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LOCALLY DIVERGENT ORBITS ON HILBERT

MODULAR SPACES AND MARGULIS CONJECTURES

GEORGE TOMANOV

Abstract. We describe the closures of locally divergent orbits
under the action of tori on Hilbert modular spaces of rank r ≥ 2.
In particular, we prove that if D is a maximal R-split torus acting
on a real Hilbert modular space then every locally divergent non-
closed orbit is dense for r > 2 and its closure is a finite union of tori
orbits for r = 2. Our results confirm an orbit rigidity conjecture
of Margulis in all cases except for (i) r = 2 and, (ii) r > 2 and the
Hilbert modular space corresponds to a CM-field; in the cases (i)
and (ii) our results contradict the conjecture. Moreover, we show
that the measure counterpart of the conjecture is not valid.

As an application, we describe the set of values at integral points
of collections of non-proportional, split, binary, quadratic forms
over number fields.

1. Introduction

During the last decade the problems of the descriptions of orbit
closures and invariant measures for actions of maximal split tori on
homogeneous spaces appear to be among the central ones in homo-
geneous dynamics. This interest is motivated to a large extent by
number theory applications. The efficiency of the homogeneous dy-
namics approach in the number theory had been demonstrated in a
striking way by G.A.Margulis proof of the long-standing Oppenheim
conjecture dealing with density properties of values at integral points
of quadratic forms in at least tree variables [M1]. In our days this
approach looks quite promising regarding the still open Littlewood
conjecture. Indeed, the Littlewood conjecture can be deduced from
a conjecture of Margulis affirming that the maximal split tori bounded
orbits on SL(3,R)/ SL(3,Z) are always compact [M2, §2]. In this direc-
tion, M.Einsiedler, A.Katok and E.Lindenstrauss classified the proba-
bility measures on SL(3,R)/ SL(3,Z) which are invariant and ergodic
under the action of a maximal split torus with positive entropy. As an
application, they proved that the set of exceptions to Littlewood’s con-
jecture has Hausdorff dimension zero [E-K-L]. (See [M3], [E-L] and [L]
for a collection of problems and conjectures and an account of recent
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achievements on this and related topics.) One of the consequences of
the main results of this paper is the explicit description of the set of
values at integral points of collections of non-proportional, split, binary
quadratic forms over number fields (Theorem 1.10).
Let us introduce the main objects of the paper. Let K be a number

field, O its ring of integers and Ki, 1 ≤ i ≤ r, all the archimedean

completions of K. Put G =
r∏
i=1

Gi, where Gi = SL(2, Ki), and let

Γ = SL(2,O) be identified with its image in G under the diagonal
embedding. Throughout this paper we assume that r ≥ 2. By Margilis
arithmeticity theorem [M4], [M5] (due to Selberg [S] in the case relevant
to the present paper) up to conjugation and commensurability, Γ is the
only irreducible non-uniform lattice in G. The quotient space G/Γ is
called the Hilbert modular space of rank r. Denote by π : G → G/Γ
the natural projection. Let Di be the connected component of the
diagonal subgroup of Gi and letDi,R be the connected component of the
subgroup of real matrices in Di. (So, Di,R = Di if Ki = R.) For every
non-empty I ⊂ {1, · · · , r} we denote DI =

∏
i∈I

Di and DI,R =
∏
i∈I

Di,R.

When I = {1, · · · , r} we write D and DR instead of DI and DI,R,
respectively. By a torus (respectively, an R-split torus or, simply, a
split torus) in G we mean a subgroup conjugated to a closed connected
subgroup of D (respectively, DR). An orbit DIπ(g) is called locally
divergent if Diπ(g) is divergent for all i ∈ I. (Recall that if H is
a closed non-compact subgroup of G and x ∈ G/Γ then the orbit
Hx is divergent if the orbit map h 7→ hx is proper or, equivalently,
if {hnx} leaves compact subsets of G/Γ whenever hn leaves compact
subsets of H .) The orbit DI,Rπ(g) is locally divergent if and only if
the orbit DIπ(g) is locally divergent. The description of the divergent
Di-orbits (and, therefore, the divergent Di,R-orbits) follows from the
general results of [T1] (see §2.2). The paper [T1] is related with [T-W].
Prior to [T-W] Margulis described the divergent orbits for the action
of the full diagonal group on the space of lattices of Rn, n ≥ 2 [T-W,
Appendix].
Let us formulate the following:

Conjectures: 1.(Orbit rigidity) If #I ≥ 2 then every orbit DI,Rx,
x ∈ G/Γ, has homogeneous closure, that is, DI,Rx = Fx, where F is a
closed subgroup in G containing DI,R;
2.(Measure rigidity) If #I ≥ 2 then every DI,R-invariant, DI,R-

ergodic, Borel measure µ on G/Γ is algebraic, that is, there exists a
closed subgroup F in G containing DI,R so that µ is F -invariant and
supp(µ) = Fx for some x ∈ G/Γ.
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The above conjectures are special cases of the much more general
[M3, Conjectures 1 and 2], respectively, about actions of split tori (in
other terms, about actions of R-diagonalizable connected subgroups)
on H/∆ where H is a real Lie group and ∆ its lattice. For actions
of split tori on SL(n,R)/ SL(n,Z), n ≥ 3, examples of orbits with
non-homogeneous closures contradicting [M3, Conjecture 1] have been
constructed by F.Maucourant [Ma] and by U.Shapira [Sha]. It is our
understanding that the constructions in these papers do not apply to
the Hilbert modular spaces.
In the present paper we describe the closures of locally divergent DI-

orbits on the Hilbert modular spaces G/Γ. It turns out that Conjecture
1 is not valid for actions of two-dimensional tori (Theorem 1.1) and for
the Hilbert modular spaces corresponding to CM-fields (Theorem 1.8)
but it is valid in all remaining cases (Theorem 1.5). As a consequence
from Theorem 1.1, we get counter-exemples (to the best of our knowl-
edge the first ones) to the general measure rigidity [M3, Conjecture 2]
(see Theorem 1.2 and Corollaries 1.3(b) and 1.4).
It is important to mention that both the orbit and the measure

rigidities are well-known for actions of connected subgroups generated
by unipotent elements on arbitrary homogeneous spaces. (Recall that a
linear transformation with all its eigenvalues equal to 1 is called unipo-
tent.) In the case of real Hilbert modular spaces of rank 2 the unipotent
orbit rigidity can be proved using the methods of Dani and Margulis
paper [DM1] where the orbit rigidity had been proved for generic unipo-
tent flows on homogeneous spaces of SL(3,R). In connection with the
uniform distribution of Heegner points, using the approach from [M1]
and [DM1], N.Shah treated the unipotent orbit rigidity for products of
several copies of SL(2) over local fields (see [Sh]). Both the unipotent
orbit and measure rigidities were proved in full generality in M.Ratner
substantial papers [Ra1] and [Ra2]. Note that there are deep intrinsic
differences between the split tori actions and the unipotent actions.
For instance, by a fundamental result of Margulis [M6] (strengthen by
S.G.Dani [D]), the orbits of the unipotent groups are never divergent.
The quantitative versions of this result have significant applications
(see [DM2] and [KlM]).
Let us formulate the results of the paper. The cases #I = 2 and

#I > 2 represent very different phenomena and will be considered
separately.



4 GEORGE TOMANOV

Theorem 1.1. Let #I = 2 and DIπ(g) be a locally divergent orbit on

G/Γ. Suppose that the closure DIπ(g) is not an orbit of a torus. Then

DIπ(g) = DIπ(g) ∪
s∪
i=1
Tiπ(hi)

where 2 ≤ s ≤ 4, Ti are tori containing DI and Tiπ(hi) are pairwise
different closed non-compact orbits. In particular, if #I = 2 then there
are no dense locally divergent DI-orbits.

The locally divergent orbits DIπ(g), #I ≥ 2, such that DIπ(g) is
not an orbit of a torus are explicitly described in Corollary 1.9 below.
Theorem 1.1 implies that both Conjectures 1 and 2 are not valid.

More precisely we have the following.

