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Abstract

We prove the existence of infinitely many classical periodic solutions
for a class of degenerate semilinear wave equations:

utt − uxx + |u|s−1
u = f(x, t),

for all s > 1. In particular we prove the existence of infinitely many
classical solutions for the case s = 3 posed by Brézis in [Brézis83]. The
proof relies on a new approach and new upper a priori estimates for mini-
max values of ,a pertubed from symmetry, strongly indefinite functional.1
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1 Introduction

In this paper we construct infinitely many classical time-periodic solutions for
the following semilinear degenerate wave equation with time-dependent forcing
term f :

utt − uxx + g(u)− f(t, x) = 0 (1.1)

u(0, t) = u(π, t) = 0. (1.2)

where g(u) = |u|s−1u and F (x, t, u) = g(u) + f(x, t), where f is of class C2 and
satisfies the Dirichlet boundary conditions.

Brézis problem[Brézis83]:It seems reasonable to conjecture that when g(u) =
u3 problem (1.1),(1.2) possesses a solution -even infinitely many solutions- for
every f(or at least a dense set of f ’s.)

Theorem 1.1. If f ∈ C2 then there exists infinitely many classical solutions of
(1.1),(1.2) for all s > 1.

Theorem 1.1 also prove the existence of classical solutions for a question
of Bahri-Berestycki in [BB84] on the existence of infinitely many solutions of
(1.1),(1.2) for the class of g(u) = |u|s−1u.

The weak version of the conjecture of Brézis, the existence of weak solu-
tions for a dense set of f ’s has been shown to be true by Tanaka in [Tanaka86].
The problem (1.1),(1.2), for a given f , has been studied by Tanaka [Tanaka88],
Bartsch-Ding-Lee [BDL99], for arbitrary s > 1, and Bolle-Ghoussoub-Tehrani
[BGT2000], Ollivry [Ollivry83] for the case 1 < s < 2 however only weak solu-
tions have been obtained. As already noticed in [Rabinowitz71] there are two
classes of monotone functions for problem (1.1),(1.2), the strongly monotone
F , ∂F

∂u
≥ α > 0 which can be compared to the uniformly elliptic case and the

degenerate monotone case which allows ∂F
∂u

= 0. These two classes of mono-
tone functions have been extensively studied by Torelli[Torelli69],Rabinowitz
[Rabinowitz71], Hall[Hall70], Hale[Hale66], in the small perturbative case, i.e.
with a smallness assumption on f . No such a smallness assumption is assumed
here and the result we prove is a global one.

The difficulty in proving the regularity of the weak solutions obtained by
[Tanaka88],[BDL99],[BGT2000] lies in the strong monotonicity assumption which
is required by the regularity approach of Brézis-Nirenberg, [BN78-2]. In [BN78-2]
Brézis and Nirenberg show that an L∞ weak solution is smooth as long as F
is smooth and satisfies the strong monotonicity assumption ∂F

∂u
≥ ε > 0 which

fails here as g(u) has a vanishing derivative. Note that in the highly degen-
erate case where F vanishes in an interval, weak solutions in L∞ need not to
be smooth, see [BN78-2] or [BN78-1] theorem I.8. Therefore, to find classical
periodic solutions we will proceed differently. In [Rabinowitz78] Rabinowitz de-
veloped a regularity theory for this type of degeneracy where ∂F

∂u
= 0 is allowed

but g strictly monotone (z1 > z2 implies g(z1) > g(z2)) for equations of the
type (1.1),(1.2) and with f = 0. The approach in [Rabinowitz78] consisted in
seeking viscous approximative solutions, studying a modified equation analogue
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of (1.4) with f = 0:

wtt(β)− wxx(β) = −|u|s−1u(β) + βvtt(β) (1.3)

(Here u(β) = v(β) + w(β) and v(β) is the component of u(β) in the direction
of the infinite dimensional kernel of �, with the Dirichlet-periodic boundary
conditions. The solution u is split in such a way to tackle the problem stemming
from the infinite dimensional kernel of �.) with the parameter β and obtaining
compactness via upper priori estimates independently of β of the critical values
of the modified problem (1.3), enabling him to send β to 0 and then finding
classical solutions. However the problem here contains the forcing term f and
the natural functional associated with the problem (1.1) is no longer even thus
the minimax sets for finding critical values in [Rabinowitz78] do not apply for
forced vibrations.

In the eighties and nineties a perturbation theory for this type of problems
-perturbation from symmetry- was developed,by Bahri-Berestycki [BB81],Bahri-
Lions [BahriLions88],Tanaka [Tanaka89] Struwe [Struwe90], Rabinowitz [Rabinowitz82]
and Bolle [Bolle99]. The approaches consist in finding growth estimates on some
minimax values,bn, and if they grow fast enough, will imply the existence of crit-
ical values of the perturbed functional. Hence it may seem natural to try to
implement these approaches, to tackle the regularity issues stemming from the
degenerate monotone semilinear term g(u) and the infinite dimensional kernel
of � under Dirichlet boundary conditions, to the modified equation, seeking
viscous approximative solutions:

wtt(β)− wxx(β) = −|u|s−1u(β) + βvtt(β) + f(t, x). (1.4)

However the approaches by [BB81],[BahriLions88],[Bolle99],[Struwe90],[Rabinowitz82],do
not provide an upper explicit upper estimates on the critical values, and this lead
to serious unresolved difficulties to obtain compactness of u(β), as β → 0.

To overcome these difficulties we modify the minimax sets of Rabinowitz
[Rabinowitz82], and introduce a class of sets for which we are able to find
explicit a priori estimates for critical values of an appropriate functional Jβ .

