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A CARTIER-GABRIEL-KOSTANT STRUCTURE THEOREM FOR

HOPF ALGEBROIDS

J. KALIŠNIK AND J. MRČUN

Abstract. In this paper we give an extension of the Cartier-Gabriel-Kostant
structure theorem to Hopf algebroids.

1. Introduction

For any Hopf algebra A, one can consider the associated twisted tensor product
Hopf algebra Γ⋉ U(g), where Γ is the group of grouplike elements of A and U(g)
denotes the universal enveloping algebra of the Lie algebra g of primitive elements
of A. The classical Cartier-Gabriel-Kostant structure theorem characterizes the
Hopf algebras which are isomorphic to their associated twisted tensor product Hopf
algebras. In this paper we give an extension of this theorem to Hopf algebroids.

A Hopf R-algebroid is a R/k-bialgebra [23, 24, 27], equipped with a bijective
antipode. More recently, structures of this type have been studied in [1, 2, 4, 11, 13,
16, 28]. Most notably, Hopf algebroids naturally appear as the convolution algebras
of étale Lie groupoids [20, 21]: for an étale Lie groupoid G over a manifold M , the
convolution algebra C∞

c (G) of smooth real functions with compact support on G is a
C∞
c (M)/R-bialgebra with the antipode induced by the inverse map in the groupoid.

In fact, for any Hopf C∞
c (M)-algebroid A, the antipode-invariant weakly grouplike

elements of A can be used to construct the associated spectral étale Lie groupoid
Gsp(A) over M [21]. Furthermore, the universal enveloping algebra U (C∞(M), L)
of a (R, C∞(M))-Lie algebra L is a C∞(M)/R-bialgebra. If b is the Lie algebroid,
associated to a bundle of Lie groups over M , then the universal enveloping algebra
U (b) = U (C∞(M),Γ∞(b)) of b [19] is a Hopf C∞(M)-algebroid and in fact a Hopf
algebra over C∞(M). For any Hopf C∞(M)-algebroid A, the space of primitive
elements P(A) of A has a structure of a (R, C∞(M))-Lie algebra.

In this paper we show that if an étale Lie groupoid G over M acts on a bundle
of Lie groups B over M , then G acts on the associated universal enveloping algebra
U (b) of the Lie algebroid b and the associated twisted tensor product G ⋉ U (b)
is a Hopf C∞

c (M)-algebroid. Furthermore, in Theorem 4.9 we characterize the
Hopf C∞

c (M)-algebroids of this form: we give a local condition on a Hopf C∞
c (M)-

algebroid A under which there is a natural isomorphism

A ∼= Gsp(A)⋉ U (b(P(A)))

of Hopf C∞
c (M)-algebroids, where b(P(A)) is a Gsp(A)-bundle of Lie algebras over

M with P(A) = Γ∞
c (b(P(A))).

2. Preliminaries

For the convenience of the reader and to fix the notations, we will first recall
some basic definitions concerning Lie groupoids [14, 17, 18] and Hopf algebroids
[3, 20, 21].
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2 J. KALIŠNIK AND J. MRČUN

A Lie groupoid over a smooth (Hausdorff) manifold M is a groupoid G with
objects M , equipped with a structure of a smooth, not-necessarily Hausdorff, man-
ifold such that all the structure maps of G are smooth, while the source and
the target maps s, t : G → M are submersions with Hausdorff fibers. We write
G(x, y) = s−1(x) ∩ t−1(y) for the manifold of arrows from x ∈ M to y ∈ M , and
Gx = G(x, x) for the isotropy Lie group at x. A Lie groupoid is étale if all its
structure maps are local diffeomorphisms. A bisection of an étale Lie groupoid G is
an open subset V of G such that both s|V and t|V are injective. Any such bisection
V gives a diffeomorphism τV : s(V ) → t(V ) by τV = t|V ◦ (s|V )

−1. The product of
bisections V and W of G is the bisection V ·W = {gh | g ∈ V, h ∈ W, s(g) = t(h)},
while the inverse of the bisection V is the bisection V −1 = {g−1 | g ∈ V }.

A bundle of Lie groups B over M is a Lie groupoid over M for which the maps
s and t coincide. An action of a Lie groupoid G over M on a bundle of Lie groups
B over M is a smooth action of G on B along the map B → M such that for any
g ∈ G(x, y) the map Bx → By, b 7→ g · b, is an isomorphism of Lie groups. A
G-bundle of Lie groups over M is a bundle of Lie groups over M equipped with an
action of G. For such a G-bundle of Lie groups over M one defines the associated
semidirect product Lie groupoid G⋉B over M [17] by virtually the same formulas
as those for the semidirect product of groups. Analogously one defines G-bundles
of finite dimensional algebras (Lie algebras, Hopf algebras) over M . We emphasize
that these are required to be locally trivial only as vector bundles.

