
ar
X

iv
:1

01
2.

59
83

v1
  [

m
at

h.
Q

A
] 

 2
9 

D
ec

 2
01

0

CELLULAR AND QUASIHEREDITARY STRUCTURES

OF GENERALIZED QUANTIZED SCHUR ALGEBRAS

STEPHEN DOTY AND ANTHONY GIAQUINTO

Abstract. We give a self-contained derivation of a new cellular
basis of generalized quantized Schur algebras, independent of the
theory of quantum groups. As a consequence, we obtain a new
proof of the fact that these algebras are quasihereditary over a
general ground field of characteristic zero, for any choice of param-
eter including roots of unity. Previous proofs of this result relied
on a descent from a quantized enveloping algebra and the existence
of the canonical basis of its positive part.

Introduction

We study a class Sq(π) of finite-dimensional algebras, the generalized
quantized Schur algebras (“generalized q-Schur algebras” for short) as-
sociated to a given root datum, saturated set π of dominant weights,
and choice of parameter q (a nonzero element of a field k). Since
(see [D1, §5]) these algebras are quotients of the specialized quantized
enveloping algebra Uq determined by the root datum, the study of
representations of Sq(π) yields information on the representations of
Uq. The Sq(π) are q-deformations of the generalized Schur algebras
S(π) studied by Donkin [Do1], [Do2], [Do3] in the context of algebraic
groups, where S(π) is obtained as a certain quotient algebra of the alge-
bra of distributions on the group, and its module category is equivalent
to a certain full subcategory of the category of rational representations
of the group.

Dipper and James [DJ] first studied the q-Schur algebras in Type
A (see also Jimbo [Ji]). In previous work [DG1], [DG2], the authors
discovered a presentation by generators and relations for the rational
form of the Dipper–James–Jimbo q-Schur algebras. Actually, two such
presentations were found, the latter of which involved a system {1µ}
of pairwise orthogonal idempotents which decomposes the identity. In
[D1] the latter presentation was extended to an arbitrary generalized
q-Schur algebra S(π) of arbitrary (finite) type and it was shown that
specializations of S(π) in a field are quasihereditary. (The reader is
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2 STEPHEN DOTY AND ANTHONY GIAQUINTO

referred to [CPS], [DR] for basic properties of the theory of quasi-
hereditary algebras.) This result was proved by a descent argument
using the canonical basis of the modified form of the corresponding
quantized enveloping algebra. The main objective of the present paper
is to obtain the same result by an internal approach, based solely on
the defining generators and relations, and avoiding any appeal to the
theory of quantum groups. In particular, the approach we present is
not dependent on the existence of the canonical basis, and thus may
be regarded as somewhat more elementary than the approach of [D1].

Our main new result is the elementary “integral” cellular (see Gra-
ham and Lehrer [GL]) basis of AS(π) attained in 4.1; this leads in 4.2
to a corresponding cellular basis of the k-form Sq(π), and it is applied
in Theorem 4.5 to obtain a new proof that Sq(π) is quasihereditary.

Let us summarize our method of proof in greater detail. We start
with the rational form of S(π) defined over the rational function field
Q(v) where v is an indeterminate; see 1.5. First we establish a tri-
angular decomposition S = S+S0S− = S−S0S+ for S = S(π), and
apply it to study the left and right ideals ∆(λ) := S1λ = S−1λ,
∆♯(λ) := 1λS = 1λS

+ where λ is a maximal element of π. It turns
out that these ideals are actually cell modules for S, and the natural
multiplication map

S1λ ⊗Q(v) 1λS → S1λS

is a vector space isomorphism. Furthermore, the two-sided ideal S1λS
is a cell ideal at the bottom of a cell chain. This implies that the kernel
of the natural quotient map S(π) → S(π−{λ}) is S1λS. By induction,
we may assume that the cellularity of S(π − {λ}) has already been es-
tablished, and then the cellularity of S(π) itself follows. This approach
yields the desired cellular basis of S, and once that has been estab-
lished, the quasihereditary structure on Sq(π) (Theorem 4.5) follows
easily. It is interesting that in case the root datum is of rank one, the
canonical basis can be easily derived from our new cellular basis (see
2.7).

Then we consider a natural “integral” form AS = AS(π) of S(π),
taken over the ring A = Q[v, v−1]. Since A is a principal ideal domain,

AS is free over A, and by choosing an A-basis of the corresponding
integral form of each ideal A∆(λ) = (AS)1λ, A∆

♯(λ) = 1λ(AS) (for λ
maximal) the above inductive construction yields a cellular A-basis of

AS. Since a cellular structure is compatible with specialization [GL,
(1.8)] this gives a cellular basis in every specialization

Sq(π) := k ⊗A (AS(π))
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for every field k of characteristic zero and any choice of a non-zero
element q ∈ k, where k is regarded as a A-algebra by means of the nat-
ural homomorphism A → k determined by sending v to q. It is then
easy to check that a certain bilinear form defined on the cell modules
is non-zero, and by a result of König and Xi this immediately implies
that Sq(π) is quasihereditary. There are many important consequences
of having a quasihereditary structure on a given finite-dimensional al-
gebra. We list some of them in Section 4.8.

It would be desirable to extend the results of this paper to include
specializations in fields of positive characteristic, in cases where q is
not 1 (sometimes called the “mixed” case). To do that, we would
need to work with “integral” forms taken not over the principal ideal
domain A = Q[v, v−1] but rather over the ring A = Z[v, v−1]. The
trouble is that we do not know an elementary argument to establish
that the A-forms A∆(λ) and A∆

♯(λ) are free over A, without appealing
to properties of quantum groups, such as the existence of the canonical
basis. The desired extension can be achieved if one is willing to take
the freeness for granted.

It should be noted that the results of this paper extend to Donkin’s
original generalized Schur algebras S(π). To do this one should take
v = 1 in the defining presentation in 1.5 and repeat the arguments
of the paper in that (simpler) context, replacing A by Z; this allows
specialization to any ground field k, including fields of positive charac-
teristic. (In fact, k could more generally be taken to be an arbitrary
commutative ring for many of the results.) We omit such a variation
in order to keep this paper to a reasonable length.

1. The algebra S = S(π)

We define the rational form of the algebra S(π) by generators and rela-
tions (see 1.5), over the ground field Q(v) where v is an indeterminate.
Later we shall specialize to a k-form Sq(π) of S(π), for an arbitrary
ground field k of characteristic zero, by assigning v to a chosen nonzero
element q of k.

1.1. We assume given a root datum, consisting of the following.

(a) A finite-dimensional Q-vector space h and two finite linearly
independent subsets Π = {αi : i ∈ I} ⊂ h∗ (here h∗ = HomQ(h,Q) is
the linear dual space of h) and Π∨ = {α∨

i : i ∈ I} ⊂ h such that the
square matrix A = (aij)i,j∈I defined by

aij = 〈α∨
i , αj〉 = αj(α

∨
i )
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is a symmetrizable generalized Cartan matrix. In other words, aii = 2,
aij for i 6= j is a non-positive integer, and aij = 0 if and only if
aji = 0. Elements of Π are called simple roots, and elements of Π∨

simple coroots.

(b) An inner product ( , ) on h∗ such that (αi, αi) is a positive even
integer for any i ∈ I, and

〈α∨
i , λ〉 = λ(α∨

i ) =
2(αi, λ)

(αi, αi)
(i ∈ I, λ ∈ h∗).

(c) A lattice X in h∗ (the weight lattice) such that Π ⊂ X and
Π∨ ⊂ X∨ := {h ∈ h : 〈h, X〉 ⊆ Z}.

We put di := (αi, αi)/2 for each i ∈ I. Then the matrix (diaij) is
symmetric.

1.2. The Kac–Moody algebra g attached to the given root datum is
the Lie algebra over Q generated by elements ei, fi (i ∈ I) and h ∈ X∨

subject to the relations:

(a) [h, h′] = 0;

(b) [ei, fj ] = δijα
∨
i ;

(c) [h, ei] = 〈h, αi〉ei, [h, fi] = −〈h, αi〉fi;

(d) (ad ei)
1−aij (ej) = 0, (ad fi)

1−aij (fj) = 0 (for i 6= j)

holding for all i, j ∈ I and all h, h′ ∈ X∨.

1.3. The universal enveloping algebra of g is the associative Q-algebra
U(g) with 1 given by generators ei, fi (i ∈ I) and h ∈ X∨ and satisfying
the relations:

(a) hh′ = h′h;

(b) eifj − fjei = δijα
∨
i ;

(c) hei − eih = 〈h, αi〉ei, hfi − fih = −〈h, αi〉fi;

(d1)
∑1−aij

s=0 (−1)s
(

1−aij
s

)

e
1−aij−s

i eje
s
i = 0 (i 6= j);

(d2)
∑1−aij

s=0 (−1)s
(

1−aij
s

)

f
1−aij−s

i fjf
s
i = 0 (i 6= j)

for i, j ∈ I and h, h′ ∈ X∨.

1.4. Throughout this paper we assume that the root datum is of finite
type; i.e., the Cartan matrix A is positive definite. This implies that g
is finite-dimensional and the Weyl group W is a finite group, where by
definition W is the subgroup of GL(h∗) generated by the set of simple
reflections si (i ∈ I), where

si(λ) = λ− 〈α∨
i , λ〉αi

for any λ ∈ h∗.



GENERALIZED QUANTIZED SCHUR ALGEBRAS 5

We have a partial order D on X (the dominance order) given by
λD µ if and only if λ − µ =

∑

i∈I niαi where the ni > 0 for all i. We
write λ ⊲ µ if λ D µ and λ 6= µ. We write µ E λ (respectively, µ ⊳ λ)
if λD µ (resp., λ⊲ µ). Recall that the set X+ of dominant weights is
defined by

X+ = {λ ∈ X : 〈α∨
i , λ〉 > 0, all i ∈ I}.

We say that a set π of dominant weights is saturated if π contains all
dominant predecessors of all of its elements; i.e., µ′ ⊳ µ for µ′ ∈ X+

and µ ∈ π implies µ′ ∈ π.

Let Q(v) be the field of rational functions in an indeterminate v.
Set vi = vdi for each i ∈ I. More generally, given any rational function
P ∈ Q(v) we let Pi denote the rational function obtained from P by
replacing v by vi.

Set A = Z[v, v−1] and A = Q[v, v−1]. Then A is an integral domain
and A is a principal ideal domain, since it is a localization of the
polynomial ring Q[v]. Note that both A and A have field of fractions
Q(v). For a ∈ Z, t ∈ N we set

[

a

t

]

=

t
∏

s=1

va−s+1 − v−a+s−1

vs − v−s
.

