arxiv:1012.5430v1 [cs.IT] 24 Dec 2010

Trajectory Codes for Flash Memory

Anxiao (Andrew) JiangMember, IEEEMichael LangbergMember, IEEE,
Moshe SchwartzSenior Member, IEEEand Jehoshua Bruclkellow, IEEE

Abstract—Flash memory is well-known for its inherent asym- fact that flash-memory cells are organized as blocks, where
metry: the flash-cell charge levels are easy to increase bute every block has about0® ~ 10° cells. To decrease any
hard to decrease. In a general rewriting model, the stored dia cell's level, the whole block needs to be erased (which means

changes its value with certain patterns. The patterns of dat
updates are determined by the data structure and the applicéon, to remove the charge from all the cells of the block) and

and are independent of the constraints imposed by the storag then be reprogrammed. Block erasures not only are slow and
medium. Thus, an appropriate coding scheme is needed so thatenergy consuming, but also significantly reduce the lorigevi
the data changes can be updated and stored efficiently undehe¢ of flash memories, because every block can endure only
storage-medium’s constraints. 104 ~ 10° erasures with guaranteed quality [3]. Therefore, it

In this paper, we define the general rewriting problem using .~ . . L2
a graph model. It extends many known rewriting models such 'S highly desirable to minimize the number of block erasures

as floating codes, WOM codes, buffer codes, etc. We present aln addition to flash memories, other storage media often have
new rewriting scheme for flash memories, called therajectory their own distinct constraints for state transitions. Epées

code, for rewriting the stored data as many times as possible jnclude magnetic recording [17], optical recordingl[21hda
without block erasures. We prove that the trajectory code is phase-change memoriés [22].

asymptotically optimal in a wide range of scenarios. - . .
We also present randomized rewriting codes optimized for In general, the constraints of a memory on its state transi-

expected performance (giverarbitrary rewriting sequences). Our tions can be described by a directed graph, where the vertice

rewriting codes are shown to be asymptotically optimal. represent the memory states and the directed edges rejpresen
Index Terms—flash memory, asymmetric memory, rewriting, th_e feasible state transitions [S]] [7]. lefere_nt edgeg/rhave _
write-once memory, floating codes, buffer codes different costs[[8]. Based on the constraints, an apprtgpria

coding scheme is needed to represent the data so that the data

can be rewritten efficiently. In this paper, we focus on flash

memories, and our objective is to rewrite data as many times
ANY storage media have constraints on their statgs possible between two block erasures. Note that between tw
transitions. A typical example is flash memory, th@lock erasures, the cell levels can only increase. Thezafer

most widely-used type of non-volatile electronic memark [3yse the following flash-memory model:

A flash memory consists of floating-gate cells, where a ¢

uses the charge it stores to represent data. The amoun

charge stored in a cell can be quantized inte 2 discrete

values in order to represent upltsg, g bits. (The cell is called

|. INTRODUCTION

ISfinition 1. (FLASH-MEMORY MODEL)
Considem flash-memory cells of levels. The cells’ state can
be described by a vector

asingle-level cell (SLC)f g4 = 2, and called anulti-level cell (c1,¢2,...,cn) €10,1,...,g —1}",
(MLC) if g > 2). We call theg states of a cell itevels level)))
0, levell, ..., levelg — 1. The level of a cell can be increasedVNere fori = 1,2,...,n, c; is the level of the-th cell. The

by injecting charge into the cell, and decreased by removiﬁﬁ/"s/can tI’EiI’)SI'l' from one statey, c, . .., cu) to ar/vother state
charge from the cell. Flash memories have the prominey /€y -+, Cy) if and only if fori = 1,/2, e th G > ¢ (If
property that although it is relatively easy to increase léisce C; = ¢i fori =1,2,...,n, we say thatc}, c, ..., c;) is above
level, it is very costly to decrease it. This follows from the€1,€2, -, Cn)-) U

. _ _ In this work, we focus on designing rewriting codes for
The material in this paper was presented in part at the IEE&rational

Symposium on Information Theory (ISIT 2009), Seoul, Souibrd&, June general Fjata'Storage appllcatlo_ns. HC_'W the stored df’ﬂa can
2009. change its value with each rewrite, which we call teriting

Anxiao (Andrew) Jiang is with the Department of Computereice and mode] depends on the data-storage application and the used

Engineering, Texas A&M University, College Station, TX 7A&33112, U.S.A. d S | i . dels h
(e-mail: ajiang@cse.tamu.edu). ata structure. Several more specific rewriting models have

Michael Langberg is with the Computer Science Division, @pmiversity been studied in the past, includimgite-once memory (WOM)

of Israel, Raanana 43107, Israel (e-mail: mikel@openil).ac. codes l0) [Zﬂ floatina code [Bﬂ
Moshe Schwartz is with the Department of Electrical and Catexp 41, [l [71, [20], [23], . 9 6], '

Engineering, Ben-Gurion University, Beer Sheva 84105adbkr(e-mail: [IE]' HE]’ m] frmd buffer COdeSﬂZﬂ* [@ﬂ In WOM codes,
schwartz@ee.bgu.ac.il). with each rewrite, the data can change from any value to

Jehoshua Bruck is with the Department of Electrical Enginge Cali- any other value. In floating codek, variablesvy, vy, . . . oy
fornia Institute of Technology, 1200 E. California Blvd.,alll Code 136-93, d d . ' h |, A ble’
Pasadena, CA 91125, U.S.A. (e-mail: bruck@paradiseataédu). are stored, and every rewrite can change only one variable’s

This work was supported in part by the NSF CAREER Award CCFvalue. The rewriting model of floating codes can be used in
0747415, the NSF grant ECCS-0802107, the ISF grant 480f@80pen many applications where different data items can be updated
University of Israel Research Fund (grants no. 46109 andl@®)] the . dividuall h he d in th bl f d b .
GIF grant 2179-1785.10/2007, and the Caltech Lee CenterAtbmanced 'NdIvVidually, such as the data in the tables of databases, In

Networking. variable sets of programs, in repeatedly edited files, etc. |

http://arxiv.org/abs/1012.5430v1

buffer codesk data items are stored in a queue (namely, firsof the code. The cod€ is said to beoptimalif #(C) is max-
in-first-out), and every rewrite inserts a new data item thi® imized. In addition to this definition, if a probabilistic el
gueue and removes the oldest data item. for rewrite sequences is considered, the expected regritin
All the above rewriting models can be generalized witherformance can be defined accordingly.
the following graph model, which we call thgeneralized In this paper, we study generalized rewriting for the flash-
rewriting model memory model. We present a novel rewriting code, called the
trajectory code which is provably asymptotically optimal (up
bo constant factors) for a very wide range of scenarios. The
|c¥ea of the code is to trace the changes of data in the data
D = (Vp, Ep) graphD. The trajectory code includes WOM codes, floating
Dr =D codes, and buffer codes as special cases.
The vertices/p represent all the values that the data can take.We also study randomized rewriting codes and design codes
There is a directed edde, v) fromu € Vp tov € Vp (where that are optimized for the expected rewriting performance
v # u) iff a rewrite may change the stored data from value (namely, the expected number of rewrites the code supports)
valuev. The graphD is called thedata graphand its number A rewriting code is calledobustif its expected rewriting per-
of vertices — which corresponds to the data’s alphabet sige formance is asymptotically optimal fail rewrite sequences.
denoted by We present a randomized code construction that is robust.
L=|Vp|. Both our codes for general rewriting and our robust code
) are optimal up to constant factors (factors independent®f t
(Throughoutthe paper we assume that the data graph is Mo’?ﬁoblem parameters). Namely, for a constast 1, we present
connected.) 5 codesC for which t(C) is at leastr times that of the optimal

