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Abstract—Flash memory is well-known for its inherent asym-
metry: the flash-cell charge levels are easy to increase but are
hard to decrease. In a general rewriting model, the stored data
changes its value with certain patterns. The patterns of data
updates are determined by the data structure and the application,
and are independent of the constraints imposed by the storage
medium. Thus, an appropriate coding scheme is needed so that
the data changes can be updated and stored efficiently under the
storage-medium’s constraints.

In this paper, we define the general rewriting problem using
a graph model. It extends many known rewriting models such
as floating codes, WOM codes, buffer codes, etc. We present a
new rewriting scheme for flash memories, called thetrajectory
code, for rewriting the stored data as many times as possible
without block erasures. We prove that the trajectory code is
asymptotically optimal in a wide range of scenarios.

We also present randomized rewriting codes optimized for
expected performance (givenarbitrary rewriting sequences). Our
rewriting codes are shown to be asymptotically optimal.

Index Terms—flash memory, asymmetric memory, rewriting,
write-once memory, floating codes, buffer codes

I. I NTRODUCTION

M ANY storage media have constraints on their state
transitions. A typical example is flash memory, the

most widely-used type of non-volatile electronic memory [3].
A flash memory consists of floating-gate cells, where a cell
uses the charge it stores to represent data. The amount of
charge stored in a cell can be quantized intoq > 2 discrete
values in order to represent up tolog2 q bits. (The cell is called
a single-level cell (SLC)if q = 2, and called amulti-level cell
(MLC) if q > 2). We call theq states of a cell itslevels: level
0, level 1, . . . , levelq− 1. The level of a cell can be increased
by injecting charge into the cell, and decreased by removing
charge from the cell. Flash memories have the prominent
property that although it is relatively easy to increase a cell’s
level, it is very costly to decrease it. This follows from the
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fact that flash-memory cells are organized as blocks, where
every block has about105 ∼ 106 cells. To decrease any
cell’s level, the whole block needs to be erased (which means
to remove the charge from all the cells of the block) and
then be reprogrammed. Block erasures not only are slow and
energy consuming, but also significantly reduce the longevity
of flash memories, because every block can endure only
104 ∼ 105 erasures with guaranteed quality [3]. Therefore, it
is highly desirable to minimize the number of block erasures.
In addition to flash memories, other storage media often have
their own distinct constraints for state transitions. Examples
include magnetic recording [17], optical recording [21], and
phase-change memories [22].

In general, the constraints of a memory on its state transi-
tions can be described by a directed graph, where the vertices
represent the memory states and the directed edges represent
the feasible state transitions [5], [7]. Different edges may have
different costs [8]. Based on the constraints, an appropriate
coding scheme is needed to represent the data so that the data
can be rewritten efficiently. In this paper, we focus on flash
memories, and our objective is to rewrite data as many times
as possible between two block erasures. Note that between two
block erasures, the cell levels can only increase. Therefore we
use the following flash-memory model:

Definition 1. (FLASH-MEMORY MODEL)
Considern flash-memory cells ofq levels. The cells’ state can
be described by a vector

(c1, c2, . . . , cn) ∈ {0, 1, . . . , q − 1}n,

where fori = 1, 2, . . . , n, ci is the level of thei-th cell. The
cells can transit from one state(c1, c2, . . . , cn) to another state
(c′1, c′2, . . . , c′n) if and only if for i = 1, 2, . . . , n, c′i > ci. (If
c′i > ci for i = 1, 2, . . . , n, we say that(c′1, c′2, . . . , c′n) is above
(c1, c2, . . . , cn).) 2

In this work, we focus on designing rewriting codes for
general data-storage applications. How the stored data can
change its value with each rewrite, which we call therewriting
model, depends on the data-storage application and the used
data structure. Several more specific rewriting models have
been studied in the past, includingwrite-once memory (WOM)
codes[4], [5], [7], [20], [23], [27], floating codes[6], [13],
[15], [19], [33] and buffer codes[2], [32]. In WOM codes,
with each rewrite, the data can change from any value to
any other value. In floating codes,k variablesv1, v2, . . . , vk

are stored, and every rewrite can change only one variable’s
value. The rewriting model of floating codes can be used in
many applications where different data items can be updated
individually, such as the data in the tables of databases, in
variable sets of programs, in repeatedly edited files, etc. In
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buffer codes,k data items are stored in a queue (namely, first-
in-first-out), and every rewrite inserts a new data item intothe
queue and removes the oldest data item.

All the above rewriting models can be generalized with
the following graph model, which we call thegeneralized
rewriting model.

Definition 2. (GENERALIZED REWRITING MODEL)
The stored data and the possible rewrites are represented bya
directed graph

D = (VD , ED).

The verticesVD represent all the values that the data can take.
There is a directed edge(u, v) from u ∈ VD to v ∈ VD (where
v 6= u) iff a rewrite may change the stored data from valueu to
valuev. The graphD is called thedata graph, and its number
of vertices – which corresponds to the data’s alphabet size –is
denoted by

L = |VD | .

(Throughout the paper we assume that the data graph is strongly
connected.) 2

Note that the data graph is a complete graph for WOM
codes, a generalized hypercube for floating codes, and a de
Bruijn graph for buffer codes. Some examples are shown in
Fig. 1. With more data storage applications and data structures,
the data graph can vary even further. This motivates us to study
rewriting codes for the generalized rewriting model.

A rewriting code for flash memories can be formally defined
as follows. Note that in the flash-memory model,n cells of q
levels are used. The definition below can be easily extended
to other constrained memory models.

Definition 3. (REWRITING CODE)
A rewriting code has adecoding functionFd and anupdate
functionFu. The decoding function

Fd : {0, 1, . . . , q − 1}n → VD

means that the cell states ∈ {0, 1, . . . , q − 1}n represents the
data Fd(s) ∈ VD . The update function (which represents a
rewrite operation),

Fu : {0, 1, . . . , q − 1}n × VD → {0, 1, . . . , q − 1}n,

means that if the current cell state iss ∈ {0, 1, . . . , q − 1}n and
the rewrite changes the data tov ∈ VD , then the rewriting code
changes the cell state toFu(s, v). All the following must hold:

1) (Fd(s), v) ∈ ED.
2) The cell-state vectorFu(s, v) is aboves.
3) Fd(Fu(s, v)) = v.