Theorem 1.2. Let #I = 2 and T = DI or DI,R. Suppose that Tπ(g) is

a locally divergent orbit such that Tπ(g) is not an orbit of a torus. Then

Tπ(g) = supp(µ), where µ is a non-algebraic, T -invariant, T -ergodic,

Borel measure on G/Γ. Moreover, Tπ(g) is not homogeneous.

The maximal tori action (the so-called Weyl chamber flow) deserves
special attention. The next corollary is a particular case of the Theo-
rems 1.1 and 1.2.

Corollary 1.3. Suppose that the Hilbert modular space G/Γ is of rank
r = 2. Then:

(a) A locally divergent orbit Dπ(g) is either closed or Dπ(g)\Dπ(g) =
s∪
i=1
Dπ(hi), where 2 ≤ s ≤ 4, and Dπ(hi) are pairwise different,

closed, non-compact orbits;
(b) There exist D-invariant, D-ergodic, non-algebraic Borel mea-

sures on G/Γ.

Using Weil’s restriction of scalars, the homogeneous space G/Γ in the
formulation of Corollary 1.3 can be embedded in SL(n,R)/ SL(n,Z),
n ≥ 4. In this way we obtain orbits of multidimensional tori with non-
homogeneous closures which are different from the already known. We
also get:

Corollary 1.4. The measure rigidity conjecture is not valid for T -
invariant, T -ergodic, Borel measures on SL(n,R)/ SL(n,Z), n ≥ 4,
where T is a split torus with dimT = 2 if n = 4 and dimT = n− 3 if
n ≥ 5.

The dynamics of the action of DI on a Hilbert modular space G/Γ
differs drastically when #I > 2. In this case the so-called CM-fields
play an important role. Recall that a number field K is called CM-field
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(so named for a close connection to the theory of complex multiplica-
tion) if it is a quadratic extension of a totally real number field which
is totally imaginary.

Theorem 1.5. Let #I > 2 and DIπ(g) be a locally divergent orbit

such that DIπ(g) is not an orbit of a torus. Assume that K is not a
CM-field. Then DIπ(g) is a dense orbit.

In the classical case of real Hilbert modular spaces Theorem 1.5 im-
plies:

Corollary 1.6. Let K be a totally real number field of degree r ≥ 3.
Let #I > 2 and DIπ(g) be a locally divergent orbit such that DIπ(g) is

not an orbit of a torus. Then DIπ(g) = G/Γ.
In particular, if DI = D then Dπ(g) is either closed or dense.

If K is a CM-field then the closure of DIπ(g) might not be homo-
geneous. This is related to a simple observation which we are going to
explain now. Denote by Gi,R, 1 ≤ i ≤ r, the subgroup of real matrices

in Gi and put GR =
r∏
i=1

Gi,R. Clearly, GR ⊃ DI,R. Now let K be a

CM-field which is a quadratic extension of a totally real number field
F and let OF be the ring of integers of F . Then ΓF = SL(2,OF ) is
a lattice in GR and the orbit GRπ(e) is closed and homeomorphic to
GR/ΓF . (It is standard to prove that this property characterize K as
a CM-field, that is, if G/Γ admits a closed GR-orbit then K is a CM-
field.) It follows from Corollary 1.6 that if K is a CM-field, x ∈ GRπ(e)
and DI,Rx is a locally divergent orbit whose closure is not an orbit of a

torus, then DI,Rx = GRπ(e). Since DI is a compact extension of DI,R

this implies that DIx = DIGRπ(e). So, DIx is not homogeneous which
shows that if K is a CM-field the analog of Theorem 1.5 is not valid.
Let us turn to the study of the orbits for the action of the R-split tori

DI,R which is important from the point of view of Margulis’ conjectures.
Theorem 1.5 implies:

Corollary 1.7. With the assumptions of Theorem 1.5, the orbit DI,Rπ(g)
is dense in G/Γ.

When K is a CM-field we obtain exemples of tori orbits contradicting
Conjecture 1 which are essentially different from those provided by
Theorem 1.1.

Theorem 1.8. Let K be a CM-field and #I > 2. Then there exists a
point x ∈ G/Γ with the following properties:

(i) DI,Rx 6= G/Γ;
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(ii) There exists an y ∈ DI,Rx \DI,Rx such that DI,Rx = DI,Ry and
Hy is not closed for any proper subgroup H of G containing
DI,R;

(iii) DI,Rx \DI,Rx is not contain in a union of finitely many closed
orbits of proper subgroups of G.

In particular, DI,Rx is not homogeneous.

As a by-product of the proofs of the above theorems we get the
following corollary which is known forDI = D (see Theorem 2.1 below).

Corollary 1.9. Suppose that DIπ(g) is a locally divergent orbit. Then

DIπ(g) (and, therefore, DI,Rπ(g)) is an orbit of a torus if and only
if g ∈ NG(DI)GK where NG(DI) is the normalizer of DI in G. In

particular, DIπ(g) is locally divergent but DIπ(g)) is not an orbit of a
torus if and only if

g ∈
(⋂

i∈I

NG(Di)GK

)
\ NG(DI)GK

In view of Theorems 1.1 and 1.8 and of [Ma] and [Sha], the following
orbit rigidity conjecture is plausible:

Conjecture. Let G be a real semisimple algebraic group with no
compact factors and let Γ be an irreducible lattice in G. Suppose that
rankRG ≥ 2 and that every semisimple subgroup G0 in G of the same
R-rank as G acts minimally on G/Γ (i.e., every G0-orbit is dense).
Then if T is a maximal R-split torus in G and x ∈ G/Γ, either

(1) Tx = G/Γ, or

(2) Tx \ Tx ⊂ n∪
i=1
Hixi where Hi are proper reductive subgroups of

G and Hixi are closed.

We apply our method to study the values of binary quadratic forms

at integral points. Denote A =
r∏
i=1

Ki and A∗ =
r∏
i=1

K∗
i . The polyno-

mial ring A[X, Y ] is naturally isomorphic to
r∏
i=1

Ki[X, Y ]. The natural

embeddings of K into Ki induce embeddings of K[X, Y ] into Ki[X, Y ],
1 ≤ i ≤ r, and a diagonal embedding of K[X, Y ] into A[X, Y ]. In the
next theorem f = (fi)i∈1,r ∈ A[X, Y ], where fi ∈ Ki[X, Y ] are split,
non-degenerate, quadratic forms over K (that is, fi = li,1 · li,2, where
li,1 and li,2 are linearly independent linear forms with coefficients from
K). If (α, β) ∈ O2 then f(α, β) is an element in A with its i-th coordi-
nate equal to fi(α, β). It is clear that if fi are two by two proportional
(equivalently, if there exists a g ∈ K[X, Y ] such that fi = ci · g, ci ∈ K,
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for all i) then f(O2) is a discrete subset of A. It follows from [T1,
Theorem 1.8] that the opposite is also valid: the discreteness of f(O2)
in A implies the proportionality of fi , 1 ≤ i ≤ r. In the next theorem
we describe the closure of f(O2) in A when fi, 1 ≤ i ≤ r, are not
proportional.

Theorem 1.10. With the above notation and assumptions, suppose
that fi are not proportional. Then the following assertions hold:

(a) If r > 2 and K is not a CM-field then f(O2) is dense in A;
(b) Let r = 2. Put K ′

1 = {f1(x, y) : (x, y) ∈ K2
1 and f2(x, y) = 0}

and K ′
2 = {f2(x, y) : (x, y) ∈ K2

2 and f1(x, y) = 0}. Then there
exist K-rational quadratic forms φ(j) ∈ K[X, Y ], 1 ≤ j ≤ 4,
such that

f(O2) = f(O2)
⋃ 4∪

j=1
φ(j)(O2))

⋃
K ′

1 × {0}
⋃

{0} ×K ′
2.

So, the set f(O2)∩A∗ is countable and the set f(O2)
⋂
(A\A∗) is

continium. Moreover, K ′
i = C if Ki = C and K ′

i = R,R− or R+

if Ki = R.

The main results of the paper have been announced in [T2].

