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Abstract

We study the error in quadrature rules on a compact manifold,

N
;wjﬂzj) - /M f(a)de| < eD {2}V {f}.

As in the Koksma Hlawka inequalitf? { z; } is a sort of discrepancy of the sampling
points andV {f} is a generalized variation of the function. In particulage give
sharp quantitative estimates for quadrature rules of fonstin Sobolev classes.
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1 Introduction

In what follows, M is a smooth compaet dimensional Riemannian manifold with Rie-
mannian measurér, normalized so that the total volume of the manifold is 1, anis
the Laplace Beltrami operator. This operator is self-adjoi L.>(M), it has a sequence
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of eigenvalues{\?} and an orthonormal complete system of eigenfunctipps(z)},
Apy(x) = Ny (x). The eigenvalues, possibly repeated, can be ordered withas-

ing modulus. In particular, the first eigenvalue is 0 and tsoaiated eigenfunction is 1.
An example is the torug? = R?/Z? with the Laplace operator _ 9*/0z?, eigenval-
ues{4r? \k\Q}kezd and eigenfunctiongexp (27ikx)}, ... Another example is the sphere
S* = {z € R*™, |z| = 1} with normalized surface measure and with the angular com-
ponent of the Laplacian in the spaB&é*!, eigenvaluegn(n +d — 1)} and eigen-
functions the restriction to the sphere of homogeneous tiicypolynomials in space.

A classical problem is to approximate an integfgyl f(x)dx with Riemann sums
Nt E;.Vzl f (z;), or weighted analoguegj.\f:1 w; f (z;), and what follows will be con-
cerned with the discrepancy between integrals and sumsiatibns in Sobolev classes
Wer (M) with 1 < p < 400 anda > d/p. The assumptiomx > d/p guarantees
the boundedness and continuity of the functjpfx), otherwisef (z;) may be not de-
fined. As a motivation, assume there exists a decomposifiart anto /V disjoint pieces
M = U, UU, U ...U Uy and these pieces have measutes' and diameters at most
cN~Y/4. Choosing a point; in eachU;, one obtains the estimate

‘N-lzﬂzj) - |ty

ly—a|<eN—1/d

<3 [ e -s@las {170~ 1@

In particular, since functions ikV*? (M) with o« > d/p are Holder continuous of

degreex — d/p, one obtains
N
‘N-l S ) - /M f(@)dz| < eN=EIPIYFl g

j=1

On the other hand, it will be shown that suitable choices efshmpling pointg z; }
improve the exponernit/p — «/d to —«a/d and this is best possible. More precisely, the
main results in this paper are the following:

(1) Foreveryd/2 < o < d/2+1 there existg > 0 such thatif\M = U;UU,U...UUN
is a decomposition of the manifold in disjoint pieces wittaswge|U;| = w;, then there
exists a distribution of point$zj}jy:1 with z; € U; such that for every functiofi(x) in
the Sobolev spacd&? (M),

St ()= [ fwye

(2) Assume that the point{&j}j.il and the positive weightéw; }

< i ) .
< ¢ max {diameter (U)" } [|fllwe

N

j—1 give an exact
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quadrature for all eigenfunctions with eigenvalués< r2, that is

N :
1 if A=0,
Wi (%4 :/go xdx:{ .
;JA(J) " A7) 0 ifo<a<r,

Then for everyl < p < +00 anda > d/p there existc > 0, which may depend on
M, p, o, butis independent of, {z;} and{w;}" ,, such that

J

Sl (5) = [ flada

B If 1 <p < +ocoanda > d/p, then there exist > 0 and sequences of points
{z}}_, and positive weightéw;} ", with

Sl ()= [ fwye

(4) For everyl < p < 400 anda > d/p there exists: > 0 such that for every distri-
bution of points{z;}" , and numbergw;}? | there exists a functioffi(x) in We» (M)

with N
;%ﬂw—A/@M

An explicit example is the following. The torUE’ can be partitioned intdv = n?
congruent cubes with sidegn and this partition generates the mesh of po(mts'Z?) N
T, which gives an exact quadrature at least for all exponlsntia (2rikx) with |k;| <
n. In this case, (1) and (2) give an upper bound for the erroumerical integration of
the order ofN—2/¢. More generally, if a manifold is decomposed imtodisjoint pieces
M = U, UU,U...JUy with diameters< ¢N~4, then (1) gives the upper boudd /.
Moreover, for every > 0 there are approximately-? eigenfunctions with eigenvalues
A% < r? and one can choosE < cr? nodes{zj}j.\’:1 and positive Weight$wj}j.v:1 which
give an exact quadrature for these eigenfunctions. Thehisncase (2) gives the above
upper boundV—*/¢, Hence (1) and (2) imply (3), and by (4) this latter is optim&hen
the manifold is a torus or a sphere these results are edgektiawn, and indeed there is
a huge literature on this subject. Seel[24] for deterministid stochastic error bounds in
numerical analysis. In particular, (3) and (4) for= 2 and for spheres are contained in
[7], [15] and [16]. For Besov spaces on spheres a resulttgligiore precise than (3) is in
[17], while a result slightly weaker than (4) for compact tpa@int homogeneous spaces is
in [21]. See alsa [10] and, for a survey on related resul#] §hd [19]. Beside the proofs
of (1), (2), (3), (4), which are contained in the followingcien, the paper contains also
a final section with a number of further results and remarkaoAg them it is proved

<™ fllwan -

< eNTY| fllygan

> N7 fllygon -
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that if a quadrature rule gives an optimal error in the SobsfgceW*2 (M), then this
quadrature rule is optimal also in all spad¥§? (M) with d/2 < 3 < «. Moreover, it is
proved that there is a relation between quadrature ruleg@ochetric discrepancy:

(5) If dv(x) is a probability measure oMM, then the norm of the measufe(z) — dx
as a linear functional orfiv>? (M) decreases a& increases. Moreover, if the norm of
dv(z) — dr onW*? (M) isr—2,

‘/f Jivla) = [ fa)a] < r

then for everyl/2 < § < « there exists a constantwhich may depend om, /3, M, but
is independent of anddv(z), such that

‘/fdu IRGL

(6) Assume that for some> 1 the discrepancy of the probability measure ) with
respect to the ball§ B (v, §) } with centery and radius) satisfies the estimates

it s <1/r
dv(x —/ dx‘ < { roo oS
/B(y,6) ®) B(y,0) roied=t if § > 1/r.

