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A NOTE ON A MATRIX VERSION OF THE FARKAS LEMMA

ALJAŽ ZALAR

Abstract. A linear polyomial non-negative on the non-negativity domain of
finitely many linear polynomials can be expressed as their non-negative linear
combination. Recently, under several additional assumptions, Helton, Klep,
and McCullough extended this result to matrix polynomials. The aim of this
paper is to study which of these additional assumptions are really necessary.

1. Introduction

We are interested in matrix generalizations of the following variant of the Farkas
lemma.

Theorem 1. Let f1, f2, . . . , fk be linear polynomials in n variables, i.e.

fi(x1, . . . , xn) = a
(i)
0 + a

(i)
1 x1 + . . . + a

(i)
n xn, where a

(i)
j ∈ R for i ∈ {1, . . . , k},

j ∈ {0, . . . , n}. Let K = {x ∈ R
n|fi(x) ≥ 0 ∀i ∈ {1, . . . , k}}. If f is another linear

polynomial in n variables, for which f |K ≥ 0 holds, then there exist non-negative

constants ci, such that

f = c0 + c1f1 + c2f2 + . . .+ ckfk.

The following generalization was obtained by Helton, Klep, and McCullough in
[2], see their Theorem 6.1. We write R

d×d[x] (resp. SSRd×d[x]) for the set of all
polynomials whose coefficients are d× d (resp. symmetric d× d) matrices.

Theorem 2. Suppose L1 = I +
∑n

i=1 Pixi ∈ SSRd×d[x] is a monic linear poly-

nomial whose non-negativity domain DL1(1) := {x ∈ R
n | L1(x) � 0} is bounded.

Then for every linear polynomial L2 = R0 +
∑n

i=1 Rixi ∈ SSRl×l[x] such that

L2|DL(1) ≻ 0, there are Aj ∈ R
l×l [x] and Bk ∈ R

d×l [x] satisfying

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kL1Bk.

Note that this result also covers the case of several constraints; simply take L1 to
be their direct sum. The aim of this paper is to study the necessity of the following
assumptions in Theorem 2:

(1) Boundedness of DL1(1): Example 1 shows, that this assumption cannot
be removed.

(2) Monicity of L1: In Theorem 3 we prove, that for diagonal L1 monicity
can be removed from Theorem 2. The general case remains open.
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(3) Strict positivity of L2|DL1(1)
: In Section 4 we show that this assumption

can be replaced with L2|DL1 (1)
� 0 in the following special cases:

• In the one-variable case (even if DL1(1) is unbounded).
• When the span of the coefficients of L1 is closed for multiplication.

The general case remains open. However, Example 2 shows that simultane-
ous generalization to non-monic L1 and non-strict L2|DL1 (1)

is not possible.

For the sake of completeness we also note that polynomials Aj and Bk in Theo-
rem 2 need not be constant as shown by Example 3.1 and Theorem 3.5 in [2].

2. Boundedness of DL1(1)

The assumption of boundedness in Theorem 2 cannot be removed, because of
the following example:

Example 1. For linear polynomials

L1 =





1 + x1 0 0
0 1 + x1 + x2 0
0 0 1 + x2



 , L2 =

[
1 + 1

3x1
3
4

3
4 1 + 1

3x2

]

we have DL1(1) ⊆ D̃L2(1) =
{
(x1, x2) ∈ R

2|L2(x1, x2) ≻ 0
}
, but L2 cannot be

expressed as
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk. This implies that we need boundedness of

DL1(1) in Theorem 2.

Proof. We have DL1(1) =
{
(x1, x2) ∈ R

2|x1 ≥ −1, x1 + x2 ≥ −1, x2 ≥ −1
}
. On

the other hand, the fact 1 + 1
3x1 > 0 on DL1(1) together with

det(L2) =

(

1 +
1

3
x1

)(

1 +
1

3
x2

)

−

(
3

4

)2

=

=

(
2

3
+

1

3
(1 + x1)

)(
2

3
+

1

3
(1 + x2)

)

−

(
3

4

)2

=

=

(
2

3

)2

+
2

9
(1 + x1 + 1 + x2) +

1

9
(1 + x1) (1 + x2)−

(
3

4

)2

=

=

(
15

144

)

+
2

9
(1 + x1 + x2) +

1

9
(1 + x1) (1 + x2) ,

where the second two sumands in the last line are non-negative on DL1(1), gives
L2|DL1 (1)

≻ 0.

