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0 Quadrature rules and distribution of points on

manifolds

Luca Brandolini Christine Choirat Leonardo Colzani
Giacomo Gigante* Raffaello Seri Giancarlo Travaglini

Abstract

We study the error in quadrature rules on a compact manifold,
∣∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M
f(x)dx

∣∣∣∣∣∣
≤ cD {zj}V {f} .

As in the Koksma Hlawka inequality,D {zj} is a sort of discrepancy of the sampling
points andV {f} is a generalized variation of the function. In particular, we give
sharp quantitative estimates for quadrature rules of functions in Sobolev classes.

Keywords. Quadrature, discrepancy, harmonic analysis

1 Introduction

In what follows,M is a smooth compactd dimensional Riemannian manifold with Rie-

mannian measuredx, normalized so that the total volume of the manifold is 1, and∆ is

the Laplace Beltrami operator. This operator is self-adjoint in L2(M), it has a sequence
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of eigenvalues{λ2} and an orthonormal complete system of eigenfunctions{ϕλ(x)},

∆ϕλ(x) = λ2ϕλ(x). The eigenvalues, possibly repeated, can be ordered with increas-

ing modulus. In particular, the first eigenvalue is 0 and the associated eigenfunction is 1.

An example is the torusTd = Rd/Zd with the Laplace operator−
∑
∂2/∂x2j , eigenval-

ues
{
4π2 |k|2

}
k∈Zd and eigenfunctions{exp (2πikx)}k∈Zd . Another example is the sphere

Sd =
{
x ∈ Rd+1, |x| = 1

}
with normalized surface measure and with the angular com-

ponent of the Laplacian in the spaceRd+1, eigenvalues{n(n + d− 1)}+∞
n=0 and eigen-

functions the restriction to the sphere of homogeneous harmonic polynomials in space.

A classical problem is to approximate an integral
∫
M
f(x)dx with Riemann sums

N−1
∑N

j=1 f (zj), or weighted analogues
∑N

j=1 ωjf (zj), and what follows will be con-

cerned with the discrepancy between integrals and sums for functions in Sobolev classes

Wα,p (M) with 1 ≤ p ≤ +∞ andα > d/p. The assumptionα > d/p guarantees

the boundedness and continuity of the functionf (x), otherwisef (zj) may be not de-

fined. As a motivation, assume there exists a decomposition of M intoN disjoint pieces

M = U1 ∪ U2 ∪ ... ∪ UN and these pieces have measuresN−1 and diameters at most

cN−1/d. Choosing a pointzj in eachUj , one obtains the estimate
∣∣∣∣∣N

−1

N∑

j=1

f (zj)−
∫

M

f(x)dx

∣∣∣∣∣

≤
N∑

j=1

∫

Uj

|f (zj)− f(x)| dx ≤ sup
|y−x|≤cN−1/d

{|f (y)− f(x)|} .

In particular, since functions inWα,p (M) with α > d/p are Hölder continuous of

degreeα− d/p, one obtains
∣∣∣∣∣N

−1
N∑

j=1

f (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ cN−(α−d/p)/d ‖f‖
Wα,p(M) .

On the other hand, it will be shown that suitable choices of the sampling points{zj}
improve the exponent1/p − α/d to −α/d and this is best possible. More precisely, the

main results in this paper are the following:

(1) For everyd/2 < α < d/2+1 there existsc > 0 such that ifM = U1∪U2∪...∪UN

is a decomposition of the manifold in disjoint pieces with measure|Uj| = ωj, then there

exists a distribution of points{zj}Nj=1 with zj ∈ Uj such that for every functionf(x) in

the Sobolev spaceWα,2 (M),
∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

{diameter (Uj)
α} ‖f‖

Wα,2 .

(2) Assume that the points{zj}Nj=1 and the positive weights{ωj}Nj=1 give an exact
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quadrature for all eigenfunctions with eigenvaluesλ2 < r2, that is

N∑

j=1

ωjϕλ (zj) =

∫

M

ϕλ(x)dx =

{
1 if λ = 0,
0 if 0 < λ < r.

Then for every1 ≤ p ≤ +∞ andα > d/p there existc > 0, which may depend on

M, p, α, but is independent ofr, {zj}Nj=1 and{ωj}Nj=1, such that

∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ cr−α ‖f‖
Wα,p .

(3) If 1 ≤ p ≤ +∞ andα > d/p, then there existc > 0 and sequences of points

{zj}Nj=1 and positive weights{ωj}Nj=1 with

∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ cN−α/d ‖f‖
Wα,p .

(4) For every1 ≤ p ≤ +∞ andα > d/p there existsc > 0 such that for every distri-

bution of points{zj}Nj=1 and numbers{ωj}Nj=1 there exists a functionf(x) in W
α,p (M)

with ∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≥ cN−α/d ‖f‖
Wα,p .

An explicit example is the following. The torusTd can be partitioned intoN = nd

congruent cubes with sides1/n and this partition generates the mesh of points
(
n−1Zd

)
∩

Td, which gives an exact quadrature at least for all exponentials exp (2πikx) with |kj| <
n. In this case, (1) and (2) give an upper bound for the error in numerical integration of

the order ofN−α/d. More generally, if a manifold is decomposed intoN disjoint pieces

M = U1∪U2∪ ...∪UN with diameters≤ cN−1/d, then (1) gives the upper boundN−α/d.

Moreover, for everyr > 0 there are approximatelycrd eigenfunctions with eigenvalues

λ2 < r2 and one can chooseN ≤ crd nodes{zj}Nj=1 and positive weights{ωj}Nj=1 which

give an exact quadrature for these eigenfunctions. Then in this case (2) gives the above

upper boundN−α/d. Hence (1) and (2) imply (3), and by (4) this latter is optimal. When

the manifold is a torus or a sphere these results are essentially known, and indeed there is

a huge literature on this subject. See [24] for deterministic and stochastic error bounds in

numerical analysis. In particular, (3) and (4) forp = 2 and for spheres are contained in

[7], [15] and [16]. For Besov spaces on spheres a result slightly more precise than (3) is in

[17], while a result slightly weaker than (4) for compact twopoint homogeneous spaces is

in [21]. See also [10] and, for a survey on related results, [14] and [19]. Beside the proofs

of (1), (2), (3), (4), which are contained in the following section, the paper contains also

a final section with a number of further results and remarks. Among them it is proved
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that if a quadrature rule gives an optimal error in the Sobolev spaceWα,2 (M), then this

quadrature rule is optimal also in all spacesWβ,2 (M) with d/2 < β < α. Moreover, it is

proved that there is a relation between quadrature rules andgeometric discrepancy:

(5) If dν(x) is a probability measure onM, then the norm of the measuredν(x)− dx

as a linear functional onWα,2 (M) decreases asα increases. Moreover, if the norm of

dν(x)− dx onWα,2 (M) is r−α,
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤ r−α ‖f‖
Wα,2 ,

then for everyd/2 < β < α there exists a constantc which may depend onα, β, M, but

is independent ofr anddν(x), such that
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤ cr−β ‖f‖
Wβ,2 .

(6) Assume that for somer ≥ 1 the discrepancy of the probability measuredν(x) with

respect to the balls{B (y, δ)} with centery and radiusδ satisfies the estimates
∣∣∣∣
∫

B(y,δ)

dν(x)−
∫

B(y,δ)

dx

∣∣∣∣ ≤
{
r−d if δ ≤ 1/r,
r−1δd−1 if δ ≥ 1/r.

Then for every1 ≤ p ≤ +∞ and α > d/p, there exists a constantc, which may

depend onα andp, but is independent ofdν(x) andr, such that

∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤





cr−α ‖f‖
Wα,p if 0 < α < 1,

cr−1 log(1 + r) ‖f‖
Wα,p if α = 1,

cr−1 ‖f‖
Wα,p if α > 1.

Observe that while (1) and (2) hold for specific quadrature rules, (5) is a result for

arbitrary quadratures. Actually, (5) is only one way, fromα to β < α. The estimater−α

for an α does not necessarily imply the estimatecr−β for β > α. Moreover, the sets

{B (y, δ)} in (6) are not precisely geodesic balls, but level sets of suitable kernels on

the manifold. However, for spheres or compact rank one symmetric spaces these sets are

geodesic balls. In this case the discrepancy of the measure is the spherical cap discrepancy.

See [4] or [23], and for other relations between quadrature and discrepancy on spheres,

see also [2]. Finally, we would like to point out that our paper is (almost) self contained, it

does not rely on explicit properties of manifolds or specialfunctions, and it may provide

a unified vision and simple alternative proofs of some known results.

2 Main results

The eigenfunction expansions of functions and operators are a basic tool in what follows.

