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THE EVALUATION SPACE OF LOGARITHMIC STABLE MAPS

DAN ABRAMOVICH, QILE CHEN, WILLIAM GILLAM, AND STEFFEN MARCUS

Abstract. The evaluation stack ∧X for minimal logarithmic stable maps is constructed,
parameterizing families of standard log points in the target log scheme. This construction
provides the ingredients necessary to define appropriate evaluation maps for minimal log
stable maps and establish the logarithmic Gromov-Witten theory of a log-smooth Deligne-
Faltings log scheme.

1. Introduction

1.1. Main results. Logarithmic Gromov-Witten (GW) theory was first proposed during a
2001 workshop lecture by Bernd Siebert [Sie01]. It provides an approach to vastly generalize
relative GW theory, in which enumerative invariants of curves on varieties satisfying certain
contact conditions are defined and used for computing usual GW invariants through degen-
erations. Current relative GW theory was introduced in the symplectic setting by An-Min
Li and Yongbin Ruan [LR01], as well as in parallel work of Eleny Ionel and Thomas Parker
[IP03, IP04]. It was recast in algebraic geometry by Jun Li [Li01, Li02].

The aim of this paper is to continue the development of logarithmic GW theory along the
lines of [Kim09], [Che10a], and [AC10], where Kontsevich stable maps to log-schemes are
introduced and studied. The next steps we take here are the following:

In Definition 2.4.1 we define families of standard log points in a fine saturated log scheme
(X,MX). This is a category we denote ∧′X fibered over the category LogSchfs of fine and
saturated log schemes. The first main result is the following:

Theorem 1.1.1. There is a logarithmic algebraic stack (∧X,M∧X) representing ∧′X.

In case X is projective and MX is a Deligne–Faltings log structure (Definition 2.2.1),
it is shown in [Che10a] and [AC10] that there is a proper logarithmic Deligne–Mumford
(DM) stack (KΓ(X,MX),MKΓ(X,MX )) of logarithmic stable maps into X with numerical
characteristics Γ = (g, n, ci, β). Mark Gross and Bernd Siebert have recently announced a
parallel theory of basic log maps that is expected to work in even more general situations.
Here g, n, β are as usual the genus, the number of marked points, and curve class, and ci are
prescribed contact orders.

In Definition 5.1.1 we construct natural morphisms

evi : KΓ(X,MX)→ ∧X, i = 1, . . . , n,

called logarithmic evaluation maps. In case (X,MX) is log smooth, we construct in Propo-
sition 5.1.2 a natural virtual fundamental class

[Kγ(X,MX)]
vir
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on KΓ(X,MX), which finally enables us to define logarithmic Gromov–Witten invariants
(Definition 5.1.3):

〈

γ1, . . . , γn
〉(X,MX)

Γ
:=

(

n
∏

i=1

ev∗iγi

)

∩ [Kγ(X,MX)]
vir .

1.2. Conventions and notation. We will always be working over the base field C. Unless
otherwise specified, our neighborhoods will always be taken in the étale topology, so that by
locally we will mean étale locally. The algebraic closure of a point p is denoted by p̄.

We will be using the conventions of logarithmic geometry in the sense of Kato-Fontaine-
Illusie, and will assume familiarity with the theory up to at least [Kat89].

Denote a log scheme or stack by the pair (X, expX :MX → OX) where X is the underlying
space and expX :MX → OX is the structure map of the associated log structure on X . The
notation (X,MX) will be used when no confusion arises. Denote by MX = MX/O∗

X the
characteristic of (X,MX). A log scheme or log stack X appearing without a log structure
is assumed to be taken with the trivial log structure O∗

X .
Denote by Sch, LogSch, and LogSchfs the categories of schemes, log schemes, and fine

saturated log schemes respectively. All log schemes will be assumed to be objects in LogSchfs

unless otherwise noted.

1.3. Logarithmic stable maps. Inspired by Siebert’s original lecture and recent successes
in the use of log geometry to compactify moduli spaces, such as [Ols08], the moduli of
Kontsevich log-stable maps was taken up in [Kim09] and again in [Che10a, AC10] with a
view towards developing logarithmic GW theory in the setting where the relative divisors
Di are simple normal crossings.

Let (X,MX) be a log-smooth, fine, saturated log scheme where X is a projective variety
and its log structure MX is the divisorial log structure corresponding to a simple normal
crossing divisor D ⊂ X . The moduli stack of minimal log stable maps KΓ(X,MX) pa-
rameterizes families of maps f : (C,MC) → (X,MX) from log-smooth curves where the
underlying map is stable in the usual sense. Furthermore, the maps are required to satisfy
an additional minimality condition necessary to control the log structures associated to the
maps and ensure properness of the stack. The notation Γ collects the discrete data of the
map such as genus, number of marked points, curve class and contact orders.

Remark. The term ‘minimality’ in this context originates from [Kim09]. It is a phenomeon
derived from the following general question: given a category F fibered in groupoids over
LogSch, when does there exist an algebraic stack F fibered in groupoids over Sch such that,
when endowed with a log structureMF , there is an equivalence (F,MF ) ∼= F of groupoid
fibrations over LogSch? This categorical question produces a nice categorical framework for
minimality which can be completely described and will be made available in a subsequent
paper.

The stack KΓ(X,MX) is a proper Deligne–Mumford stack and comes equipped with a
natural log structure MKΓ(X,MX), dictated by the minimality condition, making the pair a
log algebraic stack. There is a universal log-smooth curve (C,MC) fitting into the following
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universal diagram:

(C,MC)
f

//

��

(X,MX)

(KΓ(X,MX),MKΓ(X,MX))

��

KΓ(X,MX).