Then for everyl < p < +oo anda > d/p, there exists a constamt which may
depend onv and p, but is independent ofv(z) andr, such that

|| fllwar 1 O0<a<l,
‘/f Ydv(x /f Ydx| <

ertog(L+7) |fllwer if =1,
cr | f]

Observe that while (1) and (2) hold for specific quadratutes;u(5) is a result for
arbitrary quadratures. Actually, (5) is only one way, franto 5 < «. The estimate
for an o does not necessarily imply the estimate® for 5 > «. Moreover, the sets
{B(y,0)} in (6) are not precisely geodesic balls, but level sets diablé kernels on
the manifold. However, for spheres or compact rank one symcrepaces these sets are
geodesic balls. In this case the discrepancy of the meastire spherical cap discrepancy.
See [4] or[[23], and for other relations between quadratacediscrepancy on spheres,
see alsd [2]. Finally, we would like to point out that our pajsgalmost) self contained, it
does not rely on explicit properties of manifolds or spefiiakctions, and it may provide
a unified vision and simple alternative proofs of some knoggults.

“IS

W(x,2 9

<cr - ||fHW62-

wap I a>1.

2 Main results

The eigenfunction expansions of functions and operatera éasic tool in what follows.
The system of eigenfunctiodso, ()} is orthonormal complete ih?(M) and to every
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square integrable function one can associate a Fouriesftnan and series,
FIN = [ 10n@iy, ) =3 Ff ).
M A

Since the Laplace operator is elliptic, the eigenfunctiamssmooth and it is possible
to extend the definition of Fourier transforms and seriesistridutions. In particular,
the Fourier expansions are always convergent, at leaseimofiology of distributions.
One can write the discrepancy between integral and Riemammas a single integral
with respect to a measurgi(z) = Zj.v:l wjd,(z) — dw, with 6,(r) the Dirac measure
concentrated at the poigtanddx the Riemannian measure,

é%‘f (2) — /M fa)dr = /M f(@)du(z).

Then the estimate of the error in the numerical integratemuces to the estimate of
the norm of a linear functional.(x) on a space of test functiorf$x). Some of the results
which follow will be stated for generic finite signed measg(x), for measures of the
form du(z) = dv(x) — dz with dv(z) a probability measure, and also for atomic prob-
ability measuresiv(z) = Zj.v: L w;0-,(z). The following is an easy and straightforward
extension to compact manifolds apdhorms of some abstract results for reproducing

kernel Hilbert spaces. See elg. [1],[12],][13].

Theorem 2.1. Let{x(\)} be a numeric sequence indexed by the eigenvdligs with
{(\)} and {1»(A)~1} slowly increasing, that i ()| < a (1 + A2)*? and [ (A) Y] <
b(1+ )\2)6/2. Let A(z,y) and B(z,y) be distribution kernels with Fourier transforms
{v(N)} and{p (M)},

Alz,y) =) bNea@)ealy), Blz,y) =D o) pa(@)eay).

Finally, let f(x) be a continuous function and lét.(z) be a finite measure oM. Then,
ifl<pg¢g<+ocandl/p+1/q=1,

L&ﬂ@wm

g{Aﬂ@A@@ﬂww%QM{AA@B@mwm>

In particular, whenp = ¢ = 2 and B(z,y) = B (y,x) and

q 1/q
dy} )

fmzﬁﬁﬁ@memww

then the above inequality reduces to an equality.
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Proof. The assumption$(\)} and {(\)~!} slowly increasing simply imply that the
kernelsA(x,y) and B(z,y) are tempered distributions. In what follows the pairing be-
tween a test function and a distribution is denoted with &egral, even when the distri-
bution is not a function and the integral is divergent. Let

/M A, y) f(y)dy = wa (M),
/M x,y)du(y Zlﬁ T Fu(N)ea(x).

These operators are one the inverse of the other,

fmzﬁmm(AmemQ@

_ /M Alz, ) ( /M B(y, 2) f(z)dz) dy.

In particular, by Holder inequality with/p + 1/q = 1,

/f rmes /// (2, y) Ay, 2) f(z)dp(x)dydz
{ '/ (4= d/dy}”p{/ ‘/ (e, y)du(a dy} "

Finally, whenp = ¢ = 2 the Cauchy mequallty reduces to an equality if the funciare
proportional. Indeed, i3 (z, y) ,x) and

/ / (2,y) B (y, z)dydu(z),
then one easily verifies that

o= ] e
{/M '/M Az, y) f(y)dy dx} = {/M '/MB(x,y)dlu(x) Zdy}m.

Hence, whemp = ¢ = 2 for this function the inequality in the theorem reduces to an
equality. O

dy,

In what follows the operators with kernelfz, y) and B(x, y) will be powers of the
Laplace Beltrami operatdd + A)**/2.

Definition 2.2. The Sobolev spacd’*? (M), —oo < a < 4+oc and1l < p < +o0,
consists of all distributions o with (I + A)*/? f(z) in L? (M), that is with

D 1/p
1 £l = { / dx} < oo
M

ST (L2 PFF ) pala)

A
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An equivalent definition is the following.

Definition 2.3. Let B*(x,y), —0o < a < 400, be the Bessel kernel

B(x,y) = > (1+ A7) pr(@)ony)-

A

A distribution f(z) is in the Sobolev spadé *? (M) if and only if it is a Bessel potential
of a functiong(x) in L? (M),

f(x) = /M B (2, y)g(y)dy.

Moreover,| £y = |19llLp-

In particular, wherp = 2,

1/2
[ f w2 = {Z (1 +>\2)a|]-"f(>\)|2} .

A

Another equivalent definition is a localization result: Aaibutionf () is in W (M)
if and only if for every smooth function(z) with supportin a local card = (y) : R¢ ~
M, the distributiony (v (y)) f (¢(y)) is in W*? (R%). In particular, if« is a positive even
integer, thenf(z) is in We? (M) if and only if thep th power of f () and of A%/2 f(z)
are integrable. Moreover, distributions¥i*? (M) with o > d/p are Holder continuous
of degree — d/p. When applied to functions in Sobolev classes, Thedrein i2es ghe
following corollary.

Corollary 2.4. (1) If B*(z,y) = >, (1 + >\2)_a/2 or(z)px(y) is the Bessel kernel, if
du(z) is a finite measure oM, and if f(z) is a continuous function ifl/*? (M), with
1<p,g<+occandl/p+1/q=1,then

‘/f e {/ ‘/ B (2, y)dp(s

If « > d/pthen the above integrals are well-defined and finite. On timéraoy, the spaces
Wwer (M) with a < d/p contain unbounded functions and, if the measiurér) does not
vanish on the set wherg(z) = oo, then [, f(x)du(z) may diverge.

(2) Whernp = ¢ = 2 then the above inequality simplifies,

‘/ fle)du(z {/ / B> (2, y) dp(w)dpy )} 2||f|lwa,2

Equivalently, by the Fourier expansion of the Bessel kernel

1/2
‘ /M f(@)dp(z) S{Z(HV)‘WMA)F} 1 1l

1
dy} T
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Moreover, withf (z) = [, B** (z,y) du(y) the above inequalities reduce to equalities.
(3) If du(x) = du( ) — dx is the difference between a probability measidwér) and
the Riemannian measuik;, then

[ s = [ s <{ [ ] 5 i WH} e

Equivalently,

1/2
‘/ f dV / f dx < (1 _'_)\2)—04 |.7:V ()\)‘2 ||fHWa,2-
A>0

Proof. (1) is an immediate corollary of TheorémP.1. In order to r¢(®), observe that

/ B*(x,y)B"(y, 2)dy = B**P (2, 2).
M

Moreover, this Bessel kernel is real and symmetric. Hence,

/ ) /MB%:,y)du(x)z
_ /M /M /M B (2, ) B (2, y)dydp (o) ()
_ /M /M B2 (z, 2)dp(2)du(2).

