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CELLULAR AND QUASIHEREDITARY STRUCTURES
OF GENERALIZED QUANTIZED SCHUR ALGEBRAS

STEPHEN DOTY AND ANTHONY GIAQUINTO

ABSTRACT. We give a self-contained derivation of a new cellular
basis of generalized quantized Schur algebras, independent of the
theory of quantum groups. As a consequence, we obtain a new
proof of the fact that these algebras are quasihereditary over a
general ground field of characteristic zero, for any choice of param-
eter including roots of unity. Previous proofs of this result relied
on a descent from a quantized enveloping algebra and the existence
of the canonical basis of its positive part.

INTRODUCTION

We study a class S,(7) of finite-dimensional algebras, the generalized
quantized Schur algebras (“generalized ¢-Schur algebras” for short) as-
sociated to a given root datum, saturated set m of dominant weights,
and choice of parameter ¢ (a nonzero element of a field k). Since
(see [D1) §5]) these algebras are quotients of the specialized quantized
enveloping algebra U, determined by the root datum, the study of
representations of S,(7) yields information on the representations of
U,. The S,(m) are g-deformations of the generalized Schur algebras
S(m) studied by Donkin [Dol], [Do2], [Do3| in the context of algebraic
groups, where S(7) is obtained as a certain quotient algebra of the alge-
bra of distributions on the group, and its module category is equivalent
to a certain full subcategory of the category of rational representations
of the group.

Dipper and James [DJ] first studied the ¢-Schur algebras in Type
A (see also Jimbo [Ji]). In previous work [DGI], [DG2], the authors
discovered a presentation by generators and relations for the rational
form of the Dipper—James—Jimbo ¢-Schur algebras. Actually, two such
presentations were found, the latter of which involved a system {1,}
of pairwise orthogonal idempotents which decomposes the identity. In
[D1] the latter presentation was extended to an arbitrary generalized
g-Schur algebra S(m) of arbitrary (finite) type and it was shown that

specializations of S(7) in a field are quasihereditary. (The reader is
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referred to [CPS], [DR] for basic properties of the theory of quasi-
hereditary algebras.) This result was proved by a descent argument
using the canonical basis of the modified form of the corresponding
quantized enveloping algebra. The main objective of the present paper
is to obtain the same result by an internal approach, based solely on
the defining generators and relations, and avoiding any appeal to the
theory of quantum groups. In particular, the approach we present is
not dependent on the existence of the canonical basis, and thus may
be regarded as somewhat more elementary than the approach of [D1].

Our main new result is the elementary “integral” cellular (see Gra-
ham and Lehrer [GL]) basis of AS(7) attained in ], this leads in
to a corresponding cellular basis of the k-form S,(7), and it is applied
in Theorem F.5] to obtain a new proof that S,(m) is quasihereditary.

Let us summarize our method of proof in greater detail. We start
with the rational form of S(7) defined over the rational function field
Q(v) where v is an indeterminate; see First we establish a tri-
angular decomposition S = STS°S™ = S=SST for S = S(rx), and
apply it to study the left and right ideals A(X) := S1, = S71,,
A(N) := 1,S = 1,S* where \ is a mazimal element of 7. It turns
out that these ideals are actually cell modules for S, and the natural
multiplication map

Sl)\ ®Q(v) 1)\S — Sl,\S

is a vector space isomorphism. Furthermore, the two-sided ideal S1,S
is a cell ideal at the bottom of a cell chain. This implies that the kernel
of the natural quotient map S(7) — S(m—{A}) is S1,S. By induction,
we may assume that the cellularity of S(m — {\}) has already been es-
tablished, and then the cellularity of S() itself follows. This approach
yields the desired cellular basis of S, and once that has been estab-
lished, the quasihereditary structure on S,(m) (Theorem E.5)) follows
easily. It is interesting that in case the root datum is of rank one, the
canonical basis can be easily derived from our new cellular basis (see
2.7).

Then we consider a natural “integral” form oS = AS(7w) of S(7),
taken over the ring A = Q[v,v™!]. Since A is a principal ideal domain,
AS is free over A, and by choosing an A-basis of the corresponding
integral form of each ideal AA(M) = (aoS)1x, AA%(N\) = 15(aS) (for A
maximal) the above inductive construction yields a cellular A-basis of
AS. Since a cellular structure is compatible with specialization |[GL,
(1.8)] this gives a cellular basis in every specialization

Sy(m) ==k @a (aS(m))
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for every field k of characteristic zero and any choice of a non-zero
element q € k, where k is regarded as a A-algebra by means of the nat-
ural homomorphism A — k determined by sending v to q. It is then
easy to check that a certain bilinear form defined on the cell modules
is non-zero, and by a result of Konig and Xi this immediately implies
that S,(m) is quasihereditary. There are many important consequences
of having a quasihereditary structure on a given finite-dimensional al-
gebra. We list some of them in Section [4.8

It would be desirable to extend the results of this paper to include
specializations in fields of positive characteristic, in cases where ¢ is
not 1 (sometimes called the “mixed” case). To do that, we would
need to work with “integral” forms taken not over the principal ideal
domain A = Q[v,v™!] but rather over the ring A = Z[v,v™!]. The
trouble is that we do not know an elementary argument to establish
that the A-forms 4A()\) and 4A%(\) are free over A, without appealing
to properties of quantum groups, such as the existence of the canonical
basis. The desired extension can be achieved if one is willing to take
the freeness for granted.

It should be noted that the results of this paper extend to Donkin’s
original generalized Schur algebras S(m). To do this one should take
v = 1 in the defining presentation in and repeat the arguments
of the paper in that (simpler) context, replacing A by Z; this allows
specialization to any ground field k, including fields of positive charac-
teristic. (In fact, & could more generally be taken to be an arbitrary
commutative ring for many of the results.) We omit such a variation
in order to keep this paper to a reasonable length.

1. THE ALGEBRA S = S(7)

We define the rational form of the algebra S(7) by generators and rela-
tions (see[LH]), over the ground field Q(v) where v is an indeterminate.
Later we shall specialize to a k-form S,(m) of S(7), for an arbitrary
ground field k of characteristic zero, by assigning v to a chosen nonzero
element ¢ of k.

1.1. We assume given a root datum, consisting of the following.

(a) A finite-dimensional Q-vector space h and two finite linearly
independent subsets IT = {«;: i € I} C b* (here h* = Homgq(h, Q) is
the linear dual space of h) and 11V = {«: i € I} C b such that the
square matrix A = (a;;); jer defined by

Qjj = <Oéiv> aj> = Oéj(av)

i
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is a symmetrizable generalized Cartan matrix. In other words, a; = 2,
a;; for i # j is a non-positive integer, and a;; = 0 if and only if
aj; = 0. Elements of II are called simple roots, and elements of IV
simple coroots.
(b) An inner product (, ) on h* such that («;, ;) is a positive even
integer for any ¢ € I, and
2(042', )\)
(ai, o)
(c) A lattice X in h* (the weight lattice) such that IT C X and
IV c XV:={hebh: (h, X)CZ}.

We put d; := (a;,;)/2 for each ¢ € I. Then the matrix (d;a;;) is
symmetric.

(0, ) = May) =

(eI, Aenh).

1.2. The Kac—Moody algebra g attached to the given root datum is
the Lie algebra over Q generated by elements ¢;, f; (i € I) and h € XV
subject to the relations:

(a) [h,H]=0;

(b) e, f3] = dijas

(c) [h,ei] =(h, aiyes, [h, fil = —(h, i) fi;

(d) (ade;)' ="i(e;) =0, (adfi)'=®i(f;) =0 (fori#j)
holding for all 7,7 € I and all h, W' € XV.

1.3.  The universal enveloping algebra of g is the associative Q-algebra
U(g) with 1 given by generators e;, f; (i € I) and h € X" and satisfying
the relations:

(a) hh = HWh;

(b) eifj — fiei = 5ijOé,-v;

(c) he; —eih = (h, ay)e;, hfi— fih=—(h, a;)fi;

(A1) Yemg" (=1 (e el =0 (i # )

(42) Mg (U (LT T =00 (6 )
fori,j € I and h,h' € XV.

1.4. Throughout this paper we assume that the root datum is of finite
type; i.e., the Cartan matrix A is positive definite. This implies that g
is finite-dimensional and the Weyl group W is a finite group, where by
definition W is the subgroup of GL(h*) generated by the set of simple
reflections s; (i € I), where

for any A\ € h*.
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We have a partial order > on X (the dominance order) given by
AD pif and only if A —pu = Y7, n;a; where the n; > 0 for all i. We
write A > p if A> pand A # p. We write <\ (respectively, p <1 \)
if A> p (resp., A> ). Recall that the set X+ of dominant weights is
defined by

Xt={AeX:(a), \) >0, allieT}

We say that a set m of dominant weights is saturated if m contains all
dominant predecessors of all of its elements; i.e., /' < pu for p/ € X+
and p € 7 implies p/ € 7.