Note that the data graph is a complete graph for worpde. We would like to note that, for our robust code, the
codes, a generalized hypercube for floating codes, and acg@@stant involved is arbitrarily close to
Bruijn graph for buffer codes. Some examples are shown inThe rest of the paper is organized as follows. In Sedibn Il
Fig.[. With more data storage applications and data strestu We review the related results on rewriting codes, and coenpar
the data graph can vary even further. This motivates us tlystithem to the results derived in this paper. In Secfioh Ill, a
rewriting codes for the generalized rewriting model. new rewriting code for the generalized rewriting model, the

A rewriting code for flash memories can be formally definetfajectory code is presented and its optimality is proved. In
as follows. Note that in the flash-memory modelcells ofg Section[1V, robust codes optimized for expected rewriting
levels are used. The definition below can be easily extendegrformance are presented. In Sectioh V, the concluding

Definition 2. (GENERALIZED REWRITING MODEL)
The stored data and the possible rewrites are representad
directed graph

to other constrained memory models. remarks are presented.

Definition 3. (REWRITING CODE)

A rewriting code has alecoding functionF; and anupdate Il. OVERVIEW OF RELATED RESULTS

functionF,. The decoding function There has been a history of distinguished theoretical study

on constrained memories. It includes the original work by
Kuznetsov and Tsybakov on coding for defective memo-
means that the cell statec {0,1,...,q — 1}" represents the ries [18]. Further developments on defective memories in-
dataF;(s) € Vp. The update function (which represents alude [9], [11]. The write-once memory (WOM) [R3], write-
rewrite operation), unidirectional memory (WUM)[[24]£[26], and write-efficien
) " " memory [1], [8], are also special instances of constrained
Fui:{01,..,0=1}"xVp = {0,1,...,q = 1}", memories. Among them, WOM is the most related to the flash-
means that if the current cell statesis {0,1,...,q —1}" and memory model studied in this paper. _
the rewrite changes the dataite Vp, then the rewriting code ~ Write-once memory (WOM) was studied by Rivest and

changes the cell state Ey(s, v). All the following must hold: ~ Shamir in their original work[[23]. In a WOM, a cell's state
1) (Ey(s),v) € Ep. can change from 0 to 1 but not from 1 to 0. This model was

2) The cell-state vectdF, (s, v) is aboves. later generalized with more cell stateslin [5], [7]. The ahijee
3) Ey(Fu(s,0)) = 0. e of WOM codes is to maximize the number of times that the

Note that .”; - i - hich stored data can be rewritten. A number of very interesting
ote that ifFy(s) = v, we may setfy(s,v) = s, whic WWOM code constructions have been presented over the years,

corresponds to the case where we do not need to changei f?:?uding the tabular codes, linear codes, and others i, [23

i;osrsigztfév‘;zgoggggﬁofe paper we do not consider SUCH@ Iinea_r codes i [5], the codes cpnstructed using priggct
' geometries[[20], and the coset codinglin [4]. Profound tesul
A sequence of rewrites is a sequereg, v1,v;...) such on the capacity of WOM have been presented[in [7]) [10],
that thei-th rewrite changes the stored data frem, to v;. [23], [27]. Furthermore, error-correcting WOM codes have
Given a rewriting code’, we denote byt(C) the maximal been studied in[[34]. In all the above works, the rewriting
number of rewrites thaf guarantees to support for all rewritemodel assumes no constraints on the data, namely, the data
sequences. Thug(C) is a worst-case performance measurgraphD is a complete graph.

Fd:{O,l,...,q—l}"—>VD

Figure1l. The data graptD for different rewriting models. (a) The data graphfor a WOM code. Here the data has an alphabet of 6iZ8ince a rewrite
can change the data from any value to any other valués a complete graph. (b) The data graphfor a floating code. Heré = 3 variables of alphabet
size ¢ = 3 are stored. Since every rewrite can change exactly oneblelsavalue,D is a generalized hypercube of regular degkée— 1) = 6 (for both
out-degree and in-degree) kin= 3 dimensions. (c) The data grafh for a buffer code. Heré& = 3 variables of alphabet sizé= 2 are stored in a queue.
Since every rewrite inserts a new variable into the queueramsbves the oldest variable from the quefiejs a de Bruijn graph of degreé= 2.

With the increasing importance of flash memories, the flasA- Trajectory Code Outline
memory model was proposed and studied recentlylin [2],| et 119,11, 15,...,n; bed + 1 positive integers and let
[12], [13]. The rewriting schemes include floating codeg{12 P
[15] and buffer codes[]2],[]14]. Both types of codes use = 2”'
the joint coding of multiple variables for better rewriting =0 v
capabil_i_ty. Their datagraplﬁ are gen(_%ralized hypercubes anq\/heren denotes the number of flash-memory cells, each of
de Bruijn graphs, respectively. Multiple floating codes ehavq levels. We partition the: cells intod + 1 groups, each
been presented, including the code constructions in [L3], [

; . with ng, nq, ..., ny cells, respectively. We call themegisters
the flash codes if [19][33], and the constructions based gn o ' d P y 9

)) - 90, S1,...,54, respectively.

Gray codes in([e]. .'Ifhe floating codes iri [6] were optimized for Our encoding uses the following basic scheme: we start by
the _expected re_/vr|t|_ng performance. Th_e St“‘?'y of WOM _COd%§ing registeiS, called theanchor, to record the value of the

— with new applications to flash memories — is also conUnuqﬂmaI datavg € Vp

with a number of improved code constructions[16]1[28[H[31 ko the nextd rewrite operations we use a differential

