OWR: Universal central extensions of gauge groups

BAS JANSSENS

(joint work with Christoph Wockel)

We indicate how to calculate the universal central extension of the gauge algebra $\Gamma(\operatorname{ad}(P))$, and how to obtain from this the corresponding universal central extension of the gauge group $\Gamma(\operatorname{Ad}(P))$.

Gauge groups occur as vertical symmetries of gauge theories, in which fields are connections on a principal G-bundle $P \to M$, and the action is invariant under vertical automorphisms of P. If we set $\operatorname{Ad}(P) := P \times_{\operatorname{Ad}} G$ and similarly $\operatorname{ad}(P) := P \times_{\operatorname{ad}} \mathfrak{g}$ (with \mathfrak{g} the Lie algebra of G), we can identify the group of vertical automorphisms with $\Gamma(\operatorname{Ad}(P))$, and its Lie algebra with $\Gamma(\operatorname{ad}(P))$.

In the case that P admits a *flat* equivariant connection, these gauge algebras closely resemble equivariant map algebras and (twisted multi) loop algebras. Using the flat connection, one finds a cover $N \to M$, a monodromy group $\Delta < \pi_1(M)$, and a homomorphism $\Delta \to G$ such that $P = N \times_{\Delta} G$. The adjoint bundle then takes the shape $\operatorname{ad}(P) = N \times_{\Delta} \mathfrak{g}$, so that the gauge algebra is just $\Gamma(\operatorname{ad}(P)) =$ $(C^{\infty}(N, \mathbb{R}) \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta}$, the Lie algebra of smooth equivariant maps from N to \mathfrak{g} .

If X is an affine variety over \mathbb{R} with an action of a discrete group Δ , and Δ acts by automorphisms on a real Lie algebra \mathfrak{g} , then the equivariant map algebra $(\mathbb{C}[X] \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta}$ is the Lie algebra of equivariant regular maps from X to $\mathfrak{g}_{\mathbb{C}}$.

The set $X_{\mathbb{R}}^{\text{reg}}$ of regular real points constitutes a smooth manifold, and under suitable conditions (see prop. 3), the homomorphism $\mathbb{C}[X] \to C^{\infty}(X_{\mathbb{R}}^{\text{reg}}, \mathbb{C})$ is injective with dense image. If the action of Δ restricts to $X_{\mathbb{R}}^{\text{reg}}$, then we obtain an inclusion $(\mathbb{C}[X] \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta} \to (C^{\infty}(X_{\mathbb{R}}^{\text{reg}}, \mathbb{C}) \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta}$ of Lie algebras with dense image. If moreover $X_{\mathbb{R}}^{\text{reg}}/\Delta$ is a manifold, then we have realised the equivariant map algebra as a dense subalgebra of the complexification of the gauge algebra $\Gamma(\text{ad}(P))$, with $P \to X_{\mathbb{P}}^{\text{reg}}/\Delta$ the principal $\text{Aut}(\mathfrak{g})$ -bundle $P = X_{\mathbb{P}}^{\text{reg}} \times_{\Delta} \text{Aut}(\mathfrak{g})$.

For example, let X be $T^n = \{(\vec{z}, \vec{w}) \in \mathbb{C}^{2n} | z_k^2 + w_k^2 = 1, 1 \leq k \leq n\}$, the complex *n*-torus. In this case, $\mathbb{C}[T^n] \hookrightarrow \mathbb{C}^{\infty}(T_{\mathbb{R}}^n, \mathbb{C})$ is injective with dense image by Fourier theory. We now look for a regular group action on T^n that restricts to $T_{\mathbb{R}}^n$ and such that $M = T_{\mathbb{R}}^n/\Delta$ is a manifold. Although the Bieberbach groups spring to mind, the choice that is studied most is $\Delta = \prod_{k=1}^n \mathbb{Z}/r_k\mathbb{Z}$, with δ : $(z_k \pm iw_k) \mapsto e^{\pm 2\pi i \delta_k/r_k}(z_k \pm iw_k)$. In this case, $M = T_{\mathbb{R}}^n/\Delta$ is again a torus. For any homomorphism $\Delta \to \operatorname{Aut}(\mathfrak{g})$, the twisted multiloop algebra $(\mathbb{C}[T^n] \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta}$ forms a dense subalgebra of the complexification of $\Gamma(\operatorname{ad}(P))$, where P is the principal $\operatorname{Aut}(\mathfrak{g})$ -bundle $P = T_{\mathbb{R}}^n \times \Delta \operatorname{Aut}(\mathfrak{g})$ over $T_{\mathbb{R}}^n$.