(3)isacorollary of (1) and (2). Indeed, sinBé* (z,y) = B>* (y,z)and [, , B> (z,y) dy =
1, it follows that

dy

[ B ) ) = o) ) — )

//B2axydy Ydv(y //B2axydy x)dy
/ / B* (z,y) dzdv(y) / / B** (z,y) dxdy
:/M /M B* (z,y)dv(z)dv(y) — 1.

Finally, by Sobolev imbedding theorem, function$i-? (M) with o > d/p are contin-
uous and all the above integrals are well-defined and finfies dlso follows from Lemma
2.6 and Remark=3.3 below. O

The above corollary leads to estimate the energy integrals

(] ] o)
R R R

A>0
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By the last formula, the energy attains a minimum if and ofilyv (\) = 0 for
all A > 0, and this gives the Riemannian measure The meaning of the corollary is
that measures with low energy are close to the Riemanniasumeand they give good
guadrature rules. In order to give quantitative estimaiethie above integrals, one has to
collect some properties of the Bessel kernels. The normeofuhctiony ~~ B*(x,y) in
W2 (M) is

1/2
1B° (@, Yl = {Z (142277 wx)ﬁ} |

A
By Weyl's estimates on the spectrum of an elliptic operatee Theorem 17.5.3 in
[18], for everyr > 1 there are approximately? eigenfunctionsp, () with eigenvalues
A2 < r2andY], . ea(z)]? < erd. Itthen follows that the norm il ™2 (M) of B*(z, y)
is finite provide_d thaty < a — d/2 and, by Sobolev imbedding theorem, it also follows
that B*(x, y) is Holder continuous of degree< « — d. Indeed, we shall see that a bit
more is true:B*(z, y) is Holder continuous of degree— d.

Lemma 2.5. The heat kernelV (¢, z,y) = >, exp (=A%) pa(x)pa(y), which is the
fundamental solution to the heat equatiofpt = —A onR, x M, is symmetric real
and positive W (t,z,y) = W (t,y,x) > 0 for everyz,y € M andt > 0. Moreover,
for everym andn there exists: such that, iflz — y| denotes the Riemannian distance
between: andy, andV the gradient,

VW (¢, 2, y)| < ct @R (L4 o —y| /VE) T if0<t <1,
V"W (t,z,y)] <c ifl <t<+o0.

Proof. All of this is well known. The idea is that heat has essentialffinite speed of

propagation and diffusion in manifolds is comparable téudibn in Euclidean spaces, at

least for small times. The heat kernel in the Euclidean sfide a Gaussian,

W (k) = [ exp (—at € exp (2 (@ = 1)) d
= (47t)" % exp (— |z — yl? /4t) .

By the Poisson summation formula, the heat kernel on thestéfu= R?/Z? is the
periodized of the kernel in the space,

Z exp (—47° |k|? t) exp (2mik (x — y))

kezd

= Z (47t) ™2 exp (—lz—y— k| /4t) .
kezd
Whenz is close toy andt is small, the main contribution to the sum comes from the term
with £ = 0,
W (t,z,y) ~ (4rt)" Y exp (—|z— yl° /4t) .
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The remainder gives a bounded contribution,

Z (47t) ™2 exp (—lz—y-— k| /4t)| < c.
keZd—{0}

Analogous estimates hold for the derivatives. This proweslémma for the torus. The
heat kernel on a compact manifold is similar, in particuldwas an asymptotic expansion
with euclidean main term. See e.g. [9], Chapter VI. More sy, by the Minakshisun-
daram Pleijel recursion formulas, there exist smooth fonst{w, (x,y)} such that, ift

is small andx — y| denotes the distance betweeandy,

W (t,2,y) ~ (4nt)" " exp (— |z — yl? /4t) Ztkuk (z,y) + O (")

k=0

On the contraryWW (¢, z,y) — 1 whent — 4o0. The estimates on the size of this
kernel and its derivatives are a consequence of this asyimptgansion. The positivity
W (t,z,y) > 0is a consequence of the maximum principle for heat equatichtlae
symmetryW (t,z,y) = W (t,y,z) follows from this positivity and the eigenfunction
expansion. O

Lemma 2.6. (1) The Bessel kernét*(z, y) with e > 0 is a superposition of heat kernels
W (t,z,y):

B(z,y) =T (a/2)”" /0+0° 22 L exp (—=t) W (t, z,y) dt.

(2) The Bessel kerné®*(z, y) with o > 0 is real and positive for every,y € M,
and it is smooth i{x # y}. Moreover, for suitable constaniis< a < b,

alr—y[* " < Bw,y) <ble—y["" if0<a<d,
alog(1+|x—y\_1) < B%(z,y §blog(1+\x—y|_1) if a =d,
a< Bz,y) <b ifa>d.

—_ ~—

() Ifd < o < d+1,thenB*(z,y) is Holder continuous of degree— d, that is there
existsc such that for every, y, z € M,

|Ba<x7y) - Ba<$72)‘ S C‘y - Z|a_d .
(4) If d < a < d + 2, then there existssuch that for every:, y € M,

|Ba(l’,ﬂj‘) - Ba(x7y)| < C‘JZ‘ - y|04—d.
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Proof. When the manifold is a torus and the eigenfunctions are exqitads the proof is
elementary. The Bessel kernel in the tofifss an even function and it is sum of cosines,

B%(z,y) = Z (1+ 4r? |k|2)_a/2 exp (2mikx) exp (—2miky)

kezd
= Z (1+ 472 |/’<:|2)_a/2 cos (27k (z — y)) .
kezd
Hence,
Bz, x) — B(x,9) =2 Y (1+ 47 [b*) " sin® (k (z - y))
kezd
<olr—yP Y WP+ D) 42 Y (L dr? k)T
k| <|z—y| " k| >[z—y| "

cle—y|* " ifd<a<d+2,
< c|x—y|210g(1+|x—y|_1) if « =d+ 2,
cle—y)* ifa>d+2.

Also observe that the series which defid&yz, z) — B*(x, y) has positive terms and the
above inequalities can be reversed. This proves (4) fonestand the proof of (3) and (2)
is similar. A proof for a generic manifold follows from thgmesentation of Bessel kernels
as superposition of heat kernels and the estimates in theopseemma. In particular, (1)
follows from the identity for the Gamma function

+oo

(1+ Az)_a/2 =T (a/2)7" / /2 L exp (—t (1+ A?)) at.