Note that if Fd(s) = v, we may setFu(s, v) = s, which
corresponds to the case where we do not need to change the
stored data. Throughout the paper we do not consider such a
case as a rewrite operation. 2

A sequence of rewrites is a sequence(v0, v1, v2 . . . ) such
that thei-th rewrite changes the stored data fromvi−1 to vi.
Given a rewriting codeC, we denote byt(C) the maximal
number of rewrites thatC guarantees to support for all rewrite
sequences. Thus,t(C) is a worst-case performance measure

of the code. The codeC is said to beoptimal if t(C) is max-
imized. In addition to this definition, if a probabilistic model
for rewrite sequences is considered, the expected rewriting
performance can be defined accordingly.

In this paper, we study generalized rewriting for the flash-
memory model. We present a novel rewriting code, called the
trajectory code, which is provably asymptotically optimal (up
to constant factors) for a very wide range of scenarios. The
idea of the code is to trace the changes of data in the data
graphD. The trajectory code includes WOM codes, floating
codes, and buffer codes as special cases.

We also study randomized rewriting codes and design codes
that are optimized for the expected rewriting performance
(namely, the expected number of rewrites the code supports).
A rewriting code is calledrobust if its expected rewriting per-
formance is asymptotically optimal forall rewrite sequences.
We present a randomized code construction that is robust.

Both our codes for general rewriting and our robust code
are optimal up to constant factors (factors independent of the
problem parameters). Namely, for a constantr 6 1, we present
codesC for which t(C) is at leastr times that of the optimal
code. We would like to note that, for our robust code, the
constant involved is arbitrarily close to1.

The rest of the paper is organized as follows. In Section II,
we review the related results on rewriting codes, and compare
them to the results derived in this paper. In Section III, a
new rewriting code for the generalized rewriting model, the
trajectory code, is presented and its optimality is proved. In
Section IV, robust codes optimized for expected rewriting
performance are presented. In Section V, the concluding
remarks are presented.

II. OVERVIEW OF RELATED RESULTS

There has been a history of distinguished theoretical study
on constrained memories. It includes the original work by
Kuznetsov and Tsybakov on coding for defective memo-
ries [18]. Further developments on defective memories in-
clude [9], [11]. The write-once memory (WOM) [23], write-
unidirectional memory (WUM) [24]–[26], and write-efficient
memory [1], [8], are also special instances of constrained
memories. Among them, WOM is the most related to the flash-
memory model studied in this paper.

Write-once memory (WOM) was studied by Rivest and
Shamir in their original work [23]. In a WOM, a cell’s state
can change from 0 to 1 but not from 1 to 0. This model was
later generalized with more cell states in [5], [7]. The objective
of WOM codes is to maximize the number of times that the
stored data can be rewritten. A number of very interesting
WOM code constructions have been presented over the years,
including the tabular codes, linear codes, and others in [23],
the linear codes in [5], the codes constructed using projective
geometries [20], and the coset coding in [4]. Profound results
on the capacity of WOM have been presented in [7], [10],
[23], [27]. Furthermore, error-correcting WOM codes have
been studied in [34]. In all the above works, the rewriting
model assumes no constraints on the data, namely, the data
graphD is a complete graph.



3

010

020 120 220

210110

000 100 200

011

021 121 221

211111

001 101 201

012

022 122 222

212112

002 102 202

0

1

3

4

5

2

100 000 001

010

101

111 011110

(a) (b) (c)

Figure 1. The data graphD for different rewriting models. (a) The data graphD for a WOM code. Here the data has an alphabet of size6. Since a rewrite
can change the data from any value to any other value,D is a complete graph. (b) The data graphD for a floating code. Herek = 3 variables of alphabet
size ℓ = 3 are stored. Since every rewrite can change exactly one variable’s value,D is a generalized hypercube of regular degreek(ℓ− 1) = 6 (for both
out-degree and in-degree) ink = 3 dimensions. (c) The data graphD for a buffer code. Herek = 3 variables of alphabet sizeℓ = 2 are stored in a queue.
Since every rewrite inserts a new variable into the queue andremoves the oldest variable from the queue,D is a de Bruijn graph of degreeℓ = 2.

With the increasing importance of flash memories, the flash-
memory model was proposed and studied recently in [2],
[12], [13]. The rewriting schemes include floating codes [12]–
[15] and buffer codes [2], [14]. Both types of codes use
the joint coding of multiple variables for better rewriting
capability. Their data graphsD are generalized hypercubes and
de Bruijn graphs, respectively. Multiple floating codes have
been presented, including the code constructions in [13], [15],
the flash codes in [19], [33], and the constructions based on
Gray codes in [6]. The floating codes in [6] were optimized for
the expected rewriting performance. The study of WOM codes
– with new applications to flash memories – is also continued,
with a number of improved code constructions [16], [28]–[31].

Compared to existing codes, the codes in this paper not only
work for a more general rewriting model, but also provide
efficiently encodable and decodable asymptotically-optimal
performance for a wider range of cases. This can be seen
clearly from Table I, where the asymptotically-optimal codes
are summarized. We explain some of the parameters in Table I
here. For the WOM code, a variable of alphabet sizeℓ is
stored. For the floating code and the buffer code,k variables
of alphabet sizeℓ are stored. For rewriting codes using the
generalized rewriting model,L is the size of the data graph.
For all the codes,n cells are used to store the data. It can be
seen that this paper substantially expands the known results
on rewriting codes.

III. T RAJECTORYCODE

We use the flash-memory model of Definition 1 and the
generalized rewriting model of Definition 2 in the rest of this
paper. We first present a novel code construction, thetrajectory
code, then show its performance is asymptotically optimal.

A. Trajectory Code Outline

Let n0, n1, n2, . . . , nd be d + 1 positive integers and let

n =
d

∑
i=0

ni,

wheren denotes the number of flash-memory cells, each of
q levels. We partition then cells into d + 1 groups, each
with n0, n1, . . . , nd cells, respectively. We call themregisters
S0, S1, . . . , Sd, respectively.

Our encoding uses the following basic scheme: we start by
using registerS0, called theanchor, to record the value of the
initial datav0 ∈ VD .