The system of eigenfunctions{ϕλ(x)} is orthonormal complete inL2(M) and to every
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square integrable function one can associate a Fourier transform and series,

Ff(λ) =
∫

M

f(y)ϕλ(y)dy, f(x) =
∑

λ

Ff(λ)ϕλ(x).

Since the Laplace operator is elliptic, the eigenfunctionsare smooth and it is possible

to extend the definition of Fourier transforms and series to distributions. In particular,

the Fourier expansions are always convergent, at least in the topology of distributions.

One can write the discrepancy between integral and Riemann sum as a single integral

with respect to a measuredµ(x) =
∑N

j=1 ωjδzj(x) − dx, with δy(x) the Dirac measure

concentrated at the pointy anddx the Riemannian measure,

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx =

∫

M

f(x)dµ(x).

Then the estimate of the error in the numerical integration reduces to the estimate of

the norm of a linear functionaldµ(x) on a space of test functionsf(x). Some of the results

which follow will be stated for generic finite signed measures dµ(x), for measures of the

form dµ(x) = dν(x) − dx with dν(x) a probability measure, and also for atomic prob-

ability measuresdν(x) =
∑N

j=1 ωjδzj (x). The following is an easy and straightforward

extension to compact manifolds andp norms of some abstract results for reproducing

kernel Hilbert spaces. See e.g. [1], [12], [13].

Theorem 2.1. Let{ψ(λ)} be a numeric sequence indexed by the eigenvalues{λ2}, with

{ψ(λ)} and{ψ(λ)−1} slowly increasing, that is|ψ(λ)| ≤ a (1 + λ2)
α/2 and |ψ(λ)−1| ≤

b (1 + λ2)
β/2. Let A(x, y) andB(x, y) be distribution kernels with Fourier transforms

{ψ(λ)} and{ψ(λ)−1},

A(x, y) =
∑

λ

ψ(λ)ϕλ(x)ϕλ(y), B(x, y) =
∑

λ

ψ(λ)−1ϕλ(x)ϕλ(y).

Finally, let f(x) be a continuous function and letdµ(x) be a finite measure onM. Then,

if 1 ≤ p, q ≤ +∞ and1/p+ 1/q = 1,
∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣

≤
{∫

M

∣∣∣∣
∫

M

A(x, y)f(y)dy

∣∣∣∣
p

dx

}1/p{∫

M

∣∣∣∣
∫

M

B(x, y)dµ(x)

∣∣∣∣
q

dy

}1/q

.

In particular, whenp = q = 2 andB(x, y) = B (y, x) and

f(x) =

∫

M

∫

M

B (x, y)B (y, z)dydµ(z),

then the above inequality reduces to an equality.
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Proof. The assumptions{ψ(λ)} and{ψ(λ)−1} slowly increasing simply imply that the

kernelsA(x, y) andB(x, y) are tempered distributions. In what follows the pairing be-

tween a test function and a distribution is denoted with an integral, even when the distri-

bution is not a function and the integral is divergent. Let
∫

M

A(x, y)f(y)dy =
∑

λ

ψ(λ)Ff(λ)ϕλ(x),

∫

M

B(x, y)dµ(y) =
∑

λ

ψ(λ)−1Fµ(λ)ϕλ(x).

These operators are one the inverse of the other,

f(x) =

∫

M

B(x, y)

(∫

M

A(y, z)f(z)dz

)
dy

=

∫

M

A(x, y)

(∫

M

B(y, z)f(z)dz

)
dy.

In particular, by Hölder inequality with1/p+ 1/q = 1,
∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ =
∣∣∣∣
∫

M

∫

M

∫

M

B(x, y)A(y, z)f(z)dµ(x)dydz

∣∣∣∣

≤
{∫

M

∣∣∣∣
∫

M

A(y, z)f(z)dz

∣∣∣∣
p

dy

}1/p{∫

M

∣∣∣∣
∫

M

B(x, y)dµ(x)

∣∣∣∣
q

dy

}1/q

.

Finally, whenp = q = 2 the Cauchy inequality reduces to an equality if the functions are

proportional. Indeed, ifB (x, y) = B (y, x) and

f(x) =

∫

M

∫

M

B (x, y)B (y, z)dydµ(z),

then one easily verifies that
∫

M

f(x)dµ(x) =

∫

M

∣∣∣∣
∫

M

B (x, y) dµ(x)

∣∣∣∣
2

dy,

{∫

M

∣∣∣∣
∫

M

A(x, y)f(y)dy

∣∣∣∣
2

dx

}1/2

=

{∫

M

∣∣∣∣
∫

M

B (x, y)dµ(x)

∣∣∣∣
2

dy

}1/2

.

Hence, whenp = q = 2 for this function the inequality in the theorem reduces to an

equality.

In what follows the operators with kernelsA(x, y) andB(x, y) will be powers of the

Laplace Beltrami operator(I +∆)±α/2.

Definition 2.2. The Sobolev spaceW α,p (M), −∞ < α < +∞ and1 ≤ p ≤ +∞,

consists of all distributions onM with (I +∆)α/2 f(x) in Lp (M), that is with

‖f‖
Wα,p =

{∫

M

∣∣∣∣∣
∑

λ

(
1 + λ2

)α/2 Ff (λ)ϕλ(x)

∣∣∣∣∣

p

dx

}1/p

< +∞.
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An equivalent definition is the following.

Definition 2.3. LetBα(x, y), −∞ < α < +∞, be the Bessel kernel

Bα(x, y) =
∑

λ

(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

A distributionf(x) is in the Sobolev spaceW α,p (M) if and only if it is a Bessel potential

of a functiong(x) in Lp (M),

f(x) =

∫

M

Bα(x, y)g(y)dy.

Moreover,‖f‖
Wα,p = ‖g‖

Lp.

In particular, whenp = 2,

‖f‖
Wα,2 =

{
∑

λ

(
1 + λ2

)α |Ff (λ)|2
}1/2

.

Another equivalent definition is a localization result: A distributionf(x) is inWα,p (M)

if and only if for every smooth functiong(x)with support in a local cardx = ψ(y) : Rd
 

M, the distributiong(ψ(y))f(ψ(y)) is in Wα,p
(
Rd
)
. In particular, ifα is a positive even

integer, thenf(x) is in W
α,p (M) if and only if thep th power off(x) and of∆α/2f(x)

are integrable. Moreover, distributions inWα,p (M) with α > d/p are Hölder continuous

of degreeα − d/p. When applied to functions in Sobolev classes, Theorem 2.1 gives the

following corollary.

Corollary 2.4. (1) If Bα(x, y) =
∑

λ (1 + λ2)
−α/2

ϕλ(x)ϕλ(y) is the Bessel kernel, if

dµ(x) is a finite measure onM, and iff(x) is a continuous function inW α,p (M), with

1 ≤ p, q ≤ +∞ and1/p+ 1/q = 1, then
∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤
{∫

M

∣∣∣∣
∫

M

Bα(x, y)dµ(x)

∣∣∣∣
q

dy

}1/q

‖f‖
Wα,p .

If α > d/p then the above integrals are well-defined and finite. On the contrary, the spaces

W α,p (M) withα ≤ d/p contain unbounded functions and, if the measuredµ(x) does not

vanish on the set wheref(x) = ∞, then
∫
M
f(x)dµ(x) may diverge.

(2) Whenp = q = 2 then the above inequality simplifies,
∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤
{∫

M

∫

M

B2α (x, y) dµ(x)dµ(y)

}1/2

‖f‖
Wα,2

Equivalently, by the Fourier expansion of the Bessel kernel,

∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤
{
∑

λ

(
1 + λ2

)−α |Fµ (λ)|2
}1/2

‖f‖
Wα,2 .
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Moreover, withf(x) =
∫
M
B2α (x, y) dµ(y) the above inequalities reduce to equalities.

(3) If dµ(x) = dν(x)− dx is the difference between a probability measuredν(x) and

the Riemannian measuredx, then
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤
{∫

M

∫

M

B2α (x, y) dν(x)dν(y)− 1

}1/2

‖f‖
Wα,2 .

Equivalently,

∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤
{
∑

λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

‖f‖
Wα,2 .

Proof. (1) is an immediate corollary of Theorem 2.1. In order to prove (2), observe that
∫

M

Bα(x, y)Bβ(y, z)dy = Bα+β (x, z) .

Moreover, this Bessel kernel is real and symmetric. Hence,
∫

M

∣∣∣∣
∫

M

Bα(x, y)dµ(x)

∣∣∣∣
2

dy

=

∫

M

∫

M

∫

M

Bα(x, y)Bα(z, y)dydµ(x)dµ(z)

=

∫

M

∫

M

B2α(x, z)dµ(x)dµ(z).