We next briefly review the definition of a Hopf algebroid. We refer the reader to
[10, 20, 21] for more details. Similar, but inequivalent notions have been studied in
[1, 2, 4, 11, 13, 16, 27, 28].

Let R be a commutative (associative, not necessarily unital) algebra over a field
k. A Hopf R-algebroid is a k-algebraA such thatR is a commutative, not necessarily
central, subalgebra of A in which A has local units, equipped with a structure of
a left R-coalgebra on A (with comultiplication ∆ and counit ǫ) and a k-linear
involution S : A → A (antipode) such that

(i) ǫ|R = id and ∆|R is the canonical embedding R ⊂ A⊗ll
R A,

(ii) ∆(A) ⊂ A⊗RA, where A⊗RA is the algebra consisting of those elements of
A⊗R A on which both right R-actions coincide,

(iii) ǫ(ab) = ǫ(aǫ(b)) and ∆(ab) = ∆(a)∆(b) for any a, b ∈ A,
(iv) S|R = id and S(ab) = S(b)S(a) for any a, b ∈ A,
(v) µA ◦ (S⊗ id)◦∆ = ǫ ◦S, where µA : A⊗rl

R A → A denotes the multiplication.

A homomorphism of Hopf R-algebroids is defined in the obvious way.
The anchor of a Hopf R-algebroid is the homomorphism of algebras ρ : A →

Endk(R), given by ρ(a)(r) = ǫ(ar) for a ∈ A and r ∈ R. In general, an element
a ∈ A is primitive if ∆(a) = η⊗ a+ a⊗ η for some η ∈ A such that ηa = aη = a. If
A is unital, this definition is equivalent with the usual one. We denote by P(A) the
left R-module of primitive elements of A. It follows immediately that ǫ(P(A)) = 0.
Equipped with the restriction of the anchor and the natural Lie bracket, the left
R-module P(A) becomes a (k,R)-Lie algebra [19, 26]. Its universal enveloping
algebra is denoted by U (R,P(A)).

In this paper, we will mostly focus to the case where R is the algebra C∞
c (M) of

smooth real functions with compact support on a smooth manifoldM . We will write
C∞(M)x for the algebra of germs at a point x of smooth functions on M . Recall
that the maximal ideals of C∞

c (M) correspond bijectively to the points of M : to
any x ∈ M we assign the ideal Ix of functions which vanish at x. The localization of
a locally unital C∞

c (M)-module (algebra, coalgebra) M at Ix is a C∞(M)x-module
(algebra, coalgebra), which will be denoted by Mx. Note that Mx

∼= M/NxM,
where Nx is the ideal of functions with trivial germ at x. An element m ∈ M
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equals zero if and only if its localization mx equals zero for any x ∈ M [22]. A
homomorphism of C∞

c (M)-modules is bijective (injective, surjective) if and only
if all its localizations are bijective (injective, surjective). A C∞

c (M)-module M is
locally free, by definition, if Mx is a free C∞(M)x-module for every x ∈ M . A
locally free C∞

c (M)-module M is of constant finite rank, if there exists n ∈ N such
that rank(Mx) = n for all x ∈ M .

Let A be a Hopf C∞
c (M)-algebroid. An element a ∈ A is S-invariant weakly

grouplike if there exists a′ ∈ A such that ∆(a) = a⊗a′ and ∆(S(a)) = S(a′)⊗S(a)
(this implies ∆(S(a)) = S(a)⊗ S(a′)). We denote by GS

w(A) the set of S-invariant
weakly grouplike elements of A. An element a ∈ GS

w(A) is normalized at y ∈ M if
ǫ(a)y = 1, and normalized on U ⊂ M if it is normalized at each y ∈ U . Element
of the type ay ∈ Ay, where a ∈ GS

w(A) is normalized at y, is called an arrow of A
at y. The arrows of A at y form a subset GS(Ay) of the set G(Ay) of grouplike
elements of the C∞(M)y-coalgebra Ay. The union of all arrows of A has a natural
structure of an étale Lie groupoid over M [21]. This groupoid is referred to as the
spectral étale Lie groupoid associated to A, and denoted by

Gsp(A) .