As a fibered category over LogSchfs, the log stack (KΓ(X,MX),MKΓ(X,MX)) parameterizes
logarithmic stable maps to (X,MX) over a base log scheme with an arbitrary log structure.
A morphism S → KΓ(X,MX) from a scheme S corresponds precisely to a strict morphism
(S,MS)→ (KΓ(X,MX),MKΓ(X,MX)), giving an extended diagram

(Cmin,Mmin
C ) //

f ′

--

��

(C,MC) //

��

(X,MX)

(Smin,Mmin
S )

��

// (KΓ(X,MX),MKΓ(X,MX))

��

S // KΓ(X,MX).

In this way KΓ(X,MX) is a stack over Sch parameterizing minimal log stable maps.

1.4. Evaluation spaces. The log structureMC on the source curve of a minimal log stable
map prescribes not only the standard log points on C giving the marked points of the map,
but also contact orders for each of these points. This extra data is pulled back from the target
log-structure MX through the log-map f : (C,MC) → (X,MX). It is a situation quite
similar to that of twisted stable maps [AV02, AGV08], where marked points are endowed
with a Bµm stack structure and their evaluations in a target stack X are studied using the
rigified cyclotomic inertia stack Iµ(X ). The inertia stack is constructed by parameterizing
families of maps from Bµm into the target. To construct the logarithmic evaluation space,
we parameterize families of log-maps from the standard log point into (X,MX).

The theory of minimal log stable maps in [Che10a, AC10] is outlined for target schemes
with a Deligne-Faltings log structure. Much use is made of the moduli of such log structures
and section 2 is devoted to this topic. Our main construction begins in section 3, covering
the case whereMX is a Deligne-Faltings log structure corresponding to a single line bundle
with a section. A notion of minimality is introduced to identifiy the necessary families to
include in order to build a stack ∧X over the Sch. The bulk of this section is devoted to the
technicalities of the construction of ∧X , showing it is algebraic, and identifying properties
which make it useful for log GW theory. Section 4 generalizes the construction to any fine,
saturated log structure. Evaluation maps evi : (KΓ(X,MX),MKΓ(X,MX)) → (∧X,M∧X)
are defined in section 5, as are the GW invariants produced in this setting.
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2. Moduli of log structures

The construction of the evaluation stack ∧X presented below goes by way of the moduli
of Deligne-Faltings log structures, that is, log structures corresponding to line bundles with
sections. To begin, we remind the reader of Olsson’s stacks of log structures, as these also
play an important role in our constructions.

2.1. Olsson’s stacks of log structures. Let (S,MS) be a fine log scheme (not necessarily
saturated). In [Ols03], Martin Olsson constructs the algebraic stack Log(S,MS) parameter-
izing fine log structures. As a category fibered over the category of S-schemes SchS, it is
defined as follows:

(a) an object of Log(S,MS) over the S-scheme f : Y → S consists of a fine log structure

MY on Y and a morphism f ♭ : f ∗MS →MY ;
(b) a morphism over X → Y consists of a strict morphism (X,MX) → (Y,MY ) over

(S,MS).

The data of an object is equivalent to a morphism of fine log schemes f : (Y,MY )→ (S,MS)
extending f . This stack is algebraic (though not quasi-seperated), and locally of finite
presentation over S.

WhenMS is also saturated, the open substack T or(S,MS) in Log(S,MS) parameterizes fine,
saturated log structures. Given an S-scheme f : Y → S, a morphism Y → T or(S,MS)

corresponds to a fine, saturated log structure MY and a log morphism f : (Y,MY ) →
(S,MS). There is a forgetful map Log : T or(S,MS) → T orC forgetting all the data but the
log structure MY . If (S,MS) is log smooth, then the map Log is a smooth representable
morphism of algebraic stacks. For our construction of ∧X in section 3.2, we will need to
consider T or(X,MX ) for our target log scheme (X,MX).

2.2. DF (n) log structures. The divisorial log structure associated to a divisor D ⊂ X is
defined on a neighbourhood U by

MD⊂X(U) := {f ∈ OX(U) : f is invertible on (U \D)} .

This sheaf of monoids motivates the relationship between relative and logarithmic Gromov-
Witten theory. The case when D is a simple normal crossings divisor corresponds to the
divisorial log structureMX on X admitting a morphism of sheaves Nr →MX that locally
lifts to a chart. Following Kato, we call locally free log structures with this property Deligne-
Faltings log structures.

Definition 2.2.1. Let S be a scheme. A log structureMS on S is called a Deligne-Faltings
(DF) Log Structure if there exists a morphism of sheaves of monoids Nr →MS lifting locally
to a chart Nr → MS. A DF log structure MS is generic if it is nontrivial and the map
Nr → MS is an isomorphism on every geometric point. We define the rank of a DF log
structureMS to be the integer r := max{k :MSp̄

∼= Nk} where the maximum is taken over
all geometric points p̄ ∈ S. For notational convenience, we call a DF log structure of rank
at most n a DF(n) log structure.

The data of a DF(n) log structure is equivalent to a collection of n line bundles with
sections {(Li, si)}ni=1 (see [Kat89], Complement 1). One direction is fairly obvious. Let ei be
the i’th standard generator of Nn, and let β : Nn →MS be the global map with local liftings
β̃ : Nn →MS. Let π :MS →MS be the quotient map. The pre-image π−1(β(ei)) is an O∗

S-

torsor, which corresponds to a line bundle on S, say Li. The map π−1(β(ei)) ⊂ MS
α
→ OS
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determines a section si : Li → OS of Γ(X,L∨). Thus the DF (n) log structureMS gives the
data of the pairs {Li, si}ni=1. In fact, such a collection is sometimes taken to be the definition
of a DF log structure elsewhere in the literature (see [Kat89]), with rank then defined to be
the number of line bundles n. Our notion of rank in Definition 2.2.1 is a bit more subtle,
and depends on the zero loci of the sections si.