The main obstacle in finding upper estimates on the critical values of [Rabinowitz82],
is the lack of an explicit function in the set of the maps in the minimax procedure
which produces critical values. Our approach here allows for the construction
of a function, in the sets of maps in the minimax procedure, whose energy is
controlled. This map leads to, upper a priori estimates, which are independent
of the small parameter β. This will imply compactness properties of the ap-
proximating sequence u(β) as β → 0.
The minimax sets which we introduce here can be adapted to semilinear elliptic
equations of the type:

−∆u = g(u) + f(x) (1.5)

u |∂Q= 0, (1.6)

where g(u) = |u|s−1u satisfies the hypothesis Theorem 1 in Tanaka [Tanaka89]
for s < N

N−2 . Tanaka [Tanaka89], Bahri-Lions [BahriLions88] have shown mul-
tiplicity of solutions for the equation (1.5) without providing upper a priori on
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the location of critical values. The advantage of our approach is that, when
combined with lower estimates on minimax numbers obtained by Tanaka in
[Tanaka89], it will lead to upper a priori estimates on the critical values thence
obtained.

Having constructed minimax values cmn (δ) with upper a priori estimates in-
dependently of, the Galerkin parameter m and β, we need information on the
growth of some minimax values bmn to show that the cmn (δ) are critical values.
To obtain the lower estimates of the growth of the bmn we employ the functional
K introduced by Tanaka in [Tanaka88] and the Borsuk-Ulam lemma of Tanaka
[Tanaka88], see lemma 2.5.

Another advantage of our approach is that it simplifies the weak solutions
approach of [Tanaka88]. In [Tanaka88] some technical lemmas are employed to
get information on the index of the weak solution u, obtained by passing to
the limit in the Galerkin parameter m, the index of the critical value of the
approximate solution umn , obtained from the Galerkin scheme. Here the upper
estimate on cmn (δ) is also independent ofm thus it allows to simplify the passage
to the limit as m→ ∞.

Once the compactness of the sequence u(β) is obtained, the regularity will
follow by the adapting the argument of [Rabinowitz78] to the problem consid-
ered here, in presence of a forcing term f(x, t).

Remark:Upper estimates for criticial values via the approach of [Bolle99]
and under Dirichlet boundary conditions are in [CDHL2004] by Castro,Ding and
Hernandez-Linares, and Castro and Clapp [CastroClapp2006], for perturbation
of a differential operator,the Laplacian, the noncooperative elliptic system:

−∆u = |u|p−1u+ fu(x, u, v) (1.7)

∆v = |v|q−1v + fv(x, u, v) (1.8)

v |∂Q= u |∂Q= 0. (1.9)

However the approaches in [CDHL2004],[CastroClapp2006] are incomplete as
they rely on estimating

∫
Q
|∇[τ(u)u]|2dx for u ∈ H1

0 (Q) but the functional

τ : H1
0 (Q) → R is not Fréchet differentiable and the authors do not define

what they mean by ∇[τ(u)u],
∫
Q
|∇[τ(u)u]|2dx, for arbitrary u ∈ H1

0 (Q).

In Section 1:There is a functional Iβ whose critical points correspond for-
mally to solutions of (1.4). However as indicated by the approach of [Rabinowitz82],
for technical reasons we will work with another functional Jβ . We prove Palais-
Smale conditions at large energies independently of β for the functional Jβ and
show implications for the functional Iβ .

In Section 2: We introduce the minimax sets Λm
n (δ),Λm

n and Γm
n , and the

minimax values cmn (δ), cmn , b
m
n . Upper and lower estimates on cmn (δ) indepen-

dently of β,m and consequences on the existence of critical values. The upper
estimates will be obtained by the construction of a function whose energy is
controlled and the lower estimates will follow by employing the functional K
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introduced by Tanaka in [Tanaka88]. The upper estimates on the critical values
independently of β,m imply compactness of the sequences u(β) as β → 0.

In Section 3 we adapt the arguments of [Rabinowitz78] and [Rabinowitz84]
to end the proof. First we show that u(β) is a classical solution of the modified
equation (1.4) then we obtain a C0 estimate for w(β). This is followed by a
C0 on v(β), and the existence of a C0-solution u is proved. We then use the
bootstrapping argument in [Rabinowitz78] to prove the existence of classical
solutions. The multiplicity is deduced by noticing the lower estimates on the
critical values cmn (δ) go to infinity as n→ ∞.
Functional Iβ :
We define the functional Iβ :

Iβ(u) =

∫

Q

[
1

2
(u2t − u2x − βv2t )−

1

s+ 1
|u|s+1 − f(x, t)u]dxdt. (1.10)

We seek time-periodic solutions satisfying Dirichlet boundary conditions so we
seek functions u ∈ R with expansions of the form

u(x, t) =
∑

(j,k)∈N×Z

û(j, k) sin jxeikt

and define the function space

||u||Es =
∑

j 6=|k|

|Q|

4
|k2 − j2|s|û(j, k)|2 +

∑

j=±k

|û(j, k)|2

where we denote by E the space Es with s = 1. Define the functions spaces
E+, E−, N as follows:

N = {u ∈ E, û(j, k) = 0 for j 6= |k|}

E+ = {u ∈ E, û(j, k) = 0 for |k| ≤ j}

E− = {u ∈ E, û(j, k) = 0 for |k| ≥ j},

w = w+ + w− where w+ ∈ E+,w− ∈ E− and v ∈ N and define the norm on
E ⊕N

||u||2β,E = ||w+||2E + ||w−||2E + β||vt||
2
L2 .

When u is trigonometric polynomial, Iβ can also be represented as:

Iβ(u) =
1

2
(||w+||2E − ||w−||2E − β||vt||

2
L2)−

1

s+ 1
||u||s+1

Ls+1 −

∫

Q

fudxdt. (1.11)

The spectrum of the linear operator ∂2t − ∂2x under Dirichlet boundary con-
ditions in space and time-periodicity consists of

−k2 + j2
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where the eigenfunctions are the sin jx cos kt, sin jx sin kt. The eigenfunctions
here are ordered as in [Tanaka88] i.e

...− µ3 ≤ −µ2 ≤ −µ1 < 0 < µ1 ≤ µ2 ≤ µ3 ≤ ...

where the µl are the eigenvalues of ∂2t − ∂2x and have multiplicity one. Rear-
ranging the eigenvalues this way is possible because all the non-zero eigenspaces
of ∂2t − ∂2x have finite multiplicity. The µl → +∞ as l → +∞ and denote by el
the corresponding eigenfunctions, and we define the spaces

E+n = span{el, 1 ≤ l ≤ n}.