Each a ∈ GS
w(A), normalized on an open subset W of M , determines a bisection

aW = {ay | y ∈ W} of Gsp(A), an open subset VW,a of M and a diffeomorphism
τW,a : VW,a → W , implicitly determined by the equality fa = a(f ◦ τW,a) for all
f ∈ C∞

c (W ).

3. Convolution Hopf algebroids

Let G be an étale Lie groupoid over M and let A be a G-bundle of finite-
dimensional unital algebras overR. We equip the space Γ∞

c (t∗A) with an associative
convolution product, given by the formula

(ab)(g) =
∑

g=hk

a(h)(h · b(k))

for any a, b ∈ Γ∞
c (t∗A). While only valid for Hausdorff groupoids, the above formula

naturally extends to the non-Hausdorff case if we use the definition of the space
of sections with compact support of a vector bundle from [7]. The corresponding
algebra, called the convolution algebra of G with coefficients in A, will be denoted
by

C∞
c (G;A) .

In particular, if A is a finite dimensional unital algebra, then we have the convo-
lution algebra C∞

c (G;A) of G with coefficients in the trivial G-bundle with fiber
A. Note that C∞

c (G) = C∞
c (G;R). Since A contains the trivial bundle with fiber

R, the convolution algebra C∞
c (G;A) contains the algebra C∞

c (G) and henceforth
also C∞

c (M). Furthermore, the algebra C∞
c (G;A) contains C∞

c (M ;A) as well. In
fact, the algebra C∞

c (G;A) has local units in C∞
c (M) and is generated by the sum

of C∞
c (G) and C∞

c (M ;A). Note also that C∞
c (M ;A) is a subalgebra of the algebra

Γ∞(A) = C∞(M ;A) of sections of A with the pointwise multiplication.
It is often inconvenient to compute products of arbitrary functions. Things get

simplified if we restrict the calculations to the functions with supports in bisections.
In particular, this is the easiest way of defining the convolution product on C∞

c (G;A)
if G is non-Hausdorff. The bisections of G form a basis for the topology on G, so we
can decompose an arbitrary function a ∈ C∞

c (G;A) as a sum a =
∑n

i=1 ai, where
each ai has its support in a bisection Vi of G. In the non-Hausdorff case, this is in
fact the definition of C∞

c (G;A).
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Any function a ∈ C∞
c (G;A) with support in a bisection V can be written in the

form a = a0 ◦ t|V for a unique a0 ∈ C∞
c (t(V );A). Moreover, if a′ ∈ C∞

c (V ) is a
function equal to 1 on a neighbourhood of the support of a, we can express a as the
product a0a

′ (we say that such a decomposition a0a
′ is standard decomposition of a).

The bisection V induces an isomorphism of bundles of algebras (µV , τV ) : A|s(V ) →
A|t(V ). For any c0 ∈ C∞(M ;A) we define the function µV (c0) ∈ C∞(t(V );A) by

µV (c0) = µV ◦ c0|s(V ) ◦ τ−1
V .

Let b ∈ C∞
c (G;A) be another function with support in a bisection of G, say W , and

with a standard decomposition b0b
′. Observe that

(1) ab = (a0 ◦ t|V )(b0 ◦ t|W ) = (a0µV (b0)) ◦ t|V ·W ,

where a0µV (b0) denotes the product of functions in C∞(t(V );A). The product
in C∞

c (G;A) can be therefore expressed as a combination of the multiplication in
C∞(M ;A) and the action of G on A. Since the algebra C∞

c (G;A) contains C∞
c (M)

as a commutative subalgebra, we can consider C∞
c (G;A) as a left C∞

c (M)-module.
The action of C∞

c (M) on C∞
c (G;A) can be expressed as a scalar multiplication along

the fibers of the map t. We will often use the isomorphism

(2) C∞
c (G;A) ∼= C∞(M ;A)⊗C∞

c (M) C
∞
c (G)

of left C∞
c (M)-modules [9]. Under this isomorphism, the function a corresponds to

the tensor a0 ⊗ a′, while the equation (1) translates to

(a0 ⊗ a′)(b0 ⊗ b′) = a0µV (b0)⊗ a′b′ .