2. Preliminaries

2.1. Basic notation. As usual Q, R, and C denote the rational, real
and complex numbers, respectively. Also, R+ (respectively, R−) is the
set of non-negatives (respectively, non-positives) real numbers. Let
R>0 = R+ \ {0}. We denote by | . | the standard norms on R and C.
In this paperK is a number field andK1, · · · , Kr are the completions

of K with respect to the archimedean places of K. We denote by
| · |i the normalized valuation on Ki. So, if x ∈ K and Ki = R
(respectively, Ki = C) then |x|i = |σi(x)| (respectively, |x|i = |σi(x)|2)
where σi is the corresponding embedding of K into Ki. Note that
|NK/Q(x)| = |x|1 · · · |x|r, where NK/Q(x) is the algebraic norm of x.
The elements from K are identified with their images in Ki via the
embeddings σi. So, if x ∈ K, with some abuse of notation, we write x
instead of σi(x). The exact meaning of x will be always clear from the
context.
If R is a ring then R∗ is its group of invertible elements.

Let A =
r∏
i=1

Ki and A
∗ =

r∏
i=1

K∗
i . A (respectively, A∗) is a topological

ring (respectively, topological group) endowed with the product topol-
ogy. The field K (respectively, the group K∗) is diagonally embedded
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in A (respectively, A∗). The ring of integers O of K is a co-compact
lattice of A and the group of units O∗ is a discrete subgroup of A∗.
If M is a subset of a topological space X then M is the topological

closure of M in X . Also, if H is a closed subgroup of a topological
group L we denote by H◦ the connected component of H containing
the identity. By NL(H) we denote the normalizer of H in L.
The notation Gi, G, GR, DI , DI,R have been introduced in the In-

troduction. The group G is considered as a real Lie group.
The diagonal embedding of SL(2, K) in G will be denoted by GK .

B+
K , B

−
K and DK are the groups of upper triangular, lower triangular

and diagonal matrices in GK , respectively. For every 1 ≤ i ≤ r we
denote by Gi,K, B

+
i,K , B

−
i,K and Di,K the images of GK , B

+
K , B

−
K and

DK , respectively, under the natural projection G→ Gi.
In the course of our considerations one and the same matrix with

coefficients from K might be considered, according to the context, as
an element from GK or from Gi,K . For instance, if g = (g1, · · · , gr) ∈ G
and gi ∈ Gi,K writing π(gi), where π is the map G→ G/Γ, g 7→ gΓ, we
mean that gi is considered as an element from G and, therefore, from
GK .

Given a non-empty subset I of {1, · · · , r} we put A∗
I

def
=

∏
i∈I

K∗
i . Let

di : K
∗
i → Gi, x 7→

(
x 0
0 x−1

)
. We put dI

def
=

∏
i∈I

di and d
def
= d{1,··· ,r}.

So, DI = dI((A
∗
I)

◦).

Let gi = sl(2, Ki), g =
r∏
i=1

gi, gK = sl(2, K) and gO = sl(2,O).

Fixing a basis of K-rational vectors in gK we denote by ‖ · ‖i the
norm max on gi. Since g =

r∏
i=1

gi we can define a norm ‖ · ‖ on g by

‖ x ‖= max
i

‖ xi ‖i, x = (x1, · · · ,xr) ∈ g.

As usual, we denote by Ad : G→ Aut(g) the adjoint representation
of G.

2.2. Locally divergent orbits. The locally divergent orbits have been
introduced and studied in a much more general context in [T1]. The
following theorem is a very particular case of [T1, Theorem 1.4].(See
also [T1, Corollary 1.7]).

Theorem 2.1. Let g = {g1, · · · , gr} be an element in G and I be a
non-empty subset of {1, · · · , r}. The following assertions hold:

(a) If the orbit DIπ(g) is closed then either I is a singleton or
I = {1, · · · , r};
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(b) Diπ(g), 1 ≤ i ≤ r, is closed (equivalently, divergent) if and only
if g ∈ NG(Di)GK (equivalently, gi ∈ DiGi,K);

(c) The following conditions are equivalent:
(i) Dπ(g) is closed and non-compact;
(ii) Dπ(g) is closed and locally divergent;
(iii) g ∈ NG(D)GK.

We will need the following proposition:

Proposition 2.2. If g ∈ NG(DI)GK then DIπ(g) = Tπ(g) where T is
a torus containing DI .

Proof. In view of our assumption g = g′h where h ∈ NG(D)GK and
g′ ∈ ∏

i/∈I

Gi. Let ∆ be the stabilizer of π(g) in g′Dg′−1. It follows from

Theorem 2.1(c) that g′Dπ(h) is closed. Since DIπ(g) ⊂ g′Dg′−1π(g)

we get that DIπ(g) = Tπ(g) where T is the connected component of
the closure of DI∆. �

2.3. Propositions about the units. Denote A1 = {(x1, · · · , xr) ∈
A∗ : |x1|1 · · · |xr|r = 1}. Given a positive integer m we put O∗

m =
{ξm|ξ ∈ O∗}.
The following lemma follows easily from the classical fact that O∗ is

a lattice in A1.

Lemma 2.3. (cf.[T1, Lemma 3.2]) Let m be a positive integer. There
exists a real κm > 1 with the following property. Let x = (xi) ∈ A∗

and for each 1 ≤ i ≤ r let ai be a positive real number such that∏
i

ai =
∏
i

|xi|i. Then there exists ξ ∈ O∗
m such that

ai
κm

≤ |ξxi|i ≤ κmai

for all i.

Proposition 2.4. Let r ≥ 3, 3 ≤ l ≤ r, I = {l, · · · , r} and pI : A
∗ →

A∗
I be the natural projection. Denote by H the closure of pI(O∗) in A∗

I .
Then

(a) the projection of H◦ into each K∗
i , i ≥ l, is non-trivial;

(b) for any real C > 1 there exists ξ ∈ O∗ such that |ξ|l > C and
|1− |ξ|i| < 1

C
for all i > l.

Proof. (a) By Dirichlet’s theorem for the units there exists a positive
integer m such that O∗

m is a free abelian group of rank r − 1. It is
clear that H◦ coincides with the connected component of the closure of
pI(O∗

m). Since H
◦ is open in H and O∗

m is diagonally embedded in H it
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is enough to show that H◦ 6= {1}. Suppose on that H◦ = {1}. Then H
is a discrete subgroup of A∗

I containing a free subgroup of rank r − 1.
This is a contradiction because A∗

I is a direct product of a compact
group and Zr−l+1.

(b) Consider the logarithmic representation of the group of units
logS : O∗ → Rr, θ 7→ (log |θ|1, · · · , log |θ|r) (see [We]). According
to the Dirichlet theorem logS(O∗) is a lattice in the hyperplane L =
{(x1, · · · , xr) ∈ Rr : x1+x2+· · ·+xr = 0}. Let ψ : L → Rr−1, (x1, · · · , xr)
7→ (x2, · · · , xr). Then ψ(logS(O∗)) is a lattice in Rr−1 with co-volume
equal to a positive real V . For every natural n we put

Bn = {(x2, · · · , xr) ∈ Rr−1 : |xi| ≤
1

n
if i 6= l and |xl| ≤ nr−2V }.

By Minkowski’s lemma there existe a ξn ∈ O∗ such that ψ(logS(ξn)) ∈
Bn \ {0}. If the sequence |ξn|l is unbounded from above then we can
choose ξ = ξn with n large enough. Let |ξn|l < C where C is a constant.
Since ψ(logS(O∗)) is discrete this implies the existence of a unit η of
infinite order such that |η|l > 1 and |η|i = 1 if i 6= l and i > 1. Hence
we can choose ξ = ηm with m sufficiently large. This completes the
proof. �

Proposition 2.5. Let pl : A
∗ → K∗

l , 1 ≤ l ≤ r, be the natural projec-

tion. Assume that Kl = C and that the connected component of pl(O∗)
coincides with R>0. Then K is a CM-field.

Proof. There exists a positive integer m such that pl(O∗
m) = R>0.

Denote by F the subfield of K generated over Q by all θ ∈ O∗
m and de-

note byO∗
F the group of units of F . Let s, respectively t, be the number

of real, respectively complex, places of K and let s1, respectively t1, be
the number of real, respectively complex, places of F . By Dirichlet’s
theorem O∗

m is a free group of rank s + t − 1. Since O∗
m ⊂ O∗

F ⊂ O∗

and the group of principal units of F is free of rank s1+ t1− 1 we have

r − 1 = s+ t− 1 = s1 + t1 − 1.