Now we are going to show, that if L2 can be expressed as L2 =
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk, then Aj and Bk can be assumed to be constant matrices. Let us
denote Aj , Bk as

[

P
(j)
1 (x1, x2) R

(j)
1 (x1, x2)

P
(j)
2 (x1, x2) R

(j)
2 (x1, x2)

]

,






p
(k)
1 (x1, x2) r

(k)
1 (x1, x2)

p
(k)
2 (x1, x2) r

(k)
2 (x1, x2)

p
(k)
3 (x1, x2) r

(k)
3 (x1, x2)




 .

Comparing the entry (11) in
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk and L2 gives

∑

j

(

(P
(j)
1 (x1, x2))

2 + (P
(j)
2 (x1, x2))

2
)

+
∑

k

(

(p
(k)
1 (x1, x2))

2(1 + x1)+
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+(p
(k)
2 (x1, x2))

2(1 + x1 + x2) + (p
(k)
3 (x1, x2))

2(1 + x2)
) ?
︷︸︸︷
= 1 +

1

3
x1.

By observing the monomial of the form Kxn
i , n ∈ N,K 6= 0, i = 1, 2, of the highest

degree on the left side, it can be seen, that monomials Axn
i , n ∈ N, A 6= 0, i = 1, 2,

do not appear in any P
(j)
i nor p

(k)
i . With the same reasoning applied for entry

(22) not even in R
(j)
i and r

(k)
i . Further on, since monomials K and Kx1, K 6= 0,

do not come from products of monomials Kxm
1 xn

2 , K 6= 0, m,n ∈ N in P
(j)
i and

p
(k)
i , with some other monomials, they are not needed to satisfy the upper equality.

Similar reasoning (regarding monomials Kxm
1 xn

2 ) can be applied to other entries,
hence WLOG Aj , Bk are constant matrices.
The comparison of coefficients in

∑

j A
∗

jAj +
∑

k B
∗

kL1Bk and L2 in a constant-
matrix case gives the following equalities:
Entry (11):

(1) x2 :
∑

k

(

(p
(k)
2 )2 + (p

(k)
3 )2

)

= 0 ⇒ p
(k)
2 = p

(k)
3 = 0, ∀k

(2) x1 :
∑

k

(

(p
(k)
1 )2 + (p

(k)
2 )2

)

=
1

3

(3) 1 :
∑

j

(
2∑

i=1

(P
(j)
i )2

)

+
∑

k

(

(p
(k)
1 )2 + (p

(k)
2 )2 + (p

(k)
3 )2

)

= 1

Entry (12)(=entry (21)):

(4) x2 :
∑

k

(

p
(k)
2 r

(k)
2 + p

(k)
3 r

(k)
3

)

= 0

(5) x1 :
∑

k

(

p
(k)
1 r

(k)
1 + p

(k)
2 r

(k)
2

)

= 0

(6) 1 :
∑

j

(
2∑

i=1

P
(j)
i R

(j)
i

)

+
∑

k

(
3∑

i=1

p
(k)
i r

(k)
i

)

=
3

4

Entry (22):

(7) x2 :
∑

k

(

(r
(k)
2 )2 + (r

(k)
3 )2

)

=
1

3

(8) x1 :
∑

k

(

(r
(k)
1 )2 + (r

(k)
2 )2

)

= 0 ⇒ r
(k)
1 = r

(k)
2 = 0, ∀l

(9) 1 :
∑

j

(
2∑

i=1

(R
(j)
i )2

)

+
∑

k

(

(r
(k)
1 )2 + (r

(k)
2 )2 + (r

(k)
3 )2

)