By Lemmad 2.5, for every,

A= D2 g —y| " if0<t<|z—yl|,
0<W(t,z,y) < et ¥ if [z—yf <t<1,
c ift>1.

Hence, if0 < a < dandn > d — «a,

—+00

B(z,y) =T (a/2)7" /0 t% Lexp (—t) W (t,x,y) dt

|lz—y[® 1 +00
<clx— y\_"/ glatn=d)/2=1gp 4 c/ tla=d/2=1qp 4 / % exp (—t) dt
0 lz—y|? 1

<clz—yl*?.

Indeed one can easily see that these inequalities can besedveHenceB*(z,y) ~
cle — y|a‘d. This proves (2) wher) < o < d, and the proofs of the cases = d
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anda > d are similar. Also the proof of (3) is similar. Write
B%(x,y) — B*(x, 2)
=T (a/2)7" /0 +°O 1% exp (—t) (W (¢, x,y) — W (¢, 2, 2)) dt.
Then recall that, by Lemnia 2.5,
ct=? if0<t<|y—zf,

W (t,2,y) = W (2, 2)| < @2y — 2| i |ly—2> <t <1,
cly—=z| ift>1.

Hence,
ly—z]
|BY(x,y) — B*(z,2)| < c/ t@=D/2=1 oxp (—t) dt
0
1 400
+cly — 2] t@=d=D2=V oxpy (=) dt + c |y — 7| / 2 L exp (—t) dt
ly—=I? 1
<ecly— 2.

Finally, the estimate fofB*(z, ) — B*(z,y)|in (4) is analogous to the previous one, but
it holds in a larger range af. It suffices to observe th&t (¢, z, y) is stationary at: = y
and it satisfies the estimates

ct™¥? it o<t <|zr—yl,

W (t,z,2) =W (t,z,y)| < et 2 Ve —y]® if z—y?<t<1,
cle—y)® ift>1.

The following is Result (1) in the Introduction.

Theorem 2.7. For everyd/2 < a < d/2 + 1 there exists: > 0 with the following
property: If M = U; U Uy U ... U Uy is a decomposition aM in disjoint pieces with
measurgU,;| = w;, then there exists a distribution of poinﬁsj}j.\’:1 with z; € U; such

that
ij f(z) /f )dx

Proof. By Corollary[Z4 (3), withdv(z) = -7 w;d. (2),

[ o o

N N 1/2
LIS {ZZ%%’BZQ (2i,25) — 1} [ oo -

i=1 j=1

<c max {diameter (U;)"} ||f||WQ,2(M
<j<
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It suffices to compute the average valugof', =7 | wiw; B> (2, z;) — L onUy x Uy x
.. x Uy with respect to the probability measures'dz; uniformly distributed onl;.

First observe that
N
Hwk_l // dzy..dzy =1,
k=1 Ur JUN
N N
1:/ / B> (z,y) dedy = / / B?** (z,y) dzdy.
S B @) 22 ) ), B

i=1 j=1

Then,

<£[1W1§1> /Ul /UN <§:Zwiwj32°‘ (21, 2j) — 1) dzy...dzy

i=1 j=1

= Zuﬁ/{; B2a (Zj,Zj)de +ZZL L B2a (ZZ',ZJ'> dZide
j J iU

i#]

_zj:/Uj /Uj B* (x,y) dedy — X;#Z:/U /Uj B* (x,y) dvdy

Since, by Lemm&216 (4)B% (z, z) — B2 (z,y)| < ¢|z — y[** *whend < 2a < d+2,
and sincey; = |U;| < ¢diameter (U;)",

N
Z/U /U ‘BZO‘ (x,z) — B (x,y)‘ dxzdy
=1 JU; JU;

N
<D U sup {|B* (w,2) — B> (2,y)
=1

y T,Y € U]}

J
N N
< CZ |U;|? diameter (U;)** ¢ < CZ |U;| diameter (U;)** .
=1

j=1
]

For the next result we shall need estimates for partial sum®wrier expansions of
the Bessel kernels.

Lemma 2.8. Lety (\) be an even smooth function ermc < A < +oo with support in
1/2 < |A\| < 2and let

Po(rz,y) = Y x (V1) (1+03) ™ oa(@)ea(y).
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Then for every: > 0 there exists: such that for every > 1 andz,y € M,
[P (r,z, )| < er® (L] —y)) ™"

Proof. The numerology behind this estimate is quite simple. The@apmation of the
Bessel kerneB“(z, y) by linear combinations of eigenfunctions with eigenvaligs: r?

is localized and only points andy with |z — y| < 1/r really matter. In particular, since
B“(z,y) is smooth away from the diagonal, at distafice- y| < 1/r the approximation
is rough, but at distande — y| > 1/r itis quite good. The analogue & (r, z,y) in the
Euclidean setting is the kernel

Qra=y)= [ xCrlel ) (1+47 )" exp (2mi (o — ) €) de
= rd/ x (27 [€]) (1 + 47%r? |€|2)_a/2 exp (2mir (x — y) &) d€.
Rd

Sincey (27 |£|) has support in /2 < 2x |£| < 2, for everyr andz, y € R? one has

. / X 2 [€]) (1 + 4n22 [€2) ™" exp (2mir (¢ — y) €) de
]Rd
< i / (2 JE1)~ |x (2 |€])] dé < er
Rd

This estimate can be improved in the range- y| > 1/r. Indeed, an integration by parts
gives

[ xerieh (1 am €)™ exp (2rir (o - )€ d
Rd
=t [ x(emie (1+ 4¢P
Rd
= (47‘(‘27’2 |x — y|2)_n /Rd exp (2mir (z — y) §) Af (X (27 [£]) (1 + 4m?r? |€| ) aﬂ)

Hence,

a/2

((47‘(‘27’2 |z — y\2)_n exp (2mir (x — y) 5)) d¢

[ xemil) (14 an2 ) exp i (2 - )€ ¢
Rd
< rd (47‘(‘27”2 |z — y| / ‘A” < (27 &) (1 + 47?2 |§|2)_a/2>

d—a— 2n|x_y|—2n.

dg

<ecr

Now it suffices to transfer these estimates from the Eudtidgeace to the manifold. For
the torus, this can be done via the Poisson summation fornful@ (r, z — y) is the
truncated Bessel kernel iR? defined above, then the truncated Bessel kerng&fiis

> x @kl /r) (1 +4n |h|2)_a/2 exp (2mik (z —y)) = Y Q(rx—y+k).

kezd kezd
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When|z; — y;| < 1/2, the main term in the last sum is the one with= 0, while the
contribution of terms withk # 0 is negligible,

Q(ra—y) <™ (I4r|e—y)™",
Y Rz —y—k)| <t

keZd—{0}

Finally, the estimate for the truncated Bessel kernel omaige manifold can be obtained
by transference frorik? via pseudodifferential techniques. For more details, sgd27]
Chapter XII, or [5]. O

The following is a result on the homogeneity of measures whjgpear in quadrature
rules and it gives sharp estimates of the discrepancy of suasures. Similar estimates
on spheres are inl[2].