For the Galerkin procedure we define the spaces

Em = span{sin jx cos kt, sin jx sin kt, j + k ≤ m k 6= ±j},

E−m = span{sin jx cos kt, sin jx sin kt, j + k ≤ m j < k},

Nm = span{sin jx cos jt, sin jx sin jt, j ≤ m}

which are employed in the minimax procedure.
We start by following the procedure of [Rabinowitz82] for perturbation prob-

lems by proving some properties of the functional Iβ . The difference here is that
additionally we show that the constants involved in all the proof are independent
of β to prepare for passing to the limit as β → 0.

Lemma 1.1. Suppose that u is a critical point of Iβ. Then there is a constant
a6 depending on s, f but independent of β such that

∫

Q

|u|s+1dxdt ≤ a6

∫

Q

I2β(u) + 1dxdt (1.12)

Iβ(u) = Iβ(u)−
1

2
I ′(u)u

=
s

s+ 1

∫

Q

|u|s+1dxdt−
1

2

∫

Q

fudxdt.

Now by applying Hausdorff-Young inequalities to
∫
Q
fudxdt we deduce

Iβ(u) ≥
s

s+ 1

∫

Q

|u|s+1dxdt− c1(s)||f ||
s

s+1

L
s

s+1
− ǫ(s)||u||s+1

Ls+1 (1.13)

where ǫ(s) << 1,c1(s) are both independent of β hence

Iβ(u) ≥
1

2

s

s+ 1

∫

Q

|u|s+1dxdt− c(f, s) (1.14)
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Lemma 1.2. If u ∈ suppψ then is a constant α3 independent of β such that

|

∫

Q

fudxdt| ≤ α3(I
1

s+1

β (u) + 1)

Proof:

|

∫

Q

fudxdt| ≤ c(f, s)||u||Ls+1

by Holder inequality, then if u ∈ suppψ, then

Iβ(u)

∫

Q

|u|s+1dxdt ≤ 2

hence
c(f, s) ≤ α3(Iβ(u) + 1)

and we conclude

|

∫

Q

fudxdt| ≤ c(f, s)||u||Ls+1 ≤ α3(I
1

s+1

β (u) + 1)

We define the functional Jβ which is amenable to minimax procedure. We start
by defining a bump function χ. χ ∈ C∞(R,R):

{
χ(t) = 1, if t ≤ 1
χ(t) = 0 if t > 2 .

(1.15)

and −2 < χ′ < 0, for 1 < t < 2. Then define

Iβ(u) = 2a6(I
2(u) + 1)

and

ψ(u) = χ(I−1
β (u)

∫

Q

|u|s+1

s+ 1
dxdt)

Jβ(u) =

∫

Q

[
1

2
(u2t − u2x − βv2t )−

1

s+ 1
|u|s+1 − ψ(u)f(x, t)u]dxdt, (1.16)

which on E+m ⊕ E−m ⊕Nm can be rewritten as

Jβ(u) =
1

2
(||w+||2E − ||w−||2E − β||vt||

2
L2)−

1

s+ 1
||u||s+1

Ls+1 −

∫

Q

ψ(u)fudxdt.

(1.17)

Lemma 1.3. There is a constant γ1 depending on f, s but independent of β
such that

|Jβ(u)− Jβ(−u)| ≤ γ1(|Jβ(u)|
s

s+1 + 1) (1.18)
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Proof:

Jβ(u)− Jβ(−u) = −ψ(u)

∫

Q

fudxdt+ ψ(−u)

∫

Q

fudxdt

and by the previous lemma 1.2 :

ψ(−u)

∫

Q

fudxdt ≤ α3ψ(−u)

∫

Q

|Iβ(u)|
1

s+1 + 1dxdt

now

Jβ(u) = Iβ(u) +

∫

Q

fudxdt−

∫

Q

ψ(u)fudxdt

thus

|Iβ(u)| ≤ |Jβ(u)|+ 2|

∫

Q

fudxdt|

and

ψ(−u)|

∫

Q

fudxdt| ≤ α3ψ(−u)(|Jβ(u)
1

s+1 + |

∫

Q

fudxdt|
1

s+1 + 1)

and the lemma follows.

Lemma 1.4. There are constants α0,M0 > 0 depending on f, s independent
of β such that whenever M ≥ M0, then Jβ(u) ≥ M and u ∈ suppψ then
Iβ(u) ≥ αM0

Proof:

Iβ(u) ≥ Jβ(u)− 2|

∫

Q

fudxdt| (1.19)

while if u ∈ suppψ then

|Iβ(u)|
1

s+1 + 1 ≥
1

α1
|

∫

Q

fudxdt|

or

|Iβ(u)|
1

s+1 ≥
1

α1
|

∫

Q

fudxdt| − C (1.20)

and adding (1.19) and (1.20)

Iβ(u) + 2α1|Iβ(u)|
1

s+1 ≥ Jβ(u)− C ≥
M

2
(1.21)

le facteur 2 doit multiplier α1Iβ?
for M0 large enough. If Iβ(u) ≤ 0, then by Young inequality

α1|Iβ(u)|
1

s+1 ≤
α

s+1
s

1
s+1
s

+
1

s+ 1
|Iβ(u)|

s+1 (1.22)

8



while the inequality (1.21)

α1|Iβ(u)|
1

s+1 ≥ −Iβ(u) +
M

2
(1.23)

hence

α
s+1
s

1
s+1
s

+
1

s+ 1
|Iβ(u)|

s+1 ≥ −Iβ(u) +
M

2
= |Iβ(u)|+

M

2
(1.24)

thus there is c(s) > 0 such that

c(s)|Iβ(u)| ≤ −
M

4
< 0 (1.25)

and we have a contradiction.