For the nextd rewrite operations we use a differential
scheme: denote byv1, . . . , vd ∈ VD the nextd values of the
rewritten data. In thei-th rewrite, 1 6 i 6 d, we store in
registerSi the identity of the edge(vi−1, vi) ∈ ED . We do not
require a unique label for all edges globally, but rather require
that locally, for each vertex inVD , its out-going edges have
unique labels from{1, . . . , ∆}, where∆ denotes the maximal
out-degree in the data graphD.

Intuitively, the first d rewrite operations are achieved by
encoding thetrajectory taken by the input sequence starting
with the anchor data. Afterd such rewrites, we repeat the
process by rewriting the next input fromVD in the anchorS0,
and then continuing withd edge labels inS1, . . . , Sd.

Let us assume a sequence ofs rewrites have been stored
thus far. To decode the last stored value, all we need to know
is s mod (d + 1). This is easily achieved by using⌈t/q⌉
more cells (not specified in the previousd+ 1 registers), where
t is the total number of rewrite operations we would like to
guarantee. For these⌈t/q⌉ cells we employ a simple encoding
scheme: in every rewrite operation we arbitrarily choose one
of those cells and raise its level by one. Thus, the total level
in these cells equalss.

The decoding process takes the value of the anchorS0

and then follows(s − 1) mod (d + 1) edges which are read
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TABLE I
A SUMMARY OF THE REWRITING CODES WITH ASYMPTOTICALLY OPTIMALPERFORMANCE(UP TO CONSTANT FACTORS). HERE n, k, ℓ, L ARE AS

DEFINED IN SECTION I AND SECTION II.

TYPE ASYMPTOTIC OPTIMALITY REF.
WOM code (D is a complete graph) t(C) is asymptotically optimal [23]
WOM code (D is a complete graph) t(C) is asymptotically optimal whenℓ = Θ(1) [5]
Floating code (D is a hypercube) t(C) is asymptotically optimal whenk = Θ(1) and ℓ = Θ(1) [13] [15]
Floating code (D is a hypercube) t(C) is asymptotically optimal whenn = Ω(k log k) and ℓ = Θ(1) [13] [15]
Floating code (D is a hypercube) t(C) is asymptotically optimal whenn = Ω(k2) and ℓ = Θ(1) [33]
Buffer code (D is a de Bruijn graph) t(C) is asymptotically optimal whenn = Ω(k) and ℓ = Θ(1) [2] [32]
Floating code (D is a hypercube) codes designed for random rewriting sequences whenk = Θ(1) and ℓ = 2 [6]
WOM code (D is a complete graph) t(C) is asymptotically optimal this paper
Rewriting code for the generalized For any∆, t(C) is asymptotically optimal whenn = Ω(log L) this paper
rewriting model (D has maximum out-
degree∆.)
Robust coding Asymptotically optimal (with constant1 − ε) when nq = Ω(L log L) this paper

consecutively fromS1, S2, . . . . Notice that this scheme is
appealing in cases where the maximum out-degree ofD is
significantly lower than the size of the state space|VD |.

Note that fori = 0, 1, . . . , d, each registerSi can be seen as
a smaller rewriting codewhose data graph is acomplete graph
of eitherL vertices (forS0) or ∆ vertices (forS1, . . . , Sd). We
let d = 0 if D is a complete graph, and describe how to setd
whenD is not a complete graph in section III-C. The encoding
used by each register is described in the next section.

B. Analysis for a Complete Data Graph

In this section we present an efficiently encodable and
decodable code that enables us to store and rewrite symbols
from an input alphabetVD of size L > 2, when D is a
complete graph. The information is stored inn flash-memory
cells of q levels each.

We first state a scheme that allows approximatelynq/8
rewrites in the case in which2 6 L 6 n. We then extend it
to hold for generalL and n. We present the quality of our
code constructions (namely the number of possible rewrites
they perform) using asymptotic notation:O(·), Ω(·), Θ(·),
o(·), and ω(·) (where in all casesn is considered to be the
asymptotic variable that tends to infinity).

1) The case of2 6 L 6 n: In this section we present a
code for small values ofL. The code we present is essentially
the one presented in [23].

Construction 1. Let 2 6 L 6 n. This construction produces
an efficiently encodable and decodable rewriting codeC for a
complete data graphD with L states, and flash memory withn
cells withq levels each.

Let us first assumen = L. Denote then cell levels by~c =
(c0, c1, . . . , cL−1), whereci ∈ {0, 1, . . . , q − 1} is the level of
the i-th cell for i = 0, 1, . . . , L − 1. Denote the alphabet of the
data byVD = {0, 1, . . . , L − 1}. We first use only cell levels 0
and 1, and the data stored in the cells is

L−1

∑
i=0

ici (mod L).

With each rewrite, we increase the minimum number of cell
levels from 0 to 1 so that the new cell state represents the new

data. (Clearly,c0 remains untouched as 0.) When the code can
no longer support rewriting, we increase all cells (including c0)
from 0 to 1, and start using cell levels 1 and 2 to store data in
the same way as above, except that the data stored in the cells
uses the formula

L−1

∑
i=0

i(ci − 1) (mod L).

This process is repeatedq − 1 times in total. The general
decoding function is therefore defined as

Fd(~c) =
L−1

∑
i=0

i(ci − c0) (mod L).

We now extend the above code ton > L cells. We divide
the n cells intob = ⌊n/L⌋ groups of sizeL (some cells may
remain unused). We first apply the code above to the first group
of L cells, then to the second group, and so on. 2

Theorem 4.Let 2 6 L 6 n. The number of rewrites the code
C of Construction1 guarantees is lower bounded by

t(C) > n(q − 1)/8 = Ω(nq).

Proof: First assumen = L. When cell levelsj − 1 and j
are used to store data (forj = 1, . . . , q − 1), by the analysis
in [23], even if only one or two cells increase their levels with
each rewrite, at least(L + 4)/4 rewrites can be supported. So
the L cells can support at least

t(C) > (L + 4)(q − 1)

4
= Ω(nq)

rewrites. Now letn > L. Whenb = ⌊n/L⌋, it is easy to see
that bL > n/2. The b groups of cells can guarantee

t(C) > b(L + 4)(q − 1)

4
>

n(q − 1)

8
= Ω(nq)

rewrites.
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2) The Case of LargeL: We now consider the setting
in which L is larger thann. The rewriting code we present
reduces the general case to that of the casen = L studied
above. The majority of our analysis addresses the case in
which n < L 6 2n/16. We start, however, by first considering
the simple case in which2n/16 6 L 6 qn. Notice that if L is
greater thanqn then we cannot guarantee even a single rewrite.