Compared to existing codes, the codes in this paper not ogheme: denote by, ...,v; € Vp the nextd values of the
work for a more general rewriting model, but also providgewritten data. In the-th rewrite,1 < i < d, we store in
efficiently encodable and decodable asymptotically-optimregisterS; the identity of the edgév;_1,v;) € Ep. We do not
performance for a wider range of cases. This can be seequire a unique label for all edges globally, but ratheuesy
clearly from Tablell, where the asymptotically-optimal esd that locally, for each vertex inV/p, its out-going edges have
are summarized. We explain some of the parameters in [labignique labels fron{1,...,A}, whereA denotes the maximal
here. For the WOM code, a variable of alphabet sizes out-degree in the data grafb.
stored. For the floating code and the buffer cadeariables Intuitively, the firstd rewrite operations are achieved by
of alphabet size/ are stored. For rewriting codes using thencoding thetrajectory taken by the input sequence starting
generalized rewriting model, is the size of the data graph.with the anchor data. After! such rewrites, we repeat the
For all the codesy cells are used to store the data. It can bgrocess by rewriting the next input froly, in the anchoiSy,
seen that this paper substantially expands the known sesultd then continuing withd edge labels ir64, ..., S,.
on rewriting codes. Let us assume a sequencesofewrites have been stored

thus far. To decode the last stored value, all we need to know
is s mod (d +1). This is easily achieved by usinf/q]
more cells (not specified in the previodis- 1 registers), where

1. TRAJECTORYCODE t is the total number of rewrite operations we would like to
guarantee. For thede/q] cells we employ a simple encoding
scheme: in every rewrite operation we arbitrarily choose on

We use the flash-memory model of Definitibh 1 and thef those cells and raise its level by one. Thus, the totallleve
generalized rewriting model of Definitidd 2 in the rest ofsthiin these cells equals
paper. We first present a novel code constructiontréjectory The decoding process takes the value of the anchor
code then show its performance is asymptotically optimal. and then follows(s —1) mod (d + 1) edges which are read

TABLE |
A SUMMARY OF THE REWRITING CODES WITH ASYMPTOTICALLY OPTIMALPERFORMANCE(UP TO CONSTANT FACTORS$. HERE#, k, /, L ARE AS
DEFINED IN SECTIONIIAND SECTION[

TYPE

ASYMPTOTIC OPTIMALITY | RER |
WOM code D is a complete graph) | #(C) is asymptotically optimal

WOM code is a complete graph) | #(C) is asymptotically optimal wheif = O(
Floating code D is a hypercube) t(C) is asymptotically optimal wheh = O(
Floating code D is a hypercube) t(C) is asymptotically optimal when = Q)(
Floating code D is a hypercube) t(C) is asymptotically optimal when = Q)(

1
13 and? = O(1) 13] [15]
Flogk) and? = O(1) [

k?) and/ = ©(1) B3]

Buffer code D is a de Bruijn graph) | #(C) is asymptotically optimal when = Q(k) and? = ©(1) 2] 132]

Floating code D is a hypercube) codes designed for random rewriting sequences when®(1) and ¢ = 2

WOM code (D is a complete graph) | (C) is asymptotically optimal this paper

Rewriting code for the generalized For anyA, t(C) is asymptotically optimal when = Q(logL) this paper

rewriting model © has maximum out-

degreeA.)

Robust coding Asymptotically optimal (with constant — ¢) whenng = Q(LlogL) this paper
consecutively fromSq,S,,.... Notice that this scheme isdata. (Clearlycy remains untouched as 0.) When the code can
appealing in cases where the maximum out-degre®adas no longer support rewriting, we increase all cells (inchgti)
significantly lower than the size of the state spagg|. from O to 1, and start using cell levels 1 and 2 to store data in

Note that fori = 0,1, ...,d, each registe§; can be seen as the same way as above, except that the data stored in the cells
asmaller rewriting codavhose data graph is@mplete graph uses the formula
of eitherL vertices (forSg) or A vertices (forSy, ..., S;). We
letd = 0 if D is a complete graph, and describe how todket = 1 dL
whenD is not a complete graph in section Ml-C. The encoding i;) i(ei=1) (mod L).
used by each register is described in the next section.
This process is repeatef— 1 times in total. The general

B. Analysis for a Complete Data Graph decoding function is therefore defined as
In this section we present an efficiently encodable and
decodable code that enables us to store and rewrite symbols N =
Fy(¢) =Y i(ci—cp) (mod L).

from an input alphabelVp of size L > 2, whenD is a
complete graph. The information is storedrirflash-memory
cells ofg levels each. We now extend the above coderno> L cells. We divide

We first state a scheme that allows approximatey’8 then cells intob = |n/L| groups of sizd. (some cells may
rewrites in the case in which < L < n. We then extend it remain unused). We first apply the code above to the first group
to hold for generallL andn. We present the quality of our of L cells, then to the second group, and so on. O
code constructions (namely the number of possible rewrites
they perform) using asymptotic notatio®(-), Q)(-), ®(-), Theorem4.Let2 < L < n. The number of rewrites the code
o(+), andw(-) (where in all cases is considered to be the C of Constructioffl guarantees is lower bounded by
asymptotic variable that tends to infinity).

i=0

1) The case o2 < L < n: In this section we present a t(C) > n(g—1)/8 = Q(ng).
code for small values of. The code we present is essentially
the one presented if [23]. Proof: First assumer = L. When cell levels — 1 and

Construction 1. Let2 < L < n. This construction producesa@re used to store data (fgr=1,...,q — 1), by the analysis
an efficiently encodable and decodable rewriting oBder a in [23], even if only one or two cells increase their levelstwi
complete data grapP with L states, and flash memory with €ach rewrite, at leagtl. +4)/4 rewrites can be supported. So

cells withq levels each. the L cells can support at least

Let us first assume = L. Denote the1 cell levels byc =
(co,¢1,---,¢L-1), wherec; € {0,1,...,q — 1} is the level of HC) > (L+4)(q—1) = Q(ng)
thei-th cell fori = 0,1,...,L — 1. Denote the alphabet of the 4

data byVp = {0,1,...,L — 1}. We first use only cell levels 0
and 1, and the data stored in the cells is

L-1
Y ic; (mod L).
i=0

rewrites. Now letn > L. Whenb = [n/L], it is easy to see
thatbL > n/2. Theb groups of cells can guarantee

HC) > b(L—|—4i(q—1) S n(q8— 1) ~ O(ng)

With each rewrite, we increase the minimum number of cell
levels from 0O to 1 so that the new cell state represents the newrites. [|

2) The Case of Largd.: We now consider the settingWe used the fact that < 2"/1¢ to establish the inequality
in which L is larger thann. The rewriting code we present@ > /@ used in the last step above.]
reduces the general case to that of the case L studied
above. The majority of our analysis addresses the case in
which n < L < 2/16. We start, however, by first consideringConstruction3. Let n < L < 2"/16. This construction
the simple case in which”/1° < L < ¢". Notice that ifL is Pproduces an efficiently encodable and decodable rewritioig c

greater thag” then we cannot guarantee even a single rewrite.for a complete data graph with L states, and flash memory

Construction2. Let ¢ € [21/1,4], and letL = c". This Wlthn‘CeIIS withg levels each.
construction produces an efficiently encodable and dededab. Fori =1,2,...,b, letv; be a symbol from an alphabet of
rewriting codeC for a complete data grafdh with L states, and slze
flash memory with cells withq levels each. |n/b] > 1176,

Denote then cell levels by¢ = (cg,c1,-..,¢4-1), Where
¢, € {0,1,...,9— 1} is the level of thei-th cell for
i = 0,1,...,n— 1. Denote the alphabet of data Bjp =
{0,1,...,L — 1}. For the initial (re)write we use only cell
levels 0 to[c| — 1, and the data stored in the cells is

We may represent any symhbwolc Vp as a vector of symbols
(01,02,. . .,Ub).