(3) is a corollary of (1) and (2). Indeed, sinceB2α (x, y) = B2α (y, x) and
∫
M
B2α (x, y) dy =

1, it follows that
∫

M

∫

M

B2α (x, y) (dν(x)− dx) (dν(y)− dy)

=

∫

M

∫

M

B2α (x, y) dν(x)dν(y)−
∫

M

∫

M

B2α (x, y) dν(x)dy

−
∫

M

∫

M

B2α (x, y)dxdν(y) +

∫

M

∫

M

B2α (x, y) dxdy

=

∫

M

∫

M

B2α (x, y) dν(x)dν(y)− 1.

Finally, by Sobolev imbedding theorem, functions inWα,p (M) with α > d/p are contin-

uous and all the above integrals are well-defined and finite. This also follows from Lemma

2.6 and Remark 3.3 below.

The above corollary leads to estimate the energy integrals
{∫

M

∣∣∣∣
∫

M

Bα(x, y)dµ(x)

∣∣∣∣
q

dy

}1/q

,

{∫

M

∫

M

B2α (x, y) dν(x)dν(y)− 1

}1/2

=

{
∑

λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

.
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By the last formula, the energy attains a minimum if and only if Fν (λ) = 0 for

all λ > 0, and this gives the Riemannian measuredx. The meaning of the corollary is

that measures with low energy are close to the Riemannian measure and they give good

quadrature rules. In order to give quantitative estimates for the above integrals, one has to

collect some properties of the Bessel kernels. The norm of the functiony  Bα(x, y) in

Wγ,2 (M) is

‖Bα(x, ·)‖
Wγ,2 =

{
∑

λ

(
1 + λ2

)γ−α |ϕλ(x)|2
}1/2

.

By Weyl’s estimates on the spectrum of an elliptic operator,see Theorem 17.5.3 in

[18], for everyr > 1 there are approximatelycrd eigenfunctionsϕλ(x) with eigenvalues

λ2 < r2 and
∑

λ≤r |ϕλ(x)|2 ≤ crd. It then follows that the norm inWγ,2 (M) ofBα(x, y)

is finite provided thatγ < α − d/2 and, by Sobolev imbedding theorem, it also follows

thatBα(x, y) is Hölder continuous of degreeδ < α − d. Indeed, we shall see that a bit

more is true:Bα(x, y) is Hölder continuous of degreeα− d.

Lemma 2.5. The heat kernelW (t, x, y) =
∑

λ exp (−λ2t)ϕλ(x)ϕλ(y), which is the

fundamental solution to the heat equation∂/∂t = −∆ on R+ × M, is symmetric real

and positive,W (t, x, y) = W (t, y, x) > 0 for everyx, y ∈ M and t > 0. Moreover,

for everym andn there existsc such that, if|x− y| denotes the Riemannian distance

betweenx andy, and∇ the gradient,
{

|∇mW (t, x, y)| ≤ ct−(d+m)/2
(
1 + |x− y| /

√
t
)−n

if 0 < t ≤ 1,
|∇mW (t, x, y)| ≤ c if 1 ≤ t < +∞.

Proof. All of this is well known. The idea is that heat has essentially a finite speed of

propagation and diffusion in manifolds is comparable to diffusion in Euclidean spaces, at

least for small times. The heat kernel in the Euclidean spaceRd is a Gaussian,

W (t, x, y) =

∫

Rd

exp
(
−4π2t |ξ|2

)
exp (2πi (x− y) ξ) dξ

= (4πt)−d/2 exp
(
− |x− y|2 /4t

)
.

By the Poisson summation formula, the heat kernel on the torus Td = Rd/Zd is the

periodized of the kernel in the space,
∑

k∈Zd

exp
(
−4π2 |k|2 t

)
exp (2πik (x− y))

=
∑

k∈Zd

(4πt)−d/2 exp
(
− |x− y − k|2 /4t

)
.

Whenx is close toy andt is small, the main contribution to the sum comes from the term

with k = 0,

W (t, x, y) ≈ (4πt)−d/2 exp
(
− |x− y|2 /4t

)
.
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The remainder gives a bounded contribution,

∣∣∣∣∣∣

∑

k∈Zd−{0}

(4πt)−d/2 exp
(
− |x− y − k|2 /4t

)
∣∣∣∣∣∣
≤ c.

Analogous estimates hold for the derivatives. This proves the lemma for the torus. The

heat kernel on a compact manifold is similar, in particular it has an asymptotic expansion

with euclidean main term. See e.g. [9], Chapter VI. More precisely, by the Minakshisun-

daram Pleijel recursion formulas, there exist smooth functions{uk (x, y)} such that, ift

is small and|x− y| denotes the distance betweenx andy,

W (t, x, y) ≈ (4πt)−d/2 exp
(
− |x− y|2 /4t

) n∑

k=0

tkuk (x, y) +O
(
tn+1

)
.

On the contrary,W (t, x, y) → 1 when t → +∞. The estimates on the size of this

kernel and its derivatives are a consequence of this asymptotic expansion. The positivity

W (t, x, y) > 0 is a consequence of the maximum principle for heat equation and the

symmetryW (t, x, y) = W (t, y, x) follows from this positivity and the eigenfunction

expansion.

Lemma 2.6. (1) The Bessel kernelBα(x, y) withα > 0 is a superposition of heat kernels

W (t, x, y):

Bα(x, y) = Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t)W (t, x, y) dt.

(2) The Bessel kernelBα(x, y) with α > 0 is real and positive for everyx, y ∈ M,

and it is smooth in{x 6= y}. Moreover, for suitable constants0 < a < b,

a |x− y|α−d ≤ Bα(x, y) ≤ b |x− y|α−d if 0 < α < d,

a log
(
1 + |x− y|−1) ≤ Bα(x, y) ≤ b log

(
1 + |x− y|−1) if α = d,

a ≤ Bα(x, y) ≤ b if α > d.

(3) If d < α < d+1, thenBα(x, y) is Hölder continuous of degreeα− d, that is there

existsc such that for everyx, y, z ∈ M,

|Bα(x, y)−Bα(x, z)| ≤ c |y − z|α−d .

(4) If d < α < d+ 2, then there existsc such that for everyx, y ∈ M,

|Bα(x, x)− Bα(x, y)| ≤ c |x− y|α−d .
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Proof. When the manifold is a torus and the eigenfunctions are exponentials the proof is

elementary. The Bessel kernel in the torusTd is an even function and it is sum of cosines,

Bα(x, y) =
∑

k∈Zd

(
1 + 4π2 |k|2

)−α/2
exp (2πikx) exp (−2πiky)

=
∑

k∈Zd

(
1 + 4π2 |k|2

)−α/2
cos (2πk (x− y)) .

Hence,

Bα(x, x)− Bα(x, y) = 2
∑

k∈Zd

(
1 + 4π2 |k|2

)−α/2
sin2 (πk (x− y))

≤ 2π2 |x− y|2
∑

|k|≤|x−y|−1

|k|2
(
1 + 4π2 |k|2

)−α/2
+ 2

∑

|k|>|x−y|−1

(
1 + 4π2 |k|2

)−α/2

≤





c |x− y|α−d if d < α < d+ 2,
c |x− y|2 log

(
1 + |x− y|−1) if α = d+ 2,

c |x− y|2 if α > d+ 2.

Also observe that the series which definesBα(x, x)−Bα(x, y) has positive terms and the

above inequalities can be reversed. This proves (4) for a torus, and the proof of (3) and (2)

is similar. A proof for a generic manifold follows from the representation of Bessel kernels

as superposition of heat kernels and the estimates in the previous lemma. In particular, (1)

follows from the identity for the Gamma function

(
1 + λ2

)−α/2
= Γ (α/2)−1

∫ +∞

0

tα/2−1 exp
(
−t
(
1 + λ2

))
dt.

By Lemma 2.5, for everyn,

0 < W (t, x, y) ≤





ct(n−d)/2 |x− y|−n if 0 < t ≤ |x− y|2 ,
ct−d/2 if |x− y|2 ≤ t ≤ 1,
c if t ≥ 1.

Hence, if0 < α < d andn > d− α,

Bα(x, y) = Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t)W (t, x, y) dt

≤ c |x− y|−n

∫ |x−y|2

0

t(α+n−d)/2−1dt+ c

∫ 1

|x−y|2
t(α−d)/2−1dt+

∫ +∞

1

tα/2−1 exp (−t) dt

≤ c |x− y|α−d .