Let Q(v) be the field of rational functions in an indeterminate wv.
Set v; = v®% for each i € I. More generally, given any rational function
P € Q(v) we let P; denote the rational function obtained from P by
replacing v by v;.

Set A= Z[v,v™'] and A = Q[v,v!]. Then A is an integral domain
and A is a principal ideal domain, since it is a localization of the
polynomial ring Q[v]. Note that both A and A have field of fractions
Q(v). Fora € Z, t € N we set

=1 =25 wew

v—ov!
and

' =[] [n—-1[]  (neN).
Then it follows that

m:ﬁ]!—t]! for all 0 <t < a.

1.5. Let m be a finite saturated subset of the poset X* of dominant
weights. The generalized g-Schur algebra S(m) is the algebra (associa-
tive with 1) over Q(v) given by generators E;, F; (i € I), 1, (A € W)
together with the relations

(&) 1\1,=dxnly, Z)\GWW Iy=1

(b)  EiFj — FjE; = 035 3 sewn (o0, N]ilx;

Iaia, B if A i
(1) By = et BAF ST
0 otherwise;
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@ Fl - {h_aiFé if A —o; € Wr

0 otherwise;

(3) 1L,E {Eil,\_ai fA—o, € Wn
A =

0 otherwise;

(C4) 1 — {F’ilA-i-oei f AN+, € Wn
A —

0 otherwise;
1—a;j; 1
s — Qg —a;;—S8 s . .
@ Y| B TR =0 (20
s=0 {
1—a;;
s 1_aij 1—a;;—s s . .
@) | R R =0 )
s=0 {

for any ¢,7 € I and any A\, u € Wr.

We note that the defining relations immediately imply that the gen-
erators F;, F; are nilpotent in S(), for any ¢ € I. To see this, observe
that relation (c1) and the finiteness of W implies the existence of some
natural number m such that E*1, = 0 for any p € W, and hence
Er =3, E"l, = 0. The nilpotence of F; is established similarly.

1.6. It is convenient to introduce additional generators 1, for any
p € X, with the stipulation 1, = 0 for any p € X such that p ¢ W.
With this convention, the defining relations[[.5(a)—(c) for S(7) may be
replaced by the following simplified version:

(&) Ly =duly,  2iex =1

(b)  EiFy — FiE; = 635 3 e x[(od, Nily;

() Eilx= ol Fli=1L_4F
holding for any A\, € X, and 4,5 € I. Notice that the sums in (a),
(b) are finite. Thus, S(7) is the algebra given by the generators F;, F;
(1 € I) and 1) (A € X) subject to the relations [[L6(a), (b), (c) along
with [L3[(d1), (d2) and the extra relation 1, = 0 for all A ¢ Wr.

Until further notice we fix 7 and write S for S(7). We introduce
quantized divided powers E\” = E*/([a]}), F\” = F*/([a]}) for i € I,
a>0. (Fora < 0weset F/” = E =0.) Let oS be the A-subalgebra
of S generated by the Ei(a) and ﬂ(b), for i € I and a,b > 0, along with
the idempotents 1, for 4 € Wr.
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There is a unique Q(v)-linear algebra anti-involution ¢ on S deter-
mined by the properties:

t(zy) = t(y)e(x) for all z,y € S,
UE;) =F;, (F,)=E; (anyi€ 1), and ¢(1,) =1, (any p € Wm).

This is easily verified using the defining relations.

The following consequences of the defining relations will be needed
later. Note that the sums in parts (ii) and (iii) below are finite.

1.7. Lemma. Let S = S(w). For any a,b > 0, u € X, the following
tdentities hold in S:

(i) E“ = 1,100, B F(b)l v =Ly F

)

(ii) E( F(b Zt>0 [CL b+ >LF(b t)E(a t)l .

(2 7 Mo

a a—a a— b—
(111) F( E( Zt>0[b ’HL ( ! ( ) L.

By applying (i) to each term of (ii) and (iii) to commute the idempo-
tent to the middle of each product, and then replacing p respectively
by —A 4+ ba; and A\ — aq;, we obtain the following equivalent variants
of formulas (ii) and (iii):

i a b b—(ay, A b—t a—t)
(H,) E( ) ( )= Zt>0 [ “ <t >]i Fi( )1_)\+(a+b—t)aiEi( ) )
(iii/) F( L E Zt>0 [a+b t - )\>L E'(a_t)l)\—(a-i-b—t)ai F’i(b_t)'

7
Proof. Part (i) is an obvious consequence of relation [L6l(c) and the
definition of quantized divided powers.

We prove part (ii) by a double induction on a and b. First we observe
that (ii) is vacuously true in case one of a or b is zero, so we may assume
that both a and b are positive integers. Next one verifies by induction
on a that from relation [[L6(b) we have

(a) Ei(a)Fil“ - FiEi(a)lu +la—1+(af, M>]iEi(a_1)1u

for all @ > 0. This is elementary and left to the reader. A similar
induction on b shows that

(b) fawlﬁ’l(b)l‘u = F’z(b)Ezllu, + [1 — b+ <a;/’ ,u>]iF-(b_1)1u

)

for all b > 0. Now assume by induction that (ii) holds for some pair
a, b of positive integers. Multiplying on the right by F; and using the
relation 1, F; = F;1,,,, we obtain

t i
t=0

B RO Filyra, = 30 (7] F B Fily
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where we have put s := a + (o, u) for ease of notation. Now replace
i by p— «a; and use (@) and the definition of the divided powers to
obtain

b+ 1B ‘(a)F'(b-l-l)l

=3[ N EECTN, 4 [s -1 -1, BT 01,
t=0
= P b1 - B,
t=>0
+ [ s -1 - EVE Y,
t=0

and by separating the first term in the first sum on the right hand side
this takes the form

b+ 1],E% F.“’“ 1, = [b+1,F"VE",
+Y [P b= ET B,

t>1

+3 [ s — 1= FV R,

t

By shifting the index of summation in the first sum above we obtain

_I'Z sHli12 i —t F(b t)E(a 1— t)]_u
t=0
+> s -1 - o FY B,
t=0

Now we observe that by direct computation that
Fer b=tk [ s 1= = o 1,
and thus after dividing through by [b + 1]; we obtain the equality
E.(a)F~(b+1)1 — F(b+1)E(a1 i Z s b—1 F'(b—t)E(a—l—t)lu.

) 7 t+1 i 7 7
t>0

Upon shifting the index of summation again and recombining the first
term this becomes

E(“)F(b“)l“ _ Z [s—lz—l]iﬂ(b+1—t)EZ(a—t)1#
=0

which proves that (ii) holds for the pair a, b + 1. The computation
proving that (ii) for the pair a, b implies (ii) for the pair a + 1, b is
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similar to the computation given above (using (b)) in place of (@)) so
we leave it to the reader.

Identity (iii) can be proved by a similar argument, but it is simpler
to notice that there is an algebra automorphism w of S of order two
given on generators by

w(k) =F, w(F)=E, wl,)=1,

and that by applying the involution w to identity (ii), interchanging
a and b, and then replacing —u by p, we obtain identity (iii). This
completes the proof. O

1.8.  The orthogonal idempotent decomposition of the identity given
in defining relation [[5(a) or its equivalent form [[.6[a) implies that if
M is a left S-module or a left o S-module and if N is a right S-module
or a right o S-module then there are direct sum decompositions of the
form

(a) M = @HGWW 1,M; N = @uewﬂ N1,.

We call 1, M and N1, left and right weight spaces of M and N, respec-
tively, and refer to the above decompositions as left and right weight
space decompositions. Furthermore, if M is a S-bimodule or a AS-
bimodule then we have a finer direct sum decomposition of the form

(b) M:@MM%W” 1,M1,.

We call the subspaces 1,M1,, in this decomposition biweight spaces.
Elements of 1,M1,, are said to have biweight (p, ¢/). In particular, S
itself is a S-bimodule under left and right multiplication, and similarly
for oS, so S and oS have such a decomposition:

(C) S = GBMH'GWW 1H81H’; AS = GBMH'GWW 1H(AS>1M'
Put ZIT = > Za; C X (the root lattice). We have another direct sum
decomposition

(d) S = @VEZH Sy

defined by the requirements: S,S,, C S,,,/, E; € S,,, F; € S_,,, and
1, € Sp. Putting oS, = AS NS, we also have

(e) AS =D, czn Sy

Combining (d), (&) with the biweight space decomposition (@) we have
the finer decompositions

(f) S = @u,u,u’ 1HSV1H/; AS = @u,u,u’ 1H(ASV)1H/

It is easy to see that in these decompositions 1,S,1,, = 0and 1,,(aS,)1, =
0 unless p — p/ = v in X.
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Let ST (respectively, S™) be the Q(v)-subalgebra of S generated by
the E; (resp., the F;) for i € I. Let S° be the Q(v)-subalgebra of S
generated by the 1, for p € Wr; this is the group algebra over Q(v)
of the abelian group {1,: p € Wr}. Let AS™ (respectively, AS™) be
the A-subalgebra of oS generated by all the Ei(a) (resp., all the ﬂ(b))
fori €I, a,b>0. Let oS° be the A-subalgebra of S generated by the
1, for p € Wr.

