Imbalances in directed multigraphs

S. Pirzada
Department of Mathematics, University of Kashmir, Srinagar, India
email: sdpirzada@yahoo.co.in

T. A. Naikoo
Department of Mathematics, University of Kashmir, Srinagar, India email: tariqnaikoo@rediffmail.com

U. Samee

Department of Mathematics, University of Kashmir, Srinagar, India email: pzsamee@yahoo.co.in

A. Iványi

Department of Computer Algebra, Eötvös Loránd University, Hungary email: tony@compalg.inf.elte.hu

Abstract

In a directed multigraph, the imbalance of a vertex v_{i} is defined as $\mathrm{b}_{v_{i}}=\mathrm{d}_{v_{i}}^{+}-\mathrm{d}_{v_{i}}^{-}$, where $\mathrm{d}_{v_{i}}^{+}$and $\mathrm{d}_{v_{i}}^{-}$denote the outdegree and indegree respectively of v_{i}. We characterize imbalances in directed multigraphs and obtain lower and upper bounds on imbalances in such digraphs. Also, we show the existence of a directed multigraph with a given imbalance set.

1 Introduction

A directed graph (shortly digraph) without loops and without multi-arcs is called a simple digraph [2]. The imbalance of a vertex v_{i} in a digraph as $b_{v_{i}}$ (or simply b_{i}) $=d_{v_{i}}^{+}-d_{v_{i}}^{-}$, where $d_{v_{i}}^{+}$and $d_{v_{i}}^{-}$are respectively the outdegree and indegree of v_{i}. The imbalance sequence of a simple digraph is formed by listing the vertex imbalances in non-increasing order. A sequence of integers $F=\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ with $f_{1} \geq f_{2} \geq \ldots \geq f_{n}$ is feasible if the sum of its elements is zero, and satisfies $\sum_{i=1}^{k} f_{i} \leq k(n-k)$, for $1 \leq k<n$.

2010 Mathematics Subject Classification: 05C20
Key words and phrases: digraph, imbalance, outdegree, indegree, directed multigraph, arc.

The following result [5] provides a necessary and sufficient condition for a sequence of integers to be the imbalance sequence of a simple digraph.

Theorem $1 A$ sequence is realizable as an imbalance sequence if and only if it is feasible.

The above result is equivalent to saying that a sequence of integers $\mathrm{B}=$ $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ with $b_{1} \geq b_{2} \geq \ldots \geq b_{n}$ is an imbalance sequence of a simple digraph if and only if

$$
\sum_{i=1}^{k} b_{i} \leq k(n-k)
$$

for $1 \leq \mathrm{k}<\mathrm{n}$, with equality when $\mathrm{k}=\mathrm{n}$.
On arranging the imbalance sequence in non-decreasing order, we have the following observation.

Corollary 1 A sequence of integers $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ with $b_{1} \leq b_{2} \leq \ldots \leq$ $\mathrm{b}_{\mathfrak{n}}$ is an imbalance sequence of a simple digraph if and only if

$$
\sum_{i=1}^{k} b_{i} \geq k(k-n)
$$

for $1 \leq \mathrm{k}<\mathrm{n}$ with equality when $\mathrm{k}=\mathrm{n}$.
Various results for imbalances in simple digraphs and oriented graphs can be found in [6], 7].

2 Imbalances in r-graphs

A multigraph is a graph from which multi-edges are not removed, and which has no loops [2]. If $r \geq 1$ then an r-digraph (shortly r-graph) is an orientation of a multigraph that is without loops and contains at most r edges between the elements of any pair of distinct vertices. Clearly 1 -digraph is an oriented graph. Let D be an f -digraph with vertex set $\mathrm{V}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let d_{v}^{+}and d_{v}^{-} respectively denote the outdegree and indegree of vertex v. Define $b_{v_{i}}$ (or simply $\left.b_{i}\right)=d_{v_{i}}^{+}-d_{u_{i}}^{-}$as imbalance of v_{i}. Clearly, $-r(n-1) \leq b_{v_{i}} \leq r(n-1)$. The imbalance sequence of D is formed by listing the vertex imbalances in non-decreasing order.

We remark that r-digraphs are special cases of (a, b)-digraphs containing at least a and at most b edges between the elements of any pair of vertices. Degree sequences of (a, b)-digraphs are studied in [3, 4].

Let u and v be distinct vertices in D. If there are f arcs directed from u to v and g arcs directed from v to u, we denote this by $u(f-g) v$, where $0 \leq f, g, f+g \leq r$.