We will in particular be interested in parameterizing DF(1) log structures. Recall that
a log point is a log scheme (Spec C,C∗ ⊕ P ), where P is a monoid and the structure map
α : C∗ ⊕ P → OSpec C is given by sending a⊕ 0 to a and everything else to 0. When P = N

we call this the standard log point.

Definition 2.2.2. A family of DF(1) log structures over a log scheme (S,MS) is a morphism
of log schemes (f, f ♭) : (S,M′

S) → (S,MS) such that the morphism f : S → S on the
underlying schemes is the identity and MS′ =MS ⊕O∗

S
N where N is a DF log structure

given by a map N→ N . A family of DF(1) log structures (f, f ♭) : (S,MS′)→ (S,MS) is a
family of standard log points if in particular N is a generic rank 1 DF log structure.

2.3. [A1/Gm] and BGm as classifying stacks of DF(1) log structures. The stack
[A1/Gm] with the trivial log structure can be interpreted as parameterizing families of DF(1)
log structures. Here the quotient is taken with respect to the multiplication action. We
quickly outline this example, as this interpretation plays an important role in the construc-
tions to follow.

The stack BGm sits inside the quotient A := [A1/Gm] as the origin. Let i : BGm → A
be the inclusion map. A morphism X → A from a scheme X corresponds to a principal
Gm-bundle P → X with a Gm-equivariant map P → A1:

P //

��

A1

π

��
X // A.

The Gm-bundle P extends uniquely to a line bundle L → X , and the equivariant map
P → A1 determines a morphism of line bundles L → OX , that is, a section s ∈ Γ(X,L∨).
This data is equivalent to a DF(1) log structure on X . This process is certainly reversible,
and in this way A classifies DF(1) log structures (see [Ols03] Example 5.13).

The map π : A1 → A gives a universal line bundle with universal section s determined by
the multiplication action of Gm. Thus A is naturally equipped with the DF log structure
MA given by (A1, s). Consider the family of DF(1) log structures given by the morphism
g : (A,MA) → A which is the identity on A and the inclusion g♭ : g∗O∗

A → MA on log
structures. We exhibit this as the universal family of DF(1) log structures over A.

The data of a morphism (S,MS)→ A where (S,MS) is a log scheme is equivalent to giving
a family of DF(1) log sctructures over (S,MS). A morphism of log schemes h : (S,MS)→ A
corresponds to a cartesian diagram,

(S,M′
S)

h′

//

��

(A,MA)

g

��
(S,MS)

h
// A
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in the category LogSchfs. The sheaf of monoids M′
S is the log structure associated to the

pushout ofMS with h−1MA. ThusM′
S =MS⊕N where, by our discussion above and the

definition of MA, N is the DF(1) log structure given by the morphism S → A. Inverting
this, let (S,MS ⊕ N ) → (S,MS) be a given family of DF(1) log structures. The DF(1)
log structure N corresponds to a morphism S → A, and this determines the morphism
(S,MS)→ A.

Thus, the log stack A represents the fibered category over LogSch parametrizing families
of rank 1 DF log structures. As a category fibered over Sch, the stack BGm parameter-
izes line bundles with the zero section. Through its inclusion, BGm has the log structure
MBGm

:= i∗MA induced by restriction. When viewed as a universal family (BGm,MBGm
)

over BGm, a morphism of log schemes (S,MS) → BGm is equivalent to a family of stan-
dard log points over (S,MS). Thus, the log stack BGm is similarly the fibered category over
LogSch parametrizing families of standard log points.

2.4. Families of Standard Log Points in a Log Scheme (X,MX). Fix a fine, saturated
log scheme (X,MX). We now describe the category of standard log points in (X,MX)
fibered over the category LogSchfs.

Definition 2.4.1. Define a category ∧′X fibered over the category LogSchfs as follows:

(a) An object of ∧′X(S,MS) over a log scheme (S,MS) consists of a family of standard
log points (S,M′

S)→ (S,MS) with a morphism φ : (S,M′
S)→ (X,MX),

(S,M′
S)

φ
//

��

(X,MX)

(S,MS).

(b) An arrow consists of a morphism of families of standard log points F : (S,M′
S) →

(T,M′
T ) over some f : (S,MS) → (T,MT ) forming a cartesian square and making

the following diagram commutative:

(X,MX)

(S,M′
S)

F //

��

φS

22

(T,M′
T )

φT

<<

��

(S,MS)
f

// (T,MT ).

Although it is certainly useful to parameterize such families over log schemes, we are
especially interested in building the log algebraic stack ∧X over the category Sch which,
when equipped with a natural log structure and viewed as a category fibered over LogSchfs,
gives exactly ∧′X . We are led to a notion of minimality for families of standard log points
in (X,MX).
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3. The stack of standard log points in (X,MX): DF(1) case

In this section and the next we build the evaluation stack ∧X . Throughout, fix a target
log scheme (X,MX) where MX is a DF(1) log structure. In section 4 we will use a limit
argument to generalize to the case of an arbitrary fine, saturated log scheme.

3.1. Minimal Families. We now introduce a notion of minimality for families of standard
log points in (X,MX). Minimality in this case can be described completely geometrically as
a condition on a map of characteristic monoids. This allows us to identify the appropriate
families to parameterize when constructing ∧X in section 3.2.