Let n be the degree of K over F . Using that s+ 2t is the degree of K
over Q and s1 + 2t1 is the degree of F over Q we get

s + 2t = n(s1 + 2t1) ⇔ r + t = n(r + t1) ⇔
(n− 1)r = t− t1n⇔ (n− 1)(t+ s) = t− t1n.

Since n > 1 the last equality implies that s = t1 = 0 and n = 2 which
proves the proposition. �
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Exemple. There are non-CM fields such that the connected com-
ponent of pl(O∗) is a 1-dimensional subgroup of C∗ different from R>0.
Such fields need special treatment in the course of the proof of Propo-
sition 5.1(a) below. An exemple of this type is provided by the field
K = Q(α) where α is a root of the equation (x+ 1

x
)2−2(x+ 1

x
)−1 = 01.

The field K has two real and one (up to conjugation) complex comple-

tions. If K3 = C then it is easy to see that p3(O∗)
◦
coincides with the

unit circle.

3. Accumulations points for locally divergent orbits

Up to the end of the paper DIπ(g) will denote a locally divergent
orbit. In view of Theorem 2.1(b), we may (and will) assume without
loss of generality that g = (g1, · · · , gr) with gi ∈ Gi,K whenever i ∈ I.

The following lemma is an easy consequence from the commensura-
bility of Γ and hΓh−1 when h ∈ GK .

Lemma 3.1. Let h ∈ GK. The following assertions hold:

(a) There exists a positive integer m such that d(ξ)π(h) = π(h) for
all ξ ∈ O∗

m;
(b) If {π(gi)} is a converging sequence in G/Γ then there exists a

converging subsequence of {π(gih)};
(c) If DIπ(g) = G/Γ then DIπ(gh) = G/Γ.

Proposition 3.2. Let I = {1, 2} and (sk, tk) ∈ K∗
1 ×K∗

2 be a sequence
such that | log |sk|1| + | log |tk|2| →

k
∞ and dI(sk, tk)π(g) converges to

an element from G/Γ. Then:

(a) There exists a constant C > 1 such that −C < | log |sk|1| −
| log |tk|2| < C;

(b) Let |sk|1 → ∞, |tk|2 → 0 and −C < log |sk|1 + log |tk|2 < C
where C is a positive constant. Then g1g

−1
2 = b−b

−1
+ , where

b− ∈ B−
K and b+ ∈ B+

K .

Proof.(a) The remaining cases being analogous, it is enough to con-

sider the case when |sk|1 → ∞ and
max{|tk|2,|tk|

−1

2
}

|sk|1
<∞.

Assume on the contrary that (a) is false. Then
max{|tk|2,|tk|

−1

2
}

|sk|1
→
k

0.

Since Ad(h)gO is commensurable with gO for every h ∈ GK there
exists an u ∈ Ad(g)gO,u 6= 0, such that pr1(u) is a lower triangu-
lar nilpotent matrix where pr1 is the projection of g to g1. (Recall

1This exemple is essentially due to Yves Benoist.
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that g =
r∏
i=1

gi.) Let Ad(dI(sk, tk))(u) = (u
(k)
1 , · · · ,u(k)

r ) ∈ g. Since

max{|tk|2,|tk|
−1

2
}

|sk|1
→
k

0, we get that ‖u(k)
1 ‖1 · · · ‖u(k)

r ‖r →
k

0. Using Lemma

2.3, we find a sequence ξk ∈ O∗ such that ‖ Ad(dI(sk, tk))(ξku) ‖=
‖(ξku(k)

1 , · · · , ξku(k)
r )‖ →

k
0. It follows from Mahler’s compactness cri-

terion that dI(sk, tk)π(g) tends to infinity which is a contradiction.

(b) By Bruhat decomposition

GK = B+
K ∪ B+

KωB
+
K = ωB+

K ∪ B−
KB

+
K ,

where ω =

(
0 1
−1 0

)
.

Suppose that g1g
−1
2 ∈ ωB+

K . Shifting g from the right by g−1
2 and

from the left by a suitable element from NG(DI) we reduce the proof
(see Lemma 3.1(b)) to the case when gi = e for all i > 1 and g1 =

ωu+(α), where u+(α) =

(
1 α
0 1

)
, α ∈ K. In view of (a), there exists a

constant C > 1 such that 1
C
< |sk|1·|tk|2 < C. Now using Lemma 3.1(a)

and Lemma 2.3 we find a sequence ξk ∈ O∗ and a positif constant κ such

that d(ξk)π(u
+(α)g2) = π(u+(α)g2) and 1

κ
< |sk|1

|ξk|1
< κ, 1

κ
< |tk|2

|ξk|2
< κ

and 1
κ
< |ξk|i < κ for all i > 2. Let (sk, tk, e, · · · , e) = ξkak where

ak ∈ A∗. Passing to a subsequence we can suppose that ak converges
to an element from A∗. Then d(ξk)π(g) converges to an element from
G/Γ.
By an easy computation:

d(ξk)π(g) = d(ξk)(ωu
+(α), e, · · · , e)π(g2) =

d(ξk)(ω, u
+(−α), · · · , u+(−α))π(u+(α)g2) =

(ω, u+(−αξ2k), · · · , u+(−αξ2k))(d1(ξ−2
k ), e, · · · , e)π(u+(α)g2).

In view of the choice of ξk we have that |ξk|1 → ∞ and |ξk|2 →
0. Therefore (ω, u+(−αξ2k), · · · , u+(−αξ2k)) converges and d1(ξ

−2
k ) di-

verges. Using that u+(−α)g2 ∈ GK , it follows from Malher’s criterion
that (d1(ξ

−2
k ), e, · · · , e)π(u+(α)g2) diverges. Hence d(ξk)π(g) diverges

too, which is a contradiction. So, g1g
−1
2 ∈ B−

KB
+
K . �

Proposition 3.3. Let I = {1, · · · , l} where 1 < l ≤ r, g1 = · · · = gl−1

and g1g
−1
l = b−b

−1
+ where b− ∈ B−

K and b+ ∈ B+
K. Denote h = b−1

− g1 =
b−1
+ gl. Then we have the following:

(a) (h, · · · , h, gl+1, · · · , gr)π(e) ∈ DIπ(g);
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(b) Let sk = (s
(1)
k , · · · , s(l)k ) ∈ A∗

I be such that |s(i)k |i →
k

∞ for all

1 ≤ i < l, |s(l)k |l →
k

0 and 1
C
< |s(1)k |1 · · · |s(l)k |l < C, where

C is a positive constant. Then dI(sk)π(g) admits a converging
subsequence and the limit of every such subsequence belongs to
DIπ((h, · · · , h, gl+1, · · · , gr)).

Proof. Fix m such that d(ξ)π(h) = π(h) for all ξ ∈ O∗
m. In view

of Lemma 2.3, there exists a sequence ξk ∈ O∗
m and a constant C1 > 1

such that 1
C1

< |s(i)k ξ−1
k |i < C1 if 1 ≤ i ≤ l and 1

C1

< |ξk|i < C1 if i > l.

Put ak = (ξk, · · · , ξk︸ ︷︷ ︸
l

, e, · · · , e︸ ︷︷ ︸
r−l

) and a′k = (e, · · · , e︸ ︷︷ ︸
l

, ξk, · · · , ξk︸ ︷︷ ︸
r−l

). Passing

to a subsequence we may assume that a′k → a′ where a′ ∈ A∗. In view
of the choice of ξk and the proposition hypothesis, we get

lim
k
di(ξk)b−di(ξk)

−1 = t−, ∀ 1 ≤ i < l,

and
lim
k
dl(ξk)b+dl(ξk)

−1 = t+,

where t− and t+ ∈ DK . It is enough to prove (b) in the particular case

when s
(i)
k = t−1

− ξk, 1 ≤ i < l, and s
(l)
k = t−1

+ ξk.
Using the relation d(ξk)π(h) = π(h), we get

(1)

lim
k
dI(sk)π(g) = (e, · · · , gl+1h

−1, · · · , grh−1)d(a′−1)π(h) ∈ DIπ(g).