A double in D is an induced directed subgraph with two vertices \mathfrak{u}, and v having the form $u\left(f_{1} f_{2}\right) v$, where $1 \leq f_{1}, f_{2} \leq r$, and $1 \leq f_{1}+f_{2} \leq r$, and f_{1} is the number of arcs directed from \mathfrak{u} to v, and f_{2} is the number of arcs directed from v to u. A triple in D is an induced subgraph with tree vertices u, v, and w having the form $\mathfrak{u}\left(f_{1} f_{2}\right) v\left(g_{1} g_{2}\right) w\left(h_{1} h_{2}\right) \mathfrak{u}$, where $1 \leq f_{1}, f_{2}, g_{1}, g_{2}, h_{1}$, $h_{2} \leq r$, and $1 \leq f_{1}+f_{2}, g_{1}+g_{2}, h_{1}+h_{2} \leq r$, and the meaning of f_{1}, f_{2}, g_{1}, g_{2}, h_{1}, h_{2} is similar to the meaning in the definition of doubles. An oriented triple in D is an induced subdigraph with three vertices. An oriented triple is said to be transitive if it is of the form $\mathfrak{u}(1-0) v(1-0) w(0-1) u$, or $u(1-$ $0) v(0-1) w(0-0) \mathfrak{u}$, or $\mathfrak{u}(1-0) v(0-0) w(0-1) \mathfrak{u}$, or $\mathfrak{u}(1-0) v(0-0) w(0-0) u$, or $\mathfrak{u}(0-0) v(0-0) w(0-0) \mathfrak{u}$, otherwise it is intransitive. An r-graph is said to be transitive if all its oriented triples are transitive. In particular, a triple C in an r-graph is transitive if every oriented triple of C is transitive.

The following observation can be easily established and is analogues to Theorem 2.2 of Avery [1].

Lemma 1 If D_{1} and D_{2} are two r -graphs with same imbalance sequence, then D_{1} can be transformed to D_{2} by successively transforming (i) appropriate oriented triples in one of the following ways, either (a) by changing the intransitive oriented triple $u(1-0) v(1-0) w(1-0) u$ to a transitive oriented triple $\mathfrak{u}(0-0) \boldsymbol{v}(0-0) w(0-0) \mathbf{u}$, which has the same imbalance sequence or vice versa, or (b) by changing the intransitive oriented triple $\mathfrak{u}(1-0) v(1-0) w(0-0) u$ to a transitive oriented triple $\mathfrak{u}(0-0) v(0-0) w(0-1) \mathfrak{u}$, which has the same imbalance sequence or vice versa; or (ii) by changing a double $\mathfrak{u}(1-1) v$ to a double $\mathbf{u}(0-0) v$, which has the same imbalance sequence or vice versa.

The above observations lead to the following result.
Theorem 2 Among all r-graphs with given imbalance sequence, those with the fewest arcs are transitive.

Proof. Let B be an imbalance sequence and let D be a realization of B that is not transitive. Then D contains an intransitive oriented triple. If it is of
the form $u(1-0) v(1-0) w(1-0) u$, it can be transformed by operation $i(a)$ of Lemma 3 to a transitive oriented triple $u(0-0) v(0-0) w(0-0) u$ with the same imbalance sequence and three arcs fewer. If D contains an intransitive oriented triple of the form $u(1-0) v(1-0) w(0-0) u$, it can be transformed by operation $i(b)$ of Lemma 3 to a transitive oriented triple $u(0-0) v(0-0) w(0-1) u$ same imbalance sequence but one arc fewer. In case D contains both types of intransitive oriented triples, they can be transformed to transitive ones with certainly lesser arcs. If in D there is a double $u(1-1) v$, by operation (ii) of Lemme 4 , it can be transformed to $u(0-0) v$, with same imbalance sequence but two arcs fewer.

The next result gives necessary and sufficient conditions for a sequence of integers to be the imbalance sequence of some r-graph.

Theorem 3 A sequence $B=\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right]$ of integers in non-decreasing order is an imbalance sequence of an r-graph if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} \geq r k(k-n) \tag{1}
\end{equation*}
$$

with equality when $\mathrm{k}=\mathrm{n}$.

Proof. Necessity. A multi subdigraph induced by k vertices has a sum of imbalances $\mathrm{rk}(\mathrm{k}-\mathrm{n})$.