Definition 3.1.1. A family of standard log points in (X,MX)

(S,M′
S)

��

φS // (X,MX)

(S,MS).

is called minimal if over each geometric point s ∈ S the composition

(φ∗
SMX)s →M

′

S,s
∼=MS,s ⊕N s →MS,s

gives a surjection (φ∗
SMX)s →MS,s.

Proposition 3.1.2. Minimality is an open condition on ∧′X.

Proof. Consider a family of standard log points in (X,MX) as given in the above definition.
Assume that it is minimal at a point s along the base S. Let δ generate the the stalk
(φ∗

SMX)s and let e+ σ be the image of δ through φ♭
S,s, where e and σ are elements ofMS,s,

and Ns respectively. If we generalize to a nearby point of s, then since the specialization
map is surjective on characteristics (see [Ols03], lemma 3.5 part iii), we have that e + σ is
trivial, making e is trivial. This proves the statement. �

Denote by D ⊂ X the locus along which the log structureMX is non-trivial. The following
result provides for the existence of ‘enough’ minimal families.

Proposition 3.1.3. For any family φS : (S,M′
S) → (X,MX) of standard log points in

(X,MX) over (S,MS), there exists a minimal family φmin : (S,M′
S
min) → (X,MX) over

(S,Mmin
S ) and a map fmin : (S,MS)→ (S,Mmin

S ) fitting into a commutative diagram

(X,MX)

(S,M′
S)

φS

22

//

��

(S,M′
S
min)

φmin

;;

��

(S,MS)
fmin

// (S,Mmin
S )

where the square is cartesian in LogSchfs. Furthermore, the pair (fmin, φmin) is unique up
to a unique isomorphism.
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Proof. This is a local statement. Shrinking S, we can assume there are global charts β1 :
MS,s →MS and β2 : N s

∼= N→ N for some point s ∈ S. We assume also that φS(s) ∈ D;
the other case is similar and straightforward. SinceMX is a DF(1) log structure, denote by
δ the generator of (φ∗

SMX)s ∼= N. As in the proof of the above proposition, let e+ σ denote

the image of δ through the map φ♭
S,s : (φ

∗
SMX)s →M

′

S,s
∼=MS,s⊕N s, where e ∈MS,s and

σ ∈ N s. Choose as our minimal log structure for the baseMmin
S the sub-log structure ofMS

generated by β1(e). Notice that a different choice of the chart β1 will only alter the element
β1(e) up to a unique invertible section ofMS. Thus, the sub-log structureMmin

S is unique.
The obvious choice for our minimal log structureM′

S
min is the direct sumMmin

S ⊕O∗
S
N . As

a candidate for our minimal family of standard log points in (X,MX) we have the diagram

(S,M′min)

��

φmin
// (X,MX)

(S,Mmin)

which comes with a natural log-map fmin : (S,MS)→ (S,Mmin) simply by the construction
ofMmin

S . This family is certainly minimal at the point s, and is in fact a minimal family since
minimality is an open condition and we need only further shrink S. It is straightforward
to check that the log map fmin induces a morphism of families of standard log points in
(X,MX) and is an isomorphism on the underlying schemes. Finally, uniqueness follows
from the uniqueness of the sub-log structureMmin. �

3.2. The Stack ∧X. We now construct the stack ∧X over the category Sch. This stack
parameterizes minimal families of standard log points in (X,MX). We show that ∧X is
isomorphic to an open substack of the fiber product (A × BGm) ×T orC T or(X,MX), making
∧X an algebraic stack.

Definition 3.2.1. Define a category ∧X fibered in groupoids over the category Sch as
follows:

(a) An object of the fiber ∧X(S) over the base scheme S consists of a diagram

(S,N ′
S)

φ
//

��

(X,MX)

(S,NS)

��
S

where φ gives a family of standard log points in (X,MX) over (S,NS) that is minimal
in the sense of Definition 3.1.1.

(b) An arrow sitting over a morphism of schemes f : S → T consists of a morphism of
families of standard log points F : (S,N ′

S)→ (T,N ′
T ) over the strict morphism of log

schemes f : (S,NS)→ (T,NT ) induced by f , forming a cartesian square and making
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the following diagram commutative:

(X,MX)

(S,N ′
S)

F //

��

φS

22

(T,N ′
T )

φT

==

��

(S,NS)
f

strict // (T,NT ).

We now give an alternate description of ∧X as an open substack of a fiber product of
algebraic stacks. Recall the definition in section 2.1 of the stack T or parameterizing fine,
saturated log structures. Furthermore, recall from the discussion in Example 2.3 that when
taken with their trivial log structures, A parameterizes families of DF(1) log structures
and BGm parameterizes families of standard log points. Each comes with their respective
universal log structure MA and MBGm

. These log structures correspond to the inclusion
i : A× BGm → T orC.

Consider the fiber product B := (A × BGm) ×T orC T or(X,MX) given by the cartesian
diagram

B //

��

// T or(X,MX)

Log

��
A×BGm i

// T orC.

The universal property of fiber product induces a morphism as follows:

Definition 3.2.2. We define a morphism of fibered categories Φ : ∧X → B.
Given an object in ∧X(S)

(S,N ′
S)

φS //

��

(X,MX)

(S,NS)

��
S

we obtain an object of B(S) as follows:

(1) the data of the log structure N ′
S ≃ NS⊕N is equivalent to a morphism S → A×BGm

since NS is a DF(1) log structure;
(2) the arrow φS is equivalent to a morphism S → T or(X,MX).

Notice that the maps S → T orC via A× BGm and T or(X,MX) are identical, since they are
given by NS ⊕ N . By the universal property of fiber products, this defines a morphism
S → B. The morphism on arrows is defined similarly.