Indeed one can easily see that these inequalities can be reversed. HenceBα(x, y) ≈
c |x− y|α−d. This proves (2) when0 < α < d, and the proofs of the casesα = d
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andα > d are similar. Also the proof of (3) is similar. Write

Bα(x, y)− Bα(x, z)

= Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t) (W (t, x, y)−W (t, x, z)) dt.

Then recall that, by Lemma 2.5,

|W (t, x, y)−W (t, x, z)| ≤





ct−d/2 if 0 < t ≤ |y − z|2 ,
ct−(d+1)/2 |y − z| if |y − z|2 ≤ t ≤ 1,
c |y − z| if t ≥ 1.

Hence,

|Bα(x, y)− Bα(x, z)| ≤ c

∫ |y−z|2

0

t(α−d)/2−1 exp (−t) dt

+c |y − z|
∫ 1

|y−z|2
t(α−d−1)/2−1 exp (−t) dt+ c |y − z|

∫ +∞

1

tα/2−1 exp (−t) dt

≤ c |y − z|α−d .

Finally, the estimate for|Bα(x, x)−Bα(x, y)| in (4) is analogous to the previous one, but

it holds in a larger range ofα. It suffices to observe thatW (t, x, y) is stationary atx = y

and it satisfies the estimates

|W (t, x, x)−W (t, x, y)| ≤





ct−d/2 if 0 < t ≤ |x− y|2 ,
ct−d/2−1 |x− y|2 if |x− y|2 ≤ t ≤ 1,
c |x− y|2 if t ≥ 1.

The following is Result (1) in the Introduction.

Theorem 2.7. For everyd/2 < α < d/2 + 1 there existsc > 0 with the following

property: If M = U1 ∪ U2 ∪ ... ∪ UN is a decomposition ofM in disjoint pieces with

measure|Uj | = ωj, then there exists a distribution of points{zj}Nj=1 with zj ∈ Uj such

that ∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

{diameter (Uj)
α} ‖f‖

Wα,2(M) .

Proof. By Corollary 2.4 (3), withdν(x) =
∑N

j=1 ωjδzj (x),

∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤
{

N∑

i=1

N∑

j=1

ωiωjB
2α (zi, zj)− 1

}1/2

‖f‖
Wα,2 .
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It suffices to compute the average value of
∑N

i=1

∑N
j=1 ωiωjB

2α (zi, zj)− 1 onU1×U2 ×
... × UN with respect to the probability measuresω−1

j dzj uniformly distributed onUj.

First observe that
(

N∏

k=1

ω−1
k

)∫

U1

...

∫

UN

dz1...dzN = 1,

1 =

∫

M

∫

M

B2α (x, y) dxdy =

N∑

i=1

N∑

j=1

∫

Ui

∫

Uj

B2α (x, y) dxdy.

Then,
(

N∏

k=1

ω−1
k

)∫

U1

...

∫

UN

(
N∑

i=1

N∑

j=1

ωiωjB
2α (zi, zj)− 1

)
dz1...dzN

=
∑

j

ωj

∫

Uj

B2α (zj , zj) dzj +
∑∑

i 6=j

∫

Ui

∫

Uj

B2α (zi, zj) dzidzj

−
∑

j

∫

Uj

∫

Uj

B2α (x, y) dxdy −
∑∑

i 6=j

∫

Ui

∫

Uj

B2α (x, y) dxdy

=

N∑

j=1

∫

Uj

∫

Uj

(
B2α (x, x)−B2α (x, y)

)
dxdy.

Since, by Lemma 2.6 (4),|B2α (x, x)− B2α (x, y)| ≤ c |x− y|2α−d whend < 2α < d+2,

and sinceωj = |Uj | ≤ c diameter (Uj)
d,

N∑

j=1

∫

Uj

∫

Uj

∣∣B2α (x, x)− B2α (x, y)
∣∣ dxdy

≤
N∑

j=1

|Uj |2 sup
{∣∣B2α (x, x)− B2α (x, y)

∣∣ , x, y ∈ Uj

}

≤ c
N∑

j=1

|Uj|2 diameter (Uj)
2α−d ≤ c

N∑

j=1

|Uj | diameter (Uj)
2α .

For the next result we shall need estimates for partial sums of Fourier expansions of

the Bessel kernels.

Lemma 2.8. Letχ (λ) be an even smooth function on−∞ < λ < +∞ with support in

1/2 ≤ |λ| ≤ 2 and let

P α(r, x, y) =
∑

λ

χ (λ/r)
(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).
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Then for everyn > 0 there existsc such that for everyr > 1 andx, y ∈M ,

|P α(r, x, y)| ≤ crd−α (1 + r |x− y|)−n .

Proof. The numerology behind this estimate is quite simple. The approximation of the

Bessel kernelBα(x, y) by linear combinations of eigenfunctions with eigenvaluesλ2 < r2

is localized and only pointsx andy with |x− y| ≤ 1/r really matter. In particular, since

Bα(x, y) is smooth away from the diagonal, at distance|x− y| ≤ 1/r the approximation

is rough, but at distance|x− y| ≥ 1/r it is quite good. The analogue ofP α(r, x, y) in the

Euclidean setting is the kernel

Q (r, x− y) =

∫

Rd

χ (2π |ξ| /r)
(
1 + 4π2 |ξ|2

)−α/2
exp (2πi (x− y) ξ) dξ

= rd
∫

Rd

χ (2π |ξ|)
(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ.

Sinceχ (2π |ξ|) has support in1/2 ≤ 2π |ξ| ≤ 2, for everyr andx, y ∈ R
d one has

∣∣∣∣r
d

∫

Rd

χ (2π |ξ|)
(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

∣∣∣∣

≤ rd−α

∫

Rd

(2π |ξ|)−α |χ (2π |ξ|)| dξ ≤ crd−α.

This estimate can be improved in the range|x− y| ≥ 1/r. Indeed, an integration by parts

gives

rd
∫

Rd

χ (2π |ξ|)
(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

= rd
∫

Rd

χ (2π |ξ|)
(
1 + 4π2r2 |ξ|2

)−α/2
∆n

ξ

((
4π2r2 |x− y|2

)−n
exp (2πir (x− y) ξ)

)
dξ

= rd
(
4π2r2 |x− y|2

)−n
∫

Rd

exp (2πir (x− y) ξ)∆n
ξ

(
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
)
dξ.

Hence,
∣∣∣∣r

d

∫

Rd

χ (2π |ξ|)
(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

∣∣∣∣

≤ rd
(
4π2r2 |x− y|2

)−n
∫

Rd

∣∣∣∆n
ξ

(
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
)∣∣∣ dξ

≤ crd−α−2n |x− y|−2n .

Now it suffices to transfer these estimates from the Euclidean space to the manifold. For

the torus, this can be done via the Poisson summation formula. If Q (r, x− y) is the

truncated Bessel kernel inRd defined above, then the truncated Bessel kernel inTd is
∑

k∈Zd

χ (2π |k| /r)
(
1 + 4π2 |h|2

)−α/2
exp (2πik (x− y)) =

∑

k∈Zd

Q (r, x− y + k) .
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When |xj − yj| ≤ 1/2, the main term in the last sum is the one withk = 0, while the

contribution of terms withk 6= 0 is negligible,

|Q (r, x− y)| ≤ crd−α (1 + r |x− y|)−n ,∑

k∈Zd−{0}

|Q (r, x− y − k)| ≤ crd−α−n.

Finally, the estimate for the truncated Bessel kernel on a generic manifold can be obtained

by transference fromRd via pseudodifferential techniques. For more details, see e.g. [27]

Chapter XII, or [5].

The following is a result on the homogeneity of measures which appear in quadrature

rules and it gives sharp estimates of the discrepancy of suchmeasures. Similar estimates

on spheres are in [2].

Lemma 2.9. Assume thatdν(x) is a probability measure onM with the property that

for every eigenfunctionϕλ(x) with eigenvaluesλ2 < r2,
∫

M

ϕλ(x)dν(x) =

∫

M

ϕλ(x)dx.

Then for everyn there existsc, which may depend onn andM, but is independent ofr

anddν(x), such that for every measurable setΩ in M,
∣∣∣∣
∫

Ω

dν(x)−
∫

Ω

dx

∣∣∣∣ ≤ c

∫

M

(1 + rdistance {x, ∂Ω})−n dx.

In particular, the discrepancy between the measuresdν(x) anddx with respect to balls

{|x− y| ≤ s} is dominated by
∣∣∣∣
∫

{|x−y|≤s}

dν(x)−
∫

{|x−y|≤s}

dx

∣∣∣∣ ≤
{
cr−d if s ≤ 1/r,
cr−1sd−1 if s ≥ 1/r.