Sufficiency. Assume that $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ be the sequence of integers in non-decreasing order satisfying conditions (1) but is not the imbalance sequence of any r-graph. Let this sequence be chosen in such a way that n is the smallest possible and b_{1} is the least with that choice of n. We consider the following two cases.

Case (i). Suppose equality in (1) holds for some $k \leq n$, so that

$$
\sum_{\mathfrak{i}=1}^{k} b_{i}=r k(k-n)
$$

for $1 \leq \mathrm{k}<\mathrm{n}$.
By minimality of $n, B_{1}=\left[b_{1}, b_{2}, \ldots, b_{k}\right]$ is the imbalance sequence of some r-graph D_{1} with vertex set, say V_{1}. Let $B_{2}=\left[b_{k+1}, b_{k+2}, \ldots, b_{n}\right]$. Consider,

$$
\begin{aligned}
\sum_{i=1}^{f} b_{k+i} & =\sum_{i=1}^{k+f} b_{i}-\sum_{i=1}^{k} b_{i} \\
& \geq r(k+f)[(k+f)-n]-r k(k-n) \\
& =r\left(k_{2}+k f-k n+f k+f_{2}-f n-k_{2}+k n\right) \\
& \geq r\left(f_{2}-f n\right) \\
& =r f(f-n),
\end{aligned}
$$

for $1 \leq f \leq n-k$, with equality when $f=n-k$. Therefore, by the minimality for n, the sequence B_{2} forms the imbalance sequence of some r-graph D_{2} with vertex set, say V_{2}. Construct a new r-graph D with vertex set as follows.

Let $V=V_{1} \cup V_{2}$ with, $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi$ and the arc set containing those arcs which are in D_{1} and D_{2}. Then we obtain the r-graph D with the imbalance sequence B , which is a contradiction.
Case (ii). Suppose that the strict inequality holds in (1) for some $k<n$, so that

$$
\sum_{i=1}^{k} b_{i}>r k(k-n)
$$

for $1 \leq k<n$. Let $B_{1}=\left[b_{1}-1, b_{2}, \ldots, b_{n-1}, b_{n}+1\right]$, so that B_{1} satisfy the conditions (1). Thus by the minimality of b_{1}, the sequences B_{1} is the imbalances sequence of some r-graph D_{1} with vertex set, say V_{1}). Let $b_{v_{1}}=$ $b_{1}-1$ and $b_{v_{n}}=a_{n}+1$. Since $b_{v_{n}}>b_{v_{1}}+1$, there exists a vertex $v_{p} \in V_{1}$ such that $v_{n}(0-0) v_{p}(1-0) v_{1}$, or $v_{n}(1-0) v_{p}(0-0) v_{1}$, or $v_{n}(1-0) v_{p}(1-0) v_{1}$, or $v_{n}(0-0) v_{p}(0-0) v_{1}$, and if these are changed to $v_{n}(0-1) v_{p}(0-0) v_{1}$, or $v_{n}(0-$ $0) v_{p}(0-1) v_{1}$, or $v_{n}(0-0) v_{p}(0-0) v_{1}$, or $v_{n}(0-1) v_{p}(0-1) v_{1}$ respectively, the result is an r-graph with imbalances sequence B, which is again a contradiction. This proves the result.

Arranging the imbalance sequence in non-increasing order, we have the following observation.

Corollary $2 A$ sequence $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ of integers with $b_{1} \geq b_{2} \geq \ldots \geq$ b_{n} is an imbalance sequence of an r -graph if and only if

$$
\sum_{i=1}^{k} b_{i} \leq r k(n-k)
$$

for $1 \leq \mathrm{k} \leq \mathrm{n}$, with equality when $\mathrm{k}=\mathrm{n}$.

The converse of an r-graph D is an r-graph D^{\prime}, obtained by reversing orientations of all arcs of D. If $B=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ with $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ is the imbalance sequence of an r-graph D, then $B^{\prime}=\left[-b_{n},-b_{n-1}, \ldots,-b_{1}\right]$ is the imbalance sequence of D.

The next result gives lower and upper bounds for the imbalance b_{i} of a vertex v_{i} in an r-graph D.