Denote by MB and M′
B the log structures on B pulled back from the canonical log

structures onA andA×BGm respectively. These log structures produce a family of standard
log points (B,M′

B)→ (B,MB). Furthermore, since the two compositions B → A×BGm →
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T orC and B → T or(X,MX) → T orC coincide, there exists a map φB : (B,M′
B) → (X,MX).

Thus B naturally admits a family

(B,M′
B)

φB //

��

(X,MX)

(B,MB)

��
B.

of standard log points in (X,MX).
Consider now any map f : S → B from a scheme S. The map f corresponds to a unique

family of standard log points in (X,MX) over S given by the following pullback diagram:

(S,M′
S)

//

��

(B,M′
B)

//

��

(X,MX)

(S,MS) //

��

(B,MB)

��
S // B.

In this way, B represents a fibered category over Sch parameterizing families of standard
log points in (X,MX) whose base log structure comes from a strict map to (B,MB). Since
the base log structureMmin

S of a minimal family is constructed (in the proof of Proposition
3.1.3) as the sub-log structure generated by the single element β1(e), all minimal families
are of this type. It is not difficult to reformulate the definition of the map Φ using this
dictionary for S-points of B.

Since minimality is an open condition, there must be an open substack B′ ⊂ B parametriz-
ing minimal families of standard log points in (X,MX) pulled back from B. The morphism
Φ factors through B′, providing a morphism Φ′ : ∧X → B′.

Proposition 3.2.3. The functor Φ′ is an equivalence. Hence, the stack ∧X is algebraic.

Proof. That Φ′ is both full and faithful follow from the above description of B as a moduli
stack of families of standard log points in (X,MX) pulled back from the family (B,M′

B)→
(B,MB) since the morphisms are the same in both categories. Essential surjectivity is
obvious from the description of the map. Consider a minimal family of standard log points
in (X,MX) over S:

(S,M′
S)

φS //

��

(X,MX)

(S,MS)

��
S.

The log structureM′
S
∼=MS ⊕N is equivalent to a map S → A× BGm, and the log map

φS is equivalent to a map S → T or(X,MX). The two compositions S → A× BGm → T orC
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and S → T or(X,MX) → T orC coincide. Since the family is minimal, this is equivalent to a
map S → B factoring through B′. �

Remark. The stack ∧X comes equipped with two canonical log structures M∧X and N∧X

coming from the log structuresMA andMBGm
respectively.

3.3. The Category (∧X,M∧X) fibered over LogSchfs. We will now make explicit the
connection between the stack ∧X over Sch and the groupoid fibration ∧′X over LogSchfs

from Definition 2.4.1. We begin by discussing the universal structures on ∧X .
The construction of the evaluation stack ∧X gives two natural log structures. The first,

M∧X , is induced by restriction from the log structure MA on A. The second, N∧X , is
induced by the log structure on BGm. The pairs (∧X,M∧X⊕N∧X) and (∧X,M∧X) fit into
a family of standard log points:

(∧X,M∧X ⊕N∧X) //

��

(X,MX)

(∧X,M∧X).

This family is a universal object for the evaluation stack, the map to ∧X given simply
by forgetting the log structures and the map to (X,MX). A morphism f : S → ∧X is
equivalent to a pull-back diagram

(∗) (S,MS ⊕N ) //

φS

,,

��

(∧X,M∧X ⊕N∧X) //

��

(X,MX)

(S,MS)

��

f ′

// (∧X,M∧X)

��
S

f
// ∧X.

The map f ′ above is strict, and the family of standard log points

(S,MS ⊕N )
φS //

��

(X,MX)

(S,MS)

corresponding to f is a minimal family in the sense of definition 3.1.1 precicely because of
the strictness of f ′.

Proposition 3.3.1. The data of a morphism (S,MS)→ (∧X,M∧X) is equivalent to giving
a family of standard log points over (S,MS) in (X,MX). Thus, the log stack (∧X,M∧X)
represents the fibered category over LogSchfs parametrizing families of standard log points
in (X,MX). In other words, the categories (∧X,M∧X) and ∧′X are equivalent as groupoid
fibrations over LogSchfs.
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Proof. A morphism h′ : (S,MS)→ (∧X,M∧X) detrmines a commutative diagram

(S,MS ⊕N ) //

φS

,,

g

��

(∧X,M∧X ⊕N∧X) //

��

(X,MX)

(S,MS)
h′

// (∧X,M∧X)

where the bottom left square is cartesian. Unlike the top half of the diagram (∗), the map h′

is not necessarily strict. The pair of maps g and h̄ determine a family of standard log points
in (X,MX).

Inversely, let φS : (S,M′
S) → (X,MX) be a family of standard log points in (X,MX)

over (S,MS). There exists a unique minimal family φmin : (S,M′
S
min) → (X,MX) sitting

over (S,Mmin
S ) and a map fmin : (S,MS)→ (S,Mmin

S ) fitting into a morphism of families,
as stated in Proposition 3.1.3. Since φmin in turn sits over the scheme S, this produces a
map f : S → ∧X and an extended diagram :

(S,M′
S)

��

// (S,M′
S
min) //

��

(∧X,M∧X ⊕N(S,MS)∧X) //

��

(X,MX)

(S,MS)
fmin

// (S,Mmin
S )

��

f ′

// (∧X,M∧X)

��
S

f
// ∧X.