We will refer to the following result as the triangular decomposition
of S and AS.

1.9. Lemma. Let S = S(m). We have S = S™SST and oS =
ASTASCAST. The same equalities hold if the three factors on the right
hand side are permuted in any order.

Proof. By the defining relations in [L.3] or the algebra S is spanned
by elements of the form

(a) P=ux-a,1,

where x1,...,2, € {E;,F;:i € I} and p € Wr. For an element
Py of such form, let d(Fy) be the number of pairs (j, ;') such that
1<j<j<mandz; e {E;:i€l}, zy e {F;:iel}. Weclaim that
Py can be rewritten as a finite Q(v)-linear combination of elements of
the form (@) for which d = 0. This is proved by induction on d, using
the following consequences of the defining relations [LLO(b):

(b)  EF;=FE (i#§); EFl,=FEl+ [, m)il,

Thus it follows that all elements of S can be expressed as linear com-
binations of products P of the form (@) with d(P) = 0. Since elements
of the form (@) with d = 0 have all occurrences of F; appearing before
any E;, it follows that S = S™S*SY. To get the equality S = STS~S°
just repeat the argument with the E’s and [F’s interchanged. Finally,
in any product of the form (@) with d(P) = 0 we can use relation [[.5](c)
to commute the idempotent to the left of all the E;’s and the right of all
the F}’s, so we obtain the equality S = S™SYS*. The other variations
are obtained similarly.

The corresponding claim for the integral forms now follows from the
definitions. O

1.10. Corollary. Let S = S(w). Suppose A is mazimal in 7, with
respect to the dominance order <. Then S1y, = S~ 1y and 1,S = 1,S™.
Similarly, AS1y = AS71, and 1)\(AS) = 1)\(AS+).

Proof. Since X is maximal, it follows from defining relation [LG(c) that
Eily = 0 for any i € I, so ST1, = Q(v)1,. Clearly S°1, = Q(v)1,,
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so the first equality follows from the triangular decomposition S =
S—SYS*. The proof of the second equality is similar. The correspond-
ing results for integral forms follows from the definitions. O

1.11. Let N = Z- be the set of non-negative integers, and let NII
be the submonoid of ZII consisting of all linear combinations ) . v;«;
with coefficients v; € N. Then

(a) S* =@, xS S™=®,enn Sy

where for any v = Y. 1,0y € NII, S} is the Q(v)-subspace of S*
spanned by all monomials of the form FE; E;, - - - E;_ such that, for each
1 € I, the number of occurrences of 7 in the sequence i, s, ..., 7, is V;
and similarly, ST, is the Q(v)-subspace of S~ spanned by all monomials
of the form F; Fj,---F; such that, for each ¢ € I, the number of
occurrences of 7 in the sequence i, ia, . . ., i, is ;. Obviously S} and SZ,
are finite dimensional over Q(v), for each v € NII. Put oS;" = ASNS;"
and oS, = AS NS, ; then it follows that

(b> As+ = @uENH ASj? AS_ = @I/GNH AS:I/’

1.12. Lemma. For any finite saturated subset 7 of X let S = S(m).
Then the algebra S is finite-dimensional over Q(v).

Proof. By the triangular decomposition, S = S~S°S™, so there is a
spanning set for S consisting of all elements of the form F41,Fp where
w € W and

Fy=F;,---F, Ep=E; - E

Js

for various finite sequences A = (iy,...,7.), B = (j1,...,js) of elements
of I. Here F4 € S, and Ep € S, for appropriate v,/ € NII. But for
v sufficiently large F4 acts as zero on all 1,, for 4 € W, hence is equal
to zero in S, and similarly, for v sufficiently large Ep is zero as well.
Thus there are only finitely many nonzero summands in [L1I]@), and
the result follows. O

1.13. Lemma. The algebra oS is free over A, and the natural map
Q(v) ®a (AS) — S is an isomorphism of Q(v)-algebras. Similar state-
ments apply to ST, S~ and to the subspaces ST and SZ, appearing in
the decomposition [L1T(@).

Proof. Clearly AS is finitely generated and torsion free, hence free over
the principal ideal domain A. Since Q(v) is the field of fractions of A,
the natural map Q(v) ®a (oS) — S is injective. The surjectivity is
clear. The other cases are similar. U
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The lemma implies that an A-basis of oS is also a Q(v)-basis of S
and similarly for ST and S~.

1.14. Suppose that M is a left S-module. Then M has weight space
decomposition M = P 1,M. From relations [L6(c), (a) we see
that for any ¢ € I

(a) Ei(luM) C Lyta: M; Fi(luM) ClyaM

pneEWT

for p € Wm. So acting by Fj; increases the weight by «; and acting by
F; decreases the weight by «;. We also have

(b> 1#’(1uM) = 5u7u’1uM
for any u, ’ € Wr. We make the following definitions.

Definition. Let M be an S-module, for S = S(7).

(i) If X in W has the property that 1,/ # 0 but 1,M = 0 for all
p > A, then we say that \ is a highest weight of M and we call any
nonzero element of 1\ M a highest weight vector.

(i) If 0 # z9 € M is a weight vector such that E; - xy = 0 for every
1 € I, then xg is called a mazimal vector of M.

Obviously a highest weight vector must be a maximal vector. If
M # 0 is a finite-dimensional S-module then M has at least one highest
weight vector, and thus has a maximal vector. We wish to study the
submodules of M which are generated by a chosen maximal vector.

1.15. Lemma. Let S = S(m). Let xo be a maximal vector of weight A
i a finite-dimensional left S-module M, and put V = Sxy. Then:

(a) V is the Q(v)-span of elements of the form F;, F;,--- F; xqy for
various finite sequences (iq, . ..,1i,) (including the empty sequence) cho-
sen from I.

(b) If 1,V # 0 then pn <\, s0 xg is a highest weight vector of V.

(C) dimQ(v) 1)\‘/ =1.

(d) V is indecomposable, with a unique mazimal submodule and a
corresponding unique simple quotient.

Proof. Part (a) follows from the triangular decomposition, which im-
plies that V' = S™z. Part (b) follows from part (a), part (c) is obvious,
and to get part (d), let V' be the sum of all proper submodules and
note that V' # V since no proper submodule contains x. O

1.16. Corollary. Let S = S(w). Any simple left S-module has a unique
highest weight vector xq, up to scalar multiple.
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Proof. Suppose M is simple; then M is finite dimensional and thus has
a maximal vector. Any maximal vector necessarily generates M and is
a highest weight vector. Suppose that there are two maximal vectors,
of weight A and ), respectively. Then by Lemma [[L.T5(b), we must
have N’ <X and A <), so A = \. But Lemma [[L.T5(c) forces the two
maximal vectors to be proportional. O

1.17. Inspired by prior work of Kahzdan and Lusztig and others, Gra-
ham and Lehrer in [GL] introduced the notion of a cellular algebra.
This is an algebra given by an explicit basis (called a cellular basis)
and an anti-involution, satisfying certain combinatorial properties. The
motivating examples include Hecke algebras in Type A and Brauer al-
gebras, but there are many other classes of examples.

In [KX1), Definition 3.2], [KX3| Definition 2.2] Koénig and Xi gave
an equivalent, basis-free, definition of cellularity for finite-dimensional
algebras, as follows.

Definition (Konig and Xi). Let A be a finite-dimensional k-algebra,
where k is a field. Assume there is an anti-automorphism ¢ on A with
* =1id. A two-sided ideal J in A is called a cell ideal if +(J) = J and
there exists a left ideal A C J and an isomorphism of A-bimodules
w: J — A ® t(A) making the following diagram commutative:

J ——= A Qs L(A)
L lm@y»—)b(y)@L(m)
J—=A Rk L(A)

The algebra A (with the anti-involution ¢) is called cellular if there is
a vector space decomposition A = J; & J, & --- @ J) (for some n) with
u(J;) = J; for each j and such that setting J; = J{ @ -+ @ J} gives
a chain of two-sided ideals of A: 0 = J,Cc J, C J,C---C J,=A
(each of them fixed by ¢) and for each j (5 = 1,---,n), the quotient
Ji = Jj/Jj_1 is a cell ideal (with respect to the involution induced by
¢ on the quotient) of A/J;_4.

This will be needed in Section Bl

2. THE RANK ONE CASE

In this section we assume that the root datum has rank 1; i.e., there
is just one simple root @ = «;, and single generators £ = E;, F' = F;
of the positive and negative parts. This implies that the Weyl group
W has order 2, with a single generator s = s;. In order to simplify the
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notation in this section, we assume throughout that d = d; = (a, «)/2
is equal to 1. The general case can be recovered simply by replacing v
by v¢ and ¢ by ¢? throughout.