Construction 2. Let c ∈ [21/16, q], and let L = cn. This
construction produces an efficiently encodable and decodable
rewriting codeC for a complete data graphD with L states, and
flash memory withn cells withq levels each.

Denote then cell levels by~c = (c0, c1, . . . , cn−1), where
ci ∈ {0, 1, . . . , q − 1} is the level of the i-th cell for
i = 0, 1, . . . , n − 1. Denote the alphabet of data byVD =
{0, 1, . . . , L − 1}. For the initial (re)write we use only cell
levels 0 to⌈c⌉ − 1, and the data stored in the cells is

n−1

∑
i=0

ci ⌈c⌉i (mod L).

With the next rewrite, we use the cell levels⌈c⌉ to 2 ⌈c⌉ − 1
and the data stored in the cells is now

n−1

∑
i=0

(ci − ⌈c⌉) ⌈c⌉i (mod L)

and so on. In general,

Fd(~c) =
n−1

∑
i=0

(ci mod ⌈c⌉) ⌈c⌉i (mod L).

and with each rewrite we representv ∈ VD by its n-character
representation over an alphabet of size⌈c⌉. 2

The following theorem is immediate.

Theorem 5.Let c ∈ [21/16, q]. If L = cn then the codeC of
Construction2 guaranteest(C) > q/ ⌈c⌉ = Ω(q/c).

We now address the casen < L 6 2n/16. Let b be the
smallest positive integer value that satisfies

⌊n/b⌋b
> L.

Claim 6. For n 6 L 6 2n/16, it holds that

b 6
2 log L

log (n/ log L)
.

Proof: Let b =
2 log L

log (n/ log L)
. Notice that

⌊n/b⌋ > n log (n/ log L)

4 log L
.

Thus,

log ⌊n/b⌋b = b log ⌊n/b⌋

>
2 log L

log (n/ log L)
log

(

n log (n/ log L)

4 log L

)

>
2 log L

log (n/ log L)
log

(

n

4 log L

)

>
2 log L

log (n/ log L)
log

(
√

n

log L

)

= log L

We used the fact thatL 6 2n/16 to establish the inequality
n

4 log L >
√

n
log L used in the last step above.

Construction 3. Let n < L 6 2n/16. This construction
produces an efficiently encodable and decodable rewriting code
C for a complete data graphD with L states, and flash memory
with n cells withq levels each.

For i = 1, 2, . . . , b, let vi be a symbol from an alphabet of
size

⌊n/b⌋ > L1/b.

We may represent any symbolv ∈ VD as a vector of symbols
(v1, v2, . . . , vb).

Partition then flash-memory cells intob groups, each with
⌊n/b⌋ cells (some cells may remain unused). Encoding the
symbolv into n cells is equivalent to the encoding of eachvi

into the corresponding group of⌊n/b⌋ cells. As the alphabet
size of eachvi equals the number of cells it is to be encoded
into, we can use Construction1 to storevi. 2

Example 7.Let n = 16, q = 4, L = 56, and the data graph
D be a complete graph. We design a rewriting code for these
parameters with the method of Construction3.

Let b = 2, and we divide then = 16 cells evenly intob = 2
groups. Let~c = (c0, c1, . . . , c7) denote the cell levels of the first
cell group, and let~c′ = (c′0, c′1, . . . , c′7) denote the cell levels of
the second cell group.

Let v ∈ {0, 1, . . . , L − 1} = {0, 1, . . . , 55} denote the value
of the stored data. Letv1 andv2 be two symbols of alphabet
size8. We can representv by the pair(v1, v2) as follows:

v1 = ⌊v/8⌋ v2 = v mod 8.

We storev1 in the first cell group using the decoding function

v1 =
7

∑
i=0

i(ci − c0) (mod 8),

and storev2 in the second cell group using the decoding
function

v2 =
7

∑
i=0

i(c′i − c′0) (mod 8).

Reconstructingv from (v1, v2) is done byv = 8v1 + v2. Thus,
if the data,v, changes as

0 → 23 → 45 → 6 → 27 → 12,

the symbol pair(v1, v2) will change as

(0, 0) → (2, 7) → (5, 5) → (0, 6) → (3, 3) → (1, 4),

and the cell levels(~c,~c′) = ((c0, c1, . . . , c7), (c
′
0, c′1, . . . , c′7))
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will change as

((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0))

↓
((0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1))

↓
((0, 0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 1))

↓
((0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1, 1))

↓
((0, 0, 1, 1, 1, 1, 1, 1), (0, 1, 0, 0, 0, 1, 1, 1))

↓
((1, 2, 1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1, 1, 1))

A careful reader will have observed that the parameters here
actually do not satisfy the conditionn < L 6 2n/16. Indeed, the
conditionn < L 6 2n/16 is chosen only for the analysis of the
asymptotic performance. The rewriting code of Construction 3
can be used for more general parameter settings. 2

Theorem 8.Let n 6 L 6 2n/16. The number of rewrites the
codeC of Construction3 guarantees is lower bounded by

t(C) > n(q − 1) log (n/ log L)

16 log L
= Ω

(

nq log (n/ log L)

log L

)

.

Proof: Using Construction 3, the number of rewrites
possible is bounded by the number of rewrites possible for
each of theb cell groups. By Theorem 4 and Claim 6, this is
at least

⌊n

b

⌋

· q − 1

8
>

(

n log (n/ log L)

2 log L
− 1

)

q − 1

8

= Ω

(

nq log (n/ log L)

log L

)

.

C. Analysis for a Bounded-Out-Degree Data Graph

We now return to the outline of the trajectory code from
Section III-A, and apply it in full detail using the codes from
Section III-B to the case of data graphsD with upper bounded
out-degree∆. We refer to such graphs as∆-restricted. To
simplify our presentation, in the theorems below we will again
use the asymptotic notation freely; however, as opposed to the
previous section we will no longer state or make an attempt to
optimize the constants involved in our calculations. We assume
that n 6 L, since forL 6 n, Construction 1 can be used to
obtain optimal codes (up to constant factors). In this section
we study the caseL 6 2n/16. We do not address the case
of larger L, as its analysis, although based on similar ideas,
becomes rather tedious and overly lengthy.