By [Lu, 1.3.1(d)] this is an element of A. We set

[n] =

[

n

1

]

=
vn − v−n

v − v−1
(n ∈ Z)

and

[n]! = [1] · · · [n− 1] [n] (n ∈ N).

Then it follows that
[

a

t

]

=
[a]!

[t]! [a− t]!
for all 0 6 t 6 a.

1.5. Let π be a finite saturated subset of the poset X+ of dominant
weights. The generalized q-Schur algebra S(π) is the algebra (associa-
tive with 1) over Q(v) given by generators Ei, Fi (i ∈ I), 1λ (λ ∈ Wπ)
together with the relations

(a) 1λ1µ = δλµ1λ,
∑

λ∈Wπ 1λ = 1;

(b) EiFj − FjEi = δij
∑

λ∈Wπ[〈α
∨
i , λ〉]i1λ;

(c1) Ei1λ =

{

1λ+αi
Ei if λ+ αi ∈ Wπ

0 otherwise;
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(c2) Fi1λ =

{

1λ−αi
Fi if λ− αi ∈ Wπ

0 otherwise;

(c3) 1λEi =

{

Ei1λ−αi
if λ− αi ∈ Wπ

0 otherwise;

(c4) 1λFi =

{

Fi1λ+αi
if λ+ αi ∈ Wπ

0 otherwise;

(d1)

1−aij
∑

s=0

(−1)s
[

1− aij
s

]

i

E
1−aij−s

i EjE
s
i = 0 (i 6= j);

(d2)

1−aij
∑

s=0

(−1)s
[

1− aij
s

]

i

F
1−aij−s

i FjF
s
i = 0 (i 6= j)

for any i, j ∈ I and any λ, µ ∈ Wπ.

We note that the defining relations immediately imply that the gen-
erators Ei, Fi are nilpotent in S(π), for any i ∈ I. To see this, observe
that relation (c1) and the finiteness ofWπ implies the existence of some
natural number m such that Em

i 1µ = 0 for any µ ∈ Wπ, and hence
Em

i =
∑

µE
m
i 1µ = 0. The nilpotence of Fi is established similarly.

1.6. It is convenient to introduce additional generators 1µ for any
µ ∈ X , with the stipulation 1µ = 0 for any µ ∈ X such that µ /∈ Wπ.
With this convention, the defining relations 1.5(a)–(c) for S(π) may be
replaced by the following simplified version:

(a) 1λ1µ = δλµ1λ,
∑

λ∈X 1λ = 1;

(b) EiFj − FjEi = δij
∑

λ∈X [〈α
∨
i , λ〉]i1λ;

(c) Ei1λ = 1λ+αi
Ei; Fi1λ = 1λ−αi

Fi

holding for any λ, µ ∈ X , and i, j ∈ I. Notice that the sums in (a),
(b) are finite. Thus, S(π) is the algebra given by the generators Ei, Fi

(i ∈ I) and 1λ (λ ∈ X) subject to the relations 1.6(a), (b), (c) along
with 1.5(d1), (d2) and the extra relation 1λ = 0 for all λ /∈ Wπ.

Until further notice we fix π and write S for S(π). We introduce

quantized divided powers E
(a)
i = Ea

i /([a]
!
i), F

(a)
i = F a

i /([a]
!
i) for i ∈ I,

a > 0. (For a < 0 we set F
(a)
i = E

(a)
i = 0.) Let AS be theA-subalgebra

of S generated by the E
(a)
i and F

(b)
i , for i ∈ I and a, b > 0, along with

the idempotents 1µ for µ ∈ Wπ.
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There is a unique Q(v)-linear algebra anti-involution ι on S deter-
mined by the properties:

ι(xy) = ι(y)ι(x) for all x, y ∈ S,

ι(Ei) = Fi, ι(Fi) = Ei (any i ∈ I), and ι(1µ) = 1µ (any µ ∈ Wπ).

This is easily verified using the defining relations.

The following consequences of the defining relations will be needed
later. Note that the sums in parts (ii) and (iii) below are finite.

1.7. Lemma. Let S = S(π). For any a, b > 0, µ ∈ X, the following
identities hold in S:

(i) E
(a)
i 1µ = 1µ+aαi

E
(a)
i ; F

(b)
i 1µ = 1µ−bαi

F
(b)
i ;

(ii) E
(a)
i F

(b)
i 1µ =

∑

t>0

[

a−b+〈α∨

i , µ〉
t

]

i
F

(b−t)
i E

(a−t)
i 1µ ;

(iii) F
(b)
i E

(a)
i 1µ =

∑

t>0

[

b−a−〈α∨

i
, µ〉

t

]

i
E

(a−t)
i F

(b−t)
i 1µ.

By applying (i) to each term of (ii) and (iii) to commute the idempo-
tent to the middle of each product, and then replacing µ respectively
by −λ + bαi and λ − aαi, we obtain the following equivalent variants
of formulas (ii) and (iii):

(ii′) E
(a)
i 1−λF

(b)
i =

∑

t>0

[

a+b−〈α∨

i , λ〉
t

]

i
F

(b−t)
i 1−λ+(a+b−t)αi

E
(a−t)
i ;

(iii′) F
(b)
i 1λE

(a)
i =

∑

t>0

[

a+b−〈α∨

i
, λ〉

t

]

i
E

(a−t)
i 1λ−(a+b−t)αi

F
(b−t)
i .

Proof. Part (i) is an obvious consequence of relation 1.6(c) and the
definition of quantized divided powers.

We prove part (ii) by a double induction on a and b. First we observe
that (ii) is vacuously true in case one of a or b is zero, so we may assume
that both a and b are positive integers. Next one verifies by induction
on a that from relation 1.6(b) we have

(a) E
(a)
i Fi1µ = FiE

(a)
i 1µ + [a− 1 + 〈α∨

i , µ〉]iE
(a−1)
i 1µ

for all a > 0. This is elementary and left to the reader. A similar
induction on b shows that

(b) EiF
(b)
i 1µ = F

(b)
i Ei1µ + [1− b+ 〈α∨

i , µ〉]iF
(b−1)
i 1µ

for all b > 0. Now assume by induction that (ii) holds for some pair
a, b of positive integers. Multiplying on the right by Fi and using the
relation 1µFi = Fi1µ+αi

we obtain

E
(a)
i F

(b)
i Fi1µ+αi

=
∑

t>0

[

s−b

t

]

i
F

(b−t)
i E

(a−t)
i Fi1µ+αi
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where we have put s := a + 〈α∨
i , µ〉 for ease of notation. Now replace

µ by µ − αi and use (a) and the definition of the divided powers to
obtain

[b+ 1]iE
(a)
i F

(b+1)
i 1µ

=
∑

t>0

[

s−b−2
t

]

i
F

(b−t)
i

(

FiE
(a−t)
i 1µ + [s− 1− t]iE

(a−1−t)
i 1µ

)

=
∑

t>0

[

s−b−2
t

]

i
[b+ 1− t]iF

(b+1−t)
i E

(a−t)
i 1µ

+
∑

t>0

[

s−b−2
t

]

i
[s− 1− t]iF

(b−t)
i E

(a−1−t)
i 1µ

and by separating the first term in the first sum on the right hand side
this takes the form

[b+ 1]iE
(a)
i F

(b+1)
i 1µ = [b+ 1]iF

(b+1)
i E

(a)
i 1µ

+
∑

t>1

[

s−b−2
t

]

i
[b+ 1− t]iF

(b+1−t)
i E

(a−t)
i 1µ

+
∑

t>0

[

s−b−2
t

]

i
[s− 1− t]iF

(b−t)
i E

(a−1−t)
i 1µ .

By shifting the index of summation in the first sum above we obtain

[b+ 1]iE
(a)
i F

(b+1)
i 1µ = [b+ 1]iF

(b+1)
i E

(a)
i 1µ

+
∑

t>0

[

s−b−2
t+1

]

i
[b− t]iF

(b−t)
i E

(a−1−t)
i 1µ

+
∑

t>0

[

s−b−2
t

]

i
[s− 1− t]iF

(b−t)
i E

(a−1−t)
i 1µ .

Now we observe that by direct computation that
[

s−b−2
t+1

]

i
[b− t]i +

[

s−b−2
t

]

i
[s− 1− t]i = [b+ 1]i

[

s−b−1
t+1

]

i

and thus after dividing through by [b+ 1]i we obtain the equality

E
(a)
i F

(b+1)
i 1µ = F

(b+1)
i E

(a)
i 1µ +

∑

t>0

[

s−b−1
t+1

]

i
F

(b−t)
i E

(a−1−t)
i 1µ .

Upon shifting the index of summation again and recombining the first
term this becomes

E
(a)
i F

(b+1)
i 1µ =

∑

t>0

[

s−b−1
t

]

i
F

(b+1−t)
i E

(a−t)
i 1µ

which proves that (ii) holds for the pair a, b + 1. The computation
proving that (ii) for the pair a, b implies (ii) for the pair a + 1, b is
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similar to the computation given above (using (b) in place of (a)) so
we leave it to the reader.

Identity (iii) can be proved by a similar argument, but it is simpler
to notice that there is an algebra automorphism ω of S of order two
given on generators by

ω(Ei) = Fi, ω(Fi) = Ei, ω(1µ) = 1−µ

and that by applying the involution ω to identity (ii), interchanging
a and b, and then replacing −µ by µ, we obtain identity (iii). This
completes the proof. �

1.8. The orthogonal idempotent decomposition of the identity given
in defining relation 1.5(a) or its equivalent form 1.6(a) implies that if
M is a left S-module or a left AS-module and if N is a right S-module
or a right AS-module then there are direct sum decompositions of the
form

(a) M =
⊕

µ∈Wπ 1µM ; N =
⊕

µ∈Wπ N1µ.

We call 1µM and N1µ left and right weight spaces of M and N , respec-
tively, and refer to the above decompositions as left and right weight
space decompositions. Furthermore, if M is a S-bimodule or a AS-
bimodule then we have a finer direct sum decomposition of the form

(b) M =
⊕

µ,µ′∈Wπ 1µM1µ′ .

We call the subspaces 1µM1µ′ in this decomposition biweight spaces.
Elements of 1µM1µ′ are said to have biweight (µ, µ′). In particular, S
itself is a S-bimodule under left and right multiplication, and similarly
for AS, so S and AS have such a decomposition:

(c) S =
⊕

µ,µ′∈Wπ 1µS1µ′ ; AS =
⊕

µ,µ′∈Wπ 1µ(AS)1µ′

Put ZΠ =
∑

Zαi ⊆ X (the root lattice). We have another direct sum
decomposition

(d) S =
⊕

ν∈ZΠ Sν

defined by the requirements: SνSν′ ⊆ Sν+ν′, Ei ∈ Sαi
, Fi ∈ S−αi

, and
1µ ∈ S0. Putting ASν = AS ∩ Sν we also have

(e) AS =
⊕

ν∈ZΠ ASν .