Patrtition then flash-memory cells intd groups, each with
|n/b] cells (some cells may remain unused). Encoding the
n-1 symbolv into n cells is equivalent to the encoding of each

2 ¢i[c]" (mod L). into the corresponding group ¢fi/b| cells. As the alphabet
=0 size of eactly; equals the number of cells it is to be encoded
With the next rewrite, we use the cell levéls| to2 [c] —1 into, we can use Constructiilto storev;. O
and the data stored in the cells is now
n—1 ‘ Example7.Letn = 16,9 = 4, L = 56, and the data graph
2 (c;—[c]) [e]" (mod L) D be a complete graph. We design a rewriting code for these
i=0 parameters with the method of Construcin
and so on. In general, Letb = 2, and we divide the = 16 cells evenly intd = 2
ne1 groups. Let = (cy, c1, - . ., c7) denote the cell levels of the first
F4(e) = Z(Ci mod [c]) Mi (mod L). cell group, and let’ = (¢, c}, ..., c}) denote the cell levels of
i=0 the second cell group.
and with each rewrite we represent Vp by itsn-character ~ Letv € {0,1,...,L—1} ={0,1,...,55} denote the value
representation over an alphabet of sizé. O of the stored data. Let; andv, be two symbols of alphabet

. L . size8. We can representby the pain vy, as follows:
The following theorem is immediate. . p y the pair(vy, 02) w

Theorem5.Letc € [21/16,4]. If L = c" then the cod€ of v = [v/8] vy = v mod 8.
Constructiof® guaranteesC) > q/ [c| = Q(q/c).

We now address the case < L < 2"/16. Let b be the We storev; in the first cell group using the decoding function
smallest positive integer value that satisfies

b 7
[n/b]" > L. v1 =) i(ci—co) (mod 8),
Claim 6. Forn < L < 2"/1°, it holds that i=0
2logL and storev, in the second cell group using the decoding
“log (n/loglL)’ function
. _ 2log L : 7
Proof: Let b = Tog (1/ Tog T} Notice that vy = Ei@ —¢j) (mod 8).
1 log L =0
n/b| > Mos (/108 L)
4logL Reconstructing from (v, v3) is done by = 8v1 + v,. Thus,

Thus, if the data,v, changes as

log |n/b)” = blog |n/b]

0—>23—45—6—27 — 12,
2log L 1 <nlog (n/logL))

> 0
log (n/logL) 4logL the symbol paifv;,v,) will change as
2logL og < n)
log (n/logL) 4logL (0,0) = (2,7) — (5,5) — (0,6) — (3,3) — (1,4),
2log L n
> ———2——log =logL
log (1/logL) log L and the cell level$z, &) = ((co,c1,--.,¢7), (ch,). .., ch))

will change as Construction 4. Let

((0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0)) A< |Mog(n/logl) |

! 2log L
((0,0,1,0,0,0,0,0), (0,0,0,0,0,0,0,1)) We build an efficiently encodable and decodable rewritingeco

T C for anyA-restricted data graph with L vertices andt flash-
+ memory cells ofj levels as follows. For the trajectory code, let
0,0,1,1,0,0,0,0),(0,0,0,0,0,0,1,1

(l<) d=|logL/log(n/logL)| = ®(logL/log (n/logL)).
((0,0,1,1,1,0,0,1),(0,1,0,0,0,0,1,1)) Set the size of thé + 1 registers to

4 ny = |n/2|
((0,0,1,1,1,1,1,1),(0,1,0,0,0,1,1,1)) and

+ ni=|n/(2d)] > A
(1,2,1,1,1,1,1,1),(0,1,1,1,1,1,1,1))

fori =1,2,...,d. (We obviously hav&¥_,n; < n.)

A careful reader will have observed that the parameters hereThe update and decoding functions of the trajectory ¢bde
actually do not satisfy the condition< L < 2"/1¢. Indeed, the are defined as follows. We use the encoding scheme specified
conditionn < L < 2"/1% js chosen only for the analysis of thein ConstructiorB to store in then, cells of the registeb, an
asymptotic performance. The rewriting code of Construt@o “anchor” (i.e., a vertex) 0P, which is a symbol in the alphabet
can be used for more general parameter settings. o vp={0,1,...,L—1}.

Theorem8.Letn < L < 2"/16. The number of rewrites the FO'1 = 1.2,-. .,d, we use the encoding scheme specified

codeC of Constructio arantees is lower bounded b in Constructiorm to 'store in the_ql- cells of the registes; an
uctiofd gu 1 fow Y y “edge” of D, which is a symbol in the alphabd,1,..., A —

HE) > n(q—1)log(n/logL) _ a(m™ log (n/logL) 1}. Notice that the latter is possible because> A fori =
- 16log L log L Co1,...d. O
Proof: Using Constructior{]3, the number of rewrites Recall that the anchor and the edges storeshji$, S,, . . .

possible is bounded by the number of rewrites possible fehow how the data changes its value with rewrites. That is,
each of theb cell groups. By Theoreil 4 and Clailnh 6, this igthey show the trace of the changing data in the data gf2ph

at least Everyd + 1 rewrites change the data stored in the regiSter
ni g—1 nlog (n/logL) g—1 exactly once, foi = 0,1,...,d. After every_d + 1 rewrites,
bJ g 2 < 2logL -) 8 the next rewrite resets the anchor’s valuesy and the same
rewriting process starts again.
=0 (M) . Suppose that the rewrites change the stored datg as
log L <+ = v; — viy1 — ---. Then with the rewriting

m code of Constructiorf]4, the data stored in the register
So changes asig — U441 = Upgq1) — U3d+1)

C. Analysis for a Bounded-Out-Degree Data Graph Fori = 1,2....d the data stored in the regis-
ter S; changes agv;1,v;) — (Vi_14(ds+1) Vir@d+1)) —

We now return to the outline of the trajectory code fron@v, 142(41) U'+2(d+1)) — (v; 143(d41) U‘+3(d+1)) .
. q . . . 1— 7Y 1— r Y