Using the notation of Section III-A, to realize the trajectory
code we need to specify the sizesni and the value ofd. We
consider two cases: the case in which∆ is small compared to
n, and the case in which∆ is large.

The following construction is for the case in which∆ is
small compared ton.

Construction 4. Let

∆ 6

⌊

n log (n/ log L)

2 log L

⌋

.

We build an efficiently encodable and decodable rewriting code
C for any∆-restricted data graphD with L vertices andn flash-
memory cells ofq levels as follows. For the trajectory code, let

d = ⌊log L/ log (n/ log L)⌋ = Θ(log L/ log (n/ log L)).

Set the size of thed + 1 registers to

n0 = ⌊n/2⌋
and

ni = ⌊n/(2d)⌋ > ∆

for i = 1, 2, . . . , d. (We obviously have∑d
i=0 ni 6 n.)

The update and decoding functions of the trajectory codeC
are defined as follows. We use the encoding scheme specified
in Construction3 to store in then0 cells of the registerS0 an
“anchor” (i.e., a vertex) ofD, which is a symbol in the alphabet
VD = {0, 1, . . . , L − 1}.

For i = 1, 2, . . . , d, we use the encoding scheme specified
in Construction1 to store in theni cells of the registerSi an
“edge” ofD, which is a symbol in the alphabet{0, 1, . . . , ∆ −
1}. Notice that the latter is possible becauseni > ∆ for i =
1, . . . d. 2

Recall that the anchor and the edges stored inS0, S1, S2, . . .
show how the data changes its value with rewrites. That is,
they show the trace of the changing data in the data graphD.
Every d + 1 rewrites change the data stored in the registerSi

exactly once, fori = 0, 1, . . . , d. After every d + 1 rewrites,
the next rewrite resets the anchor’s value inS0, and the same
rewriting process starts again.

Suppose that the rewrites change the stored data asv0 →
· · · → vi → vi+1 → · · · . Then with the rewriting
code of Construction 4, the data stored in the register
S0 changes asv0 → vd+1 → v2(d+1) → v3(d+1) →
· · · . For i = 1, 2, . . . , d, the data stored in the regis-
ter Si changes as(vi−1, vi) → (vi−1+(d+1), vi+(d+1)) →
(vi−1+2(d+1), vi+2(d+1)) → (vi−1+3(d+1), vi+3(d+1)) → · · ·
Here every edge(vj−1, vj) ∈ ED is locally labeled by the
alphabet{0, 1, . . . , ∆ − 1}.

Theorem 9. Let L 6 2n/16 and ∆ 6

⌊

n log (n/ log L)
2 log L

⌋

. The
number of rewrites the codeC of Construction4 guarantees is

t(C) = Ω(nq)

Proof: By Theorems 8 and 4, the lower bound on the
number of rewrites possible inS0 is equal (up to constant
factors) to that ofSi (i > 1):

Ω

(

n0q log (n0/ log L)

log L

)

= Ω

(

nq log (n/ log L)

log L

)

= Ω
(nq

d

)

= Ω (niq) .

Thus, the total number of rewrites in the scheme outlined in
Section III-A is lower bounded byd + 1 times the bound for
each registerSi, and sot(C) = Ω(nq).
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Example 10. Consider floating codes, wherek variables of
alphabet sizeℓ are stored inn cells of q levels. When Con-
struction4 is used to build the floating code, we getL = ℓk and
∆ = k(ℓ− 1). So if k(ℓ− 1) 6

⌊

n log (n/(k log ℓ))
2k log ℓ

⌋

, the code

can guaranteet(C) = Ω(nq) rewrites, which is asymptotically
optimal. 2

The next construction is for the case in which∆ is large
compared ton.

Construction 5. Let L 6 2n/16 and let
⌊

n log (n/ log L)

2 log L

⌋

6 ∆ 6 L − 1.

We build an efficiently encodable and decodable rewriting code
C for any∆-restricted data graphD with L vertices andn flash-
memory cells ofq levels as follows. For the trajectory code, let

d = ⌊log L/ log ∆⌋ = Θ(log L/ log ∆).

Set the size of the registers to

n0 = ⌊n/2⌋

and

ni = ⌊n/(2d)⌋

for i = 1, 2, . . . , d.
The update and decoding functions of the trajectory codeC

are defined as follows: use the encoding scheme specified in
Construction3 to store an “anchor” inS0 and store an “edge”
in Si, for i = 1, 2, . . . , d. (The remaining details are the same
as Construction4.) 2

Theorem 11. Let L 6 2n/16. Let
⌊

n log (n/ log L)
2 log L

⌋

6 ∆ 6

L − 1. The number of rewrites the codeC of Construction5
guarantees is lower bounded by

t(C) = Ω

(

nq log (n/ log L)

log ∆

)

.

Proof: By Theorem 8, the number of rewrites supported
in S0 is lower bounded by

Ω

(

n0q log (n0/ log L)

log L

)

= Ω

(

nq log (n/ log L)

log L

)

Similarly, for i = 1, 2, . . . , d, the number of rewrites supported
in Si is lower bounded by

Ω

(

niq log (ni/ log ∆)

log ∆

)

= Ω

(

nq log (n/ log L)

d log ∆

)

= Ω

(

nq log (n/ log L)

log L

)

.

Thus, as in Theorem 9, we conclude that the total number
of rewrites in the scheme outlined in Section III-A is lower
bounded byd + 1 times the bound for each registerSi, and
so t(C) = Ω

(

nq log (n/ log L)
log ∆

)

.

D. Optimality of the Code Constructions

We now prove upper bounds on the number of rewrites
in general rewriting schemes, which match the lower bounds
induced by our code constructions. They show that our code
constructions are asymptotically optimal.

Theorem 12.Any rewriting codeC that stores symbols from
some data graphD in n flash-memory cells ofq levels supports
at most

t(C) 6 n(q − 1) = O(nq)

rewrites.

Proof: The bound is trivial. In the best case, all cells are
initialized at level0, and every rewrite increases exactly one
cell by exactly one level. Thus, the total number of rewrites
is bounded byn(q − 1) = O(nq) as claimed.

Corollary 13. The codes from Constructions1 and 4 are
asymptotically optimal.

For large values ofL, we can improve the upper bound.
First, let r denote the largest integer such that

(

r + n − 1

r

)

< L − 1.