Lemma 1.5. Lemma 1.29 [Rabinowitz82] In E+m ⊕ E−m ⊕ Nm,there is a
constant M1 > 0 independent of β,m such that Jβ(u) ≥ M1 and J ′

β(u) = 0
implies that Jβ(u) = Iβ(u) and I

′
β(u) = 0

Proof:
We follow step by step the argument in [Rabinowitz82].
It suffices to show that

Iβ
−1(u)

∫

Q

1

s+ 1
|u|s+1dxdt ≤ 1 (1.26)

J ′
β(u)u =

∫

Q

w2
t −w2

x − βv2t − |u|s+1dxdt− ψ(u)

∫

Q

fudxdt− ψ′(u)u

∫

Q

fudxdt

(1.27)
where

ψ′(u)u = χ′(Iβ
−1(u)

∫

Q

1

s+ 1
|u|s+1dxdt)

×[−Iβ
−3(u)2Iβ(u)I

′
β(u)u

∫

Q

|u|s+1

s+ 1
dxdt+ Iβ

−1(u)

∫

Q

|u|s+1dxdt]

and

J ′
β(u) = (1+T1(u))

∫

Q

w2
t−w

2
x−βv

2
t dxdt−(1+T2(u))

∫

Q

|u|s+1dxdt−(ψ(u)+T1(u))

∫

Q

fudxdt

(1.28)
where T1, T2 are exactly as in [Rabinowitz82]:

T1(u) = χ′(Iβ
−1(u)

∫

Q

1

s+ 1
|u|s+1+a4dxdt)(2a6)

2Iβ
−3(u)

∫

Q

|u|s+1

s+ 1
dxdt

∫

Q

fudxdt

(1.29)
and

T2(u) = χ′(Iβ
−1(u)

∫

Q

1

s+ 1
|u|s+1dxdt)Iβ

−1(u)

∫

Q

fudxdt+ T1(u) (1.30)
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and the conclusion follows just as in [Rabinowitz82].
We now show that the functional Jβ satisfies the Palais-Smale condition at

large energies in E+m ⊕ E−m ⊕Nm:

Lemma 1.6. There is a constant M2 independent of β such that the Palais-
Smale condition is satisfied on AM2 = {u ∈ E+m ⊕ E−m ⊕Nm, Jβ(u) ≥M2}

Proof:
Let ul = wl+vl = w+

l +w−
l +vl a Palais-Smale sequence at large energies, there

are M2,K independent of β,m such that M2 ≤ Jβ(ul) ≤ K and J ′
β(ul) → 0

Jβ(ul)− J ′
β(ul)(ul) = (

1

2
− ρ(1 + T1(ul)))

∫

Q

w2
lt − w2

lx − βv2ltdxdt

+[ρ(1 + T2(ul)−
1

s+ 1
)]

∫

Q

|ul|
s+1dxdt

(ρ(ψ(ul) + T1(ul))− ψ(ul))

∫

Q

fuldxdt (1.31)

now we choose ρ = 1
2(1+T1(ul))

then we have

ρ→
1

2
independently of β as M2 → +∞

Jβ(ul)− J ′
β(ul)(ul) = [ρ(1 + T2(ul)−

1

s+ 1
)]

∫

Q

|ul|
s+1dxdt

(ρ(ψ(ul) + T1(ul))− ψ(ul))

∫

Q

fuldxdt ≥ [ρ(1 + T2(ul)−
1

s+ 1
)−

ǫ(s)

s+ 1
]

∫

Q

|ul|
s+1dxdt− c(f, s)

where ǫ(s) can be chosen to be a small positive constant by applying Young
inequality, and c(f, s) is another constant depending on f, s, both being inde-
pendent of β. Now recall that J ′

β(ul) → 0 and ρ→ 1
2

Jβ(ul)− J ′
β(ul) ≤ K + ρ||ul||E,β (1.32)

so we have the inequalities:

K + ρ||ul||E ≥ Jβ(ul)− J ′(ul)ul ≥ c3(f, s)− c2(f, s) (1.33)

thus ∫

Q

|ul|
s+1dxdt ≤ c4(f, s)||ul||E,β +K + c2(f, s). (1.34)

Now

J ′
β(ul)vl = (1+T1(ul))

∫

Q

βv2ltdxdt−(1+T2(ul))

∫

Q

|ul|
s−1ulvldxdt−(ψ(ul)+T1(ul))

∫

Q

fvldxdt.

(1.35)
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ul is a Palais-Smale sequence so there exists ǫ small such that
J ′
β(ul)vl ≤ ǫ||vl||β,E thus

(1+T1(ul))β||vlt||
2
L2 ≤ (1+T2(ul))

∫

Q

|ul|
s−1ulvldxdt+(ψ(ul)+T1(ul))

∫

Q

fvldxdt+ǫ||vl||β,E.

Now for M2 large enough (independently of β) and we have

1

2
β||vlt||

2
L2 ≤ (2

∫

Q

|ul|
s|vl|dxdt + 2

∫

Q

|f ||vl|dxdt+ ǫ||vl||β,E (1.36)

and applying Hölder inequality we deduce:

β

2
||vlt||

2
L2 ≤ c||ul||

s
Ls+1||vl||Ls+1 + 2||vl||Ls+1||f ||

L
s+1
s

+ ǫ||vlt||L2 .

A similar computation gives

||w+
l ||

2
E,β ≤ c||ul||

s
Ls+1 ||w+

l ||Ls+1 + 2||w+
l ||Ls+1 ||f ||

L
s+1
s

+ ǫ||w+
l ||E . (1.37)

We now estimate ||vl||Ls+1 :vl = ul − w+
l − w−

l hence

||vl||Ls+1 ≤ ||ul||Ls+1 + ||w+
l ||Ls+1 + ||w−

l ||Ls+1

≤ c||ul||
1

s+1

E,β + c||w−
l ||E + c||w+

l ||E (1.38)

≤ c||ul||E,β +D(f, s) (1.39)

where the constants c,D(f, s) are independent of β and (1.38) follows from
(1.34) and the Sobolev inequality ||wl||Lp ≤ c(p)||wl||E We can now deduce:

||ul||
2
E,β ≤ c(1 + ||ul||

2
Ls+1)(||vl||Ls+1 + ||w+

l ||Ls+1) + ||w−
l ||Ls+1) + c||ul||E,β

≤ c(1 + c||ul||
1

s+1

E,β )(3c||ul||E,β +D(f, s)) + c||ul||E,β (1.40)

so ||ul||E,β < +∞ and Palais-Smale is satisfied.