We wish to classify the simple representations of S = S() in this
case. This prepares the way for the classification of simple representa-
tions in higher ranks.

2.1. For any p € m, we denote by S[>pu] the Q(v)-subspace of S
spanned by the collection of elements of the form

(a) FOL, B@  (a,b,c>0).

We also denote by S[>u] the Q(v)-subspace of S spanned by the col-
lection of elements of the form

(b) FOL, 0B@ (4,00, ¢>0).

Note that S[>u] =3~ ., S[>4], and in case p is a maximal element
of m (i.e., there exists no A € 7 such that A > p) we have S[>u] = (0).
We observe the following.

2.2. Lemma. For any p € 7, both S[>pu] and S[>u| are two-sided ideals
of S. Hence the quotient S[>u]/S[>p] is naturally an S-bimodule.

Proof. Put m := (", \). From Lemma [[.7] it follows by a routine
calculation that

E-FO1LE® = [a+1]FO1,, B + 1 — b+ m)Ft D1, E@
and from the definition of quantized divided powers it follows that
F-FO1LE® = b+ 1) FCD1, B

for all a,b > 0. By applying the anti-involution ¢ to the formulas in
Lemma [I.7] we obtain similar formulas with the idempotent on the left
of each term, and it follows by calculations similar to the above that

FOLEYD . F =+ 1]F*V1, B9 + 1 —a+m]F®1,Ee
and
FOLE® . E =la+ 1JFO 1B

for all @, b > 0. Moreover, multiplying F®1,E(® on the left or right by
some idempotent 1, either produces zero or gives the element F®1,E@

back again. Since these equalities hold for arbitrary A, the claims fol-
low. ([l
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2.3. Let A € 7. Setting u = s(A\), a =b = (a¥, \) in Lemma [[.7(iii)
we obtain

(a) FOE®10 = 1
which by Lemma [[.7](i) implies immediately that
(b) FOLLE® = 1,.

From this and the triangular decomposition (Lemmal[l.9)) it follows that
S is spanned by the set of all elements of the form F(@1,E® where
A € m, oa,b > 0. In particular, if we fix A and define @), to be the
subspace of S spanned by the nonzero products of the form F(®1,E®
(a,b > 0) then we have a vector space decomposition

(c) S = @Aew @x-

The set of nonzero products of the form F@1,E® (a,b > 0) is linearly
independent, since the elements have distinct biweights, hence the set
is a basis for (). This set is also a set of coset representatives for the
quotient space S[>A]/S[>A].

Since S[>\] and S[>)] are two-sided ideals in S, the quotient space
S[>A]/S[>A] has an S-bimodule structure. For any A € m, we let
A(A) be the left S-submodule of S[>A]/S[>\] generated by 1,+S[>\],
and let A*()\) be the right S-submodule of S[>)]/S[t>A] generated by
1) + S[>A]. For ease of notation, we put xy := 1, + S[>A]; then we
have F - 2o =0=x¢ - F.

2.4. Lemma. Put v, = F® .2y € A()) and 2} = 2o - E® € A¥()),
fort > 0. Fort < 0 put z; = 0. Then with m = (a¥, \) we have
xy=0=ux for allt >m, and

Fxy=[t+ 1] x4, E-xy=m—(t—1)]z

B =+ U, o F = m— (- i,
Thus {xo,...,xm} is a basis for A(X) and {xy,...,z},} is a basis for
A(N), and both A(N\) and A*(N\) are simple S-modules.

Proof. The formulas are proved by elementary calculations similar to
those appearing in the proof of Lemma 221 They imply that A(\)
and Af()\) are respectively generated, as S-modules, by x; and /, for
any 0 < t < m. The simplicity of A(\) and A%(\) follows. Since

the elements xy,...,x,, have distinct left weights, they are linearly
independent, and hence form a basis of A(A). Similarly, the elements
xp, ...,z form a basis for A¥(\). O

2.5. Lemma. The natural map A(X) ®q) AHN) — S[>A]/S[>)], de-
fined by sending x @ x’ to xx’, is surjective.



16 STEPHEN DOTY AND ANTHONY GIAQUINTO

Proof. This is clear, since S[>A]/S[>A] is spanned by the set of cosets
of the form F(b)l,\E + S[>A] such that a,b > 0. O

2.6. Proposition. In the rank one case, the algebra S = S(m) is
semisimple, and a complete set of isomorphism classes of simple S-
modules is given by {A(N): X € w}.

Proof. By Lemma 2.5 and the decomposition 2.3|(c) it follows that
dimS =) " dim S[>A]/S[>A] < ) (dim A()))?

AET AET
(all dimensions are over Q(v)). On the other hand, since the A(\)
are pairwise non-isomorphic simple modules (indeed, no two of them
has the same highest weight), the standard theory of finite-dimensional
algebras implies that

dimS > " (dim A(X))*.
Aem
It follows that
dimS = " (dim A(X))?
AEm
and thus that S is semisimple, with simple modules as stated. O

2.7. From the above results it follows that the multiplication map
A(N) ®qu) A*(N) — S[>A]/S[>A] is actually an isomorphism of S-
bimodules, for each A € m. Moreover, the set

(a) e AFOILE®: 0 < a,b< (Y, )}
is a basis for S over Q(v). This basis is actually a cellular basis, in the
sense of Graham and Lehrer [GL].

It is interesting to compare this cellular basis to Lusztig’s canonical
basis in the rank 1 case. In order to make the comparison, let us
assume temporarily that X = Z = XV with @ =2 and oY = 1. Then
a saturated set of dominant weights is just a subset 7w of the positive
integers such that n € m and n — 2 > 0 imply that n — 2 € 7. For any
nem, ifa+b>nthenwe have

(b> r® L, B Zt>0 [a+b n] Bl )1"—2(a+b—t)F(b_t)'

t
This follows from Lemma [[.7] by an easy calculation. This shows
that for all @ +b > n the element F®1,E@ is equal to the ele-
ment EY1_, F"=% modulo terms in S[>n]. Notice that if we put
a =n—>b,b =n—athen d +V < n. Thus, we obtain a different
basis of S of the form

(C) I_lneﬂ{F(b)lnE(a) Ca+ b n} U {E(a 1. F(b/ —|— b, }
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which has a unitriangular relation with the original basis. Note that
in (c) there is overlap between the two sets {F®1,E@: a4+ b < n},
{E@)1,F®): ¢ + 1 < n} since when a + b = n we have from (b) the
equality F®1,E@ = E@1_, F®  The basis in (c) is the canonical
basis; compare with [Lul 29.4.3]. (One should recall that, by [D1], there
is a natural quotient map from the modified form U of the quantized
enveloping algebra determined by the given root datum onto S(m),
taking generators onto generators.)

2.8.  'We now consider the issue of specialization, in the rank 1 case.
Recall the “integral” form AS of S, which by definition is the A-
subalgebra of S generated by all idempotents 1, along with the divided
powers E@  F® for a,b > 0. It is clear that the set in (a) above is
also a (cellular) A-basis for o S. Moreover, we define o A(\) to be the
aS-submodule of A(\) generated by zo; then the o A(\) are the left
cell modules for oS. Notice that if we put m = (a¥, \) as above
then AA()\) is the A-span of {zy,...,x,}, and this set is an A-basis
of AA(N). Furthermore, it follows by induction from the formulas in
Lemma [2.4] and the definitions that

(a) F(b) cxy = [t—gb} Tt E(a) cxry = [m—t-‘ra} Tia

for any a, b,t > 0.
Now suppose that k is any field of characteristic zero, and fix a
nonzero element ¢ € k. We regard k as an A-algebra by means of the

algebra homomorphism A — k such that v — ¢. Then by the general
theory of cellular algebras given in [GL], the k-algebra

(b) S, =k ®a (aS)

is again a cellular algebra, with cellular basis given by
(c) e {1 ®@ FOLE@: 0 < a,b< (Y, )}
Moreover, the S;-modules A, (\) defined by

(d) A, =k @a (AAN))

for A € 7 are the left cell modules for S,.

If ¢ is a primitive [th root of unity, we put I’ = [ if [ is odd and
I =1/2if | is even. We shall denote the images of the elements [n],
[n], [{] (defined in [4) under the map A — k by the corresponding

symbols [n],, [n]., [‘Z]q. Then we have [I'], = 0 and more generally

[nl'], =0 for any n > 0.
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2.9. Proposition. Assume the root datum has rank 1.

(a) If g € k is not a root of unity then each A,(\) is a simple S,-
module, for any X € m, and thus S, is semisimple. This also holds if
qg=1.

(b) If 1 # q € k is a primitive [th oot of unity, put I’ =1 if | is odd
and ' = 1/2 if 1 is even. If 0 < (¥, \) < U’ for A € w then A, (N)
is simple as an Sy-module. Otherwise, write 1 + (o, A) in the form
nl' +r with 0 < r < U'; then {1 ®@x:r <t < (oY, \) —r} spans
an Sy-submodule of A (N\), and the corresponding quotient module is
simple as an S,-module.