Since

d(ak)
−1π(h) = d(ak)

−1d(ξk)π(h) = d(a′k)π(h) → d(a′)π(h),

multiplying (1) by d(ak)
−1 and passing to a limit, we obtain that

(h, · · · , h, gl+1, · · · , gr)π(e) ∈ DIπ(g)

which proves (a). In order to prove (b) it remains to note that

lim
k
dI(sk)π(g) = lim

k
d(ak)π((h, · · · , h, gl+1, · · · , gr)).

�

Let h ∈ GK . A pair (σ1, σ2) ∈ {0, 1}2 is called admissible with respect

to h if ωσ1hωσ2 ∈ B−
KB

+
K , where ω =

(
0 1
−1 0

)
. The following lemma

can be proved by a simple calculation.

Lemma 3.4. With the above notation, (σ1, σ2) is admissible with re-

spect to h =

(
m11 m12

m21 m22

)
if and only if m1+σ1,1+σ2 6= 0.
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It is clear that h ∈ NGK (DK) if and only if the number of admissible
pairs is equal to 2.

Proposition 3.5. Let I = {1, · · · , l}, where 1 < l < r, g1 = · · · = gl−1

and g1g
−1
l /∈ NGK (DK). Then DIπ(g) contains a point

(nh, · · · , nh︸ ︷︷ ︸
l−1

, h, gl+1, · · · , gr)π(e),

where n ∈ NGK(DK), h ∈ GK and hg−1
l+1 /∈ NGK(DK).

Proof. If the pair (σ1, σ2) is admissible with respect to g1g
−1
l then

ωσ1g1(ω
σ2gl)

−1 = b−b
−1
+ , where b− ∈ B−

K and b+ ∈ B+
K , and we put

hσ1,σ2 = b−1
− ωσ1g1 = b−1

+ ωσ2g2. Shifting π(g) from the left by

(ωσ1 , · · · , ωσ1︸ ︷︷ ︸
l−1

, ωσ2, e, · · · , e)

and applying Proposition 3.3(a) we get that

(ωσ1hσ1,σ2 , · · · , ωσ1hσ1,σ2︸ ︷︷ ︸
l−1

, ωσ2hσ1,σ2 , gl+1, · · · , gr)π(e) ∈ DIπ(g).

It remains to prove that (σ1, σ2) can be chosen in such a way that
hσ1,σ2g

−1
l+1 /∈ NGK(DK). Since g1g

−1
l /∈ NGK (DK), in view of Lemma

3.4 there are at least 3 admissible pairs with respect to g1g
−1
l . Shifting

g from the left by an appropriate element from NGK (DK), we may
assume that (0, 0) and (0, 1) are admissible pairs. Then

h0,0 = b′−1
− g1 = b′−1

+ g2 and h1,0 = b̃−1
− ωg1 = b̃−1

+ g2,

where b′−, b̃− ∈ B−
K and b′+, b̃+ ∈ B+

K . Suppose on the contrary that both
h0,0g

−1
l+1 and h1,0g

−1
l+1 ∈ NGK (DK). In view of the above expressions for

h0,0 and h1,0, we obtain

h0,0h
−1
1,0 ∈ NGK(DK) ∩B+

K ∩ B−
KωB

−
K .

This is a contradiction because NGK (DK) ∩ B+
K = DK and DK ∩

B−
KωB

−
K = ∅. �

4. Proofs of Theorems 1.1, 1.2 and Corollary 1.4

4.1. Proof of Theorem 1.1. We suppose that I = {1, 2}. It follows
from Proposition 2.2 that g1g

−1
2 /∈ NG(D). Let (sk, tk) ∈ K∗

1 × K∗
2

be an unbounded sequence such that dI(sk, tk)π(g) converges. In view
of Proposition 3.2(a) passing to a subsequence we may assume that
| log |sk|1| − | log |tk|2| converges. There exist σ1 and σ2 ∈ {0, 1} such
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that ωσ1d1(sk)ω
−σ1 = d1(s

′
k), ω

σ2d2(tk)ω
−σ2 = d2(t

′
k) where |s′k|1 → ∞

and |t′k|2 → 0. Let g′ = (ωσ1g1, ω
σ2g2, g3, · · · , gr).

It follows from Proposition 3.2(b) that ωσ1g1(ω
σ2g2)

−1 = b−b
−1
+ ∈

B−B+, i.e., (σ1, σ2) is an admissible pair with respect to g1g
−1
2 . Let

(2) hσ1,σ2 = b−1
− ωσ1g1 = b−1

+ ωσ2g2.

Using Proposition 3.3(b) we get:

lim
k
dI(s

′
k, t

′
k)π(g

′) ∈ DIπ((hσ1,σ2, hσ1,σ2 , g3, · · · , gr)).

Therefore

lim
k
dI(sk, tk)π(g) ∈ DIπ((ωσ1hσ1,σ2 , ω

σ2hσ1,σ2, g3, · · · , gr)).

In view of the above and of Proposition 3.3(a) we conclude that
(3)

DIπ(g) = DIπ(g) ∪ ∪(σ1,σ2)∈MDIπ((ωσ1hσ1,σ2 , ω
σ2hσ1,σ2 , g3, · · · , gr))

where M is the set of all admissible pairs with respect to g1g
−1
2 . Note

that

DIπ((ωσ1hσ1,σ2 , ω
σ2hσ1,σ2 , g3, · · · , gr)) =

(ωσ1, ωσ2 , g3h
−1
σ1,σ2 , · · · , grh−1

σ1,σ2)DIπ(hσ1,σ2).

Since Dπ(hσ1,σ2) is a closed locally divergent orbit, each of the closures
in the right hand side of (3) is a non-compact orbit of a torus containing
DI . It remain to see that at least two of these orbits are different.
Since g1g

−1
2 /∈ NGK (DK) there exists σ ∈ {0, 1} such that (σ, 0) and

(σ, 1) ∈M . Suppose on the contrary that

DIπ(ωσhσ,0, hσ,0, g3, · · · , gr) = DIπ(ωσhσ,1, ωhσ,1, g3, · · · , gr).
Then there exist tori T and T ′ containing DI such that

Tπ((hσ,0, hσ,0, g3, · · · , gr)) = T ′π((hσ,1, ωhσ,1, g3, · · · , gr)).
Then

hσ,0 = thσ,1γ = t′ωhσ,1γ,

where t, t′ ∈ DK and γ ∈ Γ, which is a contradiction. �

4.2. Proof of Theorem 1.2. We need the following.

Proposition 4.1. Let H be a Lie group and ∆ be a discrete subgroup of
H. Let x ∈ H/∆ and F be a closed connected subgroup of H. Suppose
that Fx is not homogeneous (i.e. Fx is not an orbit of a subgroup
containing F ) and Fx is an open subset in Fx. Then Fx = supp(µ),
where µ is a non-algebraic, F -invariant, F -ergodic, Borel measure on
H/∆.
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Proof. It follows from the Baire category theorem that Fx, endowed
with the relative topology, is homeomorphic to F/∆F , where ∆F =
{α ∈ F : αx = x} (cf.[Z, Lemma 2.1.15]). Let µF be the F -invariant
(Haar) measure on F/∆F . Denote by µ the measure onH/∆ supported
by Fx and induced by the homeomorphism between F/∆F and Fx. It
is clear that the measure µ satisfies the proposition. �

Proof of Theorem 1.2. Let us show that both DIπ(g) and DI,Rπ(g)
are open and proper in their closures. With the notation from the
formulation of the theorem, note that if DIπ(g)∩Tiπ(hi) 6= ∅ for some

1 ≤ i ≤ s then DIπ(g) ⊂ Tiπ(hi) which contradicts the fact that s ≥ 2.
Therefore, the orbit DIπ(g) is open and proper in its closure. Suppose

that there exists i such that DI,Rπ(g)∩Tiπ(hi) = ∅. Since Ti ⊃ DI this

implies that DIπ(g)∩ Tiπ(hi) = ∅ which is a contradiction. Therefore,

DI,Rπ(g) ∩ Tiπ(hi) 6= ∅ for every 1 ≤ i ≤ s. So, the orbit DI,Rπ(g)

is open and proper in its closure too. Now the fact that Tπ(g) is not
homogeneous is an easy exercise. �

4.3. Proof of Corollary 1.4. Let G and Γ be as in the formulation
of Corollary 1.3 with K a real quadratic number field. Using Weil’s
restriction of scalars [Z, Ch.6], we get an injective homomorphisme
RK/Q : G → SL(4,R) such that RK/Q(Γ) = RK/Q(G) ∩ SL(4,Z). Let