We need the following technical claim.

Claim 14.Let L 6 2n/16. For all1 6 n < L− 1, the following
inequality

r > c · log L

log(n/ log L)

holds for a sufficiently small constantc > 0.

Proof: First, it is easy to see thatr ∈ [1, n]. Now we may
use the well-known bound for allv > u > 1,

(

v

u

)

<

( ev

u

)u
,

wheree is the base of the natural logarithm. Letm = n/r. It
follows that,

(

r + n − 1

r

)

6

(

r + n

r

)

6

(

2n

r

)

6
2rernr

rr
.

Hence,

log

(

r + n − 1

r

)

6 r log

(

2en

r

)

=
n

m
log(2em).

Thus, it suffices to prove that

n

m
log(2em) < log (L − 1).

We conclude via basic computations that if

m = c′ · n log (n/ log L)

log L

for a sufficiently large constantc′ > 0, then
(

r + n − 1

r

)

6 L.
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Theorem 15.Let L 6 2n/16. Whenn < L − 1, any rewriting
codeC that stores symbols from the complete data graphD in
n flash-memory cells ofq levels can guarantee at most

t(C) = O

(

nq log (n/ log L)

log L

)

rewrites.

Proof: Let us examine some states of then flash-memory
cells, currently storing some valuev ∈ VD, i.e., Fd(s) = v.
Having no constraint on the data graph, the next symbol we
want to store may be any of theL − 1 symbolsv′ ∈ VD,
wherev′ 6= v.

If we allow ourselvesr operations of increasing a single cell
level of then flash-memory cells by one (perhaps operating
on the same cell more than once), we may reach at most

(

n + r − 1

r

)

distinct new states. However, by our choice ofr, we have
(n+r−1

r ) < L − 1. So we need at leastr + 1 such operations
to realize a rewrite in the worst case. Since we have a total of
n cells with q levels each, the guaranteed number of rewrite
operations is upper bounded by

t(C) 6 n(q − 1)

r + 1
= O

(

nq log (n/ log L)

log L

)

.

Corollary 16. The code from Construction3 is asymptotically
optimal.

Theorem 17.Let 2n/16 6 L = cn 6 qn. Any rewriting codeC
that stores symbols from the complete data graphD in n flash-
memory cells ofq levels can guarantee at most

t(C) = O (q/c)

rewrites.

Proof: We follow the proof of Theorem 15. In this case
we note that for(n+r−1

r ) to be at least of sizeL = cn we need
r = Ω (nc). The proof follows.

Corollary 18. The code from Construction2 is asymptotically
optimal.

Theorem 19.Let L 6 2n/16. Let ∆ >

⌊

n log (n/ log L)
2 log L

⌋

. There
exist ∆-restricted data graphsD over a vertex set of sizeL,
such that any rewriting codeC that stores symbols from the
data graphD in n flash-memory cells ofq levels can guarantee
at most

t(C) = O

(

nq log (n/ log L)

log ∆

)

rewrites.

Proof: We start by showing that∆-restricted graphsD
with certain properties do not allow rewriting codesC that
support more thant(C) = O

(

nq log (n/ log L)
log ∆

)

rewrites. We
then show that such graphs indeed exist. This will conclude
our proof.

Let D be a ∆-restricted graph whose diameterd is at
most O

(

log L
log ∆

)

. Assuming the existence of such a graphD,

consider (by contradiction) a rewriting codeC for the ∆-
restricted graphD that allows

t(C) = ω

(

nq log (n/ log L)

log ∆

)

rewrites. We useC to construct a rewriting codeC ′ for a new
data graphD′ which has the same vertex setVD ′ = VD but
is a complete graph. The codeC ′ will allow

t(C ′) = ω

(

nq log (n/ log L)

log L

)

rewrites, a contradiction to Theorem 15. This will imply that
our initial assumption regarding the quality of our rewriting
codeC is false.

The rewriting codeC ′ (defined by the decoding functionF′
d

and the update functionF′
u) is constructed bymimicking C

(defined by the decoding functionFd and the update function
Fu). We start by settingF′

d = Fd. Next, let s be some state of
the flash cells. DenoteFd(s) = F′

d(s) = v0 ∈ VD . Consider
a rewrite operation attempting to store a new valuev1 ∈ VD ,
wherev1 6= v0. There exists a path inD of lengthd′, where
d′ 6 d, from v0 to v1, which we denote by

v0, u1, u2, . . . , ud′−1, v1.

We now define

F′
u(s, v1) = Fu(Fu(. . . Fu(Fu(s, u1), u2) . . . , ud′−1), v1),

which simply states that to encode a new valuev1 we follow
the steps taken by the codeC on a short path fromv0 to v1

in the data graphD.
As C guaranteest(C) = ω

(

nq log (n/ log L)
log ∆

)

rewrites, the

code forC ′ guarantees at least

t(C ′) = ω

(

nq log (n/ log L)

d log ∆

)

= ω

(

nq log (n/ log L)

log L

)

rewrites. Here we use the fact thatd = O
(

log L
log ∆

)

.
What is left is to show the existence of data graphsD

of maximum out-degree∆ whose diameterd is at most
O
(

log L
log ∆

)

. To obtain such a graph, one may simply take a
rooted bi-directed tree of total degree∆ and corresponding
depthO

(

log L
log ∆

)

.

Corollary 20. For L 6 2n/16, the code from Construction5 is
asymptotically optimal.

IV. ROBUST REWRITING CODES

It addition to the worst-case rewriting performance, it is
also interesting to design rewriting codes with good expected
performance. In this section we consider the use of randomized
codes to obtain good expected performance for all rewrite
sequences.

Let ~v = (v1, v2, v3, . . . , vn(q−1)) denote a sequence of
rewrites. That is, fori = 1, 2, 3, . . . , n(q − 1), the i-th rewrite
changes the data to the valuevi ∈ {0, 1, . . . , L − 1}. By
default, the original value of the data isv0 = 0, and since
every rewrite changes the data, we require that for alli > 1,
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vi 6= vi−1. Also, as no more thann(q − 1) rewrites may be
supported, the sequence~v is limited to n(q − 1) elements.