Proof. For convenience of notation, put m = (", \). From 2Z§|(b) we
see that

1o FY) (1) H"}q (1® m44s),
1®EY). 1ozx) = [m_tﬂ”}q (1®x-4)

a
for any a, b,t > 0.
In case ¢ is not a root of unity, all the g-binomial coefficients above
are nonzero in k, so the assertions in part (a) follow, since it follows
that each basis vector 1 ® z; of Ay(\) generates Ay(N). If ¢ = 1 then

the g-binomial coefficients become ordinary binomial coefficients, and
the same conclusion holds.

So suppose that g # 1 is a primitive [th root of unity. Then the
simplicity of the A (\) for any A such that 0 < m < I’ follows by the
same argument as above.

Moreover, if m > [’ then one checks from the above formulas that
(1® E@)-(1®x,) =0 for any a > 0, and similarly that (1 ® F®).
(1® xp—r) =0 for any b > 0. This implies that the span of all 1 ® z;
for r <t < m —ris an S;-submodule of A (\). This submodule is,
in fact, the unique maximal submodule. Otherwise, there would be a
nonzero weight vector in A, (), different from any multiple of 1 ® xy,
which is not in the submodule and which is killed by all 1 ® E@, for
a > 1, and inspection shows there are no such vectors. The simplicity
of the corresponding quotient follows. O

3. THE GENERAL CASE

Now we return to the case of a general root datum. We concentrate in
this section on the rational form of S = S(7) for some fixed saturated
set 1 C X, and leave consideration of what happens under specializa-
tion to the last section of the paper. We are going to extend many of
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the results of the preceding section to the general case. The argument
is nearly self-contained, but we do need two well known facts from the
representation theory of complex semisimple Lie algebras: the classi-
fication of the finite-dimensional simple modules, and Weyl’s theorem
on complete reducibility. We use no results from the established theory
of quantum groups.

3.1. Let s; be the generating reflection in the Weyl group W cor-
responding to a simple root «;. For any fixed ¢ € I, let S; be the
subalgebra of S generated by FE;, F; along with all 1, for A € W.
Then S; is a generalized g-Schur algebra of rank 1, since Wrn = W;r;
where W; = (s;) = {1,s;} and m; = {A € Wr: (o/, \) = 0}. (Note
that m; is saturated with respect to a rank 1 root datum determined
by «a;, «’.) Thus, any of the results proved in the rank 1 case may be
applied to S;. In particular, any simple left S;-module is generated by
an S;-maximal vector of weight A € W, where (o, \) > 0. (In this
case a maximal vector is just a vector killed by E;.)

3.2. Proposition. Let S = S(w). If M is a simple left S-module then
the weight of a highest weight vector must be a dominant weight X\ € .

Proof. Let xy be a highest weight vector, of weight some A € Wr. For
each i € I we can restrict M to S;. Of course xy is an S;-maximal
vector, so by Lemma the S;-submodule it generates has a unique
simple quotient. But, by Proposition 2.6, S; is a semisimple algebra,
so in fact that submodule is already simple as a S;-module, and thus
(Y, A\) > 0. Since this holds for each i € I, we have shown that A is a
dominant weight. In other words, A € Wr N XT = 7, as desired. [

We wish to classify the simple S-modules, by showing that for each
A in 7 there exists a unique (up to isomorphism) simple S-module of
highest weight A. The uniqueness part is easy to establish, as follows.

3.3. Lemma. Let S = S(w). Let L, L’ be two simple left S-modules,
each of highest weight \, for some A\ € w. Then L is isomorphic to L'.

Proof. (Compare with the proof of Theorem A of [Hul, §20.3].) Let M =
L& L'. Suppose that vy, y are maximal vectors in L, L' respectively.
The left weight of both yo, 3 is A. Put o = (y0,¥,). Then zq is a
maximal vector in M, of left weight \. Let N be the submodule of
M generated by xy. Lemma implies that N has a unique simple
quotient. But the natural projections N — L, N — L' are S-module
epimorphisms, so L ~ L', as desired. O



20 STEPHEN DOTY AND ANTHONY GIAQUINTO

It remains to establish the existence of a simple S-module of highest
weight A for each A € m. The following result will enable us to construct
the needed simple modules.

3.4. Lemma. Let S = S(w). For each A € 7 we define t-invariant
subspaces of S as follows:

S[EA = Y,0,S71L,8% SN =Y,., S LS".

Then both S[>\] and S[>\] are two sided ideals of S. We have S[>\] C
S[>A] and S[>A] C S[>N| whenever N> N'. Moreover, for any j, r we
have, modulo terms in S[>\]

(a) Ej ’ El By = Z 5]'71'5[(04}/, >‘_787T>]jFi1 T F’islei
and
(b) WE;, ... By Fy = 32600, A=vs)jInEi, -+ Ei By, - By

where vs, == ,, + -+ ;. (Both sums are over s.)

By 1y

s+1.'

Proof. The proof is by a double induction. First assume that A is
maximal in 7. We establish (a) in case r = 1. From the defining
relations [0l it follows that

E;jFily = 0;(FiE;1x + [{af , M)];1a)

for any ¢,j € I. Since E;1\ = 1y, F; and since A is maximal, it
follows that

EjFlx = 0;4(Filaya, B5 + [(of, M]i1a) = [(of, N1

which proves (a) in the case r = 1 and A maximal. (Note that S[>\] =
0 for maximal \.) Assuming now that (a) holds for A maximal and for
all words of length at most r, we have

Ej-F ... Fir+11>\ = (FilEj + 5j7i1[<a;‘/> A— ’71,r+1>]j)Fi2 T Firﬂ I
= FilEj ’ Fiz e Fir+1 I+ 5j7i1 [<O‘;‘/7 A— 71,T+1>]jF’i2 e Fir+1 Iy

Expanding the sub-expression E; - Fj, --- F; 1, appearing in the first
term of the last equality above by the inductive hypothesis, we ob-
tain (a) in case A is maximal. Now (b) follows by applying the anti-
involution ¢ to (a).

Still assuming that A is maximalin 7, letu = F;, ... F; 1,\E, ... E; €
S[>A]. Then it follows from (a) and (b) that E; - u € S[>)] and
u- F; € S[>A] for any j € I. It follows from the defining relations
L5l that F} - u,1,-u € S[>A and u- Ej,u-1, € S[>A] for any j € I,
€ Wr. Thus S[>)] is a two-sided ideal of S.

Now we fix some A which is not maximal, and assume that all as-
sertions have been established for all A’ > A. Then S[>)] and S[>N]
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are two-sided ideals for every X' > A. Thus S[>A] = > .., S[>N]
is a subring of S. Furthermore, given any s € S[>A] there exist
sy € S[>N] such that s =), sy. Thus as =Y, , asy € S[>)]
and sa =), sva € S[>A], and S[>)] is a two-sided ideal of S.

We can now repeat the induction on r in the first paragraph of the
proof to obtain (a) for A, modulo terms in S[>A], and then obtain (b)
by applying ¢. It then follows from (a) and (b) that S[>)] is a two-sided
ideal of S, and the proof is complete. O

3.5. The modules A(\), A*()\). For any A € 7, we regard the quo-
tient M = S[>\]/S[>A] as a left S-module. Note that g = 1, + S[>)]
is a maximal vector in M. Let A()) be the left submodule of M gen-
erated by xg. Clearly A(\) # 0, since its generating maximal vector
is not zero. The maximal vector is a highest weight vector in A(\) of

weight A, so A()\) has a unique simple quotient L(A) of highest weight
A

We have now established that the set of isomorphism classes of sim-
ple left S-modules is given by {L(\): A\ € w}. This completes the
classification of simple S-modules.

For later use we define A#(\) to be the right S-submodule of M =
S[>A]/S[>A] generated by .

As already noted, if \ is a maximal element in the poset 7 then
S[>A] = 0. Thus S[>A] = S71,S™ and A()) is in this case just the
left ideal S1, = S71, of S. In this special case, we can prove that
A(X) = S1, is actually simple as an S-module.

3.6. Theorem. Let S = S(w). If A is a mazimal element in m (with
respect to the partial order <) then the left ideal A(X\) = S1, is a simple
S-module of highest weight .

Proof. (Similar to Sections 5.12-5.15 of [Ja].) Put A = Q[v,v™!].