Combining (d), (e) with the biweight space decomposition (c) we have
the finer decompositions

(f) S =
⊕

ν,µ,µ′ 1µSν1µ′; AS =
⊕

ν,µ,µ′ 1µ(ASν)1µ′

It is easy to see that in these decompositions 1µSν1µ′ = 0 and 1µ(ASν)1µ′ =
0 unless µ− µ′ = ν in X .
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Let S+ (respectively, S−) be the Q(v)-subalgebra of S generated by
the Ei (resp., the Fi) for i ∈ I. Let S0 be the Q(v)-subalgebra of S
generated by the 1µ for µ ∈ Wπ; this is the group algebra over Q(v)
of the abelian group {1µ : µ ∈ Wπ}. Let AS

+ (respectively, AS
−) be

the A-subalgebra of AS generated by all the E
(a)
i (resp., all the F

(b)
i )

for i ∈ I, a, b > 0. Let AS
0 be the A-subalgebra of S generated by the

1µ for µ ∈ Wπ.

We will refer to the following result as the triangular decomposition
of S and AS.

1.9. Lemma. Let S = S(π). We have S = S−S0S+ and AS =

AS
−
AS

0
AS

+. The same equalities hold if the three factors on the right
hand side are permuted in any order.

Proof. By the defining relations in 1.5 or 1.6 the algebra S is spanned
by elements of the form

(a) P = x1 · · ·xm1µ

where x1, . . . , xm ∈ {Ei, Fi : i ∈ I} and µ ∈ Wπ. For an element
P0 of such form, let d(P0) be the number of pairs (j, j′) such that
1 6 j 6 j′ 6 m and xj ∈ {Ei : i ∈ I}, xj′ ∈ {Fi : i ∈ I}. We claim that
P0 can be rewritten as a finite Q(v)-linear combination of elements of
the form (a) for which d = 0. This is proved by induction on d, using
the following consequences of the defining relations 1.5(b):

(b) EiFj = FjEi (i 6= j); EiFi1µ = FiEi1µ + [〈α∨
i , µ〉]i1µ.

Thus it follows that all elements of S can be expressed as linear com-
binations of products P of the form (a) with d(P ) = 0. Since elements
of the form (a) with d = 0 have all occurrences of Fj appearing before
any Ei, it follows that S = S−S+S0. To get the equality S = S+S−S0

just repeat the argument with the E’s and F ’s interchanged. Finally,
in any product of the form (a) with d(P ) = 0 we can use relation 1.5(c)
to commute the idempotent to the left of all the Ei’s and the right of all
the Fj ’s, so we obtain the equality S = S−S0S+. The other variations
are obtained similarly.

The corresponding claim for the integral forms now follows from the
definitions. �

1.10. Corollary. Let S = S(π). Suppose λ is maximal in π, with
respect to the dominance order E. Then S1λ = S−1λ and 1λS = 1λS

+.
Similarly, AS1λ = AS

−1λ and 1λ(AS) = 1λ(AS
+).

Proof. Since λ is maximal, it follows from defining relation 1.6(c) that
Ei1λ = 0 for any i ∈ I, so S+1λ = Q(v)1λ. Clearly S01λ = Q(v)1λ,
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so the first equality follows from the triangular decomposition S =
S−S0S+. The proof of the second equality is similar. The correspond-
ing results for integral forms follows from the definitions. �

1.11. Let N = Z>0 be the set of non-negative integers, and let NΠ
be the submonoid of ZΠ consisting of all linear combinations

∑

i νiαi

with coefficients νi ∈ N. Then

(a) S+ =
⊕

ν∈NΠ S+
ν ; S− =

⊕

ν∈NΠ S−
−ν

where for any ν =
∑

i νiαi ∈ NΠ, S+
ν is the Q(v)-subspace of S+

spanned by all monomials of the form Ei1Ei2 · · ·Eir such that, for each
i ∈ I, the number of occurrences of i in the sequence i1, i2, . . . , ir is νi
and similarly, S−

−ν is theQ(v)-subspace of S− spanned by all monomials
of the form Fi1Fi2 · · ·Fir such that, for each i ∈ I, the number of
occurrences of i in the sequence i1, i2, . . . , ir is νi. Obviously S+

ν and S−
−ν

are finite dimensional over Q(v), for each ν ∈ NΠ. Put AS
+
ν = AS∩S

+
ν

and AS
−
ν = AS ∩ S−

ν ; then it follows that

(b) AS
+ =

⊕

ν∈NΠ AS
+
ν ; AS

− =
⊕

ν∈NΠ AS
−
−ν .

1.12. Lemma. For any finite saturated subset π of X+ let S = S(π).
Then the algebra S is finite-dimensional over Q(v).

Proof. By the triangular decomposition, S = S−S0S+, so there is a
spanning set for S consisting of all elements of the form FA1µEB where
µ ∈ Wπ and

FA = Fi1 · · ·Fir , EB = Ej1 · · ·Ejs

for various finite sequences A = (i1, . . . , ir), B = (j1, . . . , js) of elements
of I. Here FA ∈ S−

ν and EB ∈ S+
ν′ for appropriate ν, ν ′ ∈ NΠ. But for

ν sufficiently large FA acts as zero on all 1µ for µ ∈ Wπ, hence is equal
to zero in S, and similarly, for ν sufficiently large EB is zero as well.
Thus there are only finitely many nonzero summands in 1.11(a), and
the result follows. �

1.13. Lemma. The algebra AS is free over A, and the natural map
Q(v)⊗A (AS) → S is an isomorphism of Q(v)-algebras. Similar state-
ments apply to S+, S− and to the subspaces S+

ν and S−
−ν appearing in

the decomposition 1.11(a).

Proof. Clearly AS is finitely generated and torsion free, hence free over
the principal ideal domain A. Since Q(v) is the field of fractions of A,
the natural map Q(v) ⊗A (AS) → S is injective. The surjectivity is
clear. The other cases are similar. �
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The lemma implies that an A-basis of AS is also a Q(v)-basis of S
and similarly for S+ and S−.

1.14. Suppose that M is a left S-module. Then M has weight space
decomposition M =

⊕

µ∈Wπ 1µM . From relations 1.6(c), (a) we see
that for any i ∈ I

(a) Ei(1µM) ⊆ 1µ+αi
M ; Fi(1µM) ⊆ 1µ−αi

M

for µ ∈ Wπ. So acting by Ei increases the weight by αi and acting by
Fi decreases the weight by αi. We also have

(b) 1µ′(1µM) = δµ,µ′1µM

for any µ, µ′ ∈ Wπ. We make the following definitions.

Definition. Let M be an S-module, for S = S(π).

(i) If λ in Wπ has the property that 1λM 6= 0 but 1µM = 0 for all
µ ⊲ λ, then we say that λ is a highest weight of M and we call any
nonzero element of 1λM a highest weight vector.

(ii) If 0 6= x0 ∈ M is a weight vector such that Ei · x0 = 0 for every
i ∈ I, then x0 is called a maximal vector of M .

Obviously a highest weight vector must be a maximal vector. If
M 6= 0 is a finite-dimensional S-module thenM has at least one highest
weight vector, and thus has a maximal vector. We wish to study the
submodules of M which are generated by a chosen maximal vector.

1.15. Lemma. Let S = S(π). Let x0 be a maximal vector of weight λ
in a finite-dimensional left S-module M , and put V = Sx0. Then:

(a) V is the Q(v)-span of elements of the form Fi1Fi2 · · ·Firx0 for
various finite sequences (i1, . . . , ir) (including the empty sequence) cho-
sen from I.

(b) If 1µV 6= 0 then µE λ, so x0 is a highest weight vector of V .

(c) dimQ(v) 1λV = 1.

(d) V is indecomposable, with a unique maximal submodule and a
corresponding unique simple quotient.

Proof. Part (a) follows from the triangular decomposition, which im-
plies that V = S−x0. Part (b) follows from part (a), part (c) is obvious,
and to get part (d), let V ′ be the sum of all proper submodules and
note that V ′ 6= V since no proper submodule contains x0. �

1.16. Corollary. Let S = S(π). Any simple left S-module has a unique
highest weight vector x0, up to scalar multiple.
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Proof. Suppose M is simple; then M is finite dimensional and thus has
a maximal vector. Any maximal vector necessarily generates M and is
a highest weight vector. Suppose that there are two maximal vectors,
of weight λ and λ′, respectively. Then by Lemma 1.15(b), we must
have λ′ E λ and λE λ′, so λ = λ′. But Lemma 1.15(c) forces the two
maximal vectors to be proportional. �

1.17. Inspired by prior work of Kahzdan and Lusztig and others, Gra-
ham and Lehrer in [GL] introduced the notion of a cellular algebra.
This is an algebra given by an explicit basis (called a cellular basis)
and an anti-involution, satisfying certain combinatorial properties. The
motivating examples include Hecke algebras in Type A and Brauer al-
gebras, but there are many other classes of examples.

In [KX1, Definition 3.2], [KX3, Definition 2.2] König and Xi gave
an equivalent, basis-free, definition of cellularity for finite-dimensional
algebras, as follows.

Definition (König and Xi). Let A be a finite-dimensional k-algebra,
where k is a field. Assume there is an anti-automorphism ι on A with
ι2 = id. A two-sided ideal J in A is called a cell ideal if ι(J) = J and
there exists a left ideal ∆ ⊂ J and an isomorphism of A-bimodules
ω : J → ∆⊗k ι(∆) making the following diagram commutative:

J

ι

��

ω
// ∆⊗k ι(∆)

x⊗y 7→ι(y)⊗ι(x)
��

J
ω

// ∆⊗k ι(∆)

The algebra A (with the anti-involution ι) is called cellular if there is
a vector space decomposition A = J ′

1 ⊕ J ′
2 ⊕ · · ·⊕ J ′

n (for some n) with
ι(J ′

j) = J ′
j for each j and such that setting Jj = J ′

1 ⊕ · · · ⊕ J ′
j gives

a chain of two-sided ideals of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A
(each of them fixed by ι) and for each j (j = 1, · · · , n), the quotient
J ′
j = Jj/Jj−1 is a cell ideal (with respect to the involution induced by

ι on the quotient) of A/Jj−1.