Proof. It is proved in [11] that givenn, there existsc such that for every measurable set

Ω in M and everyr > 0 there exist two linear combinations of eigenfunctionsA(x) =∑
λ<r a (λ)ϕλ(x) andB(x) =

∑
λ<r b (λ)ϕλ(x) which approximate the characteristic

functionχΩ(x) from above and below,

A(x) ≤ χΩ(x) ≤ B(x), B(x)− A(x) ≤ c (1 + rdistance {x, ∂Ω})−n .

In particular, the properties of the functionA(x) and of the measuredν(x) give
∫

Ω

dν(x) ≥
∫

M

A(x)dν(x) =

∫

M

A(x)dx

≥
∫

M

χΩ(x)dx− c

∫

M

(1 + rdistance {x, ∂Ω})−n dx.
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Similarly, by the properties ofB(x) anddν(x),

∫

Ω

dν(x) ≤
∫

M

B(x)dν(x) =

∫

M

B(x)dx

≤
∫

M

χΩ(x)dx+ c

∫

M

(1 + rdistance {x, ∂Ω})−n dx.

Lemma 2.10. Assume thatdν(x) is a probability measure onM which gives an exact

quadrature for all eigenfunctionsϕλ(x) with eigenvaluesλ2 < r2,

∫

M

ϕλ(x)dν(x) =

∫

M

ϕλ(x)dx.

If 1 ≤ q ≤ +∞ andα > d (1− 1/q), then there existsc, which may depend onq, α, M,

but is independent ofr anddν(x), such that

{∫

M

∣∣∣∣
∫

M

Bα(x, y)dν(x)− 1

∣∣∣∣
q

dy

}1/q

≤ cr−α.

Proof. Let χ (λ) be an even smooth function on−∞ < λ < +∞ with support in1/2 ≤
|λ| ≤ 2 with the property that

∑+∞
j=−∞ χ (2−jλ) = 1 for everyλ 6= 0. Also, let

P α(s, x, y) =
∑

λ

χ (λ/s)
(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

Hence,Bα(x, y) = 1 +
∑+∞

j=−∞ P α(2j , x, y). Sincedν(x) annihilates all eigenfunctions

with 0 < λ < r, it also annihilates allP α(2j, x, y) with 2j ≤ r/2 and this gives

∫

M

Bα(x, y)dν(x)− 1 =

∫

M


 ∑

2j>r/2

P α(2j, x, y)


 dν(x).

Whenq = 1, by Lemma 2.8,

∫

M

∣∣∣∣
∫

M

P α(s, x, y)dν(x)

∣∣∣∣ dy

≤ csd−α

∫

M

∫

M

(1 + s |x− y|)−n dν(x)dy

≤ cs−α sup
x∈M

{∫

M

sd (1 + s |x− y|)−n dy

}
≤ cs−α.
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Whenq = +∞ ands ≥ r andn > d, by Lemma 2.8 and Lemma 2.9,

sup
y∈M

{∣∣∣∣
∫

M

P α(s, x, y)dν(x)

∣∣∣∣
}

≤ csd−α sup
y∈M

{∫

M

(1 + s |x− y|)−n dν(x)

}

≤ csd−α sup
y∈M

{∫

{|x−y|≤1/r}

dν(x)

}

+csd−α sup
y∈M

{
+∞∑

j=0

(
2js/r

)−n
∫

{|x−y|≤2j/r}

dν(x)

}

≤ csd−αr−d + csd−α−nrn−d ≤ csd−αr−d.

Hence, whens ≥ r and1 < q < +∞, by interpolation between1 and+∞,
{∫

M

∣∣∣∣
∫

M

P α(s, x, y)dν(x)

∣∣∣∣
q

dy

}1/q

≤ sup
y∈M

{∣∣∣∣
∫

M

P α(s, x, y)dν(x)

∣∣∣∣
}(q−1)/q {∫

M

∣∣∣∣
∫

M

P α(s, x, y)dν(x)

∣∣∣∣ dy
}1/q

≤ csd(1−1/q)−αr−d(1−1/q).

Whenα > d(1− 1/q) these estimates sum to
{∫

M

∣∣∣∣
∫

M

Bα(x, y)dν(x)− 1

∣∣∣∣
q

dy

}

≤
∑

2j>r/2

{∫

M

∣∣∣∣
∫

M

P α(2j, x, y)dν(x)

∣∣∣∣
q

dy

}1/q

≤ cr−d(1−1/q)
∑

2j>r/2

2j(d(1−1/q)−α) ≤ cr−α.

Finally, the existence of exact quadrature rules associated to any system of continuous

functions is a simple result in functional analysis, or in convex geometry. See Theorem

3.1.1 in [26], or [25], or [8] for explicit constructions on spheres.

Lemma 2.11. Given any numberϕ1(x), ϕ2(x),...,ϕn(x) of continuous functions onM,

there exist points{zj}Nj=1 in M and positive weights{ωj}Nj=1 with
∑N

j=1 ωj = 1, such

that for everyϕi(x), ∫

M

ϕi(x)dx =

N∑

j=1

ωjϕi (zj) .

If the functionsϕj(x) are real one can chooseN ≤ n + 1, and if these functions are

complex one can chooseN ≤ 2n+ 1.
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Proof. Define

Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕn(x)) ,

E =

∫

M

Φ(x)dx =

(∫

M

ϕ1(x)dx,

∫

M

ϕ2(x)dx, ...,

∫

M

ϕn(x)dx

)
.

If all functionsϕi(x) are real valued, thenΦ(x) andE are vectors inRn. If theϕi(x) are

complex, thenΦ(x) andE can be seen as vectors inR2n. Moreover,E is in the convex

hull of the vectorsΦ(x) with x ∈ M. It then follows from Caratheodory’s theorem that

E is also a convex combination of at mostn + 1 vectorsΦ(x) in the real case, or2n + 1

in the complex case,E =
∑N

j=1 ωjΦ (zj) with ωj ≥ 0 and
∑N

j=1 ωj = 1.

The following is Result (2) in the Introduction.

Theorem 2.12.Assume that the probability measuredν(x) onM gives an exact quadra-

ture for all eigenfunctionsϕλ(x) with eigenvaluesλ2 < r2,
∫

M

ϕλ(x)dν(x) =

∫

M

ϕλ(x)dx.

Then, for some constantc independent ofdν(x) and r and for every functionf(x) in

W α,p (M) with 1 ≤ p ≤ +∞ andα > d/p,
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤ cr−α ‖f‖
Wα,p .

Proof. By Corollary 2.4 (1) withdµ(x) = dν(x)− dx,

∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤
{∫

M

∣∣∣∣
∫

M

Bα(x, y)dν(x)− 1

∣∣∣∣
q

dy

}1/q

‖f‖
Wα,p .

By the assumption
∫
M
ϕλ(x)dµ(x) = 0 for everyλ < r, and Lemma 2.10,

{∫

M

∣∣∣∣
∫

M

Bα(x, y)dν(x)− 1

∣∣∣∣
q

dy

}1/q

≤ cr−α.

The above theorem has as corollary Result (3) in the Introduction.

Corollary 2.13. If 1 ≤ p ≤ +∞ andα > d/p, then there existsc > 0 with the property

that for everyN there exist sequences of points{zj}Nj=1 and non negative weights{ωj}Nj=1,

such that for every functionf(x) in W α,p (M),
∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ cN−α/d ‖f‖
Wα,p .
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Proof. By Weyl’s estimates on the spectrum of an elliptic operator,see Theorem 17.5.3

in [18], for a givenr there are approximatelycrd eigenfunctionsϕλ(x) with λ < r. The

corollary then follows from Lemma 2.11 and Theorem 2.12 withr = N1/d.

This corollary for the sphere is contained in [17]. Finally,easy examples show that the

above estimates for the error in approximate quadrature are, up to constants, best possible.

Again, see [15] for the case of the sphere. In particular, thefollowing is Result (4) in the

Introduction.

Theorem 2.14. For every1 ≤ p ≤ +∞ andα > 0 there existsc > 0 with the fol-

lowing property: For every distribution of points{zj}Nj=1 there exists a functionf(x) in

W α,p (M) which vanishes in a neighborhood of these points and satisfies

‖f‖
Wα,p ≤ cNα/d,

∫

M

f(x)dx = 1.

As a consequence, for every distribution of points{zj}Nj=1 and complex weights{ωj}Nj=1,

there exists a functionf(x) with
∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≥ cN−α/d ‖f‖
Wα,p .

Proof. If ε is small, then one can choose2N disjoint balls inM with diametersεN−1/d

and, givenN points{zj}, at leastN balls have no points inside. On each empty ball

construct a bump functionψj(x) supported on it with

‖ψj‖Wα,p ≤ cNα/d−1/p,

∫

M

ψj(x)dx = N−1.