φ : G → SL(n,R), g 7→
(

RK/Q(g) 0
0 In−4

)
, where In−4 is the identity

matrix of rank n − 4. Further on we identify G and Γ with φ(G)
and φ(Γ), respectively. Let T be the connected component of the full
diagonal group in SL(n,R), H be the connected component of the
centralizer of G in SL(n,R), and S be the commutator subgroup of
H . Note that S is a semisimple group. Put T ′ = D × TS, where
TS = S ∩ T . It is clear from the construction that there exists a T ′-
equivariant injective map G/Γ×S/ΓS → G/Γ where ΓS = Γ∩S. Now
let µ = µ1×µ2 where µ1 is the D-invariant non-algebraic measure given
by Corollary 1.3 and µ2 is the Haar measure on S/ΓS. It is clear that
the measure µ convenes for the conclusion of the corollary. �

5. Closures of DI-orbits when #I > 2

5.1. If K is a CM-field we denote by F the totally real subfield of
K of index 2. In this case we denote by Fi the completion of F with
respect to the valuation | . |i on Ki and by OF the ring of integers of
F . We put AF =

∏
i

Fi.

In this section I = {1, · · · , l} where 3 ≤ l ≤ r.
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Proposition 5.1. Let h = (e, · · · , u−l (β)u+l (α)
l

, · · · , e) ∈ G where

u−l (β) =

(
1 0
β 1

)
, u+l (α) =

(
1 α
0 1

)
, α ∈ K∗ and β ∈ Kl. The

following assertions hold:

(a) If K is not a CM-field then DIπ(h) = G/Γ;
(b) Let K be a CM-field and dα be an element in Dl such that d2α =(

α 0
0 α−1

)
. Then DI,Rπ(h) ⊃ dαGRd

−1
α π(e) and dαGRd

−1
α π(e)

is closed.

In order to prove the proposition we need the following lemma.

Lemma 5.2. Let K be a CM-field and α ∈ K∗. Then

Flα+O = AFα+O.
Proof. Let n be a positive integer such that nα ∈ O. Since

Fl +OF = AF (by the strong approximation theorem) and AF ∩ O =
OF we have that

Fl +O = AF +O.
Therefore

Flα +Onα = AFα+Onα.
Now the lemma follows easily from the fact that Onα is a lattice in
A. �

Proof of Proposition 5.1. Note that U+(A)π(e) is closed and
homeomorphic to A/O. (We denote by U+(A) the group of A-points
of the upper unipotent subgroup of G.) This implies that u+l (Kl)π(e) is
dense in U+(A)π(e) and, when K is a CM-field, it follows from Lemma
5.2 that u+l (Flα)π(e) is dense in the closed set U+(AFα)π(e).
Further the proof proceeds in several steps.

Step 1. As in the formulation of Proposition 2.4, let H◦ be the
connected component of the closure H of the projection of O∗ into
K∗
l ×· · ·×K∗

r . Let pj : A
∗ → K∗

j , l ≤ j ≤ r, be the natural projections.
We will consider the case (a) (when K is not a CM-field) and the case
(b) (when K is a CM-field) in a parallel way. Using Proposition 2.4(a),
for every positive integerm we fix inH◦ a compact neighborhoodHm of
1 with the following properties: (i) 1− 1

m
< |pj(x)|j < 1+ 1

m
for all j ≥ l

and all x ∈ Hm and, (ii) pl(Hm) = {e(am+ıbm)t : t ∈ [− 1
m
, 1
m
]}, where

ı =
√
−1 and am and bm are reals such that bm 6= 0 ifKl = C and we are

in case (a), and am 6= 0 and bm = 0, otherwise. In view of Proposition
2.4(b) there exists a sequence yn ∈ O∗ (respectively, yn ∈ O∗

F in case
(b)) such that |pl(yn)|l > n and 1− 1

n
< |pj(yn)|j < 1 + 1

n
for all j > l.
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Step 2. Denote

Lmn = {x2 : x ∈ ynHm}.
LetWε be the ε-neighborhood of 0 in A andWε,F be the ε-neighborhood
of 0 in AF . We claim that given m for every ε > 0 there exists a
constant n◦ such that if n > n◦ then

(4) A =Wε + pl(Lmn) +O

in case (a), and

(5) AF = Wε,F + pl(Lmn) +OF

in case (b).
Note that the projections of Kl into A/O and of Fl into AF/OF are

dense and equidistributed. Since |pl(yn)|l > n this implies the claim in
case (b) and in case (a) when Kl = R.
Consider the case (a) when Kl = C. If θ ∈ [0, 2π) we put Rθ = eıθR

and if a < b we put [a, b]θ = eıφ[a, b] where R stands for the subfield
of reals in Kl. Since Kl +O = A it is easy to see that for almost all
θ ∈ [0, 2π) we have that Rθ +O = A and, moreover, given ε > 0 there
exists cε > 0 such that if b− a > cε then

A =Wε + z + [a, b]θ +O, ∀z ∈ A.

Now let pl(yn) = rne
ıψn

2 and ψn →
n
ψ. Since the real bm in the def-

inition of Hm is different from 0 there exists θ
2
∈ (− 1

m
, 1
m
) such that

Rθ+ψ +O = A. Remark that since rn → +∞ the curvatures at the
points of the plane curve pl(Lmn) ⊂ C are tending uniformly to 0 when
n → ∞. Therefore for every real β > 0 end every ε > 0 there exist
a positive integer n◦ such that for every n > n◦ there exists a z ∈ Kl

such that the points of the segment z+[0, β]θ+ψ are ε-close to pl(Lnm).
This implies the claim.

Step 3. Since d(ξ−1)π(e) = π(e) for every ξ ∈ O∗ we have that
(e, · · · , u−l (ξ−2β)u+l (ξ

2α), dl+1(ξ)
−1, · · · , dr(ξ)−1)π(e) belongs toDIπ(h)

(respectively, DI,Rπ(h)) if K is not (respectively, is) a CM-field. There-
fore
(6)

Xmn
def
= {(e, · · · , u−l (x−2β)u+l (x

2α)
l

, · · · , dr(x)−1)π(e) : x ∈ ynHm}

is a subset of DIπ(h) in case (a) and of DI,Rπ(h) in case (b). Using
the commensurability of O and Oα we deduce from (4) and (5) that
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for every m

(7)
⋃

n

pl(Lmnα) +O = A

in case (a) and

(8)
⋃

n

pl(Lmnα) +O = AFα +O

in case (b). On the other hand, it follows from the definitions of Hm

and yn that for every δ > 0 there exists cδ such that if min{m,n} >
cδ then |x−2β|l < δ and ||x|j − 1| < δ for all x ∈ ynHm. Now it

follows from (6), (7) and (8) that U+(A)π(e) ⊂ DIπ(g) in case (a) and

U+(AFα)π(e) ⊂ DI,Rπ(g) in case (b).

Step 4. Let B+
1 and B+

1,R be the upper triangular subgroup of G1

and G1,R, respectively. In view of Step 3 B+
1 π(e) ⊂ DIπ(h) in case

(a) and B+
1,Rπ(e) ⊂ DI,Rπ(h)) in case (b). Note that B+

1 and B+
1,R

are epimorphic subgroups of G1 and dαG1,Rd
−1
α , where dα is as in the

formulation of the proposition, respectively. It follows from [Sh-W,

Theorem 1] that B+
1 π(e) = G1π(e) and B+

1,Rπ(e) = dαG1,Rd−1
α π(e).

Since in case (b) d−1
α Γdα and Γ are commensurable subgroups of G,

dαGRd
−1
α π(e) is closed. It follows from Borel’s density theorem [R]

that G1π(e) = G/Γ and dαG1,Rd−1
α π(e) = dαGRd

−1
α π(e). Therefore

DIπ(h) = G/Γ in case (a) and DI,Rπ(h) ⊃ dαGRd
−1
α π(e) in case (b).