Let L(\) be the simple quotient of A()\). Clearly L(\) is generated
by a highest weight vector of weight A\. Throughout the following ar-
gument, we let V' be either A(X) or L(A). Then V = S~xy where z is
a maximal vector in V', so V' is the Q(v)-linear span of elements of the
form Fj, ... F; xo for various finite sequences i = (i1, ..., ) of elements
in I. Put F; = F;, ... F;, for ease of notation, and write wt(i) = > . ;.
Let AV be the oS-submodule of V' generated by the maximal vector
zo. Then

AV =) AFmx, and AV,= Y  AFux

wt()=A—p
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for any € Wr. As A-modules, both AV and 4V, are finitely gener-
ated and torsion free. Hence both AV and AV, are free of finite rank
over A. Clearly AV =3 V) so we get

Note that the natural map Q(v) ®a (aV,) — V,, is an isomorphism, for
any € Wr. (Here we are writing V), for the weight space 1,V in V.)
It follows that a basis for oV, over A is also a basis of V, over Q(v),
and thus

tka AV, = dimgu) V, (any p€ Wm).
We claim now that the A-module oV is stable under the action of

the E;, I, and 1, for any j € I and any p € Wa. This is obvious in
the case of the F}; and 1,, since

Fi(F; - Fiwo) € Va and  1,(F;, -+ F;20) = Fy -+ Fi 1wi)®o

is zero if p+ wt(i) # X and is Fj, - - - F}, xo if g+ wt(2) = A\. Moreover,
for the E; we have by the defining relations [LH (b), (c) that
\%

Ej(ﬂl o 'Erxo) = Z Fil o "F’iafl Z [(aj ) N)]jluFiaH o 'Erxo

1<a<riia=j neWn
and the claim follows by the preceding remarks and the observation
that [(a, p)]; € A forany p€ W, j € I.
Now there is a unique homomorphism ¢ of Q-algebras mapping A =

Q[v,v™!] to C and satisfying ¢(v) = 1. Regard C as an A-module via
v, and put

V:C®A (AV) and Vu:C®A (AVH)

for any 4 € Wr. Then we have the direct sum decomposition V=
) .. Vs where each V), is a complex vector space with

dimc Vﬂ = l"kA(AV,u) = dimQ(v) VH'

The actions of E;, Fj, and 1, on Vy yield linear endomorphisms of V/
that we denote by e;, f;, and ¢,. We put

Ez’ = Z;},EWW(CI?\:/7 M)LM
for any 7 € I.

We claim that the endomorphisms e;, f;, h; satisfy Serre’s relations
for the finite dimensional semisimple Lie algebra g defined by the Car-
tan matrix ((o, @;))ijer- Since the idempotent linear operators ¢y
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commute and are pairwise orthogonal, it follows that h; commutes
with h;; thus

[Ei,ﬁj] = O, any Z,Z el
We have ¢([a];) = [a],=1 = a for any integer a and any i € I, so from
defining relations [[LB(b) for the Schur algebra S = S(7) we have

leis fi] = 0 2 pewn {0’y W)ty = D
Recalling the convention that 1, = 0 for any p ¢ Wr we put also
ty = 0 for any p ¢ Wr. Then we can write h; = > (o, pt
(which is still a finite sum) and by defining relation [LL6lc) we have
[Eia 6]’] = Ez’ej - 6jEi - ZM6X<O‘1\'/> /L>Luej - ZM6X<O‘1\'/> ,u>ejLM
= ZMEX<O{7\;/’ M)Lﬂej - Zu@X(ag/? /”L>Lll+ajej
and by replacing p by @ — «a; in the second sum we obtain
[Ei’ €] = ZueX (af, 1) tu€; — ZueX (aff, p— ) L€

= 2 uex (i aj)ie;

= <a;/7 aj>€j
where we have used the second part of relation [L6(a) to get the last
line. A similar calculation proves that

i, fi] = —(a, ag) .

o) =Gl = G)
for any integers a,n with n > 0. Thus relations[[.5] (d1) and (d2) imply
that

Finally, we have

1—a;;
S (1) el =0 (i # j);
s=0
l—aij
DA =0 (14 )
s=0

where a;; = (o, a;). Thus the claim is proved.

Now let z;,y;, h; (i € I) be a Chevalley system of generators for the
semisimple Lie algebra g. Then by the claim of the preceding paragraph
it follows that the map g — gl(V') given by x; — e;, yi = fi, hi = hy
is a homomorphism of Lie algebras, so V' is a g-module.

All of the preceding discussion applies equally well to V = L(\) or
V = A(X\) = S1,. In either case we now see easily that V' is a simple
g-module of highest weight A. This follows from Weyl’s theorem on
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complete reducibility of finite dimensional representations of semisim-
ple Lie algebras, which implies that V is completely reducible, and the
observation that V is (in both cases under consideration) generated by
a maximal vector, and hence has a unique simple quotient.

It follows that the weight space dimensions in V are given by Weyl’s
character formula, in both cases V' = L(\) and V = A(\). In particu-
lar, this shows that

dimQ(U) L()\) = dimQ(U) A()\)

Since L(A) is a homomorphic image of A()), it follows that L(\) =
A()N) and we have obtained the result. O

Note that it follows immediately from the preceding theorem that
1,ST = «(S71,) is a simple right ideal in S, for any maximal element
Ain 7.

3.7.  'We now utilize the anti-involution ¢ in order to define a bilinear
form on A(pu), for any p in 7l Put 2o = 1,4+ S[>p] in the left S-module
M = S[>p]/S[>u). By definition, A(u) is the left submodule generated
by xg. This is spanned by various elements of the form Fz(, where

Fy=F,, ---F, for some finite sequence A = (ay,...,a,) of elements
of I. If Fpxg, B = (by,...,bs), is another such element then
(a) U(FB) - (Famo) € Ly—we(a)y+we(m) A1)

since acting on the left by some E; raises the left weight by «a;. Here
we define wt(A) = > 7" a,; and wt(B) = > °_| oy, Hence it follows
that

(b)  1uu(Fp) - (Faro) = Lu(Fs)Fal, + S[ou] € LA(p)

is zero unless wt(A) = wt(B). It follows that in either case there must
be some scalar c4 p € Q(v) (necessarily zero if wt(A) # wt(B)) such
that

(c) 1,0(Fp)Fal, =capl, (mod S[>pu]).

Now the promised bilinear form ¢, : A(p) x A(p) — Q(v) is defined
by setting

(d) ©u(Fazo, Fpro) = cap

and extending bilinearly. We immediately record the following impor-
tant properties of the bilinear form.

1One might prefer to define a bilinear pairing between A(u) and A¥(y) instead.
With that approach, which is equally natural, the use of ¢ is avoided.
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3.8. Lemma. Let p € m. For any x,y € A(u) we have:

(&) pu(z,y) = @uly, ©);
(b) vu(uz,y) = @, (z,(u)y), for any u € S.

Proof. (a) Applying the anti-involution ¢ to equation B.7|(@) proves that
cap = cp.a and part (a) follows.
(b) This follows from the calculation

Lo(Fp)uFal, = 1,0(Fg)*(v) Fal, = 1, 0(e(u)Fp) Fal,
which holds modulo S[>p]. O

The preceding lemma implies that the radical of the bilinear form

radg, = {z € A(p): pu(z,y) =0, for all y € A(u)}

is an S-submodule of A(y). Since ¢, (x¢,9) = 1, we see that this
submodule is proper, hence contained in the module theoretic radical
of A(p). By Theorem B.6] we conclude that when A € 7 is a maximal
element, then the radical of ¢, must be zero. In other words, the form
©y is nondegenerate, for any A maximal in 7. (We will soon show that
in fact ¢, is nondegenerate for any p € .)

3.9. Theorem. Let S = S(m). If X\ is maximal in 7 then the natural
multiplication map S1y ®q) 1xS — S1,S is an isomorphism of S-
bimodules.

Proof. The multiplication map m : S1) ®q) 1AS — SI1,8S is clearly
a surjective homomorphism of S-bimodules, so we only need to prove
injectivity. We fix bases

{z1y:z €87} and {lyy:yeS*}

for S1, and 1,8, respectively. Then the set of tensors {z1, ® 1y} is
a basis for S1) ®q() 1AS, so it suffices to show that the corresponding
set of images {x1,y} is linearly independent over Q(v). Assume that

0= Zr,y CoyTlyy

where the sum is taken over the set of pairs (x,y) such that x and y
independently range over the above basis elements. Let {z'1,} be the
dual basis to {x1,} with respect to the bilinear form ¢,, defined by
the requirement @, (z'1y, x1y) = dz, 2.

Fix some z such that z1, is one of the above basis elements of S1,.
Then by left multiplication by 1,:(2’) we obtain

0=>,,Coy It(ZN2ay =3, CoyOulay =2, 2y 1Ny
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and by linear independence of the {1,y} it follows that ¢, , = 0 for any
y. Since z was arbitrary, this proves the desired linear independence,
and thus the result. U

Now we fix some maximal element A € m and set 7’ = 7 — {\} and
S’ = S(n'). Note that 7’ is again saturated. It is clear from the defining
relations in that the kernel of the natural map S — S’ is the two
sided ideal generated by all idempotents 1, such that € WA. In fact,
this ideal is generated by a single element.