Theorem 4 If $\mathrm{B}=\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right]$ is an imbalance sequence of an r -graph D , then for each i

$$
r(i-n) \leq b_{i} \leq r(i-1) .
$$

Proof. Assume to the contrary that $b_{i}<r(i-n)$, so that for $k<i$,

$$
b_{k} \leq b_{i}<r(i-n) .
$$

That is,

$$
b_{1}<r(i-n), b_{2}<r(i-n), \ldots, b_{i}<r(i-n) .
$$

Adding these inequalities, we get

$$
\sum_{k=1}^{i} b_{k}<r i(i-n)
$$

which contradicts Theorem 3.
Therefore, $r(i-n) \leq b_{i}$.
The second inequality is dual to the first. In the converse r-graph with imbalance sequence $B=\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right]$ we have, by the first inequality

$$
\begin{aligned}
b_{n-i+1}^{\prime} & \geq r[(n-i+1)-n] \\
& =r(-i+1) .
\end{aligned}
$$

Since $b_{i}=-b_{n-i+1}^{\prime}$, therefore

$$
b_{i} \leq-r(-i+1)=r(i-1) .
$$

Hence, $b_{i} \leq r(i-1)$.
Now we obtain the following inequalities for imbalances in r-graphs.
Theorem 5 If $\mathrm{B}=\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right]$ is an imbalance sequence of an r -graph with $\mathrm{b}_{1} \geq \mathrm{b}_{2} \geq \ldots \geq \mathrm{b}_{\mathrm{n}}$, then

$$
\sum_{i=1}^{k} b_{i}^{2} \leq \sum_{i=1}^{k}\left(2 r n-2 r k-b_{i}\right)^{2}
$$

for $1 \leq \mathrm{k} \leq \mathrm{n}$ with equality when $\mathrm{k}=\mathrm{n}$.

Proof. By Theorem 3, we have for $1 \leq k \leq n$ with equality when $k=n$

$$
\operatorname{rk}(n-k) \geq \sum_{i=1}^{k} b_{i}
$$

implying

$$
\sum_{i=1}^{k} b_{i}^{2}+2(2 r n-2 r k) r k(n-k) \geq \sum_{i=1}^{k} b_{i}^{2}+2(2 r n-2 r k) \sum_{i=1}^{k} b_{i}
$$

from where

$$
\sum_{i=1}^{k} b_{i}^{2}+k(2 r n-2 r k)^{2}-2(2 r n-2 r k) \sum_{i=1}^{k} b_{i} \geq \sum_{i=1}^{k} b_{i}^{2}
$$

and so we get the required

$$
\begin{aligned}
b_{1}^{2}+b_{2}^{2}+\ldots+b_{k}^{2} & +(2 r n-2 r k)^{2}+(2 r n-2 r k)^{2}+\ldots+(2 r n-2 r k)^{2} \\
& -2(2 r n-2 r k) b_{1}-2(2 r n-2 r k) b_{2}-\ldots-2(2 r n-2 r k) b_{k} \\
& \geq \sum_{i=1}^{k} b_{i}^{2},
\end{aligned}
$$

or

$$
\sum_{i=1}^{k}\left(2 r n-2 r k-b_{i}\right)^{2} \geq \sum_{i=1}^{k} b_{i}^{2}
$$

The set of distinct imbalances of vertices in an r-graph is called its imbalance set. The following result gives the existence of an r-graph with a given imbalance set. Let $\left(p_{1}, p_{2}, \ldots, p_{m}, q_{1}, q_{2}, \ldots, q_{n}\right)$ denote the greatest common divisor of $p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}$.

Theorem 6 If $\mathrm{P}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}\right\}$ and $\mathrm{Q}=\left\{-\mathrm{q}_{1},-\mathrm{q}_{2}, \ldots,-\mathrm{q}_{\mathrm{n}}\right\}$ where $p_{1}, p_{2}, \ldots, p_{m}, q_{1}, q_{2}, \ldots, q_{n}$ are positive integers such that $p_{1}<p_{2}<\ldots<p_{m}$ and $\mathrm{q}_{1}<\mathrm{q}_{2}<\ldots<\mathrm{q}_{\mathrm{n}}$ and $\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathfrak{m}}, \mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{n}}\right)=\mathrm{t}, 1 \leq \mathrm{t} \leq \mathrm{r}$, then there exists an r -graph with imbalance set $\mathrm{P} \cup \mathrm{Q}$.