Let C denote a rewriting code, which stores the data from an
alphabet of sizeL in n cells of q levels. The codeC can only
support a finite number of rewrites in the rewrite sequence~v.
We uset(C|~v) to denote the number of rewrites in the rewrite
sequence~v that are supported by the codeC. That is, if the
code C can support the rewritesv1, v2, . . . , up to vk, then
t(C|~v) = k.

Let V denote the set of all possible rewrite sequences. If
we are interested in the number of rewrites that a codeC
guarantees in the worst case,t(C), then we can see that

t(C) = min
~v∈V

t(C|~v).

In this section, we are interested in the expected number of
rewrites that a codeC can support under random coding. Let
Q be some distribution over rewriting codes and letCQ be a
randomized code(namely, a random variable) with distribution
Q. Let E(x) denote the expected value of a random variable
x. We define theexpected performanceof the randomized
rewriting codeCQ to be

ECQ = min
~v∈V

E(t(CQ|~v)).

Our objective is to maximizeECQ . Namely, to construct a
distributionQ such that for all~v, CQ will allow many rewrites
in expectation. A codeCQ whose ECQ is asymptotically
optimal is called arobust code. For any constantε > 0,
in this section we will present a randomized code with
ECQ > (1 − ε)(q − 1)n (clearly, the code is robust).

A. Code Construction

We first present our code construction, analyze its properties
and define some useful terms. We then turn to show that it is
indeed robust.

Let (c1, c1, . . . , cn) denote then cell levels, where fori =
1, 2, . . . , n, ci ∈ {0, 1, . . . , q− 1} is thei-th cell’s level. Given
a cell state~c = (c1, c2, . . . , cn), we define itsweight, denoted
by w(~c), as

w(~c) =
n

∑
i=1

ci.

Clearly, 0 6 w(~c) 6 (q − 1)n. Given the decoding function,
Fd : {0, 1, . . . , q − 1}n → {0, 1, . . . , L − 1}, of a rewriting
code, the cell state~c represents the dataFd(~c).

Construction 6. For all i = 0, 1, . . . , n(q − 1) − 1 and j =
1, 2, . . . , n, let θi,j and ai be parameters chosen from the set
{0, 1, . . . , L − 1}.

We define a rewriting codeC as follows. Its decoding func-
tion is

Fd(~c) =

(

n

∑
i=1

θw(~c)−1,ici +
w(~c)−1

∑
i=0

ai

)

mod L.

By default, if~c = (0, 0, . . . , 0), thenFd(~c) = 0. When rewrit-
ing the data, we take a greedy approach: For every rewrite,
minimize the increase of the cell state’s weight. (If there is a tie

between cell states of the same weight, break the tie arbitrarily.)
2

For simplicity, we will omit the term “mod L” in all com-
putations below that consist of values of data. For example,
the expression forFd in the above code construction will be
simply written as

Fd(~c) =
n

∑
i=1

θw(~c)−1,ici +
w(~c)−1

∑
i=0

ai,

and Fd(~c)− Fd(~c′) will mean (Fd(~c)− Fd(~c′)) mod L.

Definition 21. (Update Vector and Update Diversity)
Let~c = (c1, c2, . . . , cn) be a cell state where fori = 1, 2, . . . , n,
ci ∈ {0, 1, . . . , q − 2}. For i = 1, 2, . . . , n, we defineNi(~c) as

Ni(~c) = (c1, . . . , ci−1, ci + 1, ci+1, . . . , cn)

and defineei(~c) as

ei(~c) = Fd(Ni(~c))− Fd(~c).

We also define theupdate vectorof~c, denoted byu(~c), as

u(~c) = (e1(~c), e2(~c), . . . , en(~c)),

and theupdate diversityof~c as

|{e1(~c), e2(~c), . . . , en(~c)}| .

2

The update diversity of a cell state~c is at mostL. If it is L,
it means that when the current cell state is~c, no matter what
the next rewrite is, we only need to increase one cell’s level
by one to realize the rewrite. Specifically, if the next rewrite
changes the data fromFd(~c) to v′, we will change from~c to
Ni(~c) by increasing thei-th cell’s level by one such that

ei(~c) = v′ − Fd(~c).

For good rewriting performance, it is beneficial to make the
update diversity of cell states large.

Lemma 22.Let~c = (c1, c2, . . . , cn) be a cell state where for
i = 1, 2, . . . , n, ci ∈ {0, 1, . . . , q − 2}. With the rewriting code
of Construction6, the update diversity of~c is

∣

∣

∣

{

θw(~c),i | i = 1, 2, . . . , n
}∣

∣

∣
.

Proof: For i = 1, 2, . . . , n, we have

ei(~c) = Fd(Ni(~c))− Fd(~c)

=
n

∑
j=1

θw(~c),jcj + θw(~c),i +
w(~c)

∑
j=0

aj

−
n

∑
j=1

θw(~c)−1,jcj −
w(~c)−1

∑
j=0

aj

= θw(~c),i + aw(~c) +
n

∑
j=1

(θw(~c),j − θw(~c)−1,j)cj

Only the first term,θw(~c),i, depends oni. Hence the update
diversity of~c is

|{ei(~c) | i = 1, 2, . . . , n}| =
∣

∣

∣

{

θw(~c),i | i = 1, 2, . . . , n
}∣

∣

∣
.
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Therefore, to make the update diversity of cell states large,
we can makeθw(~c),1, θw(~c),2, . . . , θw(~c),n take as many different
values as possible. A simple solution is to letθw(~c),i = i for
i = 1, 2, . . . , n.

B. Robustness

In the following, we present our code forn > L. (The
case of smallern can be dealt with using Construction 3.)
The code uses randomness in the code construction to combat
adversarial rewrite sequences. We then analyze the asymptotic
optimality of the code fornq > L log L, and show that it
optimizes the constant in the asymptotic performance to1− ε.

For i = 1, 2, . . . , L, we define

gi = {j | 1 6 j 6 n, j ≡ i (mod L)} .

For example, ifn = 8, L = 3, then g1 = {1, 4, 7} , g2 =
{2, 5, 8} , g3 = {3, 6}. Fori = 1, 2, . . . , L, |gi| is either⌊n/L⌋
or ⌈n/L⌉. We define

hi = ∑
j∈gi

cj,

wherecj is the j-th cell’s level. Fori = 1, 2, . . . , L, we have

hi ∈ {0, 1, . . . , |gi|(q − 1)}.