Sect!o [TTT-A, and apply it in full detail using the codesiino are every edge{v]-,l,vj) ¢ Ep is locally labeled by the
SectiorII[-B to the case of data grapBswith upper bounded alphabet{0,1,...,A —1}.
out-degreeA. We refer to such graphs as-restricted. To e | oal
simplify our presentation, in the theorems below we williaga Theorem 9. Let L. < 2"/1¢ andA < {%gfg) . The
use the asymptotic notation freely; however, as opposelteto humber of rewrites the codgof Constructiofll guarantees is
previous section we will no longer state or make an attempt to
optimize the constants involved in our calculations. Weiass t(C) = Q(ng)

thatn < L, since forL < n, Constructiorf]l can be used to Proof: By Theoremd 8 anfl4, the lower bound on the
obtain optimal codes (up to constant factors). In this secti yymber of rewrites possible i, is equal (up to constant
we study the casé. < 2"/16. We do not address the casqactors) to that of5; (i > 1):

of larger L, as its analysis, although based on similar ideas,

becomes rather tedious and overly lengthy. O (”0‘71055 (n9/ log L)) -0 (”qlog (n/log L))
Using the notation of Sectidn II[HA, to realize the trajegto logL log L
code we need to specify the sizesand the value ofl. We -0 (ﬂ) = Q(nq).
consider two cases: the case in whishs small compared to d
n, and the case in which is large. Thus, the total number of rewrites in the scheme outlined in

The following construction is for the case in whighis Section -4 is lower bounded by + 1 times the bound for
small compared ton. each registes;, and sot(C) = Q(ngq). [

Example 10. Consider floating codes, whefe variables of D. Optimality of the Code Constructions
alphabet size are stored im cells ofq levels. When Con- \we now prove upper bounds on the number of rewrites
structior@is used to build the floating code, we det= (* and general rewriting schemes, which match the lower bounds
A =k(l—1).Soifk(f—1) < {%WJ: the code induced by our code constructions. They show that our code
can guarantedC) = Q(nq) rewrites, which is asymptotically constructions are asymptotically optimal.

optimal. Theorem 12. Any rewriting codeC that stores symbols from

The next construction is for the case in whighis large Some data grapP in n flash-memory cells of levels supports
compared ton. at most
t(C) <n(q—1) = O(ngq)
Construction 5. Let L < 2"/16 and let ,
rewrites.
{MJ <ALL-1. Proof: The bound is trivial. In the best case, all cells are
2log L initialized at level0, and every rewrite increases exactly one
We build an efficiently encodable and decodable rewritingeco €€l by exactly one level. Thus, the total number of rewrites
C for anyA-restricted data gragP with L vertices anat flash- 1S bounded byi(q —1) = O(nq) as claimed. u

memory cells ofj levels as follows. For the trajectory code, letcorollary 13. The codes from Construction® and@ are

d— [logL/logA| — ©(log L/ log A). asymptotically optimal.
For large values of., we can improve the upper bound.

Set the size of the registers to First, letr denote the largest integer such that

no = [n/2] <r+n_1)<L—1.

r

and We need the following technical claim.

= n/(2d

ni = [n/(2d)] Claim 14. LetL < 2"/ Foralll < n < L —1, the following
fori=1,2,...,d. inequality oo
The update and decoding functions of the trajectory cbde >c- _ o8-

are defined as follows: use the encoding scheme specified in log(n/logL)

Constructiofl to store an “anchor” i, and store an “edge” holds for a sufficiently small constant> 0.
inS;, fori = 1,2,...,d. (The remaining details are the same

as Constructiodl) Proof: First, it is easy to see thate [1,1]. Now we may

use the well-known bound for all > u > 1,

Theorem 11.Let L < 2716, Let | MO8GBL | < A < . o i
L — 1. The number of rewrites the codeof Constructiord (u) (I) ’

guarantees is lower bounded by))
wheree is the base of the natural logarithm. Let=n/r. It

B nqlog (n/logL) follows that,
tHC)=Q <—logA .

<r +n— 1) . (r + n) - (Zn) 2"e"n’
Proof: By Theoreni®, the number of rewrites supported r r r v

in Sy is lower bounded by Hence,
o (Moqlog (no/logL)\ _ . (nqlog(n/logl) log <r e 1) < rlog (21”) = Zlog(2em).
log L log L r r m

Similarly, fori = 1,2,...,d, the number of rewrites supportedThus’ it suffices to prove that

in S, is lower bounded by n _
i - log(2em) < log (L —1).
o (14 log (n;/1ogA)\ _ o™ log (1n/logL) We conclude via basic computations that if
log A dlog A 1 1
B nq]og(n/]og[,) m:C’.M
—qHETIOBE log L
ogL

. for a sufficiently large constant > 0, then
Thus, as in Theorem] 9, we conclude that the total number y'arg

of rewrites in the scheme outlined in Section 1lI-A is lower r+n-—1 <1
bounded byd + 1 times the bound for each registéy, and r =

s0#(C) = O (1loglrlosl)). . .

Theorem 15.Let L < 2"/16, Whenn < L — 1, any rewriting consider (by contradiction) a rewriting cod2 for the A-
codeC that stores symbols from the complete data grBpin restricted grapltD that allows

n flash-memory cells aof levels can guarantee at most o) nglog (n/log L)
HC) =0 <m/10g (n/logL)> ©) log A

_ log L rewrites. We us€ to construct a rewriting codé’ for a new
rewrites. data graphD’ which has the same vertex sép = Vp but

Proof: Let us examine some statef then flash-memory is @ complete graph. The codg will allow
cells, currently storing some valuee Vp, i.e., Fy(s) = v. , nglog (n/logL)
Having no constraint on the data graph, the next symbol we HC') = w T
want to store may be any of the— 1 symbolsv’ € Vp, _ o o
whereo’ # . rewrites, a contradiction to Theordm] 15. This will imply tha

If we allow ourselves operations of increasing a single celPur initial assumption regarding the quality of our rewgi
level of then flash-memory cells by one (perhaps operatingPdeC is false.

on the same cell more than once), we may reach at most ~ The rewriting codeC’ (defined by the decoding functidf}
and the update functiof)) is constructed bymimicking C
(” e 1) (defined by the decoding functidfy and the update function
r F,). We start by settind”; = F;. Next, lets be some state of
distinct new states. However, by our choice ofwe have the flash cells. Denoté&;(s) = Fj(s) = vy € Vp. Consider
(”*:*1) < L —1. So we need at least+ 1 such operations a rewrite operation attempting to store a new vatyec Vp,
to realize a rewrite in the worst case. Since we have a totalwherev; # vy. There exists a path i® of lengthd’, where
n cells with g levels each, the guaranteed number of rewrit€ < d, from v, to v1, which we denote by

operations is upper bounded by

t(C)<M_O(%)'

Og, Uy, U, ..., Ugr_1,01.