The case of the circle is special in that every principal G-bundle over $M = T^1_{\mathbb{R}}$ is given by a twist $g \in G$ upon a full rotation, and therefore admits a flat connection. A smooth path connecting g to g' yields an isomorphism of the corresponding bundles, so principal G-bundles are classified by $\pi_0(G)$. Consequently, the complexified adjoint bundles are classified by $\pi_0(\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}}))$, which for simple $\mathfrak{g}_{\mathbb{C}}$ amounts to diagram automorphisms of order 1, 2 or 3. Complexified gauge algebras over $T^1_{\mathbb{R}}$ are thus precisely the closures of twisted loop algebras. We return to the case of smooth principal fibre bundles which do not necessarily have a flat connection, and sketch the universal 2-cocycle for the compactly supported gauge algebra $\Gamma_{c}(ad(P))$. We refer the interested reader to [1] for details.

For any Lie algebra \mathfrak{g} , set $V(\mathfrak{g}) := (\mathfrak{g} \otimes_s \mathfrak{g})/\operatorname{der}(\mathfrak{g}) \cdot (\mathfrak{g} \otimes_s \mathfrak{g})$, and denote by $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to V(\mathfrak{g}) \colon (x, y) \mapsto [x \otimes_s y]$ the universal der (\mathfrak{g}) -invariant bilinear form on \mathfrak{g} . Any Lie connection ∇ on $\operatorname{ad}(P)$ induces a flat connection \mathfrak{d} on the vector bundle $V(\operatorname{ad}(P)) \to M$, which does not depend on ∇ as any two Lie connections differ by a pointwise derivation, which acts trivially on $V(\operatorname{ad}(P))$. Using the identities $\mathrm{d}\kappa(\xi,\eta) = \kappa(\nabla\xi,\eta) + \kappa(\xi,\nabla\eta)$ and $\nabla[\xi,\eta] = [\nabla\xi,\eta] + [\xi,\nabla\eta]$ for all sections $\xi, \eta \in \Gamma_c(\operatorname{ad}(P))$, one checks that

(1) $\omega_{\nabla} \colon \wedge^2 \Gamma_{c}(\mathrm{ad}(P)) \to \overline{\Omega}^{1}_{c}(M, V(\mathrm{ad}(P)) \quad \xi \wedge \eta \mapsto [\kappa(\xi, \nabla \eta)]$

defines a Lie algebra cocycle, where the subscript c denotes compact support, and we set $\overline{\Omega}_{c}^{1} := \Omega_{c}^{1}/d\Omega_{c}^{0}$. If \mathfrak{g} is semisimple, then the cohomology class $[\omega_{\nabla}]$ does not depend on ∇ . We equip our spaces of smooth forms and sections with the usual LF-topology, in terms of which the universality result is formulated as follows.

Proposition 1. If \mathfrak{g} is semisimple, then $[\omega_{\nabla}]$ is universal; every continuous 2cocycle ψ with values in a trivial real topological module W can be written up to coboundary as $\psi = \phi \circ \omega_{\nabla}$, for some continuous \mathbb{R} -linear $\phi : \overline{\Omega}_{c}^{1}(M, V(\mathrm{ad}(P))) \to W$.