Definef(x) =
∑
ψj(x). Then,

‖f‖
Wα,p ≤ cNα/d,

∫

M

f(x)dx = 1.

The estimate of theLp (M) norms of(I +∆)α/2 ψj(x) and(I +∆)α/2 f(x) whenα/2

is an integer follows from the fact that(I +∆)α/2 is a differential operator and the terms

(I +∆)α/2 ψj(x) have disjoint supports. Whenα/2 is not an integer the estimate follows

by complex interpolation. Anyhow, the casep = 2 is elementary. Ifδ > 1 andαδ is an

integer,

‖f‖
Wα,2 =

{
∑

λ

(
1 + λ2

)α |Ff(λ)|2
}1/2

≤
{
∑

λ

|Ff(λ)|2
}(1−1/δ)/2{∑

λ

(
1 + λ2

)αδ |Ff(λ)|2
}1/2δ

≤ cNα/d.
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3 Further results

The following is Result (5) in the Introduction and it statesthat a quadrature rule which

gives an optimal error in the Sobolev spaceWα,2 (M) is also optimal in all spacesWβ,2 (M)

with d/2 < β < α.

Theorem 3.1. If dν(x) is a probability measure onM, then the norm of the measure

dν(x) − dx as a linear functional onW α,2 (M) decreases asα increases. Moreover, if

the norm ofdν(x)− dx onW α,2 (M) is r−α,
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤ r−α ‖f‖
Wα,2 ,

then for everyd/2 < β < α there exists a constantc which may depend onα, β, M, but

is independent ofr anddν(x), such that
∣∣∣∣
∫

M

f(x)dν(x)−
∫

M

f(x)dx

∣∣∣∣ ≤ cr−β ‖f‖
Wβ,2 .

Proof. By Corollary 2.4 (2) the norm of the measuredν(x)− dx as a linear functional on

Wα,2 (M) is

{∫

M

∫

M

B2α (x, y) dν(x)dν(y)− 1

}1/2

=

{
∑

λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

.

Since(1 + λ2)
−α ≤ (1 + λ2)

−β whenβ < α, it follows that this norm is a decreasing

function ofα. Write dν(x)− dx = dµ(x). By Lemma 2.6 (1), the norm of the functional∫
M
f(x)dµ(x) onWα,2 (M) can be written as

{∫

M

∫

M

B2α (x, y) dµ(x)dµ(y)

}1/2

=

{
Γ (α)−1

∫ +∞

0

tα−1 exp (−t)
(∫

M

∫

M

W (t, x, y)dµ(x)dµ(y)

)
dt

}1/2

.

Assuming that this norm isr−α, one has to show that the corresponding expression with

β instead ofα is at mostcr−β. Sinceβ < α, the integral over1 ≤ t < +∞ satisfies the

estimate
∫ +∞

1

tβ−1 exp (−t)
(∫

M

∫

M

W (t, x, y) dµ(x)dµ(y)

)
dt

≤
∫ +∞

1

tα−1 exp (−t)
(∫

M

∫

M

W (t, x, y)dµ(x)dµ(y)

)
dt

≤ Γ (α) r−2α.
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Similarly, sinceβ < α the integral overr−2 ≤ t ≤ 1 satisfies the estimate

∫ 1

r−2

tβ−1 exp (−t)
(∫

M

∫

M

W (t, x, y) dµ(x)dµ(y)

)
dt

≤ r2α−2β

∫ 1

r−2

tα−1 exp (−t)
(∫

M

∫

M

W (t, x, y)dµ(x)dµ(y)

)
dt

≤ Γ (α) r−2β.

Finally, by the Gaussian estimate on the heat kernel in the proof of Lemma 2.5, if0 < t <

r−2 then

td/2W (t, x, y) ≤ cr−dW
(
r−2, x, y

)
.

It then follows that ifβ > d/2 the integral over0 ≤ t ≤ r−2 satisfies the estimate

∫ r−2

0

tβ−1 exp (−t)
(∫

M

∫

M

W (t, x, y) dµ(x)dµ(y)

)
dt

≤ cr−2β

∫

M

∫

M

W
(
r−2, x, y

)
d |µ| (x)d |µ| (y).

It remains to show that the last double integral is uniformlybounded inr. Sinced |µ| (x) =
dν(x) + dx and since

∫
M
W (r−2, x, y) dx = 1, replacingd |µ| (x) with dµ(x) it suffices

to show that ∫

M

∫

M

W
(
r−2, x, y

)
dµ(x)dµ(y) ≤ c.

By the assumption ondµ(x) and the eigenfunction expansion ofW (r−2, x, y),
∫

M

∫

M

W
(
r−2, x, y

)
dµ(x)dµ(y)

≤ r−α

∥∥∥∥
∫

M

W
(
r−2, x, y

)
dµ(y)

∥∥∥∥
Wα,2

= r−α

{
∑

λ

(
1 + λ2

)α
exp

(
− (λ/r)2

)
|Fµ(λ)|2

}1/2

≤ r−α

{
∑

λ

(
1 + λ2

)−α |Fµ(λ)|2
}1/2

sup
λ

{(
1 + λ2

)α
exp

(
− (λ/r)2 /2

)}
.

Finally, the last sum with{Fµ(λ)} is the norm of the measuredµ(x) as functional on

Wα,2 (M), hence by assumption it isr−α, and the last supremum is dominated byr2α.

As we said, the above result is only one way, fromα to β < α. If the norm of

dν(x) − dx onWα,p (M) is r−α and if β > α, then one cannot conclude that the norm

of dν(x) − dx on Wβ,p (M) is at mostcr−β. As a counterexample, it suffices to per-

turb a good quadrature rule with nodes{zj}Nj=1 and weights{ωj}Nj=1 by moving the last
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point zN into a new pointtN , so that the new quadrature differs from the old one by the

quantityωN |f (zN )− f (tN)|. If α > d/p + 1 then the functionf is differentiable and

ωN |f (zN )− f (tN)| ≈ ωN |zN − tN | . Then, by choosing|zN − tN | = r−α/ωN one ob-

tains a quadrature rule which gives an error≈ r−α in all spacesWβ,p (M) with β > α.

The counterexample whend/p < α ≤ d/p+ 1 is slightly more complicated but similar.

In all the above results, the accuracy in a quadrature rule has been estimated in terms of

the energy of a measure. It is also possible to estimate this accuracy in terms of a geomet-

ric discrepancy. The Bessel kernel can be decomposed as superposition of characteristic

functions,

Bα(x, y) =

∫ +∞

0

χ{Bα(x,y)>t}(x)dt.

If 1 ≤ p, q ≤ +∞ and1/p+1/q = 1, by Corollary 2.4 and Minkowski inequality, the

following Koksma Hlawka type inequality holds:
∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤ ‖f‖
Wα,p

{∫

M

∣∣∣∣
∫

M

Bα(x, y)dµ(x)

∣∣∣∣
q

dy

}1/q

≤ ‖f‖
Wα,p

∫ +∞

0

{∫

M

∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
q

dy

}1/q

dt.

The quantity
∣∣∫

M
χ{Bα(x,y)>t}(x)dµ(x)

∣∣ is the discrepancy of the measuredµ(x) with

respect to the level sets{Bα (x, y) > t}. It can be proved that, for specific measures and

at least in the range0 < α < 1, the above estimates are sharp and they can lead to optimal

quadrature rules. In particular, the following is Result (6) in the Introduction.

Theorem 3.2. Denote byδ(t) the diameter of the level sets of the Bessel kernel{Bα (x, y) > t}
and assume that there existsr ≥ 1 such that the discrepancy of the measuredµ(x) with

respect to{Bα (x, y) > t} satisfies the estimates
∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣ ≤
{
r−d if δ(t) ≤ 1/r,
r−1δ(t)d−1 if δ(t) ≥ 1/r.

Also assume that1 ≤ p ≤ +∞ andα > d/p. Then there exists a constantc, which may

depend onα andp and on the total variation of the measure|µ| (M), but is independent

of r, such that

∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤





cr−α ‖f‖
Wα,p if 0 < α < 1,

cr−1 log(1 + r) ‖f‖
Wα,p if α = 1,

cr−1 ‖f‖
Wα,p if α > 1.

