3D

−1
4 9.951958 2 1 8.550620 2 1

D2
1D

−1
2 D−1

3 D4 8.554563 2 1 7.180680 2 1
D2

1D
−1
2 D−1

3 D−1
4 5.231154 2 1 4.725229 2 1

D1D2D
−1
1 D2D

−1
3 5.333490 2 2 5.333490 2 2

D1D
2
2D3D4 4.464659 2 1 3.853456 2 1

D1D
2
2D3D

−1
4 6.746042 3 1 5.137941 2 1

D1D2D3D4D5 0.000000 2 1 0.000000 2 1
D1D2D3D4D

−1
5 4.056860 2 1 3.177293 2 1

D1D2D3D
−1
4 D5 6.771750 2 1 5.563668 2 1

D1D2D3D
−1
4 D−1

5 4.124903 2 1 0.790429 2 1
D1D2D

−1
3 D4D5 7.746275 2 1 6.551743 2 1

D1D2D
−1
3 D4D

−1
5 8.602031 2 1 6.965760 2 1

D1D2D
−1
3 D−1

4 D5 7.406768 3 1 5.333490 2 1
D1D

−1
2 D3D4D

−1
5 9.250556 2 1 7.517690 3 1

D1D
−1
2 D3D

−1
4 D5 10.649781 3 1 8.793346 2 1

D1D
−1
2 D−1

3 D−1
4 D5 6.783714 2 1 5.333490 3 1

In the second experiment, we searched over 100,000 randomly generated words
up to word length 20 and we found huge number of examples of hyperbolic sur-
face bundles with rank two fundamental groups. Unfortunately, for many of such
manifolds, we have no practical algorithm to detect their Heegaard genus, and at
present, we do not have examples of Heegaard genus more than two.

Here we exhibit single example we found, which seems independently interesting.
The closed surface bundle Mf with monodromy f = D2

1D
3
3D

−1
5 D−1

4 D−1
3 D2 has 2-

generator fundamental group and the first Betti number of Mf is also 2 and Mf

admits a hyperbolic structure. The fact that the first Betti number is two implies
that it admits more than one surface bundle structures. Unfortunately, we could
not determined the Heegaard genus of Mf .
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