This will be needed in Section 3.

2. The rank one case

In this section we assume that the root datum has rank 1; i.e., there
is just one simple root α = αi, and single generators E = Ei, F = Fi

of the positive and negative parts. This implies that the Weyl group
W has order 2, with a single generator s = si. In order to simplify the
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notation in this section, we assume throughout that d = di = (α, α)/2
is equal to 1. The general case can be recovered simply by replacing v
by vd and q by qd throughout.

We wish to classify the simple representations of S = S(π) in this
case. This prepares the way for the classification of simple representa-
tions in higher ranks.

2.1. For any µ ∈ π, we denote by S[Dµ] the Q(v)-subspace of S

spanned by the collection of elements of the form

(a) F (b)1µ+cαE
(a) (a, b, c > 0).

We also denote by S[⊲µ] the Q(v)-subspace of S spanned by the col-
lection of elements of the form

(b) F (b)1µ+cαE
(a) (a, b > 0, c > 0).

Note that S[⊲µ] =
∑

µ′⊲µ S[Dµ′], and in case µ is a maximal element

of π (i.e., there exists no λ ∈ π such that λ⊲ µ) we have S[⊲µ] = (0).
We observe the following.

2.2. Lemma. For any µ ∈ π, both S[Dµ] and S[⊲µ] are two-sided ideals
of S. Hence the quotient S[Dµ]/S[⊲µ] is naturally an S-bimodule.

Proof. Put m := 〈α∨, λ〉. From Lemma 1.7 it follows by a routine
calculation that

E · F (b)1λE
(a) = [a+ 1]F (b)1λ+αE

(a+1) + [1− b+m]F (b−1)1λE
(a)

and from the definition of quantized divided powers it follows that

F · F (b)1λE
(a) = [b+ 1]F (b+1)1λE

(a)

for all a, b > 0. By applying the anti-involution ι to the formulas in
Lemma 1.7 we obtain similar formulas with the idempotent on the left
of each term, and it follows by calculations similar to the above that

F (b)1λE
(a) · F = [b+ 1]F (b+1)1λ+αE

(a) + [1− a+m]F (b)1λE
(a−1)

and

F (b)1λE
(a) · E = [a + 1]F (b)1λE

(a+1)

for all a, b > 0. Moreover, multiplying F (b)1λE
(a) on the left or right by

some idempotent 1µ either produces zero or gives the element F (b)1λE
(a)

back again. Since these equalities hold for arbitrary λ, the claims fol-
low. �
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2.3. Let λ ∈ π. Setting µ = s(λ), a = b = 〈α∨, λ〉 in Lemma 1.7(iii)
we obtain

(a) F (a)E(a)1s(λ) = 1s(λ)

which by Lemma 1.7(i) implies immediately that

(b) F (a)1λE
(a) = 1s(λ).

From this and the triangular decomposition (Lemma 1.9) it follows that
S is spanned by the set of all elements of the form F (a)1λE

(b) where
λ ∈ π, a, b > 0. In particular, if we fix λ and define Qλ to be the
subspace of S spanned by the nonzero products of the form F (a)1λE

(b)

(a, b > 0) then we have a vector space decomposition

(c) S =
⊕

λ∈π Qλ.

The set of nonzero products of the form F (a)1λE
(b) (a, b > 0) is linearly

independent, since the elements have distinct biweights, hence the set
is a basis for Qλ. This set is also a set of coset representatives for the
quotient space S[Dλ]/S[⊲λ].

Since S[Dλ] and S[⊲λ] are two-sided ideals in S, the quotient space
S[Dλ]/S[⊲λ] has an S-bimodule structure. For any λ ∈ π, we let
∆(λ) be the left S-submodule of S[Dλ]/S[⊲λ] generated by 1λ+S[⊲λ],
and let ∆♯(λ) be the right S-submodule of S[Dλ]/S[⊲λ] generated by
1λ + S[⊲λ]. For ease of notation, we put x0 := 1λ + S[⊲λ]; then we
have E · x0 = 0 = x0 · F .

2.4. Lemma. Put xt = F (t) · x0 ∈ ∆(λ) and x′
t = x0 · E

(t) ∈ ∆♯(λ),
for t > 0. For t < 0 put xt = 0. Then with m := 〈α∨, λ〉 we have
xt = 0 = x′

t for all t > m, and

F · xt = [t + 1] xt+1, E · xt = [m− (t− 1)] xt−1

x′
t · E = [t + 1] x′

t+1, x′
t · F = [m− (t− 1)] x′

t−1.

Thus {x0, . . . , xm} is a basis for ∆(λ) and {x′
0, . . . , x

′
m} is a basis for

∆♯(λ), and both ∆(λ) and ∆♯(λ) are simple S-modules.

Proof. The formulas are proved by elementary calculations similar to
those appearing in the proof of Lemma 2.2. They imply that ∆(λ)
and ∆♯(λ) are respectively generated, as S-modules, by xt and x′

t, for
any 0 6 t 6 m. The simplicity of ∆(λ) and ∆♯(λ) follows. Since
the elements x0, . . . , xm have distinct left weights, they are linearly
independent, and hence form a basis of ∆(λ). Similarly, the elements
x′
0, . . . , x

′
m form a basis for ∆♯(λ). �

2.5. Lemma. The natural map ∆(λ)⊗Q(v) ∆
♯(λ) → S[Dλ]/S[⊲λ], de-

fined by sending x⊗ x′ to xx′, is surjective.
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Proof. This is clear, since S[Dλ]/S[⊲λ] is spanned by the set of cosets
of the form F (b)1λE

(a) + S[⊲λ] such that a, b > 0. �

2.6. Proposition. In the rank one case, the algebra S = S(π) is
semisimple, and a complete set of isomorphism classes of simple S-
modules is given by {∆(λ) : λ ∈ π}.

Proof. By Lemma 2.5 and the decomposition 2.3(c) it follows that

dimS =
∑

λ∈π

dimS[Dλ]/S[⊲λ] 6
∑

λ∈π

(dim∆(λ))2

(all dimensions are over Q(v)). On the other hand, since the ∆(λ)
are pairwise non-isomorphic simple modules (indeed, no two of them
has the same highest weight), the standard theory of finite-dimensional
algebras implies that

dimS >
∑

λ∈π

(dim∆(λ))2.

It follows that
dimS =

∑

λ∈π

(dim∆(λ))2

and thus that S is semisimple, with simple modules as stated. �

2.7. From the above results it follows that the multiplication map
∆(λ) ⊗Q(v) ∆

♯(λ) → S[Dλ]/S[⊲λ] is actually an isomorphism of S-
bimodules, for each λ ∈ π. Moreover, the set

(a)
⊔

λ∈π{F
(b)1λE

(a) : 0 6 a, b 6 〈α∨, λ〉}

is a basis for S over Q(v). This basis is actually a cellular basis, in the
sense of Graham and Lehrer [GL].

It is interesting to compare this cellular basis to Lusztig’s canonical
basis in the rank 1 case. In order to make the comparison, let us
assume temporarily that X = Z = X∨ with α = 2 and α∨ = 1. Then
a saturated set of dominant weights is just a subset π of the positive
integers such that n ∈ π and n− 2 > 0 imply that n− 2 ∈ π. For any
n ∈ π, if a+ b > n then we have

(b) F (b)1nE
(a) =

∑

t>0

[

a+b−n

t

]

E(a−t)1n−2(a+b−t)F
(b−t).

This follows from Lemma 1.7 by an easy calculation. This shows
that for all a + b > n the element F (b)1nE

(a) is equal to the ele-
ment E(n−b)1−nF

(n−a) modulo terms in S[⊲n]. Notice that if we put
a′ = n − b, b′ = n − a then a′ + b′ 6 n. Thus, we obtain a different
basis of S of the form

(c)
⊔

n∈π{F
(b)1nE

(a) : a+ b 6 n} ∪ {E(a′)1−nF
(b′) : a′ + b′ 6 n}
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which has a unitriangular relation with the original basis. Note that
in (c) there is overlap between the two sets {F (b)1nE

(a) : a + b 6 n},
{E(a′)1nF

(b′) : a′ + b′ 6 n} since when a + b = n we have from (b) the
equality F (b)1nE

(a) = E(a)1−nF
(b). The basis in (c) is the canonical

basis; compare with [Lu, 29.4.3]. (One should recall that, by [D1], there

is a natural quotient map from the modified form U̇ of the quantized
enveloping algebra determined by the given root datum onto S(π),
taking generators onto generators.)

2.8. We now consider the issue of specialization, in the rank 1 case.
Recall the “integral” form AS of S, which by definition is the A-
subalgebra of S generated by all idempotents 1µ along with the divided
powers E(a), F (b) for a, b > 0. It is clear that the set in (a) above is
also a (cellular) A-basis for AS. Moreover, we define A∆(λ) to be the

AS-submodule of ∆(λ) generated by x0; then the A∆(λ) are the left
cell modules for AS. Notice that if we put m = 〈α∨, λ〉 as above
then A∆(λ) is the A-span of {x0, . . . , xm}, and this set is an A-basis
of A∆(λ). Furthermore, it follows by induction from the formulas in
Lemma 2.4 and the definitions that

(a) F (b) · xt =
[

t+b

b

]

xt+b , E(a) · xt =
[

m−t+a

a

]

xt−a

for any a, b, t > 0.

Now suppose that k is any field of characteristic zero, and fix a
nonzero element q ∈ k. We regard k as an A-algebra by means of the
algebra homomorphism A → k such that v → q. Then by the general
theory of cellular algebras given in [GL], the k-algebra

(b) Sq := k ⊗A (AS)

is again a cellular algebra, with cellular basis given by

(c)
⊔

λ∈π{1⊗ F (b)1λE
(a) : 0 6 a, b 6 〈α∨, λ〉}.

Moreover, the Sq-modules ∆q(λ) defined by

(d) ∆q(λ) := k ⊗A (A∆(λ))

for λ ∈ π are the left cell modules for Sq.

If q is a primitive lth root of unity, we put l′ = l if l is odd and
l′ = l/2 if l is even. We shall denote the images of the elements [n],
[n]!,

[

a

t

]

(defined in 1.4) under the map A → k by the corresponding

symbols [n]q, [n]
!
q,

[

a

t

]

q
. Then we have [l′]q = 0 and more generally

[nl′]q = 0 for any n > 0.
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2.9. Proposition. Assume the root datum has rank 1.

(a) If q ∈ k is not a root of unity then each ∆q(λ) is a simple Sq-
module, for any λ ∈ π, and thus Sq is semisimple. This also holds if
q = 1.