Lemma 2.9. Assume thatlv(z) is a probability measure oM with the property that
for every eigenfunctiom, (x) with eigenvalues? < r?,

/M ox(x)dv(z) = /M ox(x)dx.

Then for every: there exists:, which may depend om and M, but is independent of
anddv(z), such that for every measurable $etn M,

[ avto) = [ as

In particular, the discrepancy between the measuhes:) and dx with respect to balls
{|z —y| < s} is dominated by

‘/ dv(z) —/ dx
{le—y|<s} {le—yl<s}

Proof. It is proved in [11] that givem, there existg such that for every measurable set
Q2 in M and everyr > 0 there exist two linear combinations of eigenfunctiohs) =
Yoner @ (N pa(z) and B(z) = >, ., b()\) ga(x) which approximate the characteristic
function xq () from above and below,

< c/ (1 + rdistance {z,9Q}) " dz.
M

<

{ er—d ifs <1/r,

er~ts?l if s > 17,

A(z) < xa(z) < B(z), B(z)— A(z) < c¢(1 + rdistance {z,0Q}) " .

In particular, the properties of the functiet{z) and of the measuré/(x) give

/Q dv(z) > /M Alw)dv(z) = /M A(z)dz

> / Xao(x)dr — c/ (1 + rdistance {x,00}) " dz.
M M
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Similarly, by the properties oB(z) anddv(zx),

/Q dv(z) < /M B(x)dv(z) = /M B(2)dx

< / Xo(z)dx + c/ (1 + rdistance {z, 00}) ™" dz.
M M
L

Lemma 2.10. Assume thatlv(x) is a probability measure omt which gives an exact
quadrature for all eigenfunctiong, (z) with eigenvalues? < r?,

/M o (2)dv(z) = /M o (2)d.

If 1 < ¢ <+4occanda > d(1—1/q), then there exists, which may depend ap «, M,
but is independent ofanddv(z), such that

{/M )/M B (x,y)dv(z) — 1

Proof. Let y (\) be an even smooth function ermo < A < 400 with support inl/2 <
|A| < 2 with the property tha jjioo x (277)) = 1 for every A # 0. Also, let

q 1/q
dy} < ecr“.

Pe(s,z,y) = > x (M/s) (1+ 23 o (@)ioa(y).

Hence,B*(z,y) = 1+ Z]-—oo P*(27, x,y). Sincedv(z) annihilates all eigenfunctions
with 0 < A < r, it also annihilates alP*(27, z, y) with 2/ < r/2 and this gives

/M B (. y)dv(z) — 1 —/ ( S Py ) dv(z).

20>r/2

Wheng = 1, by Lemmd 2.8,

' [ 1] Petspanta
// (14 sz — yl) ™" d(x)dy

dy
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Wheng = +o00 ands > r andn > d, by Lemmd2.B and Lemnia 2.9,

B
<estsup{ [ (sl y) o)

< s sup {/ dy(x)}
yeM LH{Jz—y|<1/r}

+oo
+cs%7 sup (27s/r) _n/ dv(z)
yeM {Z {le—y|<2i/r)

7=0
<c da +Csdannd<csdad

Hence, whers > r andl < ¢ < 400, by interpolation betweehand+co,

(Lo o]
Ssup{‘/ Po‘sxydl/()} o { '/ PO(s, 2, y)dv(x)

yeM

1/q
dy}

Whena > d(1 — 1/q) these estimates sum to

{/ ‘/ Ba(x,y)du(g:)_lqdy}
29 >r /2{/ ‘/ P2, 2, y)dv(x) dy} :

< ord1-1/9) Z 2i(d(1=1/gq)=0) < rp—a
2i>r/2

O

Finally, the existence of exact quadrature rules assattatany system of continuous
functions is a simple result in functional analysis, or imeex geometry. See Theorem
3.1.1in [26], or [25], or[[8] for explicit constructions oplseres.

Lemma 2.11. Given any numbep; (), v2(z),..., p,(x) of continuous functions o,
there exist pomts{zj} in M and positive Welght$w3} with Z;.Vzle = 1, such
that for everyy;(z),

Aﬂmwzgwmm.

If the functionsy;(x) are real one can choos®& < n + 1, and if these functions are
complex one can choo%é < 2n + 1.
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Proof. Define

(I)(Z') = (Qpl(x)v 902(1')7 ey QOn(l')) )

E= /M O(z)dr = ( /M o1 (2)dz, /M oo (2)dz, ..., /M @n(x)dx) .

If all functions; () are real valued, thedd(z) and E are vectors iR"™. If the p;(x) are
complex, thend(x) and £’ can be seen as vectorslit". Moreover,E is in the convex
hull of the vectorsb(z) with = € M. It then follows from Caratheodory’s theorem that
E is also a convex combination of at mest- 1 vectors®(z) in the real case, dn + 1

in the complex casely = 37| w;® (z;) withw; > 0 andy> Y | w; = 1. O

The following is Result (2) in the Introduction.

Theorem 2.12.Assume that the probability measube(x) on M gives an exact quadra-
ture for all eigenfunctions, (z) with eigenvalues? < r?,

/M ox(x)dv(z) = /M ox(x)dx.

Then, for some constaatindependent oflv(x) andr and for every functiory(x) in
wer (M)withl < p < +oo anda > d/p,

‘/fdu - [ty

Proof. By Corollary[2.4 (1) withdu(z) = dv(z) — dx,

[ ] < mma - ) "1

By the assumptiorf, , px(z)du(z) = 0 for everyA < r, and Lemma2.10,
q 1/q
{/ '/ BY(x,y)dv(z) — 1 dy} <ecr .
MM

The above theorem has as corollary Result (3) in the Intribauc

<er | f]

Waop -

Weop -

Corollary 2.13. If 1 < p < +oo anda > d/p, then there exists > 0 with the property
that for everyN there exist sequences of poi|{|k§} and non negative weigh{s; }j .
such that for every functiofi(z) in W (M),

f ) - /M f(2)da

< eNTY| fllygan




Quadrature rules and distribution of points on manifolds 19

Proof. By Weyl's estimates on the spectrum of an elliptic operadeg Theorem 17.5.3
in [18], for a givenr there are approximately- eigenfunctionsp(z) with A < r. The
corollary then follows from Lemma 211 and Theorem 2.12 with N'/<, O

This corollary for the sphere is containedlin[[17]. Finadlgisy examples show that the
above estimates for the error in approximate quadratureipr® constants, best possible.
Again, seel[15] for the case of the sphere. In particularfaghewing is Result (4) in the
Introduction.