ST r1 We now define
[| E)(s,01) = Fy(Fu(... Fu(Fy(s,u1),u2) ..., ug_1),01),

Corollary 16. The code from Constructid@is asymptotically which simply states that to encode a new vatyewe follow

optimal. the steps taken by the codeon a short path fromy to v;
Theorem 17.Let2"/1® < L = ¢" < ¢". Any rewriting codeC in the data graptD.
that stores symbols from the complete data grBah n flash- As C guarantees(C) = w %) rewrites, the
memory cells of; levels can guarantee at most code forC’ guarantees at least

t(C) =0(q/c) HC') = w (nqlog (n/logL)) o (nqlog (n/logL))
rewrites. dlog A log L

Proof: We follow the proof of Theoreri 15. In this caseewrites. Here we use the fact that= O (1°8L

n+r—1 ; _ logA J*
we note that fol("" ") to be at least of sizé = c" we need \ypat is left is to show the existence of data grafhs
r = Q (nc). The proof follows. [

of maximum out-degreed whose diameterd is at most
Corollary 18. The code from Constructid@is asymptotically O (igg i . To obtain such a graph, one may simply take a
optimal. rooted bi-directed tree of total degree and corresponding

log (1/log L log L
Theorem 19.Let L < 2/16. LetA > | "8{U8L) | There depthO (15)- u

exist A-restricted data graphP over a vertex set of size,
such that any rewriting codé that stores symbols from the

Corollary 20. ForL < 2"/16, the code from Constructid@is

data graptD in n flash-memory cells of levels can guarantee asymptotically optimal.
at most
{C) =0 (”qlog (n/log L)) IV. ROBUST REWRITING CODES
log A It addition to the worst-case rewriting performance, it is

rewrites. also interesting to design rewriting codes with good expect
performance. In this section we consider the use of randeaniz

Proof: We start by showing thal-restricted graph<D codes to obtain good expected performance for all rewrite

with certain properties do not allow rewriting codésthat sequences
o nqlog (n/logL) . .

s:pporr: morﬁ tham(hC) - g nd 1cagA . rr].ewrlt-lels. Wel Let 7 = (v1,v2,03,...,0,(,-1)) denote a sequence of

then show that such graphs indeed exist. This will conclugg,ites. That is, foi = 1,2, 3,...,n(q — 1), thei-th rewrite

our proof. , , , changes the data to the valag € {0,1,...,L —1}. By
Let D be a A-restricted graph whose diametéris at gefa it the original value of the data is, = 0, and since

log L - -
mostO (1§§A)- Assuming the existence of such a graPh every rewrite changes the data, we require that for 21,

v; # v;_1. Also, as no more than(q — 1) rewrites may be between cell states of the same weight, break the tie anbjtja
supported, the sequendes limited ton(q — 1) elements. O

LetC denot_e a rewrmng code, which stores the data from an For simplicity, we will omit the term tnod L” in all com-
alphabet of sizd. in n cells ofg levels. The cod€ can only , ations below that consist of values of data. For example,

support a finite number of rewrites in the rewrite SequeNCce o eypression fof, in the above code construction will be
We uset(C|7) to denote the number of rewrites in the rewrit%immy written as

sequence’ that are supported by the code That is, if the
code C can support the rewritesy,v,,..., up to vy, then R 1 w(@ 1
HC|F) = k. Fi(@) =} Ouo-rici +) i
Let V denote the set of all possible rewrite sequences. If . = 1:0_}
we are interested in the number of rewrites that a c6deandF;(¢) — F;(c") will mean (F;(c) — F;(c’)) mod L.

guarantees in the worst case(’), then we can see that Definition 21. (Update Vector and Update Diversity)

£(C) = min t(C|3). Leté = (c1,¢2,...,¢n) begcellstate where fa')r:' 1,2, o
gev c;€{0,1,...,q—2}. Fori=1,2,...,n, we defineN;(¢) as
In this section, we are interested in the expected number of Ni(@) = (c1,...,¢ii1,¢i +1,¢i41,- -, Cn)

rewrites that a cod€ can support under random coding. Let) .

Q be some distribution over rewriting codes anddet be a and define;(c) as

randomized codénamely, a random variable) with distribution e;(2) = F4(N;(2)) — F4(©).

Q. Let E(x) denote the expected value of a random variable] . .

x. We define theexpected performancef the randomized We also define thepdate vectoof¢, denoted by (c), as

rewriting codeCo to be u(@) = (e1(2), (), . .., en(7)),
Ec, = %réi‘rflE(t(Cglﬁ)). and theupdate diversityf ¢ as
Our objective is to maximizeéEc,. Namely, to construct a {e1(0), e2(), ..., en(E) } -
distribution @ such that for all7, Co will allow many rewrites O

in expectation. A codeCy whose ECQ is asymptotically
optimal is called arobust code For any constant > 0, The update diversity of a cell stafas at mostL. If it is L,
in this section we will present a randomized code witPi means that when the current cell statefjsno0 matter what

the next rewrite is, we only need to increase one cell’s level
by one to realize the rewrite. Specifically, if the next rewevri
_ changes the data frofy(¢) to o/, we will change fronc to
A. Code Construction N;(€) by increasing the-th cell's level by one such that
We first present our code construction, analyze its progerti ei(@) = o' — Fy(@).

and define some useful terms. We then turn to show that it is
indeed robust. For good rewriting performance, it is beneficial to make the

Let (c1,¢1,...,c,) denote ther cell levels, where foi = update diversity of cell states large.

L2,...,m0¢i € {0,1,...,9—1} is thei-th cell's level. Given | emma22.Let& = (cy,c,...,cq) be a cell state where for
a cell stater’ = (c1, ¢z, ..., cn), We define itsweight denoted ; — 12 .. n,¢; € {0,1,...,9 — 2}. With the rewriting code

Ec, > (1 —¢)(q — 1)n (clearly, the code is robust).

by w(c), as ; of Constructiof, the update diversity af is
w(c) =) ¢ i=
i; i ‘{Gw(a,l‘l 1,2,...,nH.
Clearly, 0 < w(c) < (g — 1)n. Given the decoding function, Proof: Fori =1,2,...,n, we have
F;:{0,1,...,q—-1}" — {0,1,...,L — 1}, of a rewriting e;(€) = F4(N;(C)) — F4(¢)
code, the cell staté represents the dat(¢). (@)

Construction6. For alli = 0,1,...,n(q—1) —1 andj =
1,2,...,n, let 61-,]- anda; be parameters chosen from the set

Il
~.
Il I" 2
—

Ou@),j + ()i + 2)
j=0

{0,1,...,L —1}. n w(@)-1
We define a rewriting codé as follows. Its decoding func- - Z; GW(F)—L/'C/' - Z(:) aj
tion is = j=

w(6)—1

F4(C) = (i ew(z)_LiCi—F Z ai> mod L.
i=1 i

i=0

n
= Ou(e),i T Aw(e) + X;l(@w(s),j — Ou(@)-1,/)C)
j=

_ _ Only the first term,0,, ;, depends on. Hence the update
By default, ifc = (0,0,...,0), thenF;(c) = 0. When rewrit- diversity of ¢ is
ing the data, we take a greedy approach: For every rewrite,
minimize the increase of the cell state’s weight. (If theratie [{ei(0) | i=1,2,...,n}[= ‘{Gw(ﬁ),i |i= 1’2""’n}‘ :