Proof. Observe that the above hypotheses on the discrepancy match the estimates in

Lemma 2.9. Indeed, by this lemma, the measuresdν(x) which give exact quadrature for

eigenfunctions with eigenvaluesλ2 < r2 have discrepancy
∣∣∣∣
∫

{|x−y|≤s}

dν(x)−
∫

{|x−y|≤s}

dx

∣∣∣∣ ≤
{
cr−d if s ≤ 1/r,
cr−1sd−1 if s ≥ 1/r.
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Actually, these estimates hold not only for balls{|x− y| ≤ s}, but also for sets with

boundaries with finited − 1 dimensional Minkowski measure, such as the level sets

{Bα (x, y) > t}. Also observe that these estimates are natural, since the discrepancy of

large sets is qualitatively different from the one of small sets. If 1 ≤ p, q ≤ +∞ and

1/p+ 1/q = 1, by Corollary 2.4 and Minkowski inequality,

∣∣∣∣
∫

M

f(x)dµ(x)

∣∣∣∣ ≤ ‖f‖
Wα,p

∫ +∞

0

{∫

M

∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
q

dy

}1/q

dt.

By Lemma 2.6, when0 < α < d thenBα (x, y) ≈ |x− y|α−d, the level sets{Bα (x, y) > t}
have diametersδ(t) ≈ min

{
1, t1/(α−d)

}
and the boundaries{Bα (x, y) = t} have surface

measure of the order ofδ(t)d−1 ≈ min
{
1, t(d−1)/(α−d)

}
. Hence the estimate of the dis-

crepancy of small level sets witht ≥ rd−α gives

{∫

M

∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
q

dy

}1/q

≤ sup
y∈M

{∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
}(q−1)/q {∫

M

∫

M

χ{Bα(x,y)>t}(x)d |µ| (x)dy
}1/q

≤ sup
y∈M

{∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
}(q−1)/q {

c |µ| (M)td/(α−d)
}1/q

≤ cr−d(q−1)/qtd/q(α−d).

Hence, ifα > d/p the integral overrd−α ≤ t < +∞ satisfies the inequality

∫ +∞

rd−α

{∫

M

∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
q

dy

}1/q

dt

≤ cr−d(q−1)/q

∫ +∞

rd−α

td/q(α−d)dt ≤ cr−α.

Similarly, the integral over0 ≤ t ≤ rd−α, that is the discrepancy of large level sets,

satisfies the inequality

∫ rd−α

0

{∫

M

∣∣∣∣
∫

M

χ{Bα(x,y)>t}(x)dµ(x)

∣∣∣∣
q

dy

}1/q

dt

≤ r−1

∫ rd−α

0

min
{
1, t(d−1)/(α−d)

}
dt ≤





cr−α if 0 < α < 1,
cr−1 log(1 + r) if α = 1,
cr−1 if α > 1.

The proof in the caseα = d is similar and it follows from the estimateBα(x, y) ≈
− log (|x− y|). The proof in the caseα > d is even simpler, since in this caseBα(x, y)

is bounded and it suffices to integrate on0 ≤ t ≤ supx,y∈MBα (x, y) the inequality∣∣∫
M
χ{Bα(x,y)>t}(x)dµ(x)

∣∣ ≤ cr−1.
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In particular, it follows from Lemma 2.9, Theorem 2.12, Theorem 2.14, that, at least

in the range0 < α < 1, Theorem 3.1 gives an optimal quadrature. We conclude with a

series of remarks.

Remark 3.3. As we said, the assumptionα > d/2with p = 2 in Theorem 2.7, orα > d/p

with 1 ≤ p ≤ +∞ in Theorem 2.12, guarantees the boundedness and continuityof

f (x), otherwisef (zj) may be not defined. This follows from the Sobolev imbedding

theorem. Indeed, the imbedding is an easy corollary of Lemma2.6. A functionf(x) is in

the Sobolev spaceWα,p (M) if and only if there exists a functiong(x) in L
p (M) with

f(x) =

∫

M

Bα(x, y)g(y)dy.

When1 ≤ p, q ≤ +∞, 1/p+ 1/q = 1, d/p < α < d, thenBα(x, y) ≤ c |x− y|α−d is in

Lq (M) and this implies that distributions in the Sobolev spaceWα,p (M) with α > d/p

are continuous functions. Indeed they are also Hölder continuous of orderα− d/p.

Remark 3.4. When the manifold is a Lie group or a homogeneous space, one can restate

Theorem 2.1 in terms of convolutions. In the particular caseof the torusTd = Rd/Zd, let

A(x) =
∑

k∈Zd

ψ(k) exp (2πikx) , B(x) =
∑

k∈Zd

ψ(k)−1 exp (2πikx) .

Then, if1 ≤ p, q, r ≤ +∞ with 1/p+ 1/q = 1/r + 1,

{∫

Td

∣∣∣∣
∫

Td

f (x− y) dµ(y)

∣∣∣∣
r

dx

}1/r

=

{∫

Td

|B ∗ A ∗ f ∗ µ(x)|r dx
}1/r

≤
{∫

Td

|A ∗ f(x)|p dx
}1/p{∫

Td

|B ∗ µ(x)|q dx
}1/q

.

In the case of the sphereSd =
{
x ∈ Rd+1, |x| = 1

}
, let {Zn (xy)} be the system of

zonal spherical harmonics polynomials and let

A(xy) =
+∞∑

n=0

ψ(n)Zn (xy) , B(xy) =
+∞∑

n=0

ψ(n)−1Zn (xy) .

Then, if1 ≤ p, q ≤ +∞ with 1/p+ 1/q = 1,
∣∣∣∣
∫

Sd

f (x) dµ(x)

∣∣∣∣

≤
{∫

Sd

∣∣∣∣
∫

Sd

A(xy)f(y)dy

∣∣∣∣
p

dx

}1/p{∫

Sd

∣∣∣∣
∫

Sd

B(xy)dµ(y)

∣∣∣∣
q

dx

}1/q

.

Both results on the torus and the sphere follow from Young inequality for convolutions.
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Remark 3.5. A result related to Theorem 2.1 is the following. IdentifyTd with the

unit cube{0 ≤ xj < 1} and denote byχP (y)(x) the characteristic function of the par-

allelepipedP (y) = {0 ≤ xj < yj}. Then define

B(x) =

∫

Td

χP (y)(x)dy − 2−d =

d∏

j=1

(1− xj)− 2−d

=
∑

k∈Zd−{0}




∏

kj=0

2




∏

kj 6=0

2πikj






−1

exp (2πikx) .

Also, define the differential integral operator

A ∗ f(x) =
∑

k 6=0


∏

kj=0

2




∏

kj 6=0

2πikj


 f̂(k) exp (2πikx)

= 2d−1
∑

1≤j≤d

∫

Td−1

∂

∂xj
f(x)

∏

i 6=j

dxi + 2d−2
∑

1≤i 6=j≤d

∫

Td−2

∂2

∂xi∂xj
f(x)

∏

h 6=i,j

dxh

... +
∂d

∂x1...∂xd
f(x).

Observe that, as in Theorem 2.1, the Fourier coefficients of the distributionA(x) and

of the functionB(x) are one inverse to the other, however here the Fourier coefficients

are function of the lattice points2πik, and not of the eigenvalues4π2 |k|2. If dν(x) =

N−1
∑N

j=1 δzj (x), and if1 ≤ p, q, r ≤ +∞ with 1/p+ 1/q = 1/r + 1, then

{∫

Td

∣∣∣∣∣N
−1

N∑

j=1

f (x− zj)−
∫

Td

f(y)dy

∣∣∣∣∣

r

dx

}1/r

≤
{∫

Td

|A ∗ f(x)|p dx
}1/p{∫

Td

|B ∗ ν(x)|q dx
}1/q

.

The norm ofA ∗ f(x) is dominated by an analogue of the Hardy Krause variation,

{∫

Td

|A ∗ f(x)|p dx
}1/p

≤ 2d−1
∑

1≤j≤d

{∫

T

∣∣∣∣∣

∫

Td−1

∂

∂xj
f(x)

∏

i=j

dxi

∣∣∣∣∣

p

dxj

}1/p

+2d−2
∑

1≤i 6=j≤d

{∫

T2

∣∣∣∣∣

∫

Td−2

∂2

∂xi∂xj
f(x)

∏

h 6=i,j

dxh

∣∣∣∣∣

p

dxidxj

}1/p

...+

{∫

Td

∣∣∣∣
∂d

∂x1...∂xd
f(x)

∣∣∣∣
p

dx

}1/p

.
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The norm ofB ∗ ν(x) is dominated by the discrepancy of the points{zj}Nj=1 with respect

to the family of boxesP (y),

{∫

Td

|B ∗ ν(x)|q dx
}1/q

≤
∫

Td

{∫

Td

∣∣∣∣∣N
−1

N∑

j=1

χP (y) (zj + x)−
d∏

j=1

yj

∣∣∣∣∣

q

dx

}1/q

dy.