= 1

We will see, that the upper equalities cannot be simultaneously satisfied. From 1

and 8 we conclude
∑

k

(
∑3

i=1 p
(k)
i r

(k)
i

)

= 0. We use this in 6 and get
∑

j

(
∑2

j=1 P
(j)
i R

(j)
i

)

=
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3
4 . Using 1 and 2 in 3 gives

∑

j

(
∑2

i=1(P
(j)
i )2

)

= 2
3 . Similarly using 7 and 8 in 9

gives
∑

j

(
∑2

i=1(R
(j)
i )2

)

= 2
3 . The following chain of (in)equalities should hold:

2

3
=

2
3 + 2

3

2
=
∑

j

2∑

i=1

(P
(j)
i )2 + (R

(j)
i )2

2
≥
∑

j

2∑

i=1

∣
∣
∣P

(j)
i R

(j)
i

∣
∣
∣ ≥

∑

j

2∑

i=1

P
(j)
i R

(j)
i =

3

4
,

where the first inequality follows from AG-inequalites applied to pairs
{

(P
(j)
i )2, (R

(j)
i )2

}

,

i.e.
(P

(j)
i

)2+(R
(j)
i

)2

2 ≥
∣
∣
∣P

(j)
i R

(j)
i

∣
∣
∣, ∀ i, j.

We conclude 2
3 ≥ 3

4 , which is obviously a contradiction. �

3. Monicity of L1

In this section we show, that for diagonal L1 monicity in Theorem 2 can be
removed. We first prove the case DL1(1) = {~a} in Proposition 1 and then also the
other cases of non-empty and bounded DL1(1) in Theorem 3.

Proposition 1. Suppose L1 ∈ SSRd×d[x] is a diagonal linear polynomial and

DL1(1) = {~a}. Then for every linear symmetric polynomial L2 ∈ SSRl×l[x] with
L2|DL(1) � 0, there are Aj ∈ R

l×l [x] and Bk ∈ R
d×l [x] satisfying

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kLBk.

In the proof we will use the following proposition:

Proposition 2. For A ∈ SSRl×l there exist Bk ∈ SSR2×l, such that

∑

k

B∗

k

[
x 0
0 −x

]

Bk = Ax.

Proof. According to the well-known fact every real symmetric matrix is real congru-
ent to a diagonalD with elements 1,−1 and 0 on the diagonal, i.e. A =

∑

k B̃
∗

kDB̃k,

where D, B̃k ∈ SSRl×l. Dx can be constructed from
[

x 0
0 −x

]

with the aim of equalities:

Eii =
[
ei 0

]
[

1 0
0 −1

] [
e∗i
0

]

,

−Eii =
[
0 ei

]
[

1 0
0 −1

] [
0
e∗i

]

,

where ei denotes the standard R
l×1 vector. �

Proof. (Proposition 1) With translation we can assume DL1(1) =
{

~0
}

. For a

polynomial

L̃1 =

[
x1 0
0 −x1

]

⊕ · · · ⊕

[
xn 0
0 −xn

]

we have DL̃1
(1) =

{

~0
}

. After applying Theorem 1 for a tuple of diagonal entries

of L1 and each diagonal entry of L̃1, it follows that L̃1 =
∑

j Ã
∗

j Ãj +
∑

l B̃
∗

kL1B̃k

for some constant Ãj , B̃k. Therefore it suffices to find Aj , Bk, such that L2 =
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∑

j A
∗

jAj +
∑

k B
∗

kL̃1Bk.

If we write L2(x) = R0 +
∑n

i=1 Rixi, then L2(~0) = R0 � 0. So there exists A, such
that R0 = A∗A. According to Proposition 2, Rixi can be expressed in a desired

way by

[
xi 0
0 −xi

]

, hence also with L̃1.

Since i was arbitrary, we are done. �

Now we will extend Proposition 1 to the general case. One additional lemma
will be needed for that.