In [1], this is proved by noting that 2-cocycles are automatically diagonal, so that the second cohomology in fact constitutes a sheaf. The result can then be reduced to the well known local one, described e.g. in [2]. Using the results of [3, 4, 5], this can be used (see [1]) to prove the following theorem.

Theorem 2. Let $P \to M$ be a principal fibre bundle with compact connected base, and with a semisimple structure group with finitely many connected components. Then the cocycle (1) integrates to a central extension of $\Gamma(Ad(P))$ that is universal for abelian Lie groups modelled on Mackey-complete locally convex spaces.

Although the application of differential geometric techniques in an algebraic context has intrinsic drawbacks, it is perhaps worth while to briefly explore the ramifications of proposition 1 to equivariant map algebras. We start by substantiating our claim as to the injectivity and denseness of $\mathbb{C}[X] \to C^{\infty}(X_{\mathbb{R}}^{\mathrm{reg}}, \mathbb{C})$.

Proposition 3. Let X be an affine variety over \mathbb{R} such that every connected component of X^{an} possesses a nonsingular real point. Then the ring homomorphism $\mathbb{C}[X] \hookrightarrow C^{\infty}(X_{\mathbb{R}}^{\text{reg}}, \mathbb{C})$ is injective, with dense image in the topology of uniform convergence of derivatives on compact subsets.

Proof. First, we prove that the image is dense. As every smooth function on $X_{\mathbb{R}}^{\text{reg}}$ can be approximated by compactly supported smooth functions, and every compactly supported (in $X_{\mathbb{R}}^{\text{reg}}$) smooth function on $X_{\mathbb{R}}^{\text{reg}}$ extends to a compactly supported (in \mathbb{R}^n) smooth function on \mathbb{R}^n , it is enough to show that every smooth function f on a compact subset K of \mathbb{R}^n can be approximated by polynomials. Now by Weierstraß' theorem, there exist, for any multi-index $\vec{\mu}$, polynomials p with $\sup_K |\partial_{\vec{\mu}}f - p|$ arbitrarily small. By integrating these, one can produce polynomials

p such that $\sup_K |\partial_{\vec{\nu}} f - \partial_{\vec{\nu}} p|$ is arbitrarily small for all $\vec{\nu} < \vec{\mu}$. A sequence p_k of such polynomials for $\vec{\mu}_k \to \infty$ (in the sense that for every fixed $\vec{\nu}$, we eventually have $\vec{\nu} < \vec{\mu}_k$) will converge to f uniformly on K for every derivative.

Next, we prove injectivity. Denote by $\mathcal{O}_Y^{\operatorname{an}}$ and C_Y^{∞} the sheaves of analytic and smooth functions on Y. Choose a nonsingular real point x_i in each connected component (in the analytic topology) of X^{an} , so that $\mathbb{C}[X] \to \bigoplus_i \mathcal{O}_{X,x_i}^{\operatorname{an}}$ is injective. Using the inverse function theorem, we find analytic charts $\phi_i : \mathbb{C}^d \supset U_i \to V_i \subset X^{\operatorname{an}}$ around x_i in which $U_i \cap \mathbb{R}^d$ corresponds to $V_i \cap X_{\mathbb{R}}^{\operatorname{reg}}$. In those coordinates, the map $\mathcal{O}_{X,x_i}^{\operatorname{an}} \to C_{X_{\mathbb{R}}^{\operatorname{reg}},x_i}^{\operatorname{corresponds}}$ to the injective map $\mathcal{O}_{\mathbb{C}^d,0}^{\operatorname{cn}} \to C_{\mathbb{R}^d,0}^{\infty}$, and is therefore injective. Since the injective map $\mathbb{C}[X] \to \bigoplus_i C_{X_{\mathbb{R}}^{\operatorname{reg}},x_i}^{\operatorname{corresponds}}$ factors through $\mathbb{C}[X] \to C^{\infty}(X_{\mathbb{R}}^{\operatorname{reg}},\mathbb{C})$, the latter must be injective itself. \square