3.10. Lemma. Let S = S(w). Let A be a maximal element in 7, and
set ' =1 — {A\}. Then the natural quotient map S — S" := S(n’) has
kernel S1,S.

Proof. Comparing the defining presentations for S and S’ observe that
the kernel of the natural quotient map S — S’ is generated by the set
of idempotents of the form 1, for w € W. Clearly, the ideal S1,S is
contained in the kernel. On the other hand, we claim that Lemma .7
implies that each 1,y (for any w € W) lies within S1,S, which gives
the opposite inclusion and proves the result.

It remains to prove the claim. This is done by induction on the
length of w. If w = s; is a simple reflection then by putting pu = s;(\)
and setting a = b = (), A) in part (iii) of Lemma [[.7 we see that

Fi(“)Ef“)lsm) = L5,

since Fjlg, ) = 0 because the weight s;(\) is extremal in the «; direc-
tion. Since Ei(a)lsim = Ei(a)l,\_aai = 1>\EZ.(a) by part (i) of Lemma [
we obtain the equality

Fz'(a)lAEi(a) _ 151-()\)

which proves the claim in case w = s; has length 1.

Now let w € W have length at least 2, and assume the claim for
elements of length strictly less than the length of w. We may write
w in the form w = s;w’ for some w’ € W such that {(w') < {(w).
By induction 1.,y € S1)S. Now take p = w(A) and set a = b =
(o, w'(N)) in part (iii) of Lemma [Tl Similar to the above, we get

FOE Ly = Luwy

since w(A\) is extremal in the «; direction. Then again by part (i) of
Lemma [[.7] we have Ei(a)lw()\) = E.(“)lw,(/\)_mi = 1w,()\)EZ.(“), SO

)
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Since 1,/(n € S1,S it follows that 1, € SI1,S, as desired. This
proves the claim. 0

We find it convenient to use Konig and Xi’s definition of cellularity
(see [[LI7) in the proof of the next result.

3.11. Theorem. For any finite saturated set 7 the algebra S = S(m)
is cellular with respect to the anti-involution v, with defining cell chain
given by {S[>ul: p € w} partially ordered by set inclusion.

Proof. Tt follows by Theorem that the ideal S1,S is a cell ideal in
S, in the sense of Konig and Xi, for any maximal A € .

If m = {\} is a singleton set, the result now follows. Otherwise, pick
some maximal element A in 7 and put 7’ = 7 —{A} and S’ = S(7’). By
induction on the cardinality of the finite set m we may assume that S’ is
cellular with respect to ¢ and the defining cell chain given by the ideals
S'[>p] (u € ') partially ordered by set inclusions. Let p: S — S’ be
the natural quotient map. It is easily checked that p carries an ideal
S[>p] onto S'[>p] for any p € 7', and of course by Lemma B.10 the
kernel of p is S1,S. It follows that by adjoining the cell ideal S1,S to
the preimage of the defining cell chain in S’ yields a cell chain in S,
and the result follows. 0

We will now give three corollaries to the above result.

3.12. Corollary. For any finite saturated 7, the generalized q-Schur
algebra S = S(m) is quasihereditary.

Proof. According to [KX2, Theorem 1.1] (see also [KX3] Theorem 3.3]),
a cellular algebra over a field is quasihereditary if and only if the number
of isomorphism classes of simple modules is the same as the length of

some defining cell chain. Since this holds in our situation, the result
follows. U

3.13. Corollary. For any finite saturated m, the algebra S = S(m) is
semisimple. We have L(p) = A(p) for each p € w; i.e., a complete set
of isomorphism classes of simple left S-modules is given by {A(u): p €
n}. The bilinear form ¢, is nondegenerate for each p € 7.

Proof. For each i € m there is some saturated subset 7’ of 7 such
that p is maximal in 7’. Indeed, we can take 7' = {y/ € m: u > '}
Now there is a surjective quotient map p, . : S(w) — S(7’) sending
generators F; — E;, F; — F;,and 1, — 1,/ for ¢/ € Wn' with 1,, — 0
for all ¢/ ¢ Wr'. By Theorem the left ideal S(n’)1,, is simple
as an S(7’')-module, hence is simple when regarded as an S-module,
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via the map p, . As an S-module, we have an isomorphism between
S(n")1, and A(p) which is induced by the map pr -, so A(x) is simple
as an S-module. The semisimplicity of S now follows from [GL, (3.8)
Theorem]. O

2

3.14. Corollary. dimq,) S(m) =3 . (dimqe) A(p))”

Proof. This follows easily from Corollary and the standard theory
of semisimple algebras. O

The following extension of Theorem can now be obtained.

3.15. Theorem. Let S = S(m) and let u € w. Then the natural multi-
plication map A*(u) @qey A(p) = S[>p]/S[>p] is an isomorphism of
S-bimodules.

Proof. This follows from the nondegeneracy of the bilinear form ¢,
which implies the multiplication map is injective. The surjectivity of
this map is clear. O

3.16. We use the preceding result to inductively build a cellular basis
of S = S(w), for any m. For each p € m, let S’ = S(n’) where 7’ =
{ € Xt/ <u}. We choose any basis

() B (1) = {Falu}ta

for the simple left ideal 8’1, = S'71,,, where we write

(b) Fa= F,F,---F; for any sequence A = (iy,1is,...,1,) over I.
Write B*(u) = «(B~()); this is a basis of the simple right ideal 1,,S’,
and we have B (u) = {1,E4}4 where

(c) Ea=E; E;_,
According to Theorem the set of products

(d) B\ ={ay:z€ B (n),y € B (0} ={FalyEatan

is a basis for the two sided ideal S'1,S’ of S’. In this basis, (A4, A’)
range over all pairs of sequences indexing the basis of S'1,,. By abuse
of notation, we shall also denote by B(u) the set of preimages of these
elements under the quotient map p, ... Note that there is a canonical
choice for each of these preimages, expressed as the “same” product in
S that was used to define them in S'.

Having fixed a basis B(u) as above for each p € 7, we put
(e) B7T = |_|“€7T B(Iu’) = Ll;LEw{FAl;LEA,}'

-+ - By, for any sequence A = (iy,1s,...,1,) over I.
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We note that, for any u € m, it follows by induction that the set
Ue, BW) = Uye, dFalyEa} is a basis for the ideal S[>u], and
moreover the set | |, , B(y') = |, {Fal,Ea} is a basis for the
ideal S[>u|. In particular, B, is a basis for S.

3.17. Theorem. For any w, the set B, defined above is a cellular Q(v)-
basis of S = S(), in the sense of Graham and Lehrer [GL].

Proof. One easily sees that «(Fsl,Ea) = Fal,E4 for all p and all
A, A'. According to the definition in |GL], we need only show that for
any ¢ € S, u € w, and A, A" we have

ZL’FAIMEA/ = Z’I“I(C, A) FcluEA’ (HIOd S[D,U])
C

where r,(C, A) € Q(v) is independent of A’ and where the index C
ranges over the same set of sequences as A does in the definition of
B(p).

By the triangular decomposition, we may express = in the form

© =2 0 "A0.0 FolxEp

where 7y p.pr € Q(v). Note that FplyEp acts as zero on Fyul,E 4
unless the left weight of F41, is equal to the right weight of Fpl \Ep.
Now using the defining relations (a), (b), (c) repeatedly we can
rewrite any nonzero product FplyEp: - Ful, as a linear combination
of elements of the form FplyF;Eq1, and then by multiplying on the
right by E 4 and combining the Fp with the Fiz we obtain the desired
independence statement for the coefficients. 0

3.18. Remark. It is easy to check at this point that the left and right
S-modules A(p) and A¥*(p) (for u € m) are in fact isomorphic to the
left and right cell modules as defined in [GL].

4. SPECIALIZATION

We are now ready to study k-forms of generalized ¢-Schur algebras,
over an arbitrary field k of characteristic zero, depending on a chosen
parameter ¢ € k*. (We denote by k* the multiplicative group of
nonzero elements of k.) Given any such ¢, we regard k as an A-algebra
by means of the canonical algebra homomorphism A — k, given by
sending v to ¢. We continue to fix a saturated subset m of X+ and
put S = S(m) as above. The algebras S, are g-deformations of the
generalized Schur algebras introduced in [Dol].
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4.1. In order to construct a cellular basis for the “integral” form AS,
we assume that A\ is a maximal element of 7 and choose an arbitrary
A-basis Z_ (M) of the left ideal (oS™)1, which is also a Q(v)-basis
of S1,. The existence of such a basis was established in the proof of
Theorem Similarly, we choose an arbitrary A-basis % (\) of the
right ideal 1)(oS™) which is a Q(v)-basis of 1,S*. (One could take
BE(N) ={u(z): v € B_(\)}, for instance.) Putting

(a)  Z:(\) =B, (NBr(\) ={xy: x € B (\),y € BI(\)}

gives an A-basis of the two sided ideal (oS)1x(aS) which is also a
Q(v)-basis of S1,8S.