Theorem 2.14. For everyl < p < +oo anda > 0 there exists: > 0 with the fol-
lowing property: For every distribution of point{st}j.V:1 there exists a functiofi(x) in
WP (M) which vanishes in a neighborhood of these points and satisfie

1f1

Weo,p S CNa/d, / f(x)dx == 1
M

N

As a consequence, for every distribution of poi{rtnztgj.vz1 and complex weightgo; },_,,

there exists a functioffi(z) with

St ()= [ rwyie

Proof. If ¢ is small, then one can choo2&' disjoint balls inM with diameters N —/¢
and, givenN points{z;}, at least/NV balls have no points inside. On each empty ball
construct a bump function; (x) supported on it with

> N7 fllygon -

!WMWSMWH@l/%@Msz
M

Definef(x) = > v;(z). Then,

1f1

Weo,p S CNa/d, / f(x)dx == 1
M

The estimate of th&? (M) norms of(I + A)*/?y;(z) and (I + A)*'? f(z) whena/2

is an integer follows from the fact that + A)*/? is a differential operator and the terms
(I + A)*/? y;(z) have disjoint supports. Wher/2 is not an integer the estimate follows
by complex interpolation. Anyhow, the cage= 2 is elementary. I > 1 andad is an
integer,

1/2
1f llwe2 = {Z (1+2%)" |Ff(A)|2}

A
1/26

(1-1/6)/2
< {Z |ff<A>|2} {Z (1+23) |ff<A>|2} < eN*/

A
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3 Further results

The following is Result (5) in the Introduction and it stateat a quadrature rule which
gives an optimal error in the Sobolev spate? (M) is also optimal in all spacé&?2 (M)
with d/2 < 8 < a.

Theorem 3.1. If dv(z) is a probability measure o, then the norm of the measure
dv(z) — dz as a linear functional oriv*? (M) decreases a& increases. Moreover, if
the norm ofdv(z) — de on W2 (M) isr—*,

‘/f )z /f )| <7

then for everyl/2 < 5 < « there exists a constantwhich may depend om, /3, M, but
is independent of anddv(z), such that

’/fdu /fd:c

Proof. By Corollary[2.4 (2) the norm of the measute(x) — dz as a linear functional on
W2 (M) is

e R

A>0

“ IS

W(x,2 9

<cr - ||fHW62-

Since(1+ 2™ < (1+2)"7 whengs < a, it follows that this norm is a decreasing
function ofa Write dv(xz) — dxr = du(z). By Lemmd.2.6 (1), the norm of the functional
S f( ) onW*2 (M) can be written as

([ i)
:{F(a)_l/o t*Lexp ( (//thydu z)dp(y ))dt}

Assuming that this norm is~“, one has to show that the corresponding expression with
B instead ofa is at moster—?. Since < a, the integral ovell < t < 4o satisfies the

estimate
/1+OO Lexp ( (//thyd,u 2y ))dt
g/1+ooa exp ( <//thydu )d())d

/2
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Similarly, sinces < « the integral over—2 < t < 1 satisfies the estimate

/rl 7 exp (- (//thydu z)du(y ))dt
Srzo‘_%/TQtaleXp (/ / W (t,z,y) du(x)du(y ))d

Finally, by the Gaussian estimate on the heat kernel in thefuf Lemmd 2.5, if) < ¢ <
r~2 then
t2W (t,x,y) < er dW( z,y) .

It then follows that if3 > d/2 the integral ovef) < ¢ < r~2 satisfies the estimate

—2

[ e (//Wt:cydu ) )
<o ﬁ// y)dlul (@)d |u] (9).

It remains to show that the last double integral is uniforbdynded irr. Sinced || (z) =
dv(z) + dz and sincef, W (r~2, z,y) dz = 1, replacingd | ;| (z) with dy(x) it suffices

to show that
/ / ) dp(z)d(y) < c

By the assumption odu(z) and the eigenfunction expansioniéf (r—2, z, y),

/ / y) dp()du(y)

W (2, 2, ) dply )‘

M

1/2
— e {Z (1 + )\Z)aexp (— ()\/7’)2) |.7:M()\)|2}

A

Wa,2

1/2

<r® {Z (14137 |fu()\)|2} sup { (1 +A*) " exp (— (A/r)? /2)}.

A
A

Finally, the last sum wit Fu())} is the norm of the measurg.(x) as functional on

W2 (M), hence by assumptionitis®, and the last supremum is dominatedy. [

As we said, the above result is only one way, franto 5 < «. If the norm of
dv(x) — dz onW*? (M) isr~* and if 3 > «, then one cannot conclude that the norm
of dv(z) — dz on WA? (M) is at moster—". As a counterexample, it suffices to per-
turb a good quadrature rule with nodgs} >, and weights{w;}?’ ; by moving the last
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point z into a new point y, so that the new quadrature differs from the old one by the
quantitywy | f (z25) — f (tn)|. If @« > d/p + 1 then the functionf is differentiable and
wn |f(z2n) = f(tn)| = wn |2y — ty| - Then, by choosingzy — x| = r~*/wy 0one ob-
tains a quadrature rule which gives an eror—° in all spacesW?» (M) with 3 > «.

The counterexample whelfp < o < d/p + 1 is slightly more complicated but similar.

In all the above results, the accuracy in a quadrature riddean estimated in terms of
the energy of a measure. It is also possible to estimatec¢higacy in terms of a geomet-
ric discrepancy. The Bessel kernel can be decomposed agpssji®n of characteristic
functions,

+00
B (z,y) = / N—
0

If 1 <p,g<+occandl/p+1/q =1, by Corollanf 2.4 and Minkowski inequality, the
following Koksma Hlawka type inequality holds:
/q
dy}

'/f e <Hf||Wap{/ \/ B (2, y)dp(x)
<||fHWap/+oo{/ ‘/ X{B (29>t} (2)dp(z) dy} dt.

The quantity| [ X5 (s,y)>1; (z)du(z)| is the discrepancy of the measube(x) with
respect to the level se{B“ (z,y) > t}. It can be proved that, for specific measures and
at leastin the range < o < 1, the above estimates are sharp and they can lead to optimal
quadrature rules. In particular, the following is Resujti(6the Introduction.

Theorem 3.2. Denote by (¢) the diameter of the level sets of the Bessel kefBél(x, y) > t}
and assume that there exists> 1 such that the discrepancy of the measd€x) with
respect tof B* (z,y) > t} satisfies the estimates

r=d if 6(t) < 1/r,
‘/M X{Bo (z.9)>tH () dp(z)| < { r=io(t)t if o) > 1/r.

Also assume that < p < +o00 anda > d/p. Then there exists a constantwhich may
depend orx and p and on the total variation of the measuyg (M), but is independent

of r, such that
‘/ f@)du(x)| < < ertlog(l+7) ||fllyes fa=1,
M car [ fllwan  ifa>1.
Proof. Observe that the above hypotheses on the discrepancy nieobstimates in
Lemma 2.9. Indeed, by this lemma, the measudtds) which give exact quadrature for
eigenfunctions with eigenvalueg < r? have discrepancy

[ aw- [ af<{Timesn
{lz—y|<s} {lz—y|<s}

er~ts?=1 if s > 1/r.