10

n Proof: Fori = 1,2,...,L, Ni(c') = (1, ..., hj_1,h; +
Therefore, to make the update diversity of cell states large h;.1,...,h), SO
we can makéy,) 1, 0,(5) 2, - - - - 0 (), tAke as many different

values as possible. A simple solution is to ff ; = i for ei(¢') = Fa(Ni(¢')) = Fa(c") = T4 a,

i=12...,n and we get the conclusions. =
Therefore, if the current super-cell state 8 =

B. Robustness (h1,hy,...,hy) where fori = 1,2,...,L, h; < (q—

In the following, we present our code for > L. (The 1) [n/L] —1, Tor the next rewritg, we onI)_/ need tolin(?rease
case of smallem can be dealt with using Constructiéh 3.°"¢ super-cells level b’y one (which is equivalent to inshag
The code uses randomness in the code construction to confi4t flash-memory cell's level by one).
adversarial rewrite sequences. We then analyze the asyimptpemma 24. Let ¢ = (hy,hy,...,hy) be a super-cell state
optimality of the code forng > LlogL, and show that it where fori = 1,2,...,L, h; < (g — 1) |[n/L] — 1. With the
optimizes the constant in the asymptotic performancetce. rewriting code of Constructid if ¢ is the current super-cell

Fori=1,2,...,L, we define state, then no matter which value the next rewrite changes th
s . L data to, the next rewrite will only increase one super cédigl
gi={illsjsnj=i (modL)}. by one, and this super cell is uniformly randomly selectedfr
For example, ifn = 8,L = 3, theng; = {1,4,7},4, = theL super cells. What is more, the selection of this super cell
{2,5,8},93 = {3,6}.Fori = 1,2,...,L, |g;| is either|n/L]| isindependentofthe past rewriting history (that is, inetegent
or [n/L]. We define of the super cells whose levels were chosen to increaseéor th
previous rewrites).

hi: ZC]',

jeg: Proof: Let ¢ be the current super-cell state, and assume
the next rewrite changes the data®o By Lemmal28, we
will realize the rewrite by increasing théth super cell’s
hie {0,1,...,1gil(g— 1)) level by one such that+a,; = o' - F;(c"). Since the
parameteraw(;,) is uniformly randomly chosen from the set
{0,1,...,L — 1}, i has a uniform random distribution over

Wherecj is thej-th cell’s level. Fori =1,2,...,L, we have

We considerg; as asuper cellwhoselevelis ;.

Construction 7. (Robust Code) {1,2,...,L}.

Fori = 0,1,...,n(g — 1) — 1, choose the parame- The same analysis holds for the previous rewrite§. Note that
ter a; independently and uniformly randomly from the sewith every rewrite, the weight of the super celts(c’), in-
{0,1,...,L—1}. creases. Sinc®g), a1, . . </ ly(g—1)—1 Are i.i.d. random variables,

We define a randomized rewriting co@g by its decoding the selection of the super cell for this rewrite is indepemde
function of the selection for the previous rewrites. []

L w(@)-1 The above lemma holds for every rewrite sequence. We now
Fy(c) = X;ihi + X;} aj. (1) prove that the randomized rewriting code of Construdfios 7 i
= = robust

By d_efault, ife = (0,0,...,0), thenFy(¢) = 0. When Theorem 25.LetCg be the randomized rewriting code of Con-

rewriting the data, we take the same greedy approach as I cti 7 Letd — b .

Constructiofd structio etd = (v1,02,03,.) be any rewrite sequence.
For any constant > 0 there exists a constant= c(e) > 0

When we considegy, g2, . ..,81 asL “super cells” whose such that ifuqg > cLlog L, then
level "= (hy,hy, ..., hy), h ~
evels arec’ = (hy,hy,..., hy), we have E(H(Col7)) > (1—e)n(q —1),
n

L
w@) =Y =Y h= w(c). and therefor€ g is a robust code.
1 i=1

i:. - Proof: ConsiderL bins such that the-th bin can hold
The code of Constructidn 7 may bg seen as a rewriting cog’e_ 1) |gi| balls. We uselz; to denote the number of balls
that stores the data of alphabet sizén L super cells, whose in the i-th bin. Note that every bin can contain at least

decoding function is[{1). Each of the super cells has eithw —1)-|%] balls and at most(q — 1) - [#] balls. By

(—1) [n/L] +1levels or(q —1) [n/L] +1 levels. Lemmal24, before any bin is full, every rewrite throws a ball

Lemma 23. Let & — (h1,h, ..., hy) be a super-cell Stateuniformly at _random into one of thé bins, independently

where fori = 1,2,...,L, h; < (9 —1) |n/L| — 1. With the of other rewrl_tes. The rewriting process can always comn_nu

rewriting code of Constructidf, the update vector of the super—before any bin becomgs full. Thus, the number of rewrites

cell stater’ is supported by the codgy, is at least the number of balls thrown
to make at least one bin full.

u(c) = (1 + aw((;,),Z Ty L+ aw(g,)) , Suppose that(q — 1) — «/nq balls are independently and

uniformly at random thrown intd. bins, and there is no limit

and the update diversity of the super-cell statis L. on the capacity of any bin. Here, we setto becy/Llog L

for a sufficiently large constant Fori = 1,2,...,L, let x;
denote the number of balls thrown into theh bin. Clearly,

E(xl-) _ ”(qL— 1) _ Dé\{}’l_q‘

By the Chernoff bound,

< o~ Qe?/L).

(s> -0 [2]) <o

Le—Qa?/L) — 7—0(c?)

Therefore, whem(q — 1) — a,/nq balls are independently [14]

and uniformly at random thrown intd. bins, with high

probability, all theL bins have(q —1)- [#] —1 or fewer [15]

[10]
[11]

[12]
By the union bound, the probability that one or more of
the L bins contain at leastg — 1) - || balls is therefore [13]
upper bounded by.e—(«*/L) By our setting ofx we have

11

[9] A.J.Han Vinck and A. V. Kuznetsov, “On the general defextchannel
with informed encoder and capacities of some constrainecharies,”
in IEEE Transactions on Information Thegryol. 40, no. 6, pp. 1866—
1871, 1994.

C. D. Heegard, “On the capacity of permanent memory,”IHEE
Transactions on Information Thearyol. IT-31, no. 1, pp. 34-42, Jan.
1985.

C. D. Heegard and A. A. El-Gamal, “On the capacity of carep
memory with defects,” inEEE Transactions on Information Theory
vol. IT-29, no. 5, pp. 731-739, Sep. 1983.

A. Jiang, “On the generalization of error-correctingOM codes,” in
Proc. IEEE International Symposium on Information Theol8IT),
Nice, France, June 24-29, 2007, pp. 1391-1395.

A. Jiang, V. Bohossian and J. Bruck, “Floating codesj@int informa-
tion storage in write asymmetric memories,’Rmoc. IEEE International
Symposium on Information Theory (ISITNice, France, June 24-29,
2007, pp. 1166—1170.