(b) If 1 6= q ∈ k is a primitive lth root of unity, put l′ = l if l is odd
and l′ = l/2 if l is even. If 0 6 〈α∨, λ〉 < l′ for λ ∈ π then ∆q(λ)
is simple as an Sq-module. Otherwise, write 1 + 〈α∨, λ〉 in the form
nl′ + r with 0 6 r < l′; then {1 ⊗ xt : r 6 t 6 〈α∨, λ〉 − r} spans
an Sq-submodule of ∆q(λ), and the corresponding quotient module is
simple as an Sq-module.

Proof. For convenience of notation, put m = 〈α∨, λ〉. From 2.8(b) we
see that

(1⊗ F (b)) · (1⊗ xt) =
[

t+b

b

]

q
(1⊗ xt+b) ,

(1⊗E(a)) · (1⊗ xt) =
[

m−t+a

a

]

q
(1⊗ xt−a)

for any a, b, t > 0.

In case q is not a root of unity, all the q-binomial coefficients above
are nonzero in k, so the assertions in part (a) follow, since it follows
that each basis vector 1 ⊗ xt of ∆q(λ) generates ∆q(λ). If q = 1 then
the q-binomial coefficients become ordinary binomial coefficients, and
the same conclusion holds.

So suppose that q 6= 1 is a primitive lth root of unity. Then the
simplicity of the ∆q(λ) for any λ such that 0 6 m < l′ follows by the
same argument as above.

Moreover, if m > l′ then one checks from the above formulas that
(1 ⊗ E(a)) · (1 ⊗ xr) = 0 for any a > 0, and similarly that (1 ⊗ F (b)) ·
(1⊗ xm−r) = 0 for any b > 0. This implies that the span of all 1 ⊗ xt

for r 6 t 6 m − r is an Sq-submodule of ∆q(λ). This submodule is,
in fact, the unique maximal submodule. Otherwise, there would be a
nonzero weight vector in ∆q(λ), different from any multiple of 1 ⊗ x0,
which is not in the submodule and which is killed by all 1 ⊗ E(a), for
a > 1, and inspection shows there are no such vectors. The simplicity
of the corresponding quotient follows. �

3. The general case

Now we return to the case of a general root datum. We concentrate in
this section on the rational form of S = S(π) for some fixed saturated
set π ⊂ X+, and leave consideration of what happens under specializa-
tion to the last section of the paper. We are going to extend many of
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the results of the preceding section to the general case. The argument
is nearly self-contained, but we do need two well known facts from the
representation theory of complex semisimple Lie algebras: the classi-
fication of the finite-dimensional simple modules, and Weyl’s theorem
on complete reducibility. We use no results from the established theory
of quantum groups.

3.1. Let si be the generating reflection in the Weyl group W cor-
responding to a simple root αi. For any fixed i ∈ I, let Si be the
subalgebra of S generated by Ei, Fi along with all 1λ for λ ∈ Wπ.
Then Si is a generalized q-Schur algebra of rank 1, since Wπ = Wiπi

where Wi = 〈si〉 = {1, si} and πi = {λ ∈ Wπ : 〈α∨
i , λ〉 > 0}. (Note

that πi is saturated with respect to a rank 1 root datum determined
by αi, α

∨
i .) Thus, any of the results proved in the rank 1 case may be

applied to Si. In particular, any simple left Si-module is generated by
an Si-maximal vector of weight λ ∈ Wπ, where 〈α∨

i , λ〉 > 0. (In this
case a maximal vector is just a vector killed by Ei.)

3.2. Proposition. Let S = S(π). If M is a simple left S-module then
the weight of a highest weight vector must be a dominant weight λ ∈ π.

Proof. Let x0 be a highest weight vector, of weight some λ ∈ Wπ. For
each i ∈ I we can restrict M to Si. Of course x0 is an Si-maximal
vector, so by Lemma 1.15 the Si-submodule it generates has a unique
simple quotient. But, by Proposition 2.6, Si is a semisimple algebra,
so in fact that submodule is already simple as a Si-module, and thus
〈α∨

i , λ〉 > 0. Since this holds for each i ∈ I, we have shown that λ is a
dominant weight. In other words, λ ∈ Wπ ∩X+ = π, as desired. �

We wish to classify the simple S-modules, by showing that for each
λ in π there exists a unique (up to isomorphism) simple S-module of
highest weight λ. The uniqueness part is easy to establish, as follows.

3.3. Lemma. Let S = S(π). Let L, L′ be two simple left S-modules,
each of highest weight λ, for some λ ∈ π. Then L is isomorphic to L′.

Proof. (Compare with the proof of Theorem A of [Hu, §20.3].) LetM =
L⊕ L′. Suppose that y0, y

′
0 are maximal vectors in L, L′ respectively.

The left weight of both y0, y
′
0 is λ. Put x0 = (y0, y

′
0). Then x0 is a

maximal vector in M , of left weight λ. Let N be the submodule of
M generated by x0. Lemma 1.15 implies that N has a unique simple
quotient. But the natural projections N → L, N → L′ are S-module
epimorphisms, so L ≃ L′, as desired. �
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It remains to establish the existence of a simple S-module of highest
weight λ for each λ ∈ π. The following result will enable us to construct
the needed simple modules.

3.4. Lemma. Let S = S(π). For each λ ∈ π we define ι-invariant
subspaces of S as follows:

S[⊲λ] =
∑

µ⊲λ S
−1µS

+; S[Dλ] =
∑

µDλ S
−1µS

+.

Then both S[⊲λ] and S[Dλ] are two sided ideals of S. We have S[⊲λ] ⊂
S[Dλ] and S[Dλ] ⊆ S[Dλ′] whenever λDλ′. Moreover, for any j, r we
have, modulo terms in S[⊲λ]

(a) Ej ·Fi1 . . . Fir1λ =
∑

δj,is[〈α
∨
j , λ−γs,r〉]jFi1 · · ·Fis−1

Fis+1
· · ·Fir1λ

and

(b) 1λEir . . . Ei1·Fj =
∑

δj,is[〈α
∨
j , λ−γs,r〉]j1λEir · · ·Eis+1

Eis−1
· · ·Ei1

where γs,r := αis+1
+ · · ·+ αir . (Both sums are over s.)

Proof. The proof is by a double induction. First assume that λ is
maximal in π. We establish (a) in case r = 1. From the defining
relations 1.6 it follows that

EjFi1λ = δj,i(FiEj1λ + [〈α∨
j , λ〉]j1λ)

for any i, j ∈ I. Since Ej1λ = 1λ+αj
Ej and since λ is maximal, it

follows that

EjFi1λ = δj,i(Fi1λ+αj
Ej + [〈α∨

j , λ〉]j1λ) = [〈α∨
j , λ〉]j1λ

which proves (a) in the case r = 1 and λ maximal. (Note that S[⊲λ] =
0 for maximal λ.) Assuming now that (a) holds for λ maximal and for
all words of length at most r, we have

Ej ·Fi1 . . . Fir+1
1λ = (Fi1Ej + δj,i1[〈α

∨
j , λ− γ1,r+1〉]j)Fi2 · · ·Fir+1

1λ

= Fi1Ej · Fi2 · · ·Fir+1
1λ + δj,i1[〈α

∨
j , λ− γ1,r+1〉]jFi2 · · ·Fir+1

1λ.

Expanding the sub-expression Ej · Fi2 · · ·Fir+1
1λ appearing in the first

term of the last equality above by the inductive hypothesis, we ob-
tain (a) in case λ is maximal. Now (b) follows by applying the anti-
involution ι to (a).

Still assuming that λ is maximal in π, let u = Fi1 . . . Fir1λEjs . . . Ej1 ∈
S[Dλ]. Then it follows from (a) and (b) that Ej · u ∈ S[Dλ] and
u · Fj ∈ S[Dλ] for any j ∈ I. It follows from the defining relations
1.5 that Fj · u, 1µ · u ∈ S[Dλ] and u · Ej , u · 1µ ∈ S[Dλ] for any j ∈ I,
µ ∈ Wπ. Thus S[Dλ] is a two-sided ideal of S.

Now we fix some λ which is not maximal, and assume that all as-
sertions have been established for all λ′ ⊲ λ. Then S[Dλ′] and S[⊲λ′]
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are two-sided ideals for every λ′ ⊲ λ. Thus S[⊲λ] =
∑

λ′⊲λ S[Dλ′]
is a subring of S. Furthermore, given any s ∈ S[⊲λ] there exist
sλ′ ∈ S[Dλ′] such that s =

∑

λ′⊲λ sλ′ . Thus as =
∑

λ′⊲λ asλ′ ∈ S[⊲λ]
and sa =

∑

λ′⊲λ sλ′a ∈ S[⊲λ], and S[⊲λ] is a two-sided ideal of S.

We can now repeat the induction on r in the first paragraph of the
proof to obtain (a) for λ, modulo terms in S[⊲λ], and then obtain (b)
by applying ι. It then follows from (a) and (b) that S[Dλ] is a two-sided
ideal of S, and the proof is complete. �

3.5. The modules ∆(λ), ∆♯(λ). For any λ ∈ π, we regard the quo-
tient M = S[Dλ]/S[⊲λ] as a left S-module. Note that x0 = 1λ+S[⊲λ]
is a maximal vector in M . Let ∆(λ) be the left submodule of M gen-
erated by x0. Clearly ∆(λ) 6= 0, since its generating maximal vector
is not zero. The maximal vector is a highest weight vector in ∆(λ) of
weight λ, so ∆(λ) has a unique simple quotient L(λ) of highest weight
λ.

We have now established that the set of isomorphism classes of sim-
ple left S-modules is given by {L(λ) : λ ∈ π}. This completes the
classification of simple S-modules.

For later use we define ∆♯(λ) to be the right S-submodule of M =
S[Dλ]/S[⊲λ] generated by x0.

As already noted, if λ is a maximal element in the poset π then
S[⊲λ] = 0. Thus S[Dλ] = S−1λS

+ and ∆(λ) is in this case just the
left ideal S1λ = S−1λ of S. In this special case, we can prove that
∆(λ) = S1λ is actually simple as an S-module.

3.6. Theorem. Let S = S(π). If λ is a maximal element in π (with
respect to the partial order E) then the left ideal ∆(λ) = S1λ is a simple
S-module of highest weight λ.

Proof. (Similar to Sections 5.12–5.15 of [Ja].) Put A = Q[v, v−1].