3.1. The twisted tensor product Hopf algebroid. Let H be a G-bundle of
finite dimensional Hopf algebras (with involutive antipodes). The space C∞(M ;H)
is a Hopf algebra over C∞(M). Write ∆0, ǫ0 and S0 for the comultiplication, the
counit and the antipode of C∞(M ;H) respectively. Since C∞

c (G) is a coalgebra
over C∞

c (M) [21], the tensor product C∞(M ;H)⊗C∞

c (M) C
∞
c (G), which we identify

with C∞
c (G;A) by (2), naturally becomes a coalgebra over C∞

c (M). The coalgebra
structure is given by

∆(a0 ⊗ a′) =

n
∑

i=1

(ai,10 ⊗ a′)⊗ (ai,20 ⊗ a′) ,

ǫ(a0 ⊗ a′) = ǫ0(a0) ,

for any function a ∈ C∞
c (G;A) with support in a bisection V and with standard

decomposition a0a
′, where ∆0(a0) =

∑n

i=1 a
i,1
0 ⊗ai,20 and ai,10 , ai,20 are chosen so that

ai,10 a′ and ai,20 a′ are standard decompositions. Furthermore, there is the antipode
on C∞(M ;H)⊗C∞

c (M) C
∞
c (G) given by

S(a0 ⊗ a′) = µV −1(S0(a0))⊗ SG(a
′) ,

where SG is the antipode on C∞
c (G). With respect to the isomorphism (2), we can

express S also in the form S(a)(g) = g ·SH(a(g−1)), where SH denotes the antipode
on H.

Proposition 3.1. The convolution algebra C∞
c (G;H), together with the structure

maps (∆, ǫ, S) defined above, is a Hopf C∞
c (M)-algebroid.

Proof. The axioms can be verified by direct computations. Let us show, for exam-
ple, that S(ab) = S(b)S(a) holds for any a, b ∈ C∞

c (G;H). We can assume without
loss of generality that the function a has support in a bisection V , the function b



5

has support in a bisection W and s(V ) = t(W ). Write a0a
′ and b0b

′ for standard
decompositions of a and b respectively. Then

S(ab) = S ((a0 ⊗ a′)(b0 ⊗ b′)) = S(a0µV (b0)⊗ a′b′)

= µ(V ·W )−1 (S0(a0 · µV (b0)))⊗ SG(a
′b′)

= µ(V ·W )−1 (S0(µV (b0))S0(a0))⊗ SG(a
′b′)

= µW−1 (µV −1(S0(µV (b0))))µ(V ·W )−1(S0(a0))⊗ SG(a
′b′)

= µW−1(S0(b0))µW−1 (µV −1(S0(a0)))⊗ SG(b
′)SG(a

′)

= (µW−1(S0(b0))⊗ SG(b
′)) (µV −1(S0(a0))⊗ SG(a

′))

= S(b)S(a) . �

Note that both C∞
c (G) and C∞

c (M ;H) = C∞(M ;H) ⊗C∞

c (M) C
∞
c (M) are Hopf

C∞
c (M)-subalgebroids of C∞

c (G;H). The Hopf algebroid C∞
c (G;H) will be referred

to as the twisted tensor product of G and C∞(M ;H), and denoted by

G⋉ C∞(M ;H) .

This is in particular motivated by the following example:

Example 3.2. The convolution Hopf algebra of an action of a discrete group Γ on
a Hopf algebra H is isomorphic to the twisted tensor product Hopf algebra Γ⋉H .

Our definition of a Hopf algebroid roughly corresponds to the notion of a left
Hopf algebroid with antipode in [3, 4, 12]. However, in the unital case where M is
compact, the structure of G⋉ C∞(M ;H) satisfies axioms of a Hopf algebroid given
in [3, 4, 12].

3.2. The Hopf algebroid associated to a semidirect product. Let B be a
bundle of connected Lie groups over M , equipped with a left action of an étale Lie
groupoid G over M . In this Subsection we will define the Hopf C∞

c (M)-algebroid
associated to the semidirect product Lie groupoid G⋉B. The definition is a slight
extension of the one in previous Subsection, since we have to consider the convo-
lution algebra with coefficients in a bundle of infinite dimensional Hopf algebras,
filtered with subbundles of finite rank. In the extreme trivial cases, this definition
extends the definition of C∞

c (M)-Hopf algebroid C∞
c (G) associated to G [21] as well

as the definition of C∞
c (M)-Hopf algebroid of the Lie algebroid associated to B [19].