2 Minimax set-up

BR the closed ball of radius R:

BR = {u ∈ E ⊕N ||u||E,β ≤ R}

The ε-neighborhood of S in a space W ⊂ E ⊕N :

BR(W,S, ε) = {x ∈W, ||x− y|| ≤ ε y ∈ S}.

Dm
n = {u ∈ E+n ⊕ E−m ⊕Nm and ||u||E,β ≤ Rn}

Γm
n = {h : Dm

n → E+m⊕E−m⊕Nm, h odd , h(x) = x, forx ∈ B(Dm
n , ∂D

m
n , ε(h)) for some ε(h) > 0}

11



bmn = inf
h∈Γm

n

max
u∈Dm

n

Jβ(h(u))

Um
n = {un+1 = ten+1+un, t ∈ [0, Rn+1], un ∈ BRn+1∩(E

+n⊕E−m⊕Nm), ||un+1||E,β ≤ Rn+1}

Λm
n =





H ∈ C(Um
n , E

+m ⊕ E−m ⊕Nm), and H(u) = u

if||u||E,β ≥ Rn+1 − ε(H) for some ε(H) > 0, or if
u ∈ B(Um

n , (BRn+1 \BRn
) ∩ (E+n ⊕ E−m ⊕Nm), ε(H))





where the constants Rn does not depend on β.

Λm
n (δ) = {H ∈ Λm

n , Jβ(H(u)) ≤ bmn +δ on B(Um
n , D

m
n , ε(H)), for some ε(H) > 0}

cmn = inf
H∈Λm

n

max
u∈Um

n

Jβ(H(u))

and
cmn (δ) = inf

H∈Λm
n (δ)

max
u∈Um

n

Jβ(H(u))

Our sets Γm
n ,Λ

m
n differ from those defined by Rabinowitz in [Rabinowitz82] or

Tanaka in [Tanaka88] in that we require that H = Id not just on (BRn+1 \
BRn

)∩ (E+n⊕E−m⊕Nm) but also in a small neighborhood in Um
n of that set.

This will allow for the construction of a bump functions χ1, whose support is
in B(Um

n , ∂U
m
n ,

ε
2 ), for some ǫ > 0. Now given an extension H ∈ Λm

n , of a map
h ∈ Γm

n , we define another extension H1 using the bump function and we will
get an upper estimate of Jβ(H1(u, t)) independently of β. This will lead to an
upper estimate of cmn (δ) explicit in n and independently of β,m.

Since we require some additional conditions on the maps in our Γm
n ,Λ

m
n the

bmn , c
m
n we define here are greater than or equal than the corresponding ones in

[Rabinowitz82],[Tanaka88].
This approach can be adapted to obtain new estimates even for a class of

semilinear elliptic equations considered by Tanaka [Tanaka89].

Lemma 2.1. ∀u ∈ Dm
n ∩ E+n, there is a constant C(n) independent of β,m

such that
Jβ(u) ≤ C(n) (2.41)

Proof:
Let u ∈ E+n

Jβ(u) =
1

2
||w+||2E −

1

2
||w−||2E − β||vt||

2
L2 −

∫

Q

|u|s+1

s+ 1
dxdt − ψ(u)

∫

Q

fudxdt

≤
1

2
||w+||2E −

1

2
||w−||2E − β||vt||

2
L2 −

1

2

∫

Q

|u|s+1

s+ 1
dxdt+ c(f, s) (2.42)

≤ c(f, s) + sup
u∈E+n

1

2
||w+||2E −

1

2

∫

Q

|u|s+1

s+ 1
dxdt

≤ c(f, s) + sup
u∈E+n

1

2
||w+||2E − c(s,Q)||u||s+1

L2 (2.43)

12



Now in E+n

||u||2E ≤ µn||u||
2
L2 (2.44)

and on the other-hand

sup
u∈E+n

1

2
||w+||2E − c(s,Q)||u||s+1

L2 > 0 (2.45)

and is attained at say u hence we have

c(s,Q)||u||s+1
L2 ≤

1

2
||u||2E ≤

1

2
µn||u||

2
L2 (2.46)

and we can conclude there is C(n) depending on n but independent of β such
that

Jβ(u) ≤ C(n) (2.47)

Now lemma 1.57 in [Rabinowitz82]:

Lemma 2.2. Suppose that cmn > bmn > M . Let 0 < δ < cmn − bmn , then cmn (δ) is
a critical value of Jβ.

Note that in our case the sets Λm
n (δ) are more restrictive than the corre-

sponding ones in [Rabinowitz82] and we have first to show they are nonempty.
This will be done in the next lemma. An upper estimates on cmn (δ) will also
be obtained independently of β which is our main contribution to obtain the
needed compactness.

Lemma 2.3. Λm
n (δ) 6= ∅, and there is a map χ1 ∈ Λm

n (δ) such that

Jβ(χ1) ≤ C(n+ 1) (2.48)

where C(n+ 1) is independent of β,m

Proof:
Given h ∈ Γm

n a minimizing map for bmn we assume without loss of generality
that

Jβ(h(u)) ≤ bmn +
δ

2
(2.49)

we construct and extension H1 ∈ Λm
n (δ) such that Jβ(H1) is bounded indepen-

dently of β,m. Wlog we will assume that Rn+1 > 2Rn.