Let L(λ) be the simple quotient of ∆(λ). Clearly L(λ) is generated
by a highest weight vector of weight λ. Throughout the following ar-
gument, we let V be either ∆(λ) or L(λ). Then V = S−x0 where x0 is
a maximal vector in V , so V is the Q(v)-linear span of elements of the
form Fi1 . . . Firx0 for various finite sequences i = (i1, . . . , ir) of elements
in I. Put Fi = Fi1 . . . Fir for ease of notation, and write wt(i) =

∑

j αij .
Let AV be the AS-submodule of V generated by the maximal vector
x0. Then

AV =
∑

i

AFix0 and AVµ =
∑

wt(i)=λ−µ

AFix0
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for any µ ∈ Wπ. As A-modules, both AV and AVµ are finitely gener-
ated and torsion free. Hence both AV and AVµ, are free of finite rank
over A. Clearly AV =

∑

µ AVµ so we get

AV =
⊕

µ∈Wπ

AVµ.

Note that the natural map Q(v)⊗A (AVµ) → Vµ is an isomorphism, for
any µ ∈ Wπ. (Here we are writing Vµ for the weight space 1µV in V .)
It follows that a basis for AVµ over A is also a basis of Vµ over Q(v),
and thus

rkA AVµ = dimQ(v) Vµ (any µ ∈ Wπ).

We claim now that the A-module AV is stable under the action of
the Ej, Fj , and 1µ for any j ∈ I and any µ ∈ Wπ. This is obvious in
the case of the Fj and 1µ, since

Fj(Fi1 · · ·Firx0) ∈ VA and 1µ(Fi1 · · ·Firx0) = Fi1 · · ·Fir1µ+wt(i)x0

is zero if µ+ wt(i) 6= λ and is Fi1 · · ·Firx0 if µ+ wt(i) = λ. Moreover,
for the Ej we have by the defining relations 1.5 (b), (c) that

Ej(Fi1 · · ·Firx0) =
∑

16a6r;ia=j

Fi1 · · ·Fia−1

∑

µ∈Wπ

[〈α∨
j , µ〉]j1µFia+1

· · ·Firx0

and the claim follows by the preceding remarks and the observation
that [〈α∨

j , µ〉]j ∈ A for any µ ∈ Wπ, j ∈ I.

Now there is a unique homomorphism ϕ of Q-algebras mapping A =
Q[v, v−1] to C and satisfying ϕ(v) = 1. Regard C as an A-module via
ϕ, and put

V = C⊗A (AV ) and V µ = C⊗A (AVµ)

for any µ ∈ Wπ. Then we have the direct sum decomposition V =
⊕

µ V µ, where each V µ is a complex vector space with

dimC V µ = rkA(AVµ) = dimQ(v) Vµ.

The actions of Ei, Fi, and 1µ on VA yield linear endomorphisms of V
that we denote by ei, fi, and ιµ. We put

hi =
∑

µ∈Wπ〈α
∨
i , µ〉ιµ

for any i ∈ I.

We claim that the endomorphisms ei, fi, hi satisfy Serre’s relations
for the finite dimensional semisimple Lie algebra g defined by the Car-
tan matrix (〈α∨

i , αj〉)i,j∈I. Since the idempotent linear operators ιλ
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commute and are pairwise orthogonal, it follows that hi commutes
with hj; thus

[hi, hj ] = 0, any i, i ∈ I.

We have ϕ([a]i) = [a]v=1 = a for any integer a and any i ∈ I, so from
defining relations 1.5(b) for the Schur algebra S = S(π) we have

[ei, fj ] = δi,j
∑

µ∈Wπ〈α
∨
i , µ〉ιµ = hi.

Recalling the convention that 1µ = 0 for any µ /∈ Wπ we put also

ιµ = 0 for any µ /∈ Wπ. Then we can write hi =
∑

µ∈X〈α
∨
i , µ〉ιµ

(which is still a finite sum) and by defining relation 1.6(c) we have

[hi, ej ] = hiej − ejhi =
∑

µ∈X〈α
∨
i , µ〉ιµej −

∑

µ∈X〈α
∨
i , µ〉ejιµ

=
∑

µ∈X〈α
∨
i , µ〉ιµej −

∑

µ∈X〈α
∨
i , µ〉ιµ+αj

ej

and by replacing µ by µ− αj in the second sum we obtain

[hi, ej] =
∑

µ∈X〈α
∨
i , µ〉ιµej −

∑

µ∈X〈α
∨
i , µ− αj〉ιµej

=
∑

µ∈X〈α
∨
i , αj〉ιµej

= 〈α∨
i , αj〉ej

where we have used the second part of relation 1.6(a) to get the last
line. A similar calculation proves that

[hi, fj] = −〈α∨
i , αj〉fj.

Finally, we have
ϕ
([

a

n

]

i

)

=
[

a

n

]

v=1
=

(

a

n

)

for any integers a, n with n > 0. Thus relations 1.5 (d1) and (d2) imply
that

1−aij
∑

s=0

(−1)s
(

1−aij
s

)

e
1−aij−s

i eje
s
i = 0 (i 6= j);

1−aij
∑

s=0

(−1)s
(

1−aij
s

)

f
1−aij−s

i fjf
s
i = 0 (i 6= j)

where aij = 〈α∨
i , αj〉. Thus the claim is proved.

Now let xi, yi, hi (i ∈ I) be a Chevalley system of generators for the
semisimple Lie algebra g. Then by the claim of the preceding paragraph
it follows that the map g → gl(V ) given by xi → ei, yi → fi, hi → hi

is a homomorphism of Lie algebras, so V is a g-module.

All of the preceding discussion applies equally well to V = L(λ) or
V = ∆(λ) = S1λ. In either case we now see easily that V is a simple
g-module of highest weight λ. This follows from Weyl’s theorem on



24 STEPHEN DOTY AND ANTHONY GIAQUINTO

complete reducibility of finite dimensional representations of semisim-
ple Lie algebras, which implies that V is completely reducible, and the
observation that V is (in both cases under consideration) generated by
a maximal vector, and hence has a unique simple quotient.

It follows that the weight space dimensions in V are given by Weyl’s
character formula, in both cases V = L(λ) and V = ∆(λ). In particu-
lar, this shows that

dimQ(v) L(λ) = dimQ(v) ∆(λ).

Since L(λ) is a homomorphic image of ∆(λ), it follows that L(λ) =
∆(λ) and we have obtained the result. �

Note that it follows immediately from the preceding theorem that
1λS

+ = ι(S−1λ) is a simple right ideal in S, for any maximal element
λ in π.

3.7. We now utilize the anti-involution ι in order to define a bilinear
form on ∆(µ), for any µ in π.1 Put x0 = 1µ+S[⊲µ] in the left S-module
M = S[Dµ]/S[⊲µ]. By definition, ∆(µ) is the left submodule generated
by x0. This is spanned by various elements of the form FAx0, where
FA = Fa1 · · ·Far for some finite sequence A = (a1, . . . , ar) of elements
of I. If FBx0, B = (b1, . . . , bs), is another such element then

(a) ι(FB) · (FAx0) ∈ 1µ−wt(A)+wt(B)∆(µ)

since acting on the left by some Ej raises the left weight by αj . Here
we define wt(A) =

∑r
j=1 αaj and wt(B) =

∑s
j=1 αbj . Hence it follows

that

(b) 1µι(FB) · (FAx0) = 1µι(FB)FA1µ + S[⊲µ] ∈ 1µ∆(µ)

is zero unless wt(A) = wt(B). It follows that in either case there must
be some scalar cA,B ∈ Q(v) (necessarily zero if wt(A) 6= wt(B)) such
that

(c) 1µι(FB)FA1µ = cA,B 1µ (mod S[⊲µ]).

Now the promised bilinear form ϕµ : ∆(µ) × ∆(µ) → Q(v) is defined
by setting

(d) ϕµ(FAx0, FBx0) = cA,B

and extending bilinearly. We immediately record the following impor-
tant properties of the bilinear form.

1One might prefer to define a bilinear pairing between ∆(µ) and ∆♯(µ) instead.
With that approach, which is equally natural, the use of ι is avoided.
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3.8. Lemma. Let µ ∈ π. For any x, y ∈ ∆(µ) we have:

(a) ϕµ(x, y) = ϕµ(y, x);

(b) ϕµ(u x, y) = ϕµ(x, ι(u) y), for any u ∈ S.

Proof. (a) Applying the anti-involution ι to equation 3.7(c) proves that
cA,B = cB,A and part (a) follows.

(b) This follows from the calculation

1µ ι(FB) uFA 1µ = 1µ ι(FB) ι
2(u)FA 1µ = 1µ ι(ι(u)FB)FA 1µ

which holds modulo S[Dµ]. �

The preceding lemma implies that the radical of the bilinear form

radϕµ = {x ∈ ∆(µ) : ϕµ(x, y) = 0, for all y ∈ ∆(µ)}

is an S-submodule of ∆(µ). Since ϕµ(x0, x0) = 1, we see that this
submodule is proper, hence contained in the module theoretic radical
of ∆(µ). By Theorem 3.6 we conclude that when λ ∈ π is a maximal
element, then the radical of ϕλ must be zero. In other words, the form
ϕλ is nondegenerate, for any λ maximal in π. (We will soon show that
in fact ϕµ is nondegenerate for any µ ∈ π.)

3.9. Theorem. Let S = S(π). If λ is maximal in π then the natural
multiplication map S1λ ⊗Q(v) 1λS → S1λS is an isomorphism of S-
bimodules.

Proof. The multiplication map m : S1λ ⊗Q(v) 1λS → S1λS is clearly
a surjective homomorphism of S-bimodules, so we only need to prove
injectivity. We fix bases

{x1λ : x ∈ S−} and {1λy : y ∈ S+}

for S1λ and 1λS, respectively. Then the set of tensors {x1λ ⊗ 1λy} is
a basis for S1λ ⊗Q(v) 1λS, so it suffices to show that the corresponding
set of images {x1λy} is linearly independent over Q(v). Assume that

0 =
∑

x,y cx,y x1λy

where the sum is taken over the set of pairs (x, y) such that x and y
independently range over the above basis elements. Let {x′1λ} be the
dual basis to {x1λ} with respect to the bilinear form ϕλ, defined by
the requirement ϕλ(x

′1λ, x1λ) = δx, x′.

Fix some z such that z1λ is one of the above basis elements of S1λ.
Then by left multiplication by 1λι(z

′) we obtain

0 =
∑

x,y cx,y 1λι(z
′)x1λy =

∑

x,y cx,y δx,z1λy =
∑

y cz,y 1λy
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and by linear independence of the {1λy} it follows that cz,y = 0 for any
y. Since z was arbitrary, this proves the desired linear independence,
and thus the result. �

Now we fix some maximal element λ ∈ π and set π′ = π − {λ} and
S′ = S(π′). Note that π′ is again saturated. It is clear from the defining
relations in 1.6 that the kernel of the natural map S → S′ is the two
sided ideal generated by all idempotents 1µ such that µ ∈ Wλ. In fact,
this ideal is generated by a single element.