A. Jiang, V. Bohossian and J. Bruck, “Rewriting codes jfuint infor-
mation storage in flash memories,”[lBEE Transactions on Information
Theory vol. 56, no. 10, pp. 5300-5313, October 2010.

A. Jiang and J. Bruck, “Joint coding for flash memory ag®,” inProc.

balls. This suffices to conclude our assertion. Notice that o
proof implies thatwith high probability (over Q) the value
of t(Col|?) will be large. This stronger statement implies the

asserted one in which we considéft(Co|7)).

V. CONCLUDING REMARKS

[16]

[17]

(18]

In this paper, we presented a flexible rewriting model that

generalizes known rewriting models, including those useth)

by WOM codes, floating codes and buffer codes. We pre-
sented a novel code construction, the trajectory code, for
this generalized rewriting model and proved that the code (&)
asymptotically optimal for a very wide range of parameter

settings, where the performance is measured by the num

of rewrites supported by flash-memory cells in the worst cage]
We also studied the expected performance of rewriting codes
and presented a randomized robust code. It will be inter@sti[
to apply these new coding techniques to wider constrainggl
memory applications, and combine rewriting codes with rerro
correction. These remain as our future research topics.

(1]

(2]

(31
(4]

(5]

(6]

(7]

(8]

REFERENCES

R. Ahlswede and Z. Zhang, “On multiuser write-efficienemories,” in
IEEE Transactions on Information Theomypol. 40, no. 3, pp. 674-686,
1994.

V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding fasyenmetric
multi-level memory,” inProc. IEEE International Symposium on Infor-

[26]

[27]

[28

mation Theory (ISIT)Nice, France, June 24-29, 2007, pp. 1186-119Q29]

P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni (Edrlash memories
Kluwer Academic Publishers, 1999.

G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binarydeofor
write-once memories,” iINEEE Transactions on Information Theory
vol. IT-32, no. 5, pp. 697-700, Sep. 1986.

A. Fiat and A. Shamir, “Generalized “write-once” memesj’ in IEEE
Transactions on Information Theqryol. 1T-30, no. 3, pp. 470-480,
May 1984.

H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing fiog codes
for expected performance,” iRroc. 46th Annual Allerton Conference
on Communications, Control and Computiidonticello, Illinois, USA,
September 23-26, 2008, pp. 1389-1396.

F. Fu and A. J. Han Vinck, “On the capacity of generalizedtevonce
memory with state transitions described by an arbitrargadéd acyclic
graph,” iInIEEE Transactions on Information Theowol. 45, no. 1, pp.
308-313, Jan. 1999.

F. Fu and R. W. Yeung, “On the capacity and error-correcttodes of
write-efficient memories,” iIHEEE Transactions on Information Theory
vol. 46, no. 7, pp. 2299-2314, Nov. 2000.

(30]

(31]

(32]

(33]

[34]

IEEE International Symposium on Information Theory (ISMMQronto,
Canada, July 6-11, 2008, pp. 1741-1745.

S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy and J. K. iMMultiple-
write. WOM-codes,” in Proc. 48th Annual Allerton Conferenece on
Communications, Control and Computjinylonticello, lllinois, USA,
September 29 to October 1, 2010.

E. M. Kurtas and B. Vasic (Ed.)Advanced Error Control Techniques
for Data Storage System3aylor & Francis Group, 2006.

A. V. Kuznetsov and B. S. Tsybakov, “Coding for memoriegth
defective cells,” inProblemy Peredachi Informatsivol. 10, no. 2, pp.
52-60, 1974.

H. Mahdavifar, P. H. Siegel, A. Vardy, J. K. Wolf and E. afbi, “A
nearly optimal construction of flash codes,”®moc. IEEE International
Symposium on Information Theory (ISIBeoul, Korea, June 28 to July
3, 2009, pp. 1239-1243.

F. Merkx, “WOM codes constructed with projective gedres,” in
Traitment du Signalvol. 1, no. 2-2, pp. 227-231, 1984.

K. C. Pohlmann,The Compact Disk Handbopknd edition, A-R
Editions Inc., 1992.

S. Raoux and M. Wuttig (Ed.Phase Change Materials: Science and
Applications Springer, 2009.

R. L. Rivest and A. Shamir, “How to reuse a ‘write-onceemory,” in
Information and Contrglvol. 55, pp. 1-19, 1982.

G. Simonyi, “On write-unidirectional memory codesti IEEE Trans-
actions on Information Theoyyol. 35, no. 3, pp. 663-667, May 1989.
. M. C. J. van Overveld, “The four cases of write unidiienal
memory codes over arbitrary alphabets,” IBEE Transactions on

Information Theoryvol. 37, no. 3, pp. 872-878, 1991.

F. M. J. Willems and A. J. Han Vinck, “Repeated recordfogan optical
disk,” in Proc. 7th Symposium on Information Theory in the Benelux
May 1986, Delft Univ. Press, pp. 49-53.

J. K. Wolf, A. D. Wyner, J. Ziv and J. Korner, “Coding forverite-once
memory,”AT&T Bell Labs. Tech. Jvol. 63, no. 6, pp. 1089-1112, 1984.

] Y. Wu, “Low complexity codes for writing write-once meary twice,”

in Proc. IEEE International Symposium on Information ThedSiT),
Austin, Texas, June 2010, pp. 1928-1932.

Y. Wu and A. Jiang, “Position modulation code for rewryg write-
once memories,” accepted HBYEE Transactions on Information Theory
October 2010.

E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy and J. K. iMdtfficient
two-write WOM-codes,” inProc. IEEE Information Theory Workshop
(ITW), Dublin, Ireland, September — October 2010.

E. Yaakobi, P. H. Siegel, A. Vardy and J. K. Wolf, “Multe error-
correcting WOM-codes,” inProc. IEEE International Symposium on
Information Theory (ISIT)Austin, TX, June 2010, pp. 1933-1937.

E. Yaakobi, P. H. Siegel and J. K. Wolf, “Buffer codes fowlti-level
flash memory,” poster presentation at IEEE Internationahi@ysium on
Information Theory (ISIT), Toronto, Canada, July 6-11, 200

E. Yaakobi, A. Vardy, P. H. Siegel and J. K. Wolf, “Multidensional
flash codes,” inProc. 46th Annual Allerton Conference on Communi-
cations, Control and Computindvonticello, lllinois, USA, September
23-26, 2008, pp. 392-399.

G. Zémor and G. Cohen, “Error-correcting WOM-codes)’ IEEE
Transactions on Information Theaqryol. 37, no. 3, pp. 730-734, May
1991.

	I Introduction
	II Overview of Related Results
	III Trajectory Code
	III-A Trajectory Code Outline
	III-B Analysis for a Complete Data Graph
	III-B1 The case of 2L n
	III-B2 The Case of Large L

	III-C Analysis for a Bounded-Out-Degree Data Graph
	III-D Optimality of the Code Constructions

	IV Robust Rewriting Codes
	IV-A Code Construction
	IV-B Robustness

	V Concluding Remarks
	References