The desired map h′ : (S,MS)→ (∧X,M∧X) is determined by the composition of fmin and
f ′, and the uniqueness of fmin. �

3.4. Contact order decomposition of ∧X. In this section we give a stratification of ∧X
indexed by N. The components of the stratification correspond to possible contact orders of
marked points. Consider the family φS : (S,MS ⊕NS)→ (S,MS) of standard log points in
(X,MX) over (S,MS), and let s be a geometric point of S. We have a map on the level of
characteristics

φ∗
SMX

φ♭
S→MS ⊕N S → N S

where the second arrow is given by the natural projection. Assume that the image of s in
X lies in the locus where MX non-trivial (i.e. is mapped to the relative divisor). Denote

by δ and σ the generators of φ∗
S(MX,s) and N S,s respectively. Then the above composition

restricts on the stalks at s to δ 7→ c · σ for some integer c ∈ N.

Definition 3.4.1. The integer c is called the contact order of the standard log point φ over
the geometric point s. When the image of s in X lies in the locus withMX trivial, we define
the contact order c = 0.

This definition corresponds exactly to the contact order of the marked points of a minimal
log stable map. The following lemma shows that the contact order remains constant along
a family. This fact provides our stratification.

Lemma 3.4.2. In a minimal family of standard log points in (X,MX) over a scheme S,
the points whose fibers have fixed contact order c form an open subscheme of S.
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Proof. Again, denote our family by φS : (S,M′
S) → (X,MX) over (S,MS). Assume that

the fiber over the point s ∈ S has contact order c, andM′
S
∼=MS ⊕NS. As above, we have

the composition φ∗(MX)s → M′
S,s/MS,s

∼= N S is given by δ 7→ c · σ. By [Ols03] Lemma
3.5, this generalizes to nearby points of s. Thus fibers having contact order c is an open
condition on the base. �

Proposition 3.4.3. We have the following disjoint union of stacks

∧X =
∐

c∈N

∧cX

where ∧cX is the stack parameterizing minimal families of standard log points in (X,MX)
with contact order c.

Proof. By Lemma 3.4.2, the value of the contact order along the fiber of a family defines
a continuous map ∧X → N. Since N is discrete, this map prescribes the stratification
∧X =

∐

c∈N ∧cX . The stack ∧cX is exactly the pre-image of c. �

In order to make use of ∧X as an evaluation space for logarithmic stable maps, we need
to understand the basic structure of the components ∧cX . We end this section with such an
analysis, beginning with the following easy proposition.

Proposition 3.4.4. ∧0X = X × BGm

Proof. In a family of standard log points in (X,MX) over a scheme S with contact order
0, we have MS

∼= φ∗
SMX . The log structure NS is given by a map S → BGm, thus such

families are equivalent to a map S → X × BGm. �

Corollary 3.4.5. If the target (X,MX) comes equipped with the trivial log strucureMX
∼=

O∗
X , then ∧X = X × BGm.

Proof. In this case ∧X = ∧0X . �

Recall from section 2.3 the interpretation of A as the stack associating to a scheme S the
groupoid of pairs (L, s) where L is a line bundle and s ∈ H0(L∨). The substack BGm ⊂ A
associates to S the groupoid of pairs (L, 0), where L is a line bundle, and 0 is the zero section.

Definition 3.4.6. Define a map

(3.1) νc : A× BGm → BGm

(

(L, s), (L′, 0)
)

7→ (L⊗ L′⊗c, 0).

This map is defined fiber-wise, where L and L′ are line bundles over the base S.

Remark. We should, in fact, view the map νc as sending sections s and 0 to s · 0⊗c.

Lemma 3.4.7. The map νc induces a morphism of log stacks with their natural log structures.

Proof. By the discussion in Example 2.3, the map on the level of line bundles with sec-
tions induces a map of corresponding Gm-torsors, hence a map of sheaves of monoids
ν♭c : ν∗cMBGm

→ MA ⊕MBGm
given by δ 7→ e + c · σ. Here δ, e, and σ are the genera-

tors of ν∗cMBGm
,MA, and MBGm

respectively. One can check that ν♭c gives a map of the
corresponding log structures. �

Let D ⊂ X be the relative divisor on X corresponding toMX , i.e. the locus in X where
MX is non-trivial. The locus D has a natural closed scheme structure given locally by the
generator of MX . Let MD =MX |D denote the log structure on D. This log structure is
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naturally isomorphic to the log structure induced by O(−D)|D. SinceMD is itself also DF(1)
(in fact, it is generically rank 1), this induces a natural map f : (D,MD)→ (BGm,MBGm

).
The cartesian diagram of log stacks

(3.2) (Ic,M′
Ic)

//

��

(A×BGm,MA×BGm
)

νc

��

(D,MD)
f

// (BGm,MBGm
).

gives a fiber product description of the component ∧cX .

Proposition 3.4.8. ∧cX ∼= Ic

Proof. We use the universal property of the above cartesian diagram. In fact, M∧X is
given by the composition Ic → A × BGm → A and N∧X is given by the composition
Ic → A × BGm → BGm (the second arrow is the projection, not νc). Denote the log
structures on Ic corresponding to these compositions byMIc and NIc respectively. Then we
haveM′

Ic =MIc ⊕OIc
NIc . Consider the diagram:

(3.3) (Ic,M
′
Ic)

//

��

(D,MD)
�

� strict // (X,MX)

(Ic,MIc).

This induces a family of standard log points in (X,MX). By the strictness of f ′ in (3.2) and
the description of ν♭c in the proof of Lemma 3.4.7, the above diagram in fact gives a minimal
family of standard log points in (X,MX) with contact order c.

Consider any family of minimal log points in (X,MX) with contact order c:

(3.4) (S,M′
S)

fS //

��

(X,MX)

(S,MS).