3.10. Lemma. Let S = S(π). Let λ be a maximal element in π, and
set π′ = π − {λ}. Then the natural quotient map S → S′ := S(π′) has
kernel S1λS.

Proof. Comparing the defining presentations for S and S′ observe that
the kernel of the natural quotient map S → S′ is generated by the set
of idempotents of the form 1w(λ) for w ∈ W . Clearly, the ideal S1λS is
contained in the kernel. On the other hand, we claim that Lemma 1.7
implies that each 1w(λ) (for any w ∈ W ) lies within S1λS, which gives
the opposite inclusion and proves the result.

It remains to prove the claim. This is done by induction on the
length of w. If w = si is a simple reflection then by putting µ = si(λ)
and setting a = b = 〈α∨

i , λ〉 in part (iii) of Lemma 1.7 we see that

F
(a)
i E

(a)
i 1si(λ) = 1si(λ)

since Fi1si(λ) = 0 because the weight si(λ) is extremal in the αi direc-

tion. Since E
(a)
i 1si(λ) = E

(a)
i 1λ−aαi

= 1λE
(a)
i by part (i) of Lemma 1.7,

we obtain the equality

F
(a)
i 1λE

(a)
i = 1si(λ)

which proves the claim in case w = si has length 1.

Now let w ∈ W have length at least 2, and assume the claim for
elements of length strictly less than the length of w. We may write
w in the form w = siw

′ for some w′ ∈ W such that ℓ(w′) < ℓ(w).
By induction 1w′(λ) ∈ S1λS. Now take µ = w(λ) and set a = b =
〈α∨

i , w
′(λ)〉 in part (iii) of Lemma 1.7. Similar to the above, we get

F
(a)
i E

(a)
i 1w(λ) = 1w(λ)

since w(λ) is extremal in the αi direction. Then again by part (i) of

Lemma 1.7 we have E
(a)
i 1w(λ) = E

(a)
i 1w′(λ)−aαi

= 1w′(λ)E
(a)
i , so

F
(a)
i 1w′(λ)E

(a)
i = 1w(λ).
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Since 1w′(λ) ∈ S1λS it follows that 1w(λ) ∈ S1λS, as desired. This
proves the claim. �

We find it convenient to use König and Xi’s definition of cellularity
(see 1.17) in the proof of the next result.

3.11. Theorem. For any finite saturated set π the algebra S = S(π)
is cellular with respect to the anti-involution ι, with defining cell chain
given by {S[Dµ] : µ ∈ π} partially ordered by set inclusion.

Proof. It follows by Theorem 3.9 that the ideal S1λS is a cell ideal in
S, in the sense of König and Xi, for any maximal λ ∈ π.

If π = {λ} is a singleton set, the result now follows. Otherwise, pick
some maximal element λ in π and put π′ = π−{λ} and S′ = S(π′). By
induction on the cardinality of the finite set π we may assume that S′ is
cellular with respect to ι and the defining cell chain given by the ideals
S′[Dµ] (µ ∈ π′) partially ordered by set inclusions. Let p : S → S′ be
the natural quotient map. It is easily checked that p carries an ideal
S[Dµ] onto S′[Dµ] for any µ ∈ π′, and of course by Lemma 3.10 the
kernel of p is S1λS. It follows that by adjoining the cell ideal S1λS to
the preimage of the defining cell chain in S′ yields a cell chain in S,
and the result follows. �

We will now give three corollaries to the above result.

3.12. Corollary. For any finite saturated π, the generalized q-Schur
algebra S = S(π) is quasihereditary.

Proof. According to [KX2, Theorem 1.1] (see also [KX3, Theorem 3.3]),
a cellular algebra over a field is quasihereditary if and only if the number
of isomorphism classes of simple modules is the same as the length of
some defining cell chain. Since this holds in our situation, the result
follows. �

3.13. Corollary. For any finite saturated π, the algebra S = S(π) is
semisimple. We have L(µ) = ∆(µ) for each µ ∈ π; i.e., a complete set
of isomorphism classes of simple left S-modules is given by {∆(µ) : µ ∈
π}. The bilinear form ϕµ is nondegenerate for each µ ∈ π.

Proof. For each µ ∈ π there is some saturated subset π′ of π such
that µ is maximal in π′. Indeed, we can take π′ = {µ′ ∈ π : µ D µ′}.
Now there is a surjective quotient map pπ,π′ : S(π) → S(π′) sending
generators Ei → Ei, Fi → Fi, and 1µ′ → 1µ′ for µ′ ∈ Wπ′ with 1µ′ → 0
for all µ′ /∈ Wπ′. By Theorem 3.6 the left ideal S(π′)1µ is simple
as an S(π′)-module, hence is simple when regarded as an S-module,
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via the map pπ,π′. As an S-module, we have an isomorphism between
S(π′)1µ and ∆(µ) which is induced by the map pπ,π′, so ∆(µ) is simple
as an S-module. The semisimplicity of S now follows from [GL, (3.8)
Theorem]. �

3.14. Corollary. dimQ(v) S(π) =
∑

µ∈π

(

dimQ(v) ∆(µ)
)2
.

Proof. This follows easily from Corollary 3.13 and the standard theory
of semisimple algebras. �

The following extension of Theorem 3.9 can now be obtained.

3.15. Theorem. Let S = S(π) and let µ ∈ π. Then the natural multi-
plication map ∆♯(µ)⊗Q(v) ∆(µ) → S[Dµ]/S[⊲µ] is an isomorphism of
S-bimodules.

Proof. This follows from the nondegeneracy of the bilinear form ϕµ,
which implies the multiplication map is injective. The surjectivity of
this map is clear. �

3.16. We use the preceding result to inductively build a cellular basis
of S = S(π), for any π. For each µ ∈ π, let S′ = S(π′) where π′ =
{µ′ ∈ X+ : µ′ E µ}. We choose any basis

(a) B−(µ) = {FA1µ}A

for the simple left ideal S′1µ = S′−1µ, where we write

(b) FA = Fi1Fi2 · · ·Fir for any sequence A = (i1, i2, . . . , ir) over I.

Write B+(µ) = ι(B−(µ)); this is a basis of the simple right ideal 1µS
′,

and we have B+(µ) = {1µEA}A where

(c) EA = EirEir−1
· · ·Ei1 for any sequence A = (i1, i2, . . . , ir) over I.

According to Theorem 3.9 the set of products

(d) B(λ) = {xy : x ∈ B−(µ), y ∈ B+(µ)} = {FA1µEA′}A,A′

is a basis for the two sided ideal S′1µS
′ of S′. In this basis, (A,A′)

range over all pairs of sequences indexing the basis of S′1µ. By abuse
of notation, we shall also denote by B(µ) the set of preimages of these
elements under the quotient map pπ,π′. Note that there is a canonical
choice for each of these preimages, expressed as the “same” product in
S that was used to define them in S′.

Having fixed a basis B(µ) as above for each µ ∈ π, we put

(e) Bπ =
⊔

µ∈π B(µ) =
⊔

µ∈π{FA1µEA′}.
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We note that, for any µ ∈ π, it follows by induction that the set
⊔

µ′DµB(µ′) =
⊔

µ′Dµ{FA1µEA′} is a basis for the ideal S[Dµ], and

moreover the set
⊔

µ′⊲µB(µ′) =
⊔

µ′⊲µ{FA1µEA′} is a basis for the

ideal S[⊲µ]. In particular, Bπ is a basis for S.

3.17. Theorem. For any π, the set Bπ defined above is a cellular Q(v)-
basis of S = S(π), in the sense of Graham and Lehrer [GL].

Proof. One easily sees that ι(FA1µEA′) = FA′1µEA for all µ and all
A,A′. According to the definition in [GL], we need only show that for
any x ∈ S, µ ∈ π, and A,A′ we have

xFA1µEA′ ≡
∑

C

rx(C,A)FC1µEA′ (mod S[⊲µ])

where rx(C,A) ∈ Q(v) is independent of A′ and where the index C
ranges over the same set of sequences as A does in the definition of
B(µ).

By the triangular decomposition, we may express x in the form

x =
∑

λ,D,D′ rλ,D,D′ FD1λED′

where rλ,D,D′ ∈ Q(v). Note that FD1λED′ acts as zero on FA1µEA′

unless the left weight of FA1µ is equal to the right weight of FD1λED′.
Now using the defining relations 1.5 (a), (b), (c) repeatedly we can
rewrite any nonzero product FD1λED′ · FA1µ as a linear combination
of elements of the form FD1λFGEG′1µ and then by multiplying on the
right by EA′ and combining the FD with the FG we obtain the desired
independence statement for the coefficients. �

3.18. Remark. It is easy to check at this point that the left and right
S-modules ∆(µ) and ∆♯(µ) (for µ ∈ π) are in fact isomorphic to the
left and right cell modules as defined in [GL].

4. Specialization

We are now ready to study k-forms of generalized q-Schur algebras,
over an arbitrary field k of characteristic zero, depending on a chosen
parameter q ∈ k×. (We denote by k× the multiplicative group of
nonzero elements of k.) Given any such q, we regard k as an A-algebra
by means of the canonical algebra homomorphism A → k, given by
sending v to q. We continue to fix a saturated subset π of X+ and
put S = S(π) as above. The algebras Sq are q-deformations of the
generalized Schur algebras introduced in [Do1].
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4.1. In order to construct a cellular basis for the “integral” form AS,
we assume that λ is a maximal element of π and choose an arbitrary
A-basis B

−
π (λ) of the left ideal (AS

−)1λ which is also a Q(v)-basis
of S1λ. The existence of such a basis was established in the proof of
Theorem 3.6. Similarly, we choose an arbitrary A-basis B

+
π (λ) of the

right ideal 1λ(AS
+) which is a Q(v)-basis of 1λS

+. (One could take
B

+
π (λ) = {ι(x) : x ∈ B

−
π (λ)}, for instance.) Putting

(a) Bπ(λ) = B
−
π (λ)B

+
π (λ) = {xy : x ∈ B

−
π (λ), y ∈ B

+
π (λ)}

gives an A-basis of the two sided ideal (AS)1λ(AS) which is also a
Q(v)-basis of S1λS.