Lemma 1. Suppose L = P0 +
∑n

i=1 Pixi ∈ SSRd×d[x] is linear polynomial and

let ~0 ∈ DL1(1) be an interior point. Then there exists a monic linear polynomial

L̃ = I +
∑n

i=1 P̂ixi ∈ SSRd̃×d̃[x], where d̃ ≤ d and DL(1) = DL̃(1), such that

L̃ = C∗LC in L = D∗L̃D, where C ∈ R
d×d̃, D ∈ R

d̃×d.

Proof. Since 0 is an interior point, P0 � 0 and Im(Pi) ⊆ Im(P0) for i = 1, . . . , n (See
[2, Proof of Proposition 2.1].). We have P0 = V ∗DV , where D is diagonal and V or-

thogonal. Further on V ∗LV = L|Im(P0)⊕0d−d̃, d̃ = dim(Im(P0)). Hence L|Im(P0) =

J∗(V ∗LV )J with J∗ := [Id̃ 0d̃×(d−d̃)] ∈ R
d̃×d. Defining P̃0 := P0|Im(P0) ≻ 0, gives

P̃0 = B∗B, where P̃0, B ∈ R
d̃×d̃ and B is invertible. So (B−1)∗L|Im(P0)B

−1 =

(B−1)∗B∗BB−1 +
∑

i(B
−1)∗Pi|Im(P0)B

−1xi = I +
∑

i(B
−1)∗Pi|Im(P0)B

−1xi =: L̃.

L̃ is in R
d̃×d̃ and DL(1) = DL̃(1). With C∗ := (B−1)∗J∗V ∗ ∈ R

d̃×d̃
R

d̃×d
R

d×d =

R
d̃×d and D∗ := (V −1)∗JB∗ ∈ R

d×d
R

d×d̃
R

d̃×d̃ = R
d×d̃, the lemma is proven. �

Theorem 3. Suppose L1 ∈ SSRd×d[x] is a diagonal linear polynomial and DL1(1)
is non-empty and bounded. Then for every linear symmetric polynomial L2 ∈
SSRl×l[x] with L2|DL(1) ≻ 0, there are Aj ∈ R

l×l [x] and Bk ∈ R
d×l [x] satisfy-

ing

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kLBk.

Proof. If DL1(1) = {~a}, then we can use Proposition 1 and we are done. If
dimDL1(1) = n, then by Lemma 1 WLOG L1 is monic and Theorem 2 is used.
Otherwise we have 1 ≤ dimDL1(1) =: k ≤ n − 1. Since DL1(1) is convex,

it lies in some affine subspace of dimension k. With translation WLOG ~0 ∈
DL1(1) and hence the affine subspace is actually a vector subspace of dimen-
sion k. Let B = {e′1, e

′

2, . . . , e
′

k} be the basis of this subspace. B can be com-
pleted to the basis of R

n, i.e. B′ =
{
e′1, . . . , e

′

k, e
′

k+1, . . . , e
′

n

}
. Standard ba-

sis {e1, e2, . . . , en} of R
n can be uniquelly expressed by B′ and vice versa, i.e.

ei =
∑n

j=1 α
(i)
j e′j and e′i =

∑n

j=1 β
(i)
j ej , for unique α

(i)
j , β

(i)
j ∈ R. Introducing

new unknows x′

i as xi =
∑n

j=1 α
(i)
j x′

j , gives also x′

i =
∑n

j=1 β
(i)
j xj . Putting ex-

pressed xi-s into L1(x1, . . . , xn), we get L̃1(x
′

1, . . . , x
′

n). The map Φ : Rn → R
n,

defined by Φ : (a1, . . . , an) 7→ (
∑n

j=1 β
(1)
j aj , . . . ,

∑n

j=1 β
(n)
j aj), is bijective and

L1((a1, . . . , an)) = L̃1(Φ(a1, . . . , an)). Hence Φ(DL1(1)) = DL̃1
(1). So DL1(1) and

DL̃1
(1) are in bijective correspondence. Similarly for DL2(1) and DL̃2

(1). There-

fore DL1(1) ⊆ DL2(1) ⇔ DL̃1
(1) ⊆ DL̃2

(1).