�

5.2. Proofs of Theorem 1.5 and Corollary 1.7. It is enough to
prove Theorem 1.5 for I = {1, 2, 3}. We may (and will) assume that
gi ∈ Gi,K , i ∈ I. By the theorem hypothesis either g1g

−1
2 /∈ NGK(DK)

or g2g
−1
3 /∈ NGK(DK) (see Proposition 2.2). Suppose that g1g

−1
2 /∈

NGK(DK). In view of Proposition 3.5 there exists an element π(g′) ∈
DIπ(g), g

′ = {g′1, · · · , g′r}, such that g′i ∈ GK if 1 ≤ i ≤ 3, g′1g
′−1
2 ∈

NGK(DK), g
′
1g

′−1
3 /∈ NGK (DK) and g′i = gi if i > 3. Clearly, if n ∈

DIπ(g) and k ∈ GK then DIπ(g
′) is dense if and only if DIπ(ng

′k)
is dense (see Lemma 3.1(c)). Therefore we may assume without loss

of generality that DIπ(g) contains an element π(h) where h is as in
the formulation of Proposition 5.1. Now Theorem 1.5 follows from
Proposition 5.1(a).
Let us prove Corollary 1.7. By Moore’s ergodicity theorem [Z], DI,R

is ergodic on G/Γ. Therefore there exists an y ∈ G/Γ such that DI,Ry

is dense in G/Γ. By Theorem 1.5, DIπ(g) = G/Γ. Therefore there
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exists a compact M ⊂ DI such that MDI,Rπ(g) = G/Γ. Let y = mz,

where m ∈ M and z ∈ DI,Rπ(g). Then

DI,Rπ(g) ⊃ m−1DI,Ry = G/Γ

which completes the proof. �

5.3. Proof of Theorem 1.8. Recall that I = {1, · · · , l}, l ≥ 3.
Choose g = (e, · · · , u+l (α)u−l (β)

l

, · · · , e) where α ∈ K \ F , and β ∈ F ∗.

We will prove that x = π(g) is the point we need. First, remark that
u+l (α)u

−
l (β) = tu−l (β1)u

+
l (α1) where t ∈ Dl,K, β1 ∈ K and α1 =

α
1+αβ

.

Hence α1 ∈ K \ F . Let dα1
∈ Dl be such that d2α1

=

(
α1 0
0 α−1

1

)
. It

follows from Proposition 5.1(b) that

(9) DI,Rx ⊃ GRπ(e) ∪ dα1
GRd

−1
α1
π(e).

Note that the orbits GRπ(e) and dα1
GRd

−1
α1
π(e) are closed and proper.

Since GRπ(e) ⊃ U−(AF )π(e) and dα1
GRd

−1
α1
π(e) ⊃ U+(AFα1)π(e)

we have that

DI,Rx ⊂
⋃

0≤µ≤1

{u+l (µα)GRπ(e)}
⋃ ⋃

0≤ν≤1

{tu−l (νβ1)dα1
GRd

−1
α1
π(e)}

where µ and ν ∈ Fl. This implies (i).
Let us prove (ii). Using Proposition 2.4 we can choose a sequence

ξi ∈ O∗
F such that for every j ≥ l the projection of ξi into Fj converges

to some xj ∈ F ∗
j and xl is not an algebraic number. Put

y = (e, · · · , u+l (x2l α)u−l (x−2
l β), dl+1(x

−1
l+1), · · · , dr(x−1

r ))π(e).

Then
y = lim

i
dI(ξi)x ∈ DI,Rx.

Let us show that y /∈ DI,Rx. Otherwise, there exist elements d ∈ Dl

and m ∈ Gl,K such that du+l (x
2
l α)u

−
l (x

−2
l β) = u+l (α)u

−
l (β)m. Since

u+l (α)u
−
l (β)m ∈ Gl,K the lower right coefficient of du+l (x

2
l α)u

−
l (x

−2
l β)

belongs to K. This implies that d ∈ Dl,K and that x2l α ∈ K which
contradicts our choice of xl, proving the claim.
Let H be a subgroup of G such that H ⊃ DI,R and Hy be closed. It

is easy to see that
x = lim

i
dI(ξ

−1
i )y.

In view of (9), H contains both GR and dα1
GRd

−1
α1
. Since α1 ∈ K \ F

we get that A = AF + AFα1. Therefore, H ⊃ U+(A) ∪ U−(A). Hence
H = G which proves (ii).
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In order to prove (iii), suppose on the contrary that

DI,Rx \DI,Rx ⊂
⋃

i

Hixi

where Hi are finitely many proper subgroups of G and Hixi are closed
orbits. Therefore there exists Hi such that DI,R ⊂ Hi and y ∈ Hixi
which contradicts (ii). The theorem is proved. �

5.4. Proof of Corollary 1.9. If g ∈ NG(DI)GK then it follows from

Proposition 2.2 that DIπ(g) is an orbit of a torus. In order to prove
the converse, note that DIπ(g) is locally divergent if and only if g ∈⋂
i∈I NG(Di)GK (Theorem 2.1(b)). Since #I ≥ 2, it is obvious that⋂
i∈I NG(Di)GK % NG(DI)GK . If g ∈

(⋂
i∈I NG(Di)GK

)
\NG(DI)GK

it follows from Theorem 1.1 when #I = 2 and from Proposition 5.1
when #I > 2 that DIπ(g) is not an orbit of a torus. �

6. A number theoretical application

In this section we prove Theorem 1.10. We use the notation preced-
ing the formulation of the theorem.
We identify the elements from G/Γ with the lattices in A2 obtained

via the injective map gΓ 7→ gO2. This map is continuous and proper
with respect to the quotient topology on G/Γ and the topology of
Chabauty on the space of lattices in A2.
The group GK is acting on K[X, Y ] by the law

(σp)(X, Y ) = p(σ−1(X, Y )), ∀σ ∈ GK , ∀p ∈ K[X, Y ].

By the theorem hypothesis fi(X, Y ) = li,1(X, Y ) · li,2(X, Y ) where li,1
and li,2 ∈ K[X, Y ] are linearly independent over K linear forms. There
exist gi ∈ Gi,K such that fi(X, Y ) = αi(g

−1
i f0)(X, Y ) where αi ∈ K∗

and f0 is the form X ·Y . We may (and will) suppose that αi = 1 for all
i. Since the forms fi, 1 ≤ i ≤ r are not proportional, g = (g1, · · · , gr)
does not belong to NG(D)GK . Therefore Dπ(g) is a locally divergent
non-closed orbit (Theorem 2.1(b)).
Let r > 2. Fix a = (a1, · · · , ar) ∈ A and choose h ∈ G such that

he1 = (a, 1) where e1 is the first vector of the canonical basis of the
free A-module A2. According to Theorem 1.5, Dπ(g) is a dense orbit.
Therefore there exist dn ∈ D and γn ∈ Γ such that lim

n
dngγn = h. Put

zn = γne1. Then zn ∈ O2 and

lim
n
f(zn) = lim

n
f0(dngγne1) = f0(lim

n
(dngγn(e1))) = f0(a, 1) = a,

which proves the part (a) of the theorem.
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Let r = 2. We will prove the inclusion

(10) f(O2) ⊂ f(O2)
⋃ 4∪

j=1
φ(j)(O2))

⋃
K ′

1 × {0}
⋃

{0} ×K ′
2,

where φ(j), K ′
1 and K ′

2 are as in the formulation of the theorem. Let

a = (a1, a2) ∈ f(O2) \ f(O2). There exists a sequence zn = (αn, βn)
in O2 such that a = lim

n
f(zn) and f(zn) 6= 0 for all n. Let a1 6= 0.

(The case a1 6= 0 is analogous.) If f2(zn) = 0 for infinitely many n
then it is easy to see that a ∈ K ′

1×{0}. From now on we suppose that
f2(zn) 6= 0 for all n.
Let g = (g1, g2) ∈ G be such that gi(X, Y ) = (li1(X, Y ), li2(X, Y )),

i ∈ {1, 2}. We choose sequences sn ∈ K∗
1 and tn ∈ K∗

2 such that
{

lim
n
snl11(zn) = a11

lim
n
s−1
n l12(zn) = a12

and

{
lim
n
tnl21(zn) = a21

lim
n
t−1
n l22(zn) = a22

(11)

where a11, a12 ∈ K1, a21, a22 ∈ K2, a1 = a11 · a12 and a2 = a21 · a22.
If a2 = 0 we choose tn in such a way that

(12) a21 = a22 = 0.