Denote by b the bundle of Lie algebras associated to B. The universal enveloping
algebra U (b) of the Lie algebroid b over M is not only a C∞(M)/R-bialgebra [19],
but also a Hopf C∞(M)-algebroid and in fact a Hopf algebra over C∞(M). To
each Lie algebra bx, the fiber of b over a point x ∈ M , we naturally assign its
universal enveloping algebra U(bx), together with its natural filtration U(bx)

(0) ⊂
· · · ⊂ U(bx)

(k) ⊂ U(bx)
(k+1) ⊂ · · · . The family of vector spaces

U(b)(k) =
∐

x∈M

U(bx)
(k)

can be, for each k, equipped with a smooth vector bundle structure over M (by
considering local trivializations obtained from PBW-theorem). Define a family of
(infinite dimensional) vector spaces over M

U(b) = lim
→

U(b)(k) ,

with fiber over x being the Hopf algebra U(bx). The space of smooth sections of
U(b) is defined as

C∞(M ;U(b)) = Γ∞(U(b)) = lim
→

Γ∞(U(b)(k)) .
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The structure maps on the fibers of U(b) extend to the structure maps on the space
C∞(M ;U(b)) and turn C∞(M ;U(b)) into a Hopf algebra over C∞(M). Note that
there is a natural isomorphism U (b) ∼= C∞(M ;U(b)) of Hopf algebras over C∞(M).

Since the groupoidG acts on B, the bundle b is in fact aG-bundle of Lie algebras.
The action of G on b extends to an action on the family of Hopf algebras U(b): any
arrow g ∈ G(x, y) induces an isomorphism of Hopf algebras U(bx) → U(by), which,
in particular, preserves the natural filtration. We define

C∞
c (G;U(b)) = lim

−→
Γ∞
c (t∗(U(b)(k))) .

Again, we have a natural isomorphism of left C∞
c (M)-modules

C∞
c (G;U(b)) ∼= C∞(M ;U(b))⊗C∞

c (M) C
∞
c (G) .

We equip C∞
c (G;U(b)) with multiplication, unit, comultiplication, counit and an-

tipode as in Proposition 3.1, to obtain the twisted tensor product Hopf C∞
c (M)-

algebroid

G⋉ U (b) = C∞
c (G;U(b))

associated to the semidirect product groupoid G⋉B. The construction of the Hopf
C∞
c (M)-algebroid G⋉ U (b) is functorial with respect to the smooth functors over

idM .

Example 3.3. (1) Let G⋉B be a semidirect product of a discrete group G and a
connected Lie group B. The associated Hopf algebroid is in this case isomorphic to
the twisted tensor product Hopf algebra G ⋉ U(b). We consider the Hopf algebra
G⋉U(b) associated to the semidirect product G⋉B as a geometrically constructed
Hopf algebra which generalizes both the group algebras and the universal enveloping
algebras.

(2) If B is trivial, then G⋉ U (b) is equal to C∞
c (G).

(3) A G-bundle of vector spaces is naturally a G-bundle of Lie algebras with
trivial bracket. For such a G-bundle of vector spaces B we obtain the convolution
Hopf algebroid G ⋉ S (B), where S (B) is the symmetric algebra of the module
Γ∞(B).

The Hopf algebroid G ⋉ U (b) of a semidirect product G ⋉ B can be naturally
represented by a certain class of partial differential operators on the groupoidG⋉B.
Note first that the Lie algebroid associated to G ⋉ B is in fact equal to the Lie
algebroid b of B since G is étale. We can therefore consider elements of Γ∞

c (b) as
right invariant vector fields on G ⋉ B [17, 25]. In the same manner, we assign to
any a ∈ Γ∞

c (t∗(b)) ⊂ G⋉ U (b) the vector field Xa on G⋉B, given by

Xa(b, g) = dR(b,g)(a(g)) .

Such a vector field is B-invariant by construction and completely determined by its
values on the subgroupoid G of G ⋉ B. The support of the vector field Xa is in
general not compact, if the fibers of B are not compact. However, it makes sense
to define the support of a B-invariant vector field on G ⋉ B as a subset of G and
not of the whole G ⋉ B. In this way, the vector field Xa has a compact support.
By generalizing the above construction, an arbitrary element of G ⋉ U (b) thus
corresponds to a B-invariant partial differential operator on G ⋉ B with compact
support.