Let 1 + Rn < R <
Rn+1√

2
, and v = u + ten+1, u ∈ Dm

n , writing v as (u, t) we

define H :

H(u, t) = (1−
t

R
)h(u) + (

t

R
u, t) (2.50)

for t ≤ R. If ||u||E,β = R or t = R H(u, t) = Id. By extending H as Id for the
remaining values of (u, t) ∈ Um

n we obtain an H ∈ Λm
n (δ). We now construct an

extension H1 for which we can control Jβ(H1).
By (2.47) and the uniform continuity of JβoH there is ǫ(β) > 0 such that

Jβ(H(u, t)) ≤ bmn + δ (2.51)
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in (u, t) ∈ B(Um
n , D

m
n , ǫ(β)). Now since H = Id on ∂Um

n \Dm
n we also have

Jβ(H(u)) ≤ C(n+ 1) (2.52)

where the constant C(n + 1) is independent of β,m, in B(Um
n , ∂U

m
n \ Dm

n , ǫ
′)

for some ǫ′ > 0 and the argument follows as in lemma 2.1.
NowB(Um

n , D
m
n , ε(β))) is convex so if u ∈ B(Um

n , D
m
n , ε(β)) then λu ∈ B(Um

n , D
m
n , ε(β))

for 0 ≤ λ ≤ 1.
Let χ1 a smooth bump function 0 ≤ χ1(u, t) ≤ 1, supported in B(Um

n , ∂U
m
n , ǫ(β)),

such that χ1(u, t) = 1 in a smaller ε′′ < min(ǫ(β), ǫ′) neighborhood of ∂Um
n :

B(Um
n , ∂U

m
n , ǫ

′′) and

Jβ(H(χ1(u, t)(u, t))) ≤ bmn + δ (2.53)

in B(Um
n , D

m
n , ǫ(β)) as χ1(u, t)(u, t) ∈ B(Um

n , D
m
n , ǫ(β)) because of the convexity

of B(Um
n , D

m
n , ǫ(β)). We define :

H1(u, t) = H(χ1(u, t)(u, t)) (2.54)

thenH1 ∈ Λm
n (δ). To estimate Jβ(H1(u, t)) we simply note that in B(Um

n , ∂U
m
n ,min(ǫ′, ǫ(β))),

is already bounded independently of β,m and that since χ1 is supported in
B(Um

n , ∂U
m
n ,min(ǫ′, ǫ(β))), hence Jβ(H1) is by a constant C(n + 1) indepen-

dently of β,m in all of Um
n .

Lemma 2.4. There is a constant Rn such that for all u ∈ E+n ⊕ E−m ⊕Nm

and ||u|| ≥ Rn

Jβ(u) ≤ 0 (2.55)

The proof is done by a standard argument. See for instance Proposition 2.37
in [Rabinowitz84] for a proof.

The proof that cmn (δ) is a critical value follows as the lemma 1.57 in [Rabinowitz82]
step by step. We do not repeat it here. The a priori estimate is provided by the
map H1.

We recall the comparison functional K from lemma 2.2 in [Tanaka88]:

K(w+) =
1

2
||w+||E −

a0(s)

s+ 1
||w+||s+1

Ls+1 ,

which satisfies the Palais-Smale condition. The functional K also satisfies the
comparison property :

Jβ(w
+) ≥ K(w+)− a1(f, s)

for any w+ ∈ E+, a1(f, s) is a positive constant. We define the minimax sets:

Am
n = {σ ∈ C(Sm−n, E+m), σ(−x) = σ(x)}

14



where Sm−n ⊂ E+m is the unit sphere in R
m−n+1, whose basis consists of

eigenvectors {en, ..., em}. x ∈ Sm−n if and only if

x =

m∑

i=n

xiei and

m∑

i=n

x2i = 1 (2.56)

and the minimax values

βm
n = sup

σ∈Am
n

min
x∈Sm−n

K(σ(x))

Properties of the minimax numbers βm
n from [Tanaka88]: There exists sequences

ν(n), ν̃(n)

ν(n) ≤ βm
n ≤ ν̃(n) (2.57)

such that ν(n), ν̃(n) → ∞ as n→ ∞(independently of m). the existence of the
bmn must be done. They are finite and only the ”sharp” lower bound established
via Morse theory will be important however it seems natural to prove their
existence before proving the preceding inequality.
Borsuk-Ulam type theorem:

Lemma 2.5. [Tanaka88]Let a, b ∈ N. Suppose that h ∈ C(Sa,Ra+b), and
g ∈ C(Rb,Ra+b) are continuous mappings such that

h(x) = h(−x) for all x ∈ Sa (2.58)

g(−y) = −g(y) for all y ∈ R
b (2.59)

and there is a r0 such that g(y) = y for all r ≥ r0. Then h(Sa) ∩ g(Rb) 6= ∅

Lemma 2.6. [Tanaka88]Let γ ∈ Γm
n and σ ∈ Am

n , then

γ(Dm
n ) ∪ {u ∈ E+n ⊕ E−m ⊕N−m, ||u||β,E ≥ Rn} ∩ σ(S

m−n) 6= ∅ (2.60)

Proof: Apply the lemma above with a = m− n and b = dimension(E+n ⊕
E−m⊕N−m). Then extend γ to all of E+n⊕E−m⊕N−m by extending it by the
identity map on ∂Dm

n and view σ(Sm−n) as embedded in E+m ⊕E−m ⊕N−m,
then apply the preceding lemma 2.5.

Lemma 2.7. ∀n ∈ N,
bmn ≥ βm

n − a1 (2.61)

where a1 is independent of n,m, β.