From the construction of basis B′, x′ ∈ DL̃1
(1) is of the form (x′

1, . . . , x
′

k, 0, . . . , 0).
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Let us write L̃1 =
(

P ′

0 +
∑k

i=1 P
′

ix
′

i

)

+
∑n

i=k+1 P
′

ix
′

i = L̃1,1(x
′

1, . . . , x
′

k)+

+L̃1,2(x
′

k+1, . . . , x
′

n) (L̃1 is still diagonal.). For

L̃ = L̃1,1(x
′

1, . . . , x
′

k)⊕

[
x′

k+1 0
0 −x′

k+1

]

⊕ · · · ⊕

[
x′

n 0
0 −x′

n

]

(which is obviously diagonal), DL̃1
(1) = DL̃(1), and with the use of Theorem 1 for

the tuple of diagonal entries of L̃1 and each diagonal entry of L̃, L̃ can be expressed
as
∑

j A
∗

jAj +
∑

k B
∗

kL̃1Bk. Hence it suffices to prove the statement of the theorem

for the pair L̃, L̃2.

Analogously as for L̃1 we write L̃2 as L̃2 =
(

R′

0 +
∑k

i=1 R
′

ix
′

i

)

+
∑n

i=k+1 R
′

ix
′

i =

L̃2,1(x
′

1, . . . , x
′

k) + L̃2,2(x
′

k+1, . . . , x
′

n). We have L̃2,1|DL̃1,1
(1) ≻ 0. Since there exists

an interior point in DL̃1,1
(1), Lemma 1 allows us to regard L̃1,1 as monic. Finally

Theorem 2 is used for the pair L̃1,1, L̃2,1.

It remains to express L̃2,2(x
′

k+1, . . . , x
′

n) = R′

k+1x
′

k+1+· · ·+R′

nx
′

n with L̃. According

to Proposition 2, Rix
′

i can be expressed with

[
x′

i 0
0 −x′

i

]

. Hence also with L̃.

Since i was arbitrary, we are done.
To conclude, we got the expression

L̃2(x
′

1, . . . , x
′

n) =
∑

j

Ã∗

j Ãj +
∑

k

B̃∗

kL̃1(x
′

1, . . . , x
′

n)B̃k.

Using x′

i =
∑n

j=1 β
(i)
j xj , we finally get

L2(x1, . . . , xn) =
∑

j

A∗

jAj +
∑

k

B∗

kL1(x1, . . . , xn)Bk.

�

4. Strict positivity of L2|DL(1)

The next thing to be studied is the necessity of positive definiteness in Theorem
2, i.e. whether semidefiniteness suffices. We separately study the one-variable case
from the general diagonal case.

4.1. One-variable case.

Theorem 4. Suppose L1(x) = P0 + P1x ∈ SSRd×d[x] is a linear polynomial

and DL1(1) has an interior point. Then for every linear symmetric polynomial

L2(x) = R0 + R1x ∈ SSRl×l[x] with L2|DL(1) � 0, there are Aj ∈ R
l×l [x] and

Bk ∈ R
d×l [x] satisfying

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kL1Bk.

Proof. Case 1: If DL1(1) is bounded and there exists an interior point in DL1(1),
then according to Lemma 1, we can assume L1 and L2 are monic, i.e. P0 = I, R0 =
I. Since we have just one variable, we may interpret both L1 and L2 as NC poly-
nomials, or precisely linear pencils. We will first show, that
DL1(1) ⊆ DL2(1) ⇒ DL1 ⊆ DL2 : Let us take X ∈ DL1 , X ∈ R

s×s, which means

L1(X) = I ⊗ I + P1 ⊗ X � 0. Or equivallently I ⊗ I + X ⊗ P1 � 0. We have to
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show, that X ∈ DL2 . Since X is symmetric, it can be real ortogonally diagonalized,
i.e. UXUT = D, U ∈ R