Example 3.4. (1) Let G ⋉ B be a semidirect product of a discrete group G and
a connected Lie group B. An arbitrary element D ∈ G⋉ U(b) can be written as a
finite sum D =

∑

g∈G Dgδg, where Dg ∈ U(b) ∼= PDOinv(G ⋉ B) [25] and δg is a
function on G which is equal to 1 at g and is 0 everywhere else. Viewed as a partial
differential operator on G⋉B, D equals to Dg on the connected component of G⋉B
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corresponding to g. It is nonzero only on finitely many connected components of
G ⋉ B. Denote now by D′(G ⋉ B) the convolution algebra of distributions with
compact support on G ⋉ B [5]. We can faithfully represent the algebra G ⋉ U(b)
into D′(G⋉B) by assigning to Dgδg ∈ G⋉U(b) the distribution which corresponds
to the distributional derivative of δ(1,g) ∈ D′(G⋉B) along Dg.

(2) For a general semidirect product groupoid G⋉B we consider

G⋉ U (b) ∼= PDOB-inv,c(G⋉B)

as the space of B-invariant partial differential operators on G ⋉ B with compact
support and with convolution product.

4. The structure of Hopf algebroids

The aim of this section is to characterize the convolution Hopf algebroids of
semidirect products of étale Lie groupoids and of bundles of Lie groups.

4.1. The algebra D(A). We start by exploring some properties of the space P(A)
of primitive elements of a Hopf R-algebroid A and its relation to the base algebra
R and the antipode S. The well known identity S(X) = −X for X ∈ P(A) does
not hold for general Hopf algebroids. Concrete counter-examples, with geometric
origin, have been constructed and described in [12]. In our case, however, we
will be mostly interested in those Hopf algebroids for which the space of primitive
elements is S-invariant. Some of the properties of such algebroids are described in
the following propositions.

Proposition 4.1. Let A be a Hopf R-algebroid. The following statements are

equivalent:

(i) S(P(A)) = P(A).
(ii) S(P(A)) ⊆ P(A).
(iii) For every X ∈ P(A) we have S(X) = −X.

Proof. The implications (i)⇒(ii) and (iii)⇒(i) are immediate. Suppose now that
S(P(A)) ⊆ P(A). To show (iii), we use the equality µA ◦ (S ⊗ id) ◦ ∆ = ǫ ◦ S on
an element X ∈ P(A) and obtain

S(X) +X = ǫ(S(X)) .

Since P(A) is S-invariant, we have S(X) ∈ P(A), which implies ǫ(S(X)) = 0. �

Proposition 4.2. Let A be a Hopf R-algebroid. The following statements are

equivalent:

(i) Elements of P(A) commute with elements of R.

(ii) The space P(A) is a right R-submodule of A.
(iii) The (k,R)-Lie algebra P(A) has trivial anchor.

Proof. (i)⇒(ii) P(A) is always a left R-submodule of A, hence in this case it is
also a right R-submodule.

(ii)⇒(iii) Take any r ∈ R and any X ∈ P(A). From Xr ∈ P(A) it follows
ǫ(Xr) = 0 and therefore ρ(X)(r) = ǫ(Xr) = 0.

(iii)⇒(i) Take any r ∈ R, any X ∈ P(A) and let η ∈ R be a local unit for both
r and X . Then

∆(Xr) = ∆(X)∆(r) = (X ⊗ η + η ⊗X)(η ⊗ r) = X ⊗ r + η ⊗Xr .

By applying the map id⊗ ǫ on both sides we obtain

Xr = rX + ǫ(Xr) .

If the anchor is trivial, we therefore have rX = Xr. �
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The space of primitive elements P(A) is in general not a Lie algebra over R.
This is true, however, if the anchor of P(A) is trivial, as follows from Proposition
4.2.

Proposition 4.3. Let A be a Hopf R-algebroid. If P(A) is S-invariant, then the

(k,R)-Lie algebra P(A) has trivial anchor.

Proof. Choose any r ∈ R and any X ∈ P(A). We have to show Xr ∈ P(A). First
note that

Xr = S(S(Xr)) = S(rS(X)) .

Since P(A) is S-invariant and a left R-module, we get S(rS(X)) ∈ P(A). �

We will assume from now on that M is a Hausdorff manifold and that A is a Hopf
C∞
c (M)-algebroid. Part of the structure of a Hopf algebroid A is its anchor, which

defines an action of A on the algebra C∞
c (M). In this respect, two classes of elements

of A will be of particular interest for us. Primitive elements of A act on C∞
c (M)

by derivations (which correspond to vector fields on M). It is therefore convenient
to consider the subalgebra D(A) of A, generated by C∞

c (M) and P(A), which
acts on C∞

c (M) by partial differential operators. Under some mild assumptions we
can identify D(A) with the universal enveloping algebra U (C∞

c (M),P(A)) of the
(R, C∞

c (M))-Lie algebra P(A) (see Proposition 4.6).
Another important subset GS

w(A) of A consists of S-invariant weakly grouplike
elements. The action of such an element a on C∞

c (M) was studied in [21], where it
was used to define the spectral étale Lie groupoid associated to A. Note that the
anchor ρ(a) corresponds to the operator TS(a) (see [21]) given by