Proof. Since $\left(p_{1}, p_{2}, \ldots, p_{m}, q_{1}, q_{2}, \ldots, q_{n}\right)=t, 1 \leq t \leq r$, there exist positive integers $f_{1}, f_{2}, \ldots, f_{m}$ and $g_{1}, g_{2}, \ldots, g_{n}$ with $f_{1}<f_{2}<\ldots<f_{m}$ and $\mathrm{g}_{1}<\mathrm{g}_{2}<\ldots<\mathrm{g}_{\mathrm{n}}$ such that

$$
p_{i}=t f_{i}
$$

for $1 \leq \mathfrak{i} \leq m$ and

$$
\mathrm{q}_{\mathrm{i}}=\mathrm{t} \mathrm{~g}_{\mathrm{i}}
$$

for $1 \leq j \leq n$.
We construct an r-graph D with vertex set V as follows.
Let
$V=X_{1}^{1} \cup X_{2}^{1} \cup \ldots \cup X_{m}^{1} \cup X_{1}^{2} \cup X_{1}^{3} \cup \ldots \cup X_{1}^{n} \cup Y_{1}^{1} \cup Y_{2}^{1} \cup \ldots \cup Y_{m}^{1} \cup Y_{1}^{2} \cup Y_{1}^{3} \cup \ldots \cup Y_{1}^{n}$, with $X_{i}^{j} \cap X_{k}^{l}=\phi, Y_{i}^{j} \cap Y_{k}^{l}=\phi, X_{i}^{j} \cap Y_{k}^{l}=\phi$ and
$\left|X_{i}^{1}\right|=g_{1}$, for all $1 \leq i \leq m$,
$\left|X_{1}^{i}\right|=g_{i}$, for all $2 \leq i \leq n$,
$\left|Y_{i}^{1}\right|=f_{i}$, for all $1 \leq i \leq m$,
$\left|Y_{1}^{i}\right|=f_{1}$, for all $2 \leq i \leq n$.
Let there be t arcs directed from every vertex of X_{i}^{1} to each vertex of Y_{i}^{1}, for all $1 \leq \mathfrak{i} \leq \mathfrak{m}$ and let there be t arcs directed from every vertex of X_{1}^{i} to each vertex of Y_{1}^{i}, for all $2 \leq i \leq n$ so that we obtain the r-graph D with imbalances of vertices as under.

For $1 \leq i \leq m$, for all $x_{i}^{1} \in X_{i}^{1}$

$$
\mathrm{b}_{x_{i}^{1}}=\mathrm{t}\left|\mathrm{Y}_{\mathrm{i}}^{1}\right|-0=\mathrm{t} f_{i}=\mathrm{p}_{\mathrm{i}}
$$

for $2 \leq i \leq n$, for all $x_{1}^{i} \in X_{1}^{i}$

$$
b_{x_{1}^{i}}=t\left|Y_{1}^{i}\right|-0=t f_{1}=p_{1},
$$

for $1 \leq i \leq m$, for all $y_{i}^{1} \in Y_{i}^{1}$

$$
\mathrm{b}_{\mathrm{y}_{\mathrm{i}}^{1}}=0-\mathrm{t}\left|X_{i}^{1}\right|=-\mathrm{tg}_{\mathrm{i}}=-\mathrm{q}_{\mathrm{i}},
$$

and for $2 \leq \mathfrak{i} \leq n$, for all $y_{1}^{i} \in Y_{1}^{i}$

$$
b_{y_{1}^{i}}=0-t\left|X_{1}^{i}\right|=-t g_{i}=-q_{i} .
$$

Therefore imbalance set of D is $\mathrm{P} \cup \mathrm{Q}$.

Acknowledgement

The research of the fourth author was supported by the project TÁMOP-4.2.1/B-09/1/KMR-2010-0003 of Eötvös Loránd University.

The authors are indebted for the useful remarks of the unknown referee.

References

[1] P. Avery, Score sequences of oriented graphs, J. Graph Theory, 15 (1991), 251-257.
[2] J. L. Gross, J. Yellen, Handbook of graph theory, CRC Press, London/New York, 2004.
[3] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapientiae, Inform., 1 (2009), 71-88.
[4] A. Iványi, Reconstruction of complete interval tournaments II, Acta Univ. Sapientiae, Math., 2 (2010), 47-71.
[5] D. Mubayi, T. G. Will and D. B. West, Realizing degree imbalances in directed graphs, Discrete Math., 239 (2001), 147-153.
[6] S. Pirzada, T. A. Naikoo and N. A. Shah, Imbalances in oriented tripartite graphs, Acta Math. Sinica, (2010) (to appear).
[7] S. Pirzada, On imbalances in digraphs, Kragujevac J. Math., 31 (2008), 143-146.