We considergi as asuper cellwhoselevel is hi.

Construction 7. (Robust Code)
For i = 0, 1, . . . , n(q − 1) − 1, choose the parame-

ter ai independently and uniformly randomly from the set
{0, 1, . . . , L − 1}.

We define a randomized rewriting codeCQ by its decoding
function

Fd(~c) =
L

∑
i=1

ihi +
w(~c)−1

∑
i=0

ai. (1)

By default, if ~c = (0, 0, . . . , 0), then Fd(~c) = 0. When
rewriting the data, we take the same greedy approach as in
Construction6. 2

When we considerg1, g2, . . . , gL as L “super cells” whose
levels are~c′ = (h1, h2, . . . , hL), we have

w(~c) =
n

∑
i=1

ci =
L

∑
i=1

hi = w(~c′).

The code of Construction 7 may be seen as a rewriting code
that stores the data of alphabet sizeL in L super cells, whose
decoding function is (1). Each of the super cells has either
(q − 1) ⌊n/L⌋+ 1 levels or(q − 1) ⌈n/L⌉+ 1 levels.

Lemma 23. Let ~c′ = (h1, h2, . . . , hL) be a super-cell state
where fori = 1, 2, . . . , L, hi 6 (q − 1) ⌊n/L⌋ − 1. With the
rewriting code of Construction7, the update vector of the super-
cell state~c′ is

u(~c′) =
(

1 + a
w(~c′), 2 + a

w(~c′), . . . , L + a
w(~c′)

)

,

and the update diversity of the super-cell state~c′ is L.

Proof: For i = 1, 2, . . . , L, Ni(~c′) = (h1, . . . , hi−1, hi +
1, hi+1, . . . , hL), so

ei(~c′) = Fd(Ni(~c′))− Fd(~c′) = i + a
w(~c′)

and we get the conclusions.
Therefore, if the current super-cell state is~c′ =

(h1, h2, . . . , hL) where for i = 1, 2, . . . , L, hi 6 (q −
1) ⌊n/L⌋ − 1, for the next rewrite, we only need to increase
one super-cell’s level by one (which is equivalent to increasing
one flash-memory cell’s level by one).

Lemma 24. Let ~c′ = (h1, h2, . . . , hL) be a super-cell state
where fori = 1, 2, . . . , L, hi 6 (q − 1) ⌊n/L⌋ − 1. With the
rewriting code of Construction7, if ~c′ is the current super-cell
state, then no matter which value the next rewrite changes the
data to, the next rewrite will only increase one super cell’slevel
by one, and this super cell is uniformly randomly selected from
the L super cells. What is more, the selection of this super cell
is independent of the past rewriting history (that is, independent
of the super cells whose levels were chosen to increase for the
previous rewrites).

Proof: Let ~c′ be the current super-cell state, and assume
the next rewrite changes the data tov′. By Lemma 23, we
will realize the rewrite by increasing thei-th super cell’s
level by one such thati + a

w(~c′) = v′ − Fd(~c′). Since the
parametera

w(~c′) is uniformly randomly chosen from the set

{0, 1, . . . , L − 1}, i has a uniform random distribution over
{1, 2, . . . , L}.

The same analysis holds for the previous rewrites. Note that
with every rewrite, the weight of the super cells,w(~c′), in-
creases. Sincea0, a1, . . . , an(q−1)−1 are i.i.d. random variables,
the selection of the super cell for this rewrite is independent
of the selection for the previous rewrites.

The above lemma holds for every rewrite sequence. We now
prove that the randomized rewriting code of Construction 7 is
robust.

Theorem 25.Let CQ be the randomized rewriting code of Con-
struction7. Let~v = (v1, v2, v3, . . . ) be any rewrite sequence.
For any constantε > 0 there exists a constantc = c(ε) > 0
such that ifnq > cL log L, then

E(t(CQ|~v)) > (1 − ε)n(q − 1),

and thereforeCQ is a robust code.

Proof: ConsiderL bins such that thei-th bin can hold
(q − 1) |gi| balls. We usehi to denote the number of balls
in the i-th bin. Note that every bin can contain at least
(q − 1) ·

⌊

n
L

⌋

balls and at most(q − 1) ·
⌈

n
L

⌉

balls. By
Lemma 24, before any bin is full, every rewrite throws a ball
uniformly at random into one of theL bins, independently
of other rewrites. The rewriting process can always continue
before any bin becomes full. Thus, the number of rewrites
supported by the codeCQ is at least the number of balls thrown
to make at least one bin full.

Suppose thatn(q − 1)− α
√

nq balls are independently and
uniformly at random thrown intoL bins, and there is no limit
on the capacity of any bin. Here, we setα to be c

√

L log L
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for a sufficiently large constantc. For i = 1, 2, . . . , L, let xi

denote the number of balls thrown into thei-th bin. Clearly,

E(xi) =
n(q − 1)

L
− α

√
nq

L
.

By the Chernoff bound,

Pr
(

xi > (q − 1) ·
⌊n

L

⌋)

6 e−Ω(α
2/L).

By the union bound, the probability that one or more of
the L bins contain at least(q − 1) ·

⌊

n
L

⌋

balls is therefore

upper bounded byLe−Ω(α
2/L). By our setting ofα we have

Le−Ω(α
2/L) = 2−Ω(c2).

Therefore, whenn(q − 1)− α
√

nq balls are independently
and uniformly at random thrown intoL bins, with high
probability, all theL bins have(q − 1) ·

⌊

n
L

⌋

− 1 or fewer
balls. This suffices to conclude our assertion. Notice that our
proof implies thatwith high probability (over Q) the value
of t(CQ|~v) will be large. This stronger statement implies the
asserted one in which we considerE(t(CQ|~v)).

V. CONCLUDING REMARKS

In this paper, we presented a flexible rewriting model that
generalizes known rewriting models, including those used
by WOM codes, floating codes and buffer codes. We pre-
sented a novel code construction, the trajectory code, for
this generalized rewriting model and proved that the code is
asymptotically optimal for a very wide range of parameter
settings, where the performance is measured by the number
of rewrites supported by flash-memory cells in the worst case.
We also studied the expected performance of rewriting codes,
and presented a randomized robust code. It will be interesting
to apply these new coding techniques to wider constrained-
memory applications, and combine rewriting codes with error
correction. These remain as our future research topics.
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