ρ(a)(f) = TS(a)(f) = ǫ(af)

for any f ∈ C∞
c (M). Alternatively, one can equivalently define ρ(a)(f) = afS(a′),

where a′ is any element of A such that ∆(a) = a⊗ a′ and ∆(S(a)) = S(a′)⊗ S(a).
By using this definition, the operator ρ(a) can be extended to the whole A.

We say that a pair of elements a, a′ ∈ GS
w(A) is a good pair, if there exist

an element c ∈ GS
w(A), normalized on an open subset U of M , and functions

f, f ′ ∈ C∞
c (U) such that a = fc, a′ = f ′c and f ′ equals 1 on an open neighbourhood

of the support of f . Such an element c will be called a witness for the good pair a, a′.
Observe that f = ǫ(a), f ′ = ǫ(a′), ∆(a) = a⊗a′ = a⊗ c, ∆(S(a)) = S(a′)⊗S(a) =
S(c) ⊗ S(a), ∆(a′) = a′ ⊗ c, ∆(S(a′)) = S(c) ⊗ S(a′), f = aS(a′) = aS(c) and
f ′ = a′S(c) (see [21]). We say that an element d ∈ GS

w(A) is good, if there exists
d′ ∈ GS

w(A) such that d, d′ is a good pair.
For every good pair a, a′ ∈ GS

w(A) we define an R-linear operator Ta,a′ : A → A
by

Ta,a′(b) = abS(a′)

for any b ∈ A. Its restriction to C∞
c (M) clearly equals ρ(a).

Proposition 4.4. Let A be a Hopf C∞
c (M)-algebroid and let a, a′ ∈ GS

w(A) be a

good pair.

(i) The base subalgebra C∞
c (M) of A is Ta,a′-invariant.

(ii) The (R, C∞
c (M))-Lie algebra P(A) is Ta,a′-invariant.

(iii) The subalgebra D(A) of A is Ta,a′-invariant.

Proof. (i) This follows from the equality Ta,a′(f) = ǫ(af), which holds for any
f ∈ C∞

c (M).
(ii) Let c be a witness for the good pair a, a′. By definition, there exists an open

subset U of M such that c is normalized on U and ǫ(a), ǫ(a′) ∈ C∞
c (U). Write



9

f = ǫ(a) and f ′ = ǫ(a′). Choose any X ∈ P(A) and let η ∈ C∞
c (M) be a local unit

for X , Ta,a′(X), c, f and f ′. It follows that

∆(Ta,a′(X)) = ∆(aXS(a′))

= ∆(fc)∆(X)∆(S(f ′c))

= (fc⊗ f ′c)(X ⊗ η + η ⊗X)(S(c)⊗ S(f ′c))

= fcXS(c)⊗ f ′cS(f ′c) + fcS(c)⊗ f ′cXS(f ′c)

= f ′cXS(c)⊗ fcS(f ′c) + f ′cS(c)⊗ fcXS(f ′c)

= f ′cXS(c)⊗ f + f ′ ⊗ fcXS(f ′c)

= ff ′cXS(c)⊗ η + η ⊗ f ′fcXS(f ′c)

= aXS(c)⊗ η + η ⊗ aXS(a′) .

The second term in the last line is equal to η ⊗ Ta,a′(X). We need to see that the
first term in the last line equals Ta,a′(X)⊗ η. Indeed, we have

aXS(a′) = fcXS(f ′c)

= fcXS(c(f ′
◦ τU,c))

= fcX(f ′
◦ τU,c)S(c)

= fc
(

(f ′
◦ τU,c)X + ρ(X)(f ′

◦ τU,c)
)

S(c)

= fc(f ′
◦ τU,c)XS(c) + fcρ(X)(f ′

◦ τU,c)S(c)

= ff ′cXS(c) + c(f ◦ τU,c)ρ(X)(f ′
◦ τU,c)S(c)

= aXS(c) + c(f ◦ τU,c)ρ(X)(f ′
◦ τU,c)S(c) .