s×s. After multiplying with invertible matrix U ⊗ I we get
(U⊗I)(I⊗I+X⊗P1)(U⊗I)T = I⊗I+D⊗P1 � 0. Hence X ∈ DL1 ⇔ D ∈ DL1 .
I ⊗ I +D⊗P1 � 0 is a block-diagonal matrix with the blocks of the form I + diP1.
It follows I ⊗ I +D ⊗ P1 � 0 ⇔ I + diP1 � 0, ∀i ⇔ di ∈ DL1(1), ∀i. According to
the assumption di ∈ DL2(1), ∀i. Therefore X ∈ DL2.
To be able to use LP-satz for the pair L1, L2, DL1 must be bounded. But by [2,
Proposition 2.4] this is equivalent to DL1(1) being bounded. So by [2, Corollary
3.7] there exist Bk, such that L2 =

∑

k B
∗

kL1Bk.
Case 2: If DL1(1) is unbounded, then it is an interval of the form [a,∞), (−∞, a],
(−∞,∞), a ∈ R. With translation we may assume a = 0.
First we study the case DL1(1) = [0,∞). Since 0 ∈ DL1(1), we have P0 � 0.
We can also show, that P1 � 0. To explain: u∗L1(x)u = u∗P0u + u∗(P1x)u =
u∗P0u + xu∗P1u. In the case that u∗P1u 6= 0, we have x |u∗P1u| > |u∗P0u| ,
for x great enough. Therefore, if there exists u, such that u∗P1u < 0, then
lim
x→∞

x /∈ DL1(1). Contradiction.

Since P0 and P1 are positive semidefinite, we can use Newcomb’s theorem [5, Theo-
rem 20.2.2] (It is actually made for complex matrices but with a slight modification
of the proof it holds for real as well.) to simultaneously diagonalize them with
invertible S, i.e. S∗P0S, S∗P1S are both diagonal. So WLOG L1 is diagonal.
Analogously for L2. Now we just use Theorem 1 for diagonal entries of L1 and each
diagonal entry of L2 and we are done.
In the case DL1(1) = (−∞, 0], we have again P0 � 0. As above we show, that
P1 � 0. Since P0, P1 are semidefinite, Newcomb’s theorem [5, Theorem 20.2.2] can
be used and we proceed as above.
In the case DL1(1) = (−∞,∞), we have P0 � 0 and it is easy to show, that
P1 = 0. Therefore L1(x) = P0 and analogously L2(x) = R0, where R0 � 0. Hence
L2(x) = C∗C. �

The following example shows, that DL1(1) must have an interior point in Theo-
rem 4.

Example 2. For non-monic, non-diagonal polynomial L1(x) =

[
1 x
x 0

]

, we have

DL1(1) = {0}. Therefore DL1(1) is non-empty and bounded. It also holds that

L2(x) = x is non-negative on DL1(1), but there do not exist Aj ∈ R[x], Bk ∈
R

2×1[x], such that L2 =
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk.

Proof. Since det(L1) = −x2, DL1(1) = {0}. It is obvious, that L2|DL1 (1)
≥ 0.

The proof will be by contradiction. Let us say there exist Aj , Bk, such that
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk = x. Let Bk be of the form [b
(k)
1 , b

(k)
2 ]T , where b

(k)
i ∈ R[x].

Similarly Aj ∈ R[x]. Comparing the expression
∑

j A
∗

jAj +
∑

k B
∗

kL1Bk with x:

∑

j

A2
j +

∑

k

(

(b
(k)
1 )2 + 2(b

(k)
1 )(b

(k)
2 )x

) ?
︷︸︸︷
= x.

The coefficient at 1 on LHS equals
∑

j A
2
j,0 +

∑

k(b
(k)
1,0)

2, where Aj,0 denotes the

free monomial in Aj and b
(k)
1,0 the free monomial in b

(k)
1 . Since on RHS it is 0,
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Aj,0 = b
(k)
1,0 = 0, ∀j, k. But then the coefficient at x on LHS is 0, while on RHS 1.