We have

(13) lim
n
d(sn, tn)g(zn) = (a1, a2)

where a1 = (a11, a12) ∈ K2
1 and a2 = (a21, a22) ∈ K2

2 .
Shifting g from the left by an element from NGK (DK) if necessary,

we reduce the proof to the case when |sn|1 → ∞ and |tn|2 ≤ 1. There
exist µ and ν ∈ K such that

l22 = µl11 + νl12.

We have

0 < |NK/Q(l22(zn))| = |l22(zn)|1 · |l22(zn)|2 =
= |sn|1 · |tn|2 · |µs−1

n l11(zn) + νs−1
n l12(zn)|1 · |t−1

n l22(zn)|2.
Since {NK/Q(l22(zn))} is a discrete subset of R which does not contain
0, in view of (11), we obtain that

(14) lim inf
n

|sn|1 · |tn|2 > 0

and that
|a22|2 = lim

n
|t−1
n l22(zn)|2 6= 0.

The latter contradicts (12). Hence a2 6= 0.
Let us prove that

(15) g1g
−1
2 ∈ B−

KB
+
K .
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First we need to show that

(16) lim sup
n

|sn|1 · |tn|2 <∞.

There exist µ′ and ν ′ ∈ K such that

l11 = µ′l21 + ν ′l22.

Then

0 < |NK/Q(l11(zn))| = |l11(zn)|1 · |l11(zn)|2 =
= |sn|−1

1 · |tn|−1
2 · |snl11(zn)|1 · |µ′tnl21(zn) + ν ′tnl22(zn)|2.

Now (16) follows from the inequality |tn|2 ≤ 1 and (11).
Suppose on the contrary that g1g

−1
2 /∈ B−

KB
+
K . Therefore g1g

−1
2 ∈

ωB+
K. Shifting g from the left by a suitable element from DK we reduce

the proof to the case when g1g
−1
2 = ωu, where u =

(
1 α
0 1

)
. In view

of (14), (16), Lemma 2.3 and Lemma 3.1 we can find a sequence ξn ∈ O∗

and a converging to a ∈ A∗ sequence an ∈ A∗ such that (sn, tn) = ξnan
and d(ξn)g2O2 = g2O2. Using (13) we see that d(ξn)g(zn) converges to
some (b1,b2) ∈ A2 where b1 = (b11, b12) ∈ K2

1 and b2 = (b21, b22) ∈
K2

2 . (Recall that A2 is identify with K2
1 ×K2

2 .) An easy computation
shows that

d(ξn)g(zn) = (hn, e)wn

where hn =

(
0 ξ2n

−ξ−2
n −α

)
and wn = d(ξn)g2(zn) = (βn, γn) ∈ g2O2.

So,
(
(ξ2nγn,−ξ−2

n βn − αγn), (βn, γn)
)

→ (b1,b2) which implies that
(ξ2nγn, γn) converges to (b11, b22) in A. But

|ξ2nγn|1 · |γn|2 = |ξ2n|1 · |NK/Q(γn)|.
Hence

lim
n

|ξ2n|1 · |NK/Q(γn)| = |b11|1 · |b22|2
which is a contradiction because |ξ2n|1 → ∞ and lim inf

n
|NK/Q(γn)| > 0.

This complets the prove of (15).
In view of Proposition 3.3(b), there exists a subsequence of d(sn, tn)π(g)

converging to an element from
s∪
j=1
Dπ(hj), 2 ≤ s ≤ 4 where hj ∈

NGK(DK) (see Corollary 1.3). So, there exists d ∈ D such that (a1, a2) ∈
dhjO2, 1 ≤ j ≤ s. Hence a ∈ s∪

j=1
φ(j)(O2) where φj = h−1

j f0. This com-

plets the proof of (10).
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The inclusion inverse to (10) is easy to prove. Let c = φ(j)(z) where
z ∈ O2. We have hj = lim

n
tngσn for some tn ∈ D and σn ∈ Γ.

Therefore

φ(j)(z) = lim
n
f0(tngσn(z)) = lim

n
f(σn(z)) ∈ f(O2).

It remains to prove that
⋃
K ′

1 ×{0}⋃{0}×K ′
2 ⊂ f(O2). It is enough

to prove that if (x, y) ∈ K2
1 and f2(x, y) = 0 then (f1(x, y), 0) ∈ f(O2).

Suppose that l21(x, y) = 0. Since l11 and l12 are linear combinations
of l21 and l22 we get that f1(x, y) = c · l22(x, y)2 where c is a constant.
Note that the projection of the set {l22(z) : z ∈ O2, l21(z) = 0} into

K1 is dense. Therefore (f1(x, y), 0) ∈ f(O2). By similar reasons if

l22(x, y) = 0 then f1(x, y) = d·l21(x, y)2 ∈ f(O2), where d is a constant.
Note that K ′

1 = c{α2 : α ∈ K1} ∪ d{α2 : α ∈ K1} and that, since f1
and f2 are not proportional, c and d can not be simultaneously equal
to zero. This readily implies that K ′

i = C if Ki = C and K ′
i = R,R−

or R+ if Ki = R. The proof is complete. �

7. Concluding remarks

1. The elements hi in the formulation of the Theorem 1.1 can be
explicitly described in terms of g. Let us give an exemple of an orbit
DIπ(g), I = {1, 2}, such that the boundary of its closure consists of
four different closed orbits.
For simplicity we will assume that r = 2. (The arguments are vir-

tually the same if r > 2.) Choose g1 =

(
1 0
α 1

)
and g2 =

(
1 β
0 1

)
,

where α and β are numbers in K such that α ·β 6= 0, α ·β 6= 1 and there
exists a non-archimedean valuation v of K with |α|v > 1 and |β|v < 1.
Since all coefficients of the matrix g1g

−1
2 are different from 0, all

pairs (σ1, σ2) ∈ {0, 1}2 are admissibles and, in view of (3), we need
to prove that the closed orbits D(ωσ1, ωσ2)π(hσ1,σ2) are pairwise dif-
ferent. We have seen in the course of the proof of Theorem 1.1 that
D(ωσ1, ωσ2)π(hσ1,σ2) 6= D(ωσ

′

1, ωσ
′

2)π(hσ′
1
,σ′

2
) if (σ1, σ2) = (0, 0) or (1, 1)

and (σ′
1, σ

′
2) = (0, 1) or (1, 0). It remains to show that Dπ(h0,0) 6=

Dπ(ωh1,1) and D(ω, 1)π(h1,0) 6= D(1, ω)π(h0,1).
Using (2) we see that h0,0 = e and modulo multiplication from the

left by an element from DK , ωh1,1 is equal to

(
1

1−αβ
β

1−αβ

α 1

)
. Since

α /∈ O we conclude that Dπ(h0,0) 6= Dπ(ωh1,1).
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Modulo multiplication from the left by an element from DK , h1,0

(respectively, h0,1) is equal to

(
1 1

α
0 1

)
(respectively,

(
1 0
1
β

1

)
). If

D(ω, 1)π(h1,0) = D(1, ω)π(h0,1) then

ξ2β + α

αβ
∈ O

for some ξ ∈ O∗. This leads to contradiction because in view of the
choice of α and β

|ξ2β + α|v
|αβ|v

=
1

|β|v
> 1.

Therefore the boundary of DIπ(g) consists of four pairwise different
closed orbits.

2. Most of the results of this paper remain valid with small or
without changes in the S-adic setting, that is, when G is a product of
SL(2, Kv), where Kv is the completion of a number field K with respect
to a place v belonging to a finite set S of places of K containing the
archimedean ones. For instance, the proofs of the analogs of Theorems
1.1 and 1.10(b) remain valid in this context without any changes. The
analog of Theorem 1.5 remains true with very small modifications if
K = Q or if K is arbitrary and I contains an archimedean place. For
instance, Theorem 1.5 remains true for action of maximal tori (that is,
when D = DI). The analog of Theorem 1.5 in the general case (for
arbitrary K and I) is more delicate and will be treated later. Using
the present approach, one can find tori orbits with non-homogeneous
closures on spaces G/Γ where G is not a product of SLn’s. This will
be treated elsewhere too.
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