From the fact that ρ(X) is a derivation on C∞
c (M) and from the equality ff ′ = f

it follows that (f ◦ τU,c)ρ(X)(f ′
◦ τU,c) = 0, thus Ta,a′(X) = aXS(a′) = aXS(c).

(iii) Choose a function f ′′ ∈ C∞
c (U) which equals 1 on an open neighbourhood

W ′′ of the support of f ′, and put a′′ = f ′′c. Note that a′′ is another witness for the
good pair a, a′ and that both a, a′′ and a′, a′′ are good pairs with witness c. Write
τ = τW ′′,a′′ .

The vector space D(A) is generated by elements of the formX1X2 . . .Xkφ, where
Xi ∈ P(A) and φ ∈ C∞

c (M). It is therefore enough to show that Ta,a′ maps all
such elements into D(A).

We will prove this by induction on k. For k = 0 this is true by (i). Now
assume that Td,d′(X1X2 · · ·Xk−1φ) ∈ D(A) for any good pair d, d′ ∈ GS

w(A) and
any φ ∈ C∞

c (M). We only have to show that, under this induction hypothesis, we
have Ta,a′(X1X2 · · ·Xk−1Xkφ) ∈ D(A) for any φ ∈ C∞

c (M). To this end, note that
the equalities a′ = ǫ(a′)a′′ = a′′(ǫ(a′) ◦ τ) and ǫ(a′) ◦ τ = S(a′′)a′ imply

Ta,a′(X1X2 · · ·Xkφ) = aX1X2 · · ·XkφS(a
′)

= aX1X2 · · ·Xkφ(ǫ(a
′) ◦ τ)S(a′′)

= aX1X2 · · ·Xk−1φ(ǫ(a
′) ◦ τ)XkS(a

′′)

+ aX1X2 · · ·Xk−1ρ(Xk)(φ(ǫ(a
′) ◦ τ))S(a′′)

= aX1X2 · · ·Xk−1S(a
′′)a′φXkS(a

′′)

+ aX1X2 · · ·Xk−1ρ(Xk)(φ(ǫ(a
′) ◦ τ))S(a′′)

= Ta,a′′(X1X2 · · ·Xk−1)Ta′,a′′(φXk)

+ Ta,a′′(X1X2 · · ·Xk−1ρ(Xk)(φ(ǫ(a
′) ◦ τ))) .

The result now follows by (i) and the induction hypothesis. �
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In general, Ta,a′ is not a multiplicative map. For our purposes, it will suffice
that Ta,a′ is in a certain sense locally multiplicative.

For any C∞
c (M)-submodule B of A and any open subset U of M , define

B|U = {fb | f ∈ C∞
c (U), b ∈ B} .

Note that an element b ∈ B belongs to B|U if and only if there exists f ∈ C∞
c (U)

such that fb = b. Observe also that A|U and D(A)|U are subalgebras of A, while
P(A)|U is a (R, C∞

c (M))-Lie subalgebra of P(A).
The algebra D(A)|U is generated by C∞

c (U) and P(A)|U together. Commutation
relations between C∞

c (U) and P(A)|U show that for any D ∈ D(A)|U there exists
f ∈ C∞

c (U) such that fD = Df = D. Moreover, any η ∈ C∞
c (M) which equals 1

on U acts as a two-sided unit on D(A)|U .
Let a ∈ GS

w(A) be good, normalized on an open subset W of M , and let τW,a :
VW,a → W be the corresponding diffeomorphism. Choose a′ ∈ GS

w(A) so that a, a′

is a good pair. In particular, the element a′ is normalized on an open neighbourhood
W ′ of the support of ǫ(a), while ǫ(a) ◦ τW ′,a′ equals to 1 on VW,a. For any D ∈
D(A)|VW,a

we have

Ta,a′(D) = aDS(a′) = aD(ǫ(a) ◦ τW ′,a′)S(a′) = aDS(a)

= ǫ(a)a′DS(a) = a′(ǫ(a) ◦ τW ′,a′)DS(a) = a′DS(a) .

In particular, the restriction of Ta,a′ to D(A)|VW,a
depends only on W and a, and

not on the choice of a′. We will therefore denote this restriction by TW,a.

Proposition 4.5. Let A be a Hopf C∞
c (M)-algebroid and let a ∈ GS

w(A) be good,

normalized on an open subset W of M . The map TW,a restricts to

(i) the algebra isomorphism (τ−1
W,a)

∗ : C∞
c (VW,a) → C∞

c (W ),

(ii) an isomorphism of Lie algebras P(A)|VW,a