The log structureM′
S induces a strict log map (S,M′

S)→ (A×BGm,MA×BGm
). Composing

with νc determines a map φ : (S,M′
S)→ (BGm,MBGm

). On the other hand, since c > 0, the
map fS factor through (D,MD). This induces another map φ′ : (S,M′

S)→ (BGm,MBGm
)

which coincides with φ by the description of νc. Thus, we obtain a unique map g : S → Ic,
such that (3.4) is the pull-back of (3.3). The statement follows from the moduli interpretation
of ∧cX . �

3.5. Cohomology of ∧X. Recall from [Edi10] that the cohomology ring of a quotient stack
is given by the equivariant cohomology of the corresponding group action. The cohomology
of the components ∧cX can be described combinatorially in this way.

Let ND/X be the normal bundle of D in X , and let ND/X be the DF(1) log structure over
D induced by ND/X with the zero section. The diagram of log stacks above induces the
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following cartesian diagram of stacks:

∧cX //

��

A× BGm

νc
��

D
f

// BGm.

The map f , as above, is induced by ND/X . The stack A × BGm can be written as the
quotient [A1/G2

m] where the action of the first component is given by multiplication and is
trivial for the second component. The corresponding weights of these actions give respective
equivariant parameters s and t. Let γ denote the first chern class c1(ND/X) ∈ H

∗(D)Q. The
cohomology of ∧cX is described in the following proposition.

Proposition 3.5.1. H∗(∧cX)Q = H∗(D)Q[s, t]/(s+ ct− γ)

Proof. The torus equivariant cohomology of A1 given by the above action is simplyH∗(BG2
m).

This is the polynomial ring in the variables s and t representing the weights of the action.
Over a base S, let MS ⊕ M′

S and NS denote the log structures corresponding to S →

A× BGm and S → BGm respectively. Set local generators e ∈ MS, σ ∈ M
′

S and δ ∈ N S.
The map νc corresponds to sending δ to e + cσ. The result follows. �

4. Generalization to fs log schemes

4.1. The DF(n) case. We now consider the more general case of a log-smooth target scheme
X endowed with a DF log structureMX of arbitrary rank. Extending the construction of ∧X
to this case provides an evaluation space for minimal logarithmic stable maps as constructed
in [AC10] for DF(n) log schemes. Following this, we will extend even further in section 4.2
to any fine, saturated target log scheme.

A DF(n) log structure MX is globally presented by a morphism Nr → MX that lifts
locally to a chart. Let i = 1, . . . , n index the r copies of N and ji : N →֒ Nr the incusion of
the i-th component. The map

N
ji
→֒ Nr →MX

induces a DF(1) sub-log structureMi ⊂MX , defining DF(1) log schemes (Xi,Mi) for each
i (with Xi = X). (X,MX) can be written as a fibered product

(X,MX) = (X1,MX1
)×X · · · ×X (Xr,MXr

),

which simply says
(X,MX) = lim←−

i

(Xi,MXi
).

This fact allows us to take advantage of our construction for the ∧Xi.
Recall from Corollary 3.4.5 that whenX carries the trivial log structureO∗

X , the evaluation
stack is isomorphic to X ×BGm. The canonical map (Xi,MXi

)→ X induces a map

(∧Xi,M∧Xi
)→ (X × BGm,MBGm

).

Consider the fiber product

(∧X,M∧X) := (∧X1,M∧X1
)×(X×BGm,MBGm) · · · ×(X×BGm,MBGm ) (∧Xr,M∧Xr

).

This is equivalent to
(∧X,M∧X) = lim←−

i

(∧Xi,M∧Xi
).
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Proposition 4.1.1. The log algebraic stack (∧X,M∧X) represents the fibered category ∧′X.

Proof. Theorem 2.6 in [AC10] is the main argument used to extend the theory of minimal
log stable maps to the DF(n) case. Our situation is a special case of this: for the category
SecC/B(Z/C) fibered over LogSchfs(B,MB) to which the theorem applies, simply take B to be
X ×BGm, C to be the universal family (X ×BGm,MBGm

), W := (X,MX)×B, and Z to
be the fiber product of C with W over (X × B)×B B. �

Using this fibered product construction, we obtain a universal diagram

(4.1) (∧X,M∧X ⊕N∧X)

��

f
// (X,MX)

(∧X,M∧X).

Definition 4.1.2. A family of standard log points in (X,MX) over (S,MS) is calledminimal
if it is the pull-back of (4.1) along a strict map (S,MS)→ (∧X,M∧X).

Remark. It is enough to check strictness at geometric points. Hence a family of standard log
points in (X,MX) is minimal if and only if each geometric fiber is minimal.

As in the DF(1) case, we can give a combinatorial description of minimality.

Proposition 4.1.3. Consider a family

(S,MS ⊕NS)
f

//

��

(X,MX)

(S,MS)

where S is a geometric point. It is minimal in the sense of Definition 4.1.2 if and only if

(1) MS
∼= Nm for some m ≤ r;

(2) for each irreducible element e ∈ MS, there exists a unique irreducible element δ ∈
f ∗MX whose image under the composition f ∗MX →MS ⊕NS →MS is e.

Proof. Denote by φi : (X,MX) → (Xi,MXi
) the i-th projection. The composition φi ◦ f

produces a family of standard log point in (Xi,MXi
). Denote by fi the minimal family

associated to φi ◦ f provided by Proposition 3.1.3,

(S,Mmin
i ⊕NS)

fi
//

��

(Xi,MXi
)

(S,Mmin
i ),

with the natural map (S,MS) → (S,Mmin
i ). Since (∧X,M∧X) is constructed as a fibered

product, by Proposition 4.1.1 we have a canonical map

ψ : (S,MS)→ (S,M1)× · · · × (S,Mr).