We may assume by induction that a cellular basis Bπ′ for the algebra

AS
′ has already been constructed, where S′ = S(π−{λ}). By adjoining

the set Bπ(λ) to that basis (regarded as a subset of AS by means of
the canonical quotient map AS → AS

′) we obtain the desired cellular
basis Bπ of AS. By construction we have Bπ = ⊔µ∈πBπ(µ).

For any µ ∈ π, let A∆(µ) be the AS-submodule of ∆(λ) with basis
B

−
π (µ). Similarly, let A∆

♯(µ) be the right AS-submodule of the right
module ∆♯(λ) with basis B

+
π (µ). These are the left and right cell

modules for AS.

4.2. Now we set Sq = k ⊗A (AS). This can also be written as Sq(π)
if the indexing set π needs to be made explicit. This is the generalized
q-Schur algebra specialized at 0 6= q ∈ k×. We write Bπ,q for the set
of 1 ⊗ b as b ranges over Bπ, with notations B

−
π,q(µ), B

+
π,q(µ), and

Bπ,q(µ) defined similarly. We shall identify a basis element b of Bπ

with its image 1⊗ b in Bπ,q. We also write ι for the anti-involution on
Sq induced by ι on AS. We set

(a) ∆q(µ) = k ⊗A (A∆(µ)); ∆♯
q(µ) = k ⊗A (A∆

♯(µ)).

These are left and right modules for Sq, obtained by specializing v to
q. They have k-bases B

−
π,q(µ) and B

+
π,q(µ), respectively.

4.3. Proposition. For any field k of characteristic zero, and any spe-
cialization v 7→ q ∈ k×, the algebra Sq = Sq(π) is a cellular algebra
over k, with anti-involution ι and cellular basis Bπ,q = ⊔µ∈πBπ,q(µ).
The left and right cell modules for Sq are the ∆q(µ), ∆

♯
q(µ) for µ ∈ π.

Proof. This is [GL, (1.8)], which is just the observation that cellularity
is compatible with specialization. �
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4.4. We may now construct the simple Sq-modules, following Graham
and Lehrer. The bilinear form ϕµ on ∆(µ) constructed in 3.7 induces
a corresponding bilinear form, which we shall denote by ϕq

µ, on the cell
module ∆q(µ). In general this form is no longer nondegenerate. How-
ever, by considering the value ϕq

µ(x0, x0) where x0 is the basis element
of B

−
π,q(µ) of highest weight, it is clear that ϕ

q
µ 6= 0 for each µ ∈ π.

Let radq(µ) be the radical of the form; radq(µ) is the set of x in
∆q(µ) such that ϕq

µ(x, y) = 0 for all y ∈ ∆q(µ). In [GL, (3.2)] it is
proved that radq(µ) coincides with the unique maximal submodule of
∆q(µ), and thus the quotient

(a) Lq(µ) := ∆q(µ)/ radq(µ)

is a simple (in fact absolutely simple) Sq-module of highest weight µ.
By [GL, (3.4) and (3.10)] we immediately obtain our main result.

4.5.Theorem. For any field k of characteristic zero, any specialization
v 7→ q ∈ k×, and any saturated set π put Sq = Sq(π). Then:

(a) The algebra Sq is quasihereditary with respect to the ordering on
simple modules induced by the ordering E on π. The set of standard
modules is {∆q(µ) : µ ∈ π}.

(b) The set {Lq(µ) : µ ∈ π} is a complete set of isomorphism classes
of simple Sq-modules.

We have the following easy application of the cellular structure of
Sq. The same result should hold in greater generality; actually it is
known to hold in case q is not a root of unity.

4.6. Corollary. If q is transcendental then Lq(µ) = ∆q(µ) for each
µ ∈ π and hence Sq is a semisimple algebra. In particular, any finite
dimensional Sq-module is completely reducible.

Proof. For the bilinear form ϕµ on A∆(µ) and for basis elements x, y ∈
B

−(µ), the value of ϕµ(x, y) is an element of A = Q[v, v−1]. Thus
the determinant of ϕµ is a nonzero element f(v) of Q[v, v−1], and the
determinant of the corresponding form ϕq

µ on ∆q(µ) is the element f(q)
of k obtained by replacing v by q. This is a polynomial in q and q−1

with rational coefficients. Any such polynomial must be nonzero since
q is transcendental. Hence ϕq

µ is nondegenerate and Lq(µ) = ∆q(µ).
Since this holds for every µ ∈ π, by [GL, (3.8)] it follows that Sq is a
semisimple algebra, as desired. �

4.7. We write M∗ for the linear dual space Homk(M, k) of a given
k-vector space M . If M is a left Sq-module, then M∗ is naturally a
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right Sq-module, with x ∈ Sq acting on f ∈ M∗ by (f ·x)(m) = f(xm),
for any m ∈ M . Similarly, the dual (M ♯)∗ of a right Sq-module M ♯

is naturally a left Sq-module, with x ∈ Sq acting on f ∈ (M ♯)∗ by
(x · f)(m) = f(mx), for any m ∈ M ♯. In particular, by applying these
constructions to the left and right cell modules ∆q(λ), ∆

♯
q(λ) we obtain

the Sq-modules

(a) ∇♯
q(λ) := ∆q(λ)

∗; ∇q(λ) := ∆♯
q(λ)

∗.

Note that ∇♯
q(λ) is a right Sq-module and ∇q(λ) a left one. For each

λ ∈ π, there is a well-defined homomorphism θλ of Sq-modules

(b) θλ : ∆q(λ) → ∇q(λ).

It suffices to define θλ on the highest weight vector x0 ∈ B
−
π,q(λ), since

∆q(λ) is generated by x0 as an Sq-module. Notice that ι(x0) is the
highest weight vector of ∆♯(λ). (In case λ is maximal in π we have
x0 = 1λ = ι(x0).) Let f0 ∈ ∆♯

q(λ)
∗ be the linear functional such that

f0(ι(x0)) = 1 and f0(ι(x0)e) = 0 for every 1 6= e ∈ S+
q such that e is

the image of some element of AS
+
ν where ν 6= 0; see the decomposition

1.11(b). Then f0 is a highest weight vector of ∇q(λ) (of weight λ)
which is killed by any Ei, and we define θλ(x0) = f0. The image of θλ
is the unique simple submodule of ∇q(λ) and its kernel is the radical
of ∆q(λ).

The duality just discussed may be formalized as a covariant functor
M 7→ M◦ from left Sq-modules to left Sq-modules, where by definition
M◦ = (M ♯)∗ and M ♯ is the right Sq-module which is equal to M as
a vector space, but turned into a right module by twisting the given
action by the anti-involution ι. Any quasihereditary algebra has a
“costandard” module corresponding to each standard module; see e.g.,
[DR], [Xi] or [Do4, Appendix]. In the present context ∇q(λ) = ∆q(λ)

◦

is the costandard module corresponding to ∆q(λ).

This duality fixes the simple modules and interchanges projectives
and injectives: Lq(µ)

◦ ≃ Lq(µ) and Pq(µ)
◦ ≃ Eq(µ) for any µ ∈ π,

where Pq(µ) is the projective cover, and Eq(µ) the injective envelope,
of Lq(µ). We note that ∆q(µ) is the largest factor module of Pq(µ)
with composition factors of the form Lq(µ

′) for µ′ E µ, and ∇q(µ) is
the largest submodule of Eq(µ) with composition factors of the form
Lq(µ

′) for µ′ E µ.

4.8. Let F(∆) be the full subcategory of the category of finite di-
mensional left Sq-modules consisting of the finite dimensional left Sq-
modules M admitting a ∆-filtration. By definition, a ∆-filtration of
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M is a series of submodules

0 = M0 ⊆ M1 ⊆ · · ·Mr−1 ⊆ Mr = M

such that each successive subquotient Mj/Mj−1 is isomorphic to some
∆q(µj). Dually, we have the category F(∇) defined similarly with ∇
in place of ∆. For a module M ∈ F(∆) we let (M : ∆q(µ)) denote
the number of subquotients in a ∆-filtration which are isomorphic to
∆q(µ), and similarly let (M : ∇q(µ)) denote the number of subquotients
in a ∇-filtration which are isomorphic to ∇q(µ), for any M ∈ F(∇).
(These numbers are independent of the choice of filtration.) We also
denote by [M : Lq(µ)] the multiplicity of Lq(µ) in a composition series
of M .

The fact that Sq is quasihereditary immediately implies a number
of important basic properties, some of which we list below (see [Do4,
Appendix]):

(1) Sq has finite global dimension.
(2) For any µ ∈ π, EndSq

(∆q(µ)) ≃ k and EndSq
(∇q(µ)) ≃ k.

(3) Pq(µ) ∈ F(∆), Eq(µ) ∈ F(∇), (Pq(µ) : ∆q(λ)) = [∇q(λ) : Lq(µ)],
and (Eq(µ) : ∇q(λ)) = [∆q(λ) : Lq(µ)], for any λ, µ ∈ π.

(4) Eq(µ)/∇q(µ) ∈ F(∇), and if (Eq(µ)/∇q(µ) : ∇q(λ)) 6= 0 for
λ, µ ∈ π then λ⊲ µ.

(5) For a finite dimensional Sq-module M and any µ ∈ π, if either
of the groups Ext1Sq

(∆q(µ),M) or Ext1Sq
(M,∇q(µ)) is not zero,

then there exists some µ′ ∈ π such that [M : Lq(µ
′)] 6= 0 and

µ′ ⊲ µ.
(6) For M ∈ F(∆) and N ∈ F(∇) the k-dimension of ExtjSq

(M,N)

is
∑

λ∈π(M : ∆q(λ))(N : ∇q(λ)) if j = 0 and is 0 otherwise.
Moreover, we have

(M : ∆q(λ)) = dimk HomSq
(M,∇q(λ)),

(N : ∇q(λ)) = dimk HomSq
(∆q(λ), N).

(7) A finite dimensional Sq-module M belongs to F(∆) if and only
if Ext1Sq

(M,∇q(µ)) = 0 for all µ ∈ π, and belongs to F(∇) if

and only if Ext1Sq
(∆q(µ),M) = 0 for all µ ∈ π.

(8) Given a short exact sequence 0 → M ′ → M → M ′′ → 0 of finite
dimensional Sq-modules, if M ′,M ∈ F(∇) then M ′′ ∈ F(∇),
and if M,M ′′ ∈ F(∆) then M ′ ∈ F(∆).

(9) If M belongs to F(∆) then any direct summand of M also be-
longs to F(∆); if M belongs to F(∇) then any direct summand
of M also belongs to F(∇).
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(10) For λ, µ ∈ π, ExtiSq
(∆q(λ),∇q(µ)) ≃

{

k if i = 0 and λ = µ

0 otherwise.
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