In particular, the casep = 1 andq = +∞ is an analogue of the Koksma Hlawka inequal-

ity. See [20]. A generalization of this classical inequality is contained in [6].

Remark 3.6. By Lemma 2.6 (1), the Bessel kernelBα(x, y)withα > 0 is a superposition

of heat kernelsW (t, x, y). Indeed, it is possible to state an analogue of Corollary 2.4in

terms of the heat kernel, without explicit mention of Besselpotentials: If{zj}Nj=1 is a

sequence of points inM, if {ωj}Nj=1 are positive weights with
∑

j ωj = 1, and iff(x) is

a function inWα,p (M) with α > d/2, then
∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣

≤
{
Γ (α)−1

∫ +∞

0

∣∣∣∣∣

N∑

i=1

N∑

j=1

ωiωjW (t, zi, zj)− 1

∣∣∣∣∣ t
α−1 exp (−t) dt

}1/2

‖f‖
Wα,2 .

This suggests the following heuristic interpretation: Mathematically, a set of points on

a manifold is well-distributed if the associated Riemann sums are close to the integrals.

Physically, a set of points is well-distributed if the heat,initially concentrated on them, in

a short time diffuses uniformly across the manifold.

Remark 3.7. In order to minimize the errors in the numerical integrationin Corollary 2.4

(3), one has to minimize the energies

∫

M

∫

M

B2α (x, y)dν(x)dν(y),
N∑

i=1

N∑

j=1

ωiωjB
2α (zi, zj) .

These are analogous to the energy integrals in potential theory
∫

M

∫

M

|x− y|−ε dν(x)dν(y).

See [14]. Whend < α < d + 1 the kernelB2α (x, y) is positive and bounded, with

a maximum atx = y and a spikeA − B |x− y|2α−d whenx → y. In particular, the

gradient atx = y is infinite. This implies that in order to minimize the discrete en-

ergy
∑

i,j ωiωjB
2α (zi, zj) the points{zj} have to be well separated. This suggests the
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following heuristic interpretation: Mathematically, a set of points on a manifold is well-

distributed if the energy is minimal. Physically, a set of points, free to move and repelling

each other according to some law, is well-distributed when they reach an equilibrium.

Remark 3.8. It can be proved that if2α > d+ 2 then

∣∣B2α (x, x)−B2α (x, y)
∣∣ ≤ c |x− y|2 .

This estimate in the proof of Theorem 2.7 yields that for mostchoices of sampling points

zj ∈ Uj ,
∣∣∣∣∣

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

{
diameter (Uj)

d/2+1
}
‖f‖

Wα,2(M) .

The same result holds if2α = d + 2, with a logarithmic transgression. Observe that

these estimates hold for most choices of sampling points, but not for all choices. Indeed,

if the manifoldM is decomposed in disjoint piecesM = U1 ∪ U2 ∪ ... ∪ UN with

measureaN−1 ≤ |Uj| = ωj ≤ bN−1 anddiameter (Uj) ≤ cN−1/d, if f(x) is a smooth

non constant function, and if the pointszj ∈ Uj are the maxima off(x) in Uj , then∑N
j=1 ωjf (zj) is an upper sum of the integral

∫
M
f(x)dx and

N∑

j=1

ωjf (zj)−
∫

M

f(x)dx ≥ cN−1/d.

Remark 3.9. Theorem 3.2 gives an estimate of the accuracy in a quadraturerule in

terms of the discrepancy of a measure with respect to level sets of the Bessel kernel. The

following argument shows that when the manifold is a sphere,or a rank one compact

symmetric space, then the level sets of the heat kernel{W (t, x, y) > s}, and hence of the

Bessel kernels{Bα (x, y) ≤ t}, are geodesic balls{|x− y| ≤ r}. The Laplace operator

on the sphereSd with respect to a system of polar coordinatesx = (ϑ, σ), with 0 ≤ ϑ ≤ π

the colatitude with respect to a given pole andσ ∈ Sd−1 the longitude, is

∆x = ∆(ϑ,σ) = − sin1−d (ϑ)
∂

∂ϑ

(
sind−1 (ϑ)

∂

∂ϑ

)
+∆σ.

Let u (t, x) be the solution of the Cauchy problem for the heat equation

{
∂

∂t
u (t, x) = −∆xu (t, x) ,

u (0, x) = f (x) .

If f (x) depends only on the colatitudeϑ, if it is an even function decreasing in0 < ϑ < π,

then alsou (t, x) depends only on the colatitude and it is an even function decreas-

ing in 0 < ϑ < π. In order to prove this, setu(t, x) = U(t, ϑ), f (x) = F (ϑ), and
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sind−1 (ϑ) ∂U(t, ϑ)/∂ϑ = V (t, ϑ). Then





∂

∂ϑ

∂

∂t
U(t, ϑ) =

∂

∂ϑ

{
sin1−d (ϑ)

∂

∂ϑ

(
sind−1 (ϑ)

∂

∂ϑ
U(t, ϑ)

)}
,

∂

∂ϑ
U(0, ϑ) =

∂

∂ϑ
F (ϑ) ,





∂

∂t
V (t, ϑ) =

∂2

∂ϑ2
V (t, ϑ) + (1− d)

cos(ϑ)

sin(ϑ)

∂

∂ϑ
V (t, ϑ),

V (0, ϑ) = sind−1 (ϑ)
∂

∂ϑ
F (ϑ) ,

V (t, 0) = V (t, π) = 0.

If F (ϑ) is decreasing in0 < ϑ < π, thenV (0, ϑ) ≤ 0 and, by the maximum principle,

V (t, ϑ) ≤ 0, henceU(t, ϑ) is decreasing in0 < ϑ < π. In particular, by considering

a sequence of initial data{fn (x)} which depend only on the colatitudeϑ, even and de-

creasing in0 < ϑ < π, and which converge to the Diracδ(x), one proves that the heat

kernelW (t, cos (ϑ)) is decreasing in0 < ϑ < π. Since Bessel kernels are superposition

of heat kernels, they are also superposition of spherical caps.

Remark 3.10. In [3] and [22] the discrepancy of orbits of discrete subgroups of rotations

of a sphere are studied. LetG be a compact Lie group,K a closed subgroup,M = G/K a

homogeneous space of dimensiond. Also, letH be a finitely generated free subgroup in

G and assume that the action ofH onM is free. Given a positive integern, let {σj}Nj=1

be an ordering of the elements inH with length at mostn and for every functionf(x) on

M, define

Tf(x) = N−1
N∑

j=1

f (σjx) .

This operator is self-adjoint and it has eigenvalues and eigenfunctions inL2(M). More-

over, since the operatorsT and∆ commute, they have a common orthonormal system

of eigenfunctions,∆ϕλ(x) = λ2ϕλ(x) andTϕλ(x) = T (λ)ϕλ(x). All eigenvalues ofT

have modulus at most1 and indeed1 is an eigenvalue and the constants are eigenfunc-

tions. Assume that all non constant eigenfunctions have eigenvalues much smaller than1.

Then, ifα > d/2,

∣∣∣∣∣N
−1

N∑

j=1

f (σjx)−
∫

M

f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣
∑

λ6=0

T (λ)Ff(λ)ϕλ(x)

∣∣∣∣∣

≤
{
sup
λ6=0

{|T (λ)|}
}{∑

λ

(
1 + λ2

)α |Ff(λ)|2
}1/2{∑

λ

(
1 + λ2

)−α |ϕλ(x)|2
}1/2

≤ c

{
sup
λ6=0

{|T (λ)|}
}{∫

M

∣∣∣(I +∆)α/2 f(x)
∣∣∣
2

dx

}1/2

.



Quadrature rules and distribution of points on manifolds 29

The absolute convergence of the above series is consequenceof the Sobolev’s imbeddings,

or the Weyl’s estimates for eigenfunctions. In particular,whenM = SO(3)/SO(2) is

the two dimensional sphere andH is the free group generated by rotations of angles

arccos(−3/5) around orthogonal axes, it has been proved in [22] that the eigenvalues of

the operatorT satisfy the Ramanujan bounds

sup
λ6=0

{|T (λ)|} ≤ cN−1/2 log(N).

Hence, for the sphere,
∣∣∣∣∣N

−1

N∑

j=1

f (σjx)−
∫

M

f(x)dx

∣∣∣∣∣

≤ cN−1/2 log(N)

{∫

M

∣∣∣(I +∆)α/2 f(x)
∣∣∣
2

dx

}1/2

.

All of this is essentially contained in [22]. Although this boundN−1/2 log(N) is worse

than the boundN−α/2 in Corollary 2.13, the matrices{σj} have rational entries and the

sampling points{σjx} are completely explicit.
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