™| fllwar 10 <a<1,
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Actually, these estimates hold not only for ba{ls: — y| < s}, but also for sets with
boundaries with finitel — 1 dimensional Minkowski measure, such as the level sets
{B*(x,y) > t}. Also observe that these estimates are natural, since sceepgancy of
large sets is qualitatively different from the one of smalissIf 1 < p,q < +o0 and
1/p+1/q = 1, by Corollary{2.4 and Minkowski inequality,

'/M f@)dp(z)| <[ flwar /;OO {/M ‘/M X{Be(zy)>t} (T)dp(x) qdy}l/q dt.

By LemmdZ.6, whefi < a < dthenB® (z,y) ~ |z — y|*~% the level set§ B (x, y) > t}
have diameters(t) ~ min {1,¢!/(®~?} and the boundarie§B* (z,y) = ¢} have surface
measure of the order @f(t)*~! ~ min {1,¢*"V/(>=9} Hence the estimate of the dis-
crepancy of small level sets with> r?~“ gives

q 1/q

dy}

{/M V B>t (z)du(z)

(g—1)/q 1/q
sSup{} / X{Ba@,ym}(x)du(x)} { / / Yo () 1] <x>dy}
M MJIM

yeM
(g—1)/q /g
} {elu] (M=)

< cr—Na—1)/qpd/a(a~d)

< sup {‘/M X{Ba(x,y)>t}(x)d:u(x)

yeM

Hence, ifa > d/p the integral overi—* < t < +oo satisfies the inequality

+oo 1/q
{/ ‘/ X{Bo(y)>t} (@) dp(z) dy} dt
q

/4 / tdale=d)gp < cpme,
Td «

Similarly, the integral ovef < ¢t < r?=¢, that is the discrepancy of large level sets,
satisfies the inequality

d

/07" : {/M '/M X{Be(ay)>t (T)dp () qdy}l/q dt

i ™ f0<a<l,
< 7”_1/ min {1’t(d—1)/(a—d)} dt < cr— ! ]og(l + 7’) if =1,
0 cr™ b ifa> 1.

The proof in the caser = d is similar and it follows from the estimatB*(z,y) =~
—log (|x — y|). The proof in the case > d is even simpler, since in this cag# (z, y)
is bounded and it suffices to integrate on< ¢ < sup, .\ B* (7,y) the inequality

| [ XiBeyys (@)dp ()| < et B
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In particular, it follows from Lemm&a2]9, Theordm 2,12, Them[2.14, that, at least
in the range) < « < 1, Theoreni 3.1l gives an optimal quadrature. We conclude with a
series of remarks.

Remark 3.3. As we said, the assumptien> d/2 with p = 2in Theoreni 2.7, otv > d/p
with 1 < p < 400 in Theorem 2.12, guarantees the boundedness and contofuity
f (x), otherwisef (z;) may be not defined. This follows from the Sobolev imbedding
theorem. Indeed, the imbedding is an easy corollary of Lef&aA functionf(x) is in

the Sobolev spac&*” (M) if and only if there exists a functiog(x) in L” (M) with

fa) = /M B (2, y)g(y)dy.

Whenl < p,q < +00,1/p+1/g=1,d/p < a < d, thenB*(z,y) < c|z —y|* *isin
L7 (M) and this implies that distributions in the Sobolev sp&¢er (M) with « > d/p
are continuous functions. Indeed they are also Holdeliwoatis of ordery — d/p.

Remark 3.4. When the manifold is a Lie group or a homogeneous space, anestate
Theoreni 211 in terms of convolutions. In the particular cafsbe torusT? = R?/Z, let

Z (k) exp (2mikz) , Z (k) texp (2mikx) .

kezd keZd

Then, ifl <p,q,r < +ocowithl/p+1/g=1/r+1,

[ re-na <>de}1/r={Ad\B*A*f*Mx)rdx}l/r
{/ A% f( |de} /p{Ad|B*u(x)\qu}l/q.

In the case of the sphef¢ = {z € R, |z| =1}, let{Z, (zy)} be the system of
zonal spherical harmonics polynomials and let

=S " 0(n)Z, (xy), Blay) =Y w(n)™*

Then, ifl <p, g < +4ocowithl/p+1/q=1,

[ F@)dn(z)

{/ dx}/{/ qu}”q.

Both results on the torus and the sphere follow from Younguradity for convolutions.

| At tyay

/S B (zy)du(y)
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Remark 3.5. A result related to Theorem 2.1 is the following. Identifiy with the
unit cube{0 < z; < 1} and denote by p(,(z) the characteristic function of the par-
allelepipedP(y) = {0 < z; < y,}. Then define

(1—m;)—271

’:]&

B(CC)I/XP w)dy — 274 =
Td e

— Z ((H 2) (H 2mik; )) exp (2mikx) .
kezd—{0} k;j=0 k;7#0

Also, define the differential integral operator

Ax f(x) = Z (H 2) (H 2m’k‘j) F(k) exp (2mikz)

k£0 \ k;=0 k;#0

—ot Y / @) [Jdwi+2%2 3 o) I don
(552 g e 8x iy (g T 8@8@ i
ad

Observe that, as in Theordm 2.1, the Fourier coefficienth@fdistributionA(x) and
of the functionB(x) are one inverse to the other, however here the Fourier ciesitic
are function of the lattice pointdrik, and not of the eigenvaluets:? |k|*. If dv(z) =

N='Y X 6., (x), and if1 < p,q,r < +oowith 1/p+1/¢g = 1/r + 1, then

(. d}
S{AJA*ﬂ@PM}W{AJB*M@PM}W.

The norm ofA x f(x) is dominated by an analogue of the Hardy Krause variation,

/p
{/ |Ax f( |pdx}
1/p
d—1
=2 Z {/ /w 18@ del d%}
p 1/p
d!lfzdl’]}

1<j<d
92
f(x dx
1<i#j<d /sz 0x;0x; (z) H h
p 1/p
dx} .

+21-2 Z { /T 2 11

NS e =)= [y

ad

0x;...014 FrTRA
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The norm ofB x v(x) is dominated by the discrepancy of the poi{ﬁ;}j\;l with respect
to the family of boxes(y),
1/q
{ |B>|<1/(x)|qu}
Td

N d q 1/q
1 ZXP(y) (zj + ) — Hyj dx} dy.
j=1 j

< [{L]r
Td Td

In particular, the casg = 1 andg = +oc is an analogue of the Koksma Hlawka inequal-
ity. See [20]. A generalization of this classical inequai# contained in[[5].