Contradiction. �

4.2. General diagonal case. For diagonal L1 and L2|DL1 (1)
� 0 in Theorem 2,

we need two additional assumptions, to conclude, that unital linear map from the
continuation, which is positive, is actually completely positive. This is done by:

Theorem 5. [1, Theorem 2] Let A be commutative C∗-algebra and τ : A → S
positive linear function, where S is operator vector space. Then τ is completely

positive.

Definition Let L1 = P0 +
∑n

i=1 Pixi ∈ SSRd×d[x], S1 = Lin {P0, P1, . . . , Pn} and
v = (v1, v2, . . . , vn) ∈ R

n. A point v is an invertible interior point of L1, if it is

interior point in DL1(1) and v−1 :=
(
L1(v)|Im(L1(v))

)
−1

⊕ 0k ∈ S1 (v∗
−1 = v−1),

where k = n− dim(Im(L1(v))).

Theorem 6. Suppose L1 = P0 +
∑n

i=1 Pixi ∈ SSRd×d[x] is diagonal, DL1(1) is

bounded and has an interior point. Let a vector space S1 = Lin {P0, P1, . . . , Pn}
be algebra and there exists an invertible interior point v for L1. If for L2 = R0 +∑n

i=1 Rixi ∈ SSRl×l[x], where L2|DL1(1)
� 0, then there exist Aj ∈ R

l×l, Bk ∈

R
d×l, such that

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kL1Bk.

Proof. With substitutions xi = x̃i + vi, the invertible interior point v of L1 be-
comes interior point ~0 for L̃1 = P̃0 +

∑n

i=1 P̃ix̃1. L̃1 is also diagonal, P̃0 = L1(v)

and DL̃1
(1) = DL1(1) − v. The same is true for L2 and L̃2. Since DL1(1) ⊆

DL2(1) ⇔ DL1(1)− v ⊆ DL2(1)− v ⇔ DL̃1
(1) ⊆ DL̃2

(1), we have L̃2|DL̃1
(1) � 0.

Since 0 is an interior point for L̃1, we have Ker(P̃i) ⊆ Ker(P̃0) (See [2, Part of the

proof of Proposition 2.1] for details.). Let k = dim(Ker(P̃0))).(

(v−1)
1
2

)
∗

L̃1(v−1)
1
2 =

(

(v−1)
1
2

)
∗

P̃0(v−1)
1
2 +

∑

i

(

(v−1)
1
2

)
∗

(P̃ix̃i)(v−1)
1
2 == I ⊕

0k +
∑

i(P̂i ⊕ 0k)x̃i.

Defining L̂1 := I +
∑

i P̂ix̃i, we see, that L̂1 = [I 0]L̃1[I 0]∗, where I ∈ R
(n−k)2 , 0 ∈

R
(n−k)×k, D

L̂1
(1) = DL̃1

(1) and L̂1 is diagonal. Since ~0 an interior point in DL̃2
(1),

by Lemma 1 there exists monic L̂2, such that DL̃2
(1) = D

L̂2
(1) and L̂2 = C∗L̃2C,

L̃2 = D∗L̂2D. Therefore it suffices to prove the statement for L̂1, L̂2.

Now we define vector spaces Ŝ1 := Lin
{

I, P̂1, . . . , P̂n

}

and Ŝ2 := Lin
{

I, R̂1, . . . , R̂n

}

.