Since S is a geometric point, ψ is an isomorphism of the underlying schemes.
To complete the proof, assume first that the family in the statement of the proposition is

minimal. Then ψ is a isomorphism. Since Mmin
i is DF(1) log structure for all i, condition
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(1) holds. Consider the composition f ∗MX → MS ⊕ NS → MS. Note that it can be

constructed as the product of f ∗
iMX → Mmin

i ⊕ NS → Mmin
i for i = 1, 2, · · · r. Thus

condition (2) follows.
For the other direction, assumeMS satisfies the two conditions in the statement. Then one

can easily check that ψ induces an isomorphism of characteristics, hence is an isomorphism.
�

4.2. The case of fs log schemes. Finally, we consider the case of an arbitrary fine, satu-
rated log scheme (X,MX), as in Theorem 1.1.1.

Proof of Theorem 1.1.1. The statement is local on X , thus we can shrink X and assume
that there is a chart P →MX with P fine and saturated. The following lemma finishes the
proof. �

Lemma 4.2.1. Assume there is a map P →MX from a fine, saturated monoid P that locally
lifts to a chart. Then the fibered category ∧′X is represented by a log stack (∧X,M∧X).

Proof. A log structure with this property, called a generalized DF log structure, is shown in
[AC10] to have a useful structure which we describe briefly here. By 2.1.9(7) in Chapter 1
of [Ogu06], we can write P = lim−→(Na ⇉ Nb) for non-negative integers a, b. Since P →MX

locally lifts to a chart, the compositions Na → P → MX and Nb → P → MX induce
respective DF(a) and DF(b) log structuresMa andMb on X fitting into a limit diagram of
log schemes

(X,MX) = lim←−

(

(Xb,Mb) ⇉ (Xa,Ma)

)

,

where Xa = Xb = X . Finally, a similar application of Theorem 2.6 from [AC10] as used in
our proof of Proposition 4.1.1 shows that ∧′X is represented by

lim←−

(

∧ (Xb,Mb) ⇉ ∧(Xa,Ma)

)

.

�

5. Logarithmic Gromov-Witten theory

5.1. Our construction of ∧X with its universal diagram

(X,M∧X ⊕N∧X) //

��

(X,MX)

(∧X,M∧X)

��
∧X.

mimics the situation for KΓ(X,MX) described in the introduction. The stack ∧X provides
the evaluation space for KΓ(X,MX), allowing us to define evaluation maps and the GW
invariants they produce in this setting. Restricting the universal log stable map (C,MC)→
(X,MX) over (KΓ(X,MX),MKΓ(X,MX)) to the i-th marked point gives a morphism

evi : (KΓ(X,MX),MKΓ(X,MX))→ (∧X,M∧X
).

of fibered categories. We define these to be our evaluation morphisms.
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Definition 5.1.1. For i = 1, . . . , n, define a morphism

evi : (KΓ(X,MX),MKΓ(X,MX))→ (∧X,M∧X
)

of categories fibered over LogSchfs as follows:
On the level of objects, a morphism (S,MS) → (KΓ(X,MX),MKΓ(X,MX )) corresponds

to a family of log stable maps

(C,MC) //
f

//

��

(X,MX)

(S,MS)

over a log scheme (S,MS). Let Σi ⊂ C be the image of the section σi : S → C corresponding
to the i-th marked point. Restricting to Σi provides a locus in C isomorphic to S where
MC has the structure of a standard log point. This gives a family of standard log points in
(X,MX)

(Σi,MC|Σi
)
f ′|Σi //

��

(X,MX)

(S,MS)

which in turn corresponds to a morphism (S,MS)→ (∧X,M∧X).
The morphism on the level of arrows is defined similarly.

Proposition 5.1.2. Assume that the generalized DF pair (X,MX) is log smooth. Then the
stack of minimal log stable maps admits a virtual fundamental class [KΓ(X,MX)]

vir.

Proof. Denote by T orC the stack parameterizing fs log structures over C. Note that we can
build a commutative log diagram as follows:

(5.1) (C,MC)

++''N

N

N

N

N

N

N

N

N

N

N

##

(XK,MXK
) //

��

(XT ,MXT
)

��

// (X,MX)

��
KΓ(X,MX)

α // T orC // pt,

where (XK,MXK
) and (XT ,MXT

) are the respective fiber products log stacks, and the arrow
α is induced by the canonical log structure on KΓ(X,MX). An identical argument to Section
4.1 of [Che10b] implies that there exists a perfect obstruction theory E. → LKΓ(X,MX)/T orC

for the map α : KΓ(X,MX) → T orC. The complex E. determines a vector bundle stack E

over KΓ(X,MX), and the pair (α,E) satisfy Condition 2.8 (i.e., condition ⋆) from [Man08].
Thus we may use Manolache’s refined pullback α!

E : A∗(T orC)→ A∗(KΓ(X,MX)).
Note that T orC is of pure dimension 0 and stratified by global quotients (as in Definition

4.5.3 of [Kre99]). Thus there is a fundamental class [T orC], and we have [KΓ(X,MX)]
vir =

α!
E[T orC].

�
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This virtual class and the evaluation maps evi provide the necessary ingredients for loga-
rithmic GW invariants, which we now define.

Definition 5.1.3. For each i = 1, . . . , n, fix cohomology classes γi ∈ H
∗(∧X)Q. Pulling the

γi back along the evaluation maps evi, define the logarithmic GW invariant 〈γ1, . . . , γn〉
(X,MX)
Γ

by the product

〈γ1, . . . , γn〉
(X,MX)
Γ :=

(

n
∏

i=1

ev∗i γi

)

∩ [Kγ(X,MX)]
vir .
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