Remark 3.6. By Lemmd 2.6 (1), the Bessel kernéf(x, y) with o > 0 is a superposition
of heat kernels$V (¢, x,y). Indeed, it is possible to state an analogue of Corollarir?.4
terms of the heat kernel, without explicit mention of Begsetentials: If{zj} is a
sequence of points iM, if {w, }J: are positive weights with _, w; = 1, and if ( )is

a function inWe? (M) with o > d/2, then

) - /M f(@)da

N N
Z Z wiij (t, Zis Zj) -1

i=1 j=1

1/2
“+oo
< {r @ 2~ exp (1) dt} £l
0

This suggests the following heuristic interpretation: Mahatically, a set of points on
a manifold is well-distributed if the associated Riemanmsiare close to the integrals.
Physically, a set of points is well-distributed if the heattially concentrated on them, in
a short time diffuses uniformly across the manifold.

Remark 3.7. In order to minimize the errors in the numerical integraiimorollary(2.4
(3), one has to minimize the energies

N N
/ / B* (x,y) dv(z)dv(y ZZwiijzo‘(zi,zj).

=1 j=1

These are analogous to the energy integrals in potentiatythe

/M /M 2 =y dv(w)dv(y).

See [14]. Whenl < a < d + 1 the kernelB?* (x,y) is positive and bounded, with

a maximum atr = y and a spikeA — B |z — y|2°”_d whenz — y. In particular, the
gradient atx = y is infinite. This implies that in order to minimize the dist@een-
ergy Zm’ w;w; B** (z;, z;) the points{z;} have to be well separated. This suggests the



Quadrature rules and distribution of points on manifolds 27

following heuristic interpretation: Mathematically, at £¢ points on a manifold is well-
distributed if the energy is minimal. Physically, a set oirs, free to move and repelling
each other according to some law, is well-distributed winety reach an equilibrium.

Remark 3.8. It can be proved that 2« > d + 2 then
‘Bza (JI,JZ‘) - B> (x,y)‘ < C‘J}—y|2.

This estimate in the proof of Theorém 2.7 yields that for nobstices of sampling points
Zj c Uj,

St ()= [ fwyte

The same result holds o = d + 2, with a logarithmic transgression. Observe that
these estimates hold for most choices of sampling pointsadiufor all choices. Indeed,

if the manifold M is decomposed in disjoint piecest = U; U Uy U ... U Uy with
measuretN ! < |U;| = w; < bN~! anddiameter (U;) < ¢cN—V4,if f(z) is a smooth
non constant function, and if the points € U, are the maxima off (z) in U;, then
SV w;f (z) is an upper sum of the integrfl|, f(x)dx and

Jj=1

< ¢ max {diameter (Uj)d/2+1} Id

1<j<N

Wa,2(M) .

N
wif(z;) — z)dx > eN~Y4,
>t ) IRCEE

Remark 3.9. Theorem 3.2 gives an estimate of the accuracy in a quadraiieen
terms of the discrepancy of a measure with respect to letebé¢he Bessel kernel. The
following argument shows that when the manifold is a sphere rank one compact
symmetric space, then the level sets of the heat keie(t, x, y) > s}, and hence of the
Bessel kernel§ B* (x,y) < t}, are geodesic ball§|x — y| < r}. The Laplace operator
on the spherg? with respect to a system of polar coordinates (¥, o), with0 <9 <«
the colatitude with respect to a given pole and S?~! the longitude, is

Ay =Ape) = — sin' = (1Y) 3% (sind_1 (¥9) %) TA,.

Letu (¢, z) be the solution of the Cauchy problem for the heat equation

0

— = —A

{ pri (t,z) LU (t, ),
u(0,z) = f(z).

If f(x) depends only on the colatitudeif it is an even function decreasingin< ¢ < m,

then alsou (¢, z) depends only on the colatitude and it is an even functionedeser
ingin0 < ¥ < m. In order to prove this, set(t,z) = U(t,v), f(x) = F (v¥), and
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sin?™! (9) U (t,9) /00 = V (t,99). Then

S0 = o {sint =) 2 (sint 0) e o)) b,

0
8_19U(0 ¥) = 8ﬁF(é‘)
P o cos(¥) 0
o5 V(L) = 55 V(E9) + (1-d) sin(ﬁ)a_ﬁv(t’ﬁ)’

V(0,9) = sin?! () %F (9),

V(t,0)=V(t,m)=0.

If () is decreasing it < v < m, thenV(0,7) < 0 and, by the maximum principle,
V(t,9) < 0, henceU(t,v) is decreasing i) < 9 < =. In particular, by considering
a sequence of initial datgf,, (x)} which depend only on the colatitude even and de-
creasing i < 9 < m, and which converge to the Dira¢x), one proves that the heat
kernelWV (¢, cos (¥)) is decreasing il < ¥ < 7. Since Bessel kernels are superposition
of heat kernels, they are also superposition of spheriga.ca

Remark 3.10. In [3] and [22] the discrepancy of orbits of discrete subgroaf rotations
of a sphere are studied. L@tbe a compact Lie groug; a closed subgroup\t = G/K a
homogeneous space of dimensibrAlso, let#H be a finitely generated free subgroup in
G and assume that the action’d#fon M is free. Given a positive integer, let {aj}j.\f:1

be an ordering of the elements#hwith length at most and for every functiorf (x) on
M, define

N
Tf(x)=N">" (o).

j=1
This operator is self-adjoint and it has eigenvalues andrdigctions inlL.?(M). More-
over, since the operatof§ and A commute, they have a common orthonormal system
of eigenfunctionsApy (z) = A2, (x) andTpx(z) = T(N)pa(z). All eigenvalues ofl’
have modulus at modtand indeed is an eigenvalue and the constants are eigenfunc-
tions. Assume that all non constant eigenfunctions havenegues much smaller than

Then, ifa > d/2,
’N‘ ;f(ajfc)—/Mf(fc)dx = ;OT(A)H(A)%(@

1/2 1/2
< {sup{|T<A>|}} {Z (1+22)° |ff<A>|2} {Z (1+X)° m(x)F}

A#0 N \

<clswaron}{ [ Ju+ A>a/2f<x>\2dx}l/2.
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The absolute convergence of the above series is consequigheesobolev’s imbeddings,
or the Weyl's estimates for eigenfunctions. In particulehen M = SO(3)/SO(2) is

the two dimensional sphere arid is the free group generated by rotations of angles
arccos(—3/5) around orthogonal axes, it has been proved in [22] that tenealues of
the operatofl’ satisfy the Ramanujan bounds

sup {|T(N)|} < eN~H21og(N).
A#£0

Hence, for the sphere,

‘N—lzﬂo—jx) IRGL

< eN~V21og(N) {/M ‘(I + A)*? f(x)‘z da:}m :

All of this is essentially contained in [22]. Although thislind N~'/21og(V) is worse
than the boundv—2/2 in Corollary[2.18, the matrice§r;} have rational entries and the
sampling point o,z } are completely explicit.
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