Since D
L̂1
(1) is bounded, generators for Ŝ1 are lineary independent by [2, Proposi-

tion 2.6] . Therefore τ : Ŝ1 → Ŝ2, where I 7→ I and P̂i 7→ R̂i, is well-defined unital
linear map. By [2, Theorem 3.5] it is also positive.
By the assumption of the theorem S1 = Lin {P0, P1, . . . , Pn} is algebra. We will

show, that Ŝ1 is also algebra. First we have

S̃1 = Lin
{

P̃0, P̃1, . . . , P̃n

}

= Lin

{

P0 +
∑

i

viPi, P1, . . . , Pn

}

=

= Lin {P0, P1, . . . , Pn} = S1.
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Then

Ŝ1 ⊕ 0k = Lin
{(

(v−1)
1
2

)
∗

P̃0(v−1)
1
2 ,
(

(v−1)
1
2

)
∗

P̃1(v−1)
1
2 , . . . ,

(

(v−1)
1
2

)
∗

P̃n(v−1)
1
2

}

=

=
(

(v−1)
1
2

)
∗

S̃1(v−1)
1
2 =

(

(v−1)
1
2

)
∗

S̃1(v−1)
1
2 .

For Ŝ1 to be algebra, it must be closed for multiplication. Equivalently Ŝ1 ⊕ 0k
must be closed for multiplication. Let us take s1, s2 ∈ Ŝ1 ⊕ 0k and prove s1s2 ∈

Ŝ1 ⊕ 0k.

s1 =
(

(v−1)
1
2

)
∗

s(v−1)
1
2 , s2 =

(

(v−1)
1
2

)
∗

s′(v−1)
1
2 ,

where s, s′ ∈ S1.

s1s2 =
(

(v−1)
1
2

)
∗

s(v−1)
1
2

(

(v−1)
1
2

)
∗

s′(v−1)
1
2 =

(

(v−1)
1
2

)
∗

sv−1s
′(v−1)

1
2 .

Since S1 is algebra and v−1 by assumption in S1, sv−1s
′ ∈ S1, Ŝ1 ⊕ 0k is algebra.

Since all matrices in
{

I, P̂1, . . . , P̂n

}

are diagonal, Ŝ1 is commutative algebra. Let

ŜC
1 be complex linear span of

{

I, P̂1, . . . , P̂n

}

. Similarly for Ŝ2, Ŝ
C
2 . Now we extend

τ to τC : ŜC
1 → ŜC

2 , where τC(I/P̂i) = I/R̂i. Since positive elements from ŜC
1 are

in Ŝ1 and τC|
Ŝ1

= τ , τC is positive. Taking ŜC
1 as A and ŜC

2 as S in Theorem

5, τC is in fact completely positive. Also τC|
Ŝ1

= τ is completely positive. By

[2, Theorem 3.5] DL1 ⊆ DL2 . By LP-satz [2, Corollary 3.7] for the pair L̂1, L̂2

there exist Vj ∈ R
d×m and µ ∈ N, such that L̂2 =

∑µ

j=1 V
∗

j L̂1Vj . The theorem is
proven. �

Remark: Aj , Bk in Theorem 6 are constant matrices and not matrix polynomials,
such as in Theorem 2.

Corollary 1. Suppose L1 = P0 +
∑n

i=1 Pixi ∈ SSRd×d[x] is diagonal and DL1(1)

is n-simplex. If for L2 = R0 +
∑n

i=1 Rixi ∈ SSRl×l[x], where L2|DL1(1)
� 0, then

there exist Aj ∈ R
l×l, Bk ∈ R

d×l, such that

L2 =
∑

j

A∗

jAj +
∑

k

B∗

kL1Bk.

Proof. n-simplex in R
n is an intersection of n + 1 halfspaces. Therefore it can

be defined as DL(1) of L =
⊕n+1

i=1

(

a
(i)
0 +

∑n

j=1 a
(i)
j xj

)

= P̃0 +
∑n

i=1 P̃ixi ∈

SSR(n+1)×(n+1), for appropriate a
(i)
j ∈ R. By Theorem 1, L =

∑

k A
∗

kL1Ak. So

it suffices to prove the statement for the pair L,L2. Since DL1(1) is bounded,
{

P̃0, P̃1, . . . , P̃n

}

is lineary independent set in DR
(n+1)2 =

{

diagonal R(n+1)2 matrices
}

.

Hence also its basis, which firstly means S1 is algebra and secondly v−1 ∈ S1 in
Theorem 6 for any interior point v ∈ DL1(1). By the latter the statement fol-
lows. �
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