Proof:
Let σ ∈ Am

n and γ ∈ Γm
n . Then

min
x∈Sm−n

K(σ(x)) − a1 < min
x∈Sm−n

Jβ(σ(x)) ≤ sup
u∈Um

n

Jβ(γ(u)) (2.62)
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as there exists x, u such that σ(x) = γ(u). Then we can conclude that

βm
n − a1 ≤ bmn (2.63)

Note also that since Jβ(0) = 0, Jβ |∂Um
n
≤ 0 and tends to −∞ uniformly as

Rn → +∞,then

sup
u∈E+n⊕E−m⊕N−m

Jβ(γ(u)) = sup
u∈Um

n

Jβ(γ(u)) (2.64)

Lemma 2.8. (Proposition 4.1[Tanaka88])Suppose that βm
n < βm+1

n , m > n+1,
then there exists a umn ∈ E+m such that

K(umn ) ≤ βm
n (2.65)

K ′ |E+m (umn ) = 0 (2.66)

indexK ′′ |E+m (umn ) ≥ n (2.67)

Lemma 2.9. (Proposition 5.1[Tanaka88]) For any ε > 0, there is a constant
Cε > 0, such that for u ∈ E+

indexK ′′(u) ≥ Cε||u||
(s−1)(1+ε)

L(s−1)(1+ε) (2.68)

Theorem 2.1. There is a subsequence nq and c independent of β,m, n such
that

bnq
≥ cn

s+1
s

q (2.69)

Proof:
The inequality (2.57) implies that there is a subsequence nq such that
βnq+1 > βnq

.

βnq
≥ K(umnq

)−
1

2
K ′(umnq

)umnq

≥ (
1

2
−

1

s+ 1
)a0(s)||u

m
nq
||s+1
s+1. (2.70)

Then for ε > 0 small enough

||umnq
||s+1
s+1 ≥ cε||u

m
nq
||s+1
s(1+ε)

≥ cεnq

s+1
s(1+ε) (2.71)

by combining (2.68) and (2.67). Now recalling lemma 2.7 and that for ε small
enough, s+1

s(1+ε) >
s+1
s

the lemma follows.

To conclude we recall lemma 1.64 in [Rabinowitz82] which in our case implies
that, for m large enough independently of β, if cmn = bmn for all n ≥ n1

then bn ≤ cn
s+1
s . Then by lemma 2.2, cmnq

(δ) is a critical value of Iβ in

E+m ⊕ E−m ⊕Nm.
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3 Regularity

Theorem 3.1. Let f be C2, for n large enough there is a classical solution
u = v + w of the modified problem (1.4) .

Proof:
In this proof the constants may dependent on β and f but are independent ofm.
The proof of this theorem here is slightly simpler from the one in [Rabinowitz84]
as we take advantage of the polynomial growth of the nonlinear term and employ
Galerkin approximation.
Let umnq

= wm+vm ∈ E+m⊕E−m⊕Nm a distributional solution corresponding

to the critical value cmnq
(δ), and any φ ∈ E+m ⊕ E−m ⊕Nm:

I ′(umnq
)φ = 0 (3.72)

now taking φ = vmtt ∈ Nm we have

(βvmtt , v
m
tt )L2 = (|umnq

|s−1umnq
+ f, vmtt )L2

β||vmtt ||
2
L2 ≤ ||u2||L2 ||vmtt ||L2 + ||f ||L2||vmtt ||L2

β||vmtt ||L2 ≤ c||vmtt ||L2

hence
||vmtt ||L2 ≤ c(β, f)

we now have

wm
tt − wm

xx = βvmtt + |umn |s−1um + fm(x, t) ∈ L2

hence wm ∈ H1 ∩ C1 by [Rabinowitz67] and [BCN80]. This now implies wm ∈
H2, wm → w(β) pointwise and w(β) ∈ H1 ∩C1. Then if φ = vmtttt then

(βvmtt , v
m
tttt)L2 = (|umnq

|s−1umnq
+ f, vmtttt)L2

(here I need f ∈ H1)

(βvmttt, v
m
ttt)L2 = ([|umnq

|s−1umnq
+ f ]t, v

m
ttt)L2

and we deduce ||vmttt||L2 ≤ c(β, f) hence vmttt → vtt(β) ∈ C0 hence v(β) is C2

and w(β) is C1 by applying [BCN80] to (1.4) . We now have

umnq
→ u(β) ∈ C1 as m→ ∞

and since (3.72) holds for any φ ∈ E+m ⊕ E−m ⊕Nm we can deduce

I ′(u(β))φ = 0 ∀φ ∈ E ⊕N, (3.73)

and u(β) is a weak solution of (1.4). Now for any φ ∈ C∞ ∩ L2(S1) we have

I ′(u(β))[φ(x + t)− φ(x− t)] =

∫

Q

[−β(p′′(x+ t)− p′′(−x+ t) + |u(β)|s−1u(β)) + f(x, t)]

[φ(x + t)− φ(−x+ t)]dxdt
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remarque: avoir u ∈ C1 aide a definir the produit scalaire dans E ⊕ N,E, β

pour definir les solutions faibles.
Denoting ψ(x, t) := [−β(p′′(x + t) + |u(β)|s−1u(x, t) + f(x, t)] and noting that
the functions ψ, φ are periodic we deduce as in [Rabinowitz78] that

∫ 2π

0

∫ π

0

ψ(x, t)φ(x + t)dxdt =

∫ π

0

∫ 2π

0

ψ(r, r − x)φ(r)dxdr

and ∫ π

0

∫ 2π

0

ψ(x, t)φ(−x + t)dxdt =

∫ π

0

∫ 2π

0

ψ(x, r + x)φ(r)dxdr

for all φ ∈ C∞ ∩ L2(S1) hence

∫ π

0

ψ(x, r + x) − ψ(x, r − x)dxdr = 0

and we have

πp′′(r) =

∫ π

0

(|u(β)|s−1u(β)(x, r−x)−|u(β)|s−1u(β)(x, r+x))+f(x, r−x)−f(x, r+x)dx

(3.74)
so p is C3 since u(β) ∈ C1. Since RHS of (1.4) is C1 then by [BCN80] w ∈ C2

and u(β) is a classical solution of (1.4).

Lemma 3.1. There is a constant c independent of β,m such that

||w(β)||C0 ≤ c (3.75)

Proof:
By (1.12) there is a constant c independent of β,m such that ||u(β)||Ls+1 ≤ c.
Then by (3.74) ||βvtt||L1 is bounded independently of β,m, hence by Lovi-
carova’s formula [Lovicarova69] we conclude that there is a constant c

||w(β)||C0 ≤ c (3.76)

which is independent of β,m.