We may assume by induction that a cellular basis %, for the algebra
S’ has already been constructed, where 8" = S(mr—{\}). By adjoining
the set %,(\) to that basis (regarded as a subset of oS by means of
the canonical quotient map oS — AS’) we obtain the desired cellular
basis %, of AS. By construction we have %, = U,c,%Bx(11).

For any p € m, let AA(p) be the oS-submodule of A(A) with basis
B (p). Similarly, let AA*(u) be the right o S-submodule of the right
module A*(\) with basis %} (u). These are the left and right cell
modules for AoS.

4.2. Now we set S, = k ®a (aS). This can also be written as S ()
if the indexing set m needs to be made explicit. This is the generalized
¢-Schur algebra specialized at 0 # q € k*. We write %, , for the set
of 1 ® b as b ranges over %, with notations %, (), %7 ,(1t), and
B q(1t) defined similarly. We shall identify a basis element b of %,
with its image 1 ® b in A, ,. We also write ¢ for the anti-involution on
S, induced by ¢ on oS. We set

(a) Ag() =k ®a (aA(p);  A(p) =k ®a (aA (1))

These are left and right modules for S,, obtained by specializing v to
q. They have k-bases #; (1) and % (1), respectively.

4.3. Proposition. For any field k of characteristic zero, and any spe-
cialization v — q € k*, the algebra S, = S,(7) is a cellular algebra
over k, with anti-involution v and cellular basis Bry = UperPBrq(11).
The left and right cell modules for Sy are the Ag(p), A(u) for p € 7.

Proof. This is [GL, (1.8)], which is just the observation that cellularity
is compatible with specialization. O
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4.4.  We may now construct the simple S,-modules, following Graham
and Lehrer. The bilinear form ¢, on A(u) constructed in 3.7 induces
a corresponding bilinear form, which we shall denote by ¢, on the cell
module A, (u). In general this form is no longer nondegenerate. How-
ever, by considering the value goZ(xo, xo) where xq is the basis element
of &, (1) of highest weight, it is clear that ¢f # 0 for each u € 7.

Let rad,(u) be the radical of the form; rad,(u) is the set of = in
Ay(p) such that pi(z,y) = 0 for all y € Ay(p). In [GLL (3.2)] it is
proved that rad,(u) coincides with the unique maximal submodule of
A,(p), and thus the quotient

(a) Lq(p) = Bg()/ rady(p)

is a simple (in fact absolutely simple) S,-module of highest weight .
By [GL, (3.4) and (3.10)] we immediately obtain our main result.

4.5. Theorem. For any field k of characteristic zero, any specialization
v q € kX, and any saturated set m put S, = S,(m). Then:

(a) The algebra S, is quasihereditary with respect to the ordering on
simple modules induced by the ordering < on w. The set of standard
modules is {A,(p): p € m}.

(b) The set {L,(p): p € m} is a complete set of isomorphism classes
of simple S,-modules.

We have the following easy application of the cellular structure of
S;. The same result should hold in greater generality; actually it is
known to hold in case ¢ is not a root of unity.

4.6. Corollary. If q is transcendental then L,(1n) = A,(p) for each
i€ m and hence S, is a semisimple algebra. In particular, any finite
dimensional S,-module is completely reducible.

Proof. For the bilinear form ¢, on AA(p) and for basis elements x,y €
B~ (), the value of ¢, (z,y) is an element of A = Qv,v™!]. Thus
the determinant of ¢, is a nonzero element f(v) of Q[v,v™!], and the
determinant of the corresponding form ¢f on A, () is the element f(q)
of k obtained by replacing v by ¢. This is a polynomial in ¢ and ¢!
with rational coefficients. Any such polynomial must be nonzero since
q is transcendental. Hence f is nondegenerate and Lq(p) = Ag(p).
Since this holds for every p € w, by [GL, (3.8)] it follows that S, is a
semisimple algebra, as desired. O

4.7. We write M* for the linear dual space Homy (M, k) of a given
k-vector space M. If M is a left S,-module, then M* is naturally a
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right S,-module, with x € S, acting on f € M* by (f-xz)(m) = f(zm),
for any m € M. Similarly, the dual (M*)* of a right S,-module M?*
is naturally a left S,-module, with z € S, acting on f € (M*)* by
(z - f)(m) = f(mx), for any m € M*. In particular, by applying these
constructions to the left and right cell modules A4()), A%(A) we obtain
the S,-modules

(a) Vi) = AN Ve(A) = AL(N)

Note that V4(A) is a right Sg-module and V,(\) a left one. For each
A € m, there is a well-defined homomorphism 6y of S,-modules

(b) Or: Ay(A) = V().

It suffices to define ¢y on the highest weight vector zy € %, ,()), since
A4(X) is generated by zp as an S,-module. Notice that ¢(x() is the
highest weight vector of A*(\). (In case ) is maximal in 7 we have
zo = 1x = t(x0).) Let fo € AL(A)* be the linear functional such that
fo(t(wo)) = 1 and fo(e(zg)e) = 0 for every 1 # e € ST such that e is
the image of some element of oS where v # 0; see the decomposition
[LIT([). Then fy is a highest weight vector of V() (of weight )
which is killed by any E;, and we define 6,(z¢) = fo. The image of 0,
is the unique simple submodule of V() and its kernel is the radical
of Ay(N).

The duality just discussed may be formalized as a covariant functor
M — M° from left S,-modules to left S,-modules, where by definition
M° = (M*)* and M?* is the right S,-module which is equal to M as
a vector space, but turned into a right module by twisting the given
action by the anti-involution ¢. Any quasihereditary algebra has a
“costandard” module corresponding to each standard module; see e.g.,
DRI, [Xi] or [Do4, Appendix]. In the present context V, (A) = Ay (N)°
is the costandard module corresponding to A, ().

This duality fixes the simple modules and interchanges projectives
and injectives: L,(p)° ~ L,(p) and P,(p)° ~ E,(p) for any p € m,
where P, () is the projective cover, and E,(u) the injective envelope,
of L,(p). We note that Aj(u) is the largest factor module of P,(u)
with composition factors of the form L,(u') for p/ < p, and V,(u) is
the largest submodule of E,(u) with composition factors of the form

Ly(p') for p" < pu.

4.8. Let F(A) be the full subcategory of the category of finite di-
mensional left S,-modules consisting of the finite dimensional left S,-
modules M admitting a A-filtration. By definition, a A-filtration of
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M is a series of submodules
O=MyC M C---M,_CM=M

such that each successive subquotient M;/M;_; is isomorphic to some
A, (p5). Dually, we have the category F (V) defined similarly with V
in place of A. For a module M € F(A) we let (M: A,(r)) denote
the number of subquotients in a A-filtration which are isomorphic to
A,(p), and similarly let (M : V(1)) denote the number of subquotients
in a V-filtration which are isomorphic to V (i), for any M € F(V).
(These numbers are independent of the choice of filtration.) We also
denote by [M: L,(4)] the multiplicity of L,(u) in a composition series
of M.

The fact that S, is quasihereditary immediately implies a number
of important basic properties, some of which we list below (see [Do4,
Appendix]):

(1) S, has finite global dimension.
(2) For any p € m, Ends, (Aq(pt)) ~ k and Ends (Vq(p)) =~

(3) Pylu) € F(A), B, (1) € F(V), (Byl): A, (V) = [V q(>\) La(w))
and (E,(p): Vi(A) = [Ay(A): Lq( )]s for any \, i € .

(4) E,(1)/Vy(n) € F(V), and if (Ey(u)/V,(n): V (A)) 7# 0 for
A, i € m then A > p.

(5) For a finite dimensional S,-module M and any u € 7, if either
of the groups Extéq(Aq(,u), M) or Extéq(]\/[, V,(1)) is not zero,
then there exists some p’ € 7 such that [M: L (/)] # 0 and
w > .

(6) For M € F(A) and N € F(V) the k-dimension of Extéq(M, N)
is Y yer (M Ag(N))(N:Vg(N)) if 5 = 0 and is 0 otherwise.

Moreover, we have

(M: Ay(N)) = dimy Homg, (M, V,4(N)),
(N:V4(A) = dimy Homg, (Ag(A), N).

(7) A finite dimensional S,-module M belongs to F(A) if and only
if Extéq(M, V,(u)) = 0 for all 4 € 7, and belongs to F(V) if
and only if Extéq(Aq(,u), M) =0 for all p € .

(8) Given a short exact sequence 0 — M’ — M — M" — 0 of finite
dimensional S,-modules, if M', M € F(V) then M" € F(V),
and if M, M" € F(A) then M’ € F(A).

(9) If M belongs to F(A) then any direct summand of M also be-
longs to F(A); if M belongs to F(V) then any direct summand
of M also belongs to F(V).
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E ifi=0and A=p

(10) For A\, i € m, Exty (A,(N\), Vy(p)) =~ '
¢ 0 otherwise.
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