Consider X, \mathfrak{g} and Δ as before, but now with $X_{\mathbb{R}}^{\operatorname{reg}}/\Delta$ a *compact* manifold, and \mathfrak{g} semisimple. Since $\iota: (\mathbb{C}[X] \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta} \hookrightarrow \Gamma(\operatorname{ad}(P)_{\mathbb{C}})$ is a dense inclusion, we conclude with [7, Lem. 2] that $\iota^* \colon H^2_{\operatorname{ct}}(\Gamma(\operatorname{ad}(P))_{\mathbb{C}}, W) \to H^2_{\operatorname{ct}}((\mathbb{C}[X] \otimes_{\mathbb{R}} \mathfrak{g})^{\Delta}, W)$ is an isomorphism, where W is a complex Fréchet space considered as a trivial module, and continuity is in the C^{∞} -topology on *both* sides. Restricted to the equivariant map algebra, our canonical cocycle takes values in the space $\overline{\Omega}^1_{\operatorname{alg}}(\mathbb{C}[X])$ of Kähler differentials modulo closed ones, and can be written

(2)
$$\omega_{\mathrm{alg}} : \wedge^2(\mathbb{C}[X] \otimes_{\mathbb{C}} \mathfrak{g}_{\mathbb{C}})^{\Delta} \to (\overline{\Omega}^1_{\mathrm{alg}}(\mathbb{C}[X]) \otimes_{\mathbb{C}} V(\mathfrak{g}_{\mathbb{C}}))^{\Delta} : \xi \wedge \eta \mapsto [\kappa(\xi, d\eta)].$$

It is universal in the sense that every *continuous* \mathbb{C} -valued cocycle τ on the equivariant map algebra can be written up to coboundary as $\tau = \phi \circ \omega_{\text{alg}}$ for some continuous \mathbb{C} -linear functional ϕ on $(\overline{\Omega}^1_{\text{alg}}(\mathbb{C}[X]) \otimes_{\mathbb{C}} V(\mathfrak{g}_{\mathbb{C}}))^{\Delta}$.

In the case of twisted multiloop algebras, a cocycle is continuous if it is of polynomial growth in the \mathbb{Z}^n -grading of $\mathbb{C}[T^n]$. If $\mathfrak{g}_{\mathbb{C}}$ is simple, then κ is just the $\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$ -invariant Killing form, so that $V(\mathfrak{g}_{\mathbb{C}}) \simeq \mathbb{C}$ is a trivial Δ -representation. The universal cocycle thus takes values in $\overline{\Omega}^1_{\operatorname{alg}}(\mathbb{C}[T^n])^{\Delta}$, in agreement with the purely algebraic result [6]. It might not be overly optimistic to hope for universality of (2) for equivariant map algebras with semisimple $\mathfrak{g}_{\mathbb{C}}$ in a more general context.

References

- B. Janssens, C. Wockel, Universal central extensions of gauge groups and algebras, arXiv:1010.3569, (2010).
- [2] P. Maier, Central extensions of topological current algebras, Polish Acad. Sci., Banach Center Publ. 55, (2002) 61–76.
- [3] K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier (Grenoble) 52(5) (2002), 1365–1442.
- [4] K.-H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math. 73(1-2) (2002), 175-219.
- [5] K.-H. Neeb and C. Wockel, Central extensions of groups of sections, Ann. Glob. Anal. Geom. 36(4) (2009), 381–418.
- [6] J. Sun, Universal central extensions of twisted forms of split simple Lie algebras over rings, arXiv:1011.4086, (2010).
- [7] F. Wagemann, Some remarks on the cohomology of Krichever-Novikov algebras, Lett. Math. Phys. 47(2) (1999), 173–177.