Lemma 3.2. There is a constant c, independent of β such that

||v(β)||C0 ≤ c. (3.77)

Proof:
∀φ ∈ N , ∫ π

0

∫ 2π

0

(−βvtt(β) + (g(u(β)) + f(x, t))φdxdt = 0

∫ π

0

∫ 2π

0

βvt(β)φt+(g(v(β)+w(β))−g(w))φdxdt = −

∫ π

0

∫ π

0

(f(x, t))+g(w))φdxdt

(3.78)
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Define q:

{
q(s) = 0, if |s| ≤ M.
q(s) = s+M if s ≥ M and q(s) = s−M if s ≤ M.

(3.79)

Now define the function ψK(z):

{
ψK(z) = max|ξ|≤M5

fK(z + ξ)− fK(ξ) if z > 0.
ψK(z) = −min|ξ|≤M5

(fK(ξ)− fK(z + ξ)) if z < 0
(3.80)

ψK is monotonically increasing and limz→±∞ ψK(z) = ±∞. For z ≥ 0, µ(z) =
min(ψ(z), ψ(−z)). Define

Tδ = {(x, t) ∈ [0, π]× [0, 2π] |v(β)| ≥ δ}.

By taking the test function φ = q(v+)− q(v−) = v+ − v− and noting that g is
strictly increasing we have the estimate following lemma 3.7 in [Rabinowitz78]:

∫

Tδ

(g(v + w) − g(v))(q+ − q−)dxdt ≥
M − δ

||v||C0

µ(δ)

∫

Tδ

(|q+|+ |q−|)dxdt (3.81)

hence:

(||g(w)||C0 + ||f ||C0)

∫

T

|q+|+ |q−|dxdt ≥
M − δ

||v||C0

µ(δ)

∫

Tδ

(|q+|+ |q−|)dxdt.

(3.82)
Denoting max(||v+||C0 , ||v−||C0) = ||v±||C0 we have

µ(
1

2
||v±||C0) ≤ 4(||f ||C0 + ||g(w)||C0) (3.83)

and we can conclude that there is a constant c independent of β such that

||v(β)||C0 ≤ c. (3.84)

Lemma 3.3. The family v(β) is equicontinuous.

Proof: u = v + w. Define v̂(x, t) = v(x, t + h),ŵ(x, t) = w(x, t + h) and

û = v̂ + ŵ,f̂ = f(x, t + h),U = V + W , where V = v̂ − v,W = ŵ − w,
q(V +) = Q+,q(V −) = Q−

∫

T

βVtφtdxdt+

∫

T

g(v̂+w)−g(u)dxdt = −

∫

T

g(û)−g(v̂+w)+f̂−fdxdt (3.85)

For φ = q(V +)− q(V −) and V + = v̂+ − v+, we have

∫

T

[g(V+u)−g(u)+f̂−f ][Q+−Q−]dxdt ≤ (||f(û)−f(v̂+w)||C0+||f̂−f ||C0)

∫

T

(|Q+|+|Q−|)dxdt

(3.86)
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and
∫

T

[g(V +u)−g(u)][Q+−Q−]dxdt ≥
µ(δ)(M − δ)

||V ||C0

∫

T

[|Q+|+ |Q−|]dxdt. (3.87)

Since w(β) ∈ C1 and f ∈ C1 we deduce

||f(û)− f(v̂ + w)||C0 + ||f̂ − f ||C0) ≤ c|h| (3.88)

where c is independent of β, thus

µ(
1

2
||V ±||C0) ≤ c|h| (3.89)

and the modulus of continuity of v(β) is independent of β.

Theorem 3.2. The problem (1.1),(1.2) has an infinite number of weak solutions
u = w + v where w ∈ C1 and v ∈ C0.

Proof:
||βvtt||L1 → 0 as β → 0: Recalling the interpolation inequalities [Rabinowitz78],[Nirenberg59]
and (3.74):

β||vtt||L1 ≤ β||vtt||
1
2

C0 ||v(β)||
1
2

C0 → 0 (3.90)

and Lovicarova fundamental solution in [Lovicarova69] implies that w ∈ C1.
Case 1:
If ∃r such that u(x, r − x) = α for ∀x ∈ [0, π] then the boundary conditions
imply α = 0 and p(r − 2x) = p(r) + w(x, r − x), thus

||v||C1 ≤ ||w||C1 . (3.91)

Case 2:
There is no r such that u(x, r − x) = 0, then there is γ > 0 such that∫ π

0
s|u|s−1(x, r − x)dx > γ, ∀r ∈ [0, 2π]. Now since u(β) → as β → 0 we

have ∫ π

0

s|u|s−1(β)(x, r − x)dx >
γ

2
(3.92)

Differentiating (3.74) with refer to r and using the boundary conditions for u
as in [Rabinowitz78] we obtain:

− πβp′′′(r) + a(r)p′(r) =

∫ π

0

s|u|s−1(x, r − x)[−
1

2
wx(x, r − x)− wr(x, r − x)] +

s|u|s−1(x, r + x)[−
1

2
wx(x, r + x) + wr(x, r + x)] +

fr(x, r + x)− fr(x, r − x)dx, (3.93)

where a(r) =
∫ π

0 s|u|s−1(β)(x, r − x) + s|u|s−1(β)(x, r + x)dx. Now by writing
φ(r) = p′(r) we have:

− πβφ′′(r) + a(r)φ(r) = h(r) (3.94)
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where h ∈ C0(S1) and since f ∈ C1 we deduce as in [Rabinowitz78] that
limβ→0 φ(β) exists and is in H1(S1). Denoting this limit by φ(0) we deduce
that v ∈ C1. This implies w ∈ C2 and h ∈ C1, as f ∈ C2. Now (3.94) is
valid a.e at β = 0 which implies φ ∈ C1 and u ∈ C2 is a classical solution of
(1.1),(1.2).
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[Brézis83] Brézis, Häım Periodic solutions of nonlinear vibrating strings and
duality principles. Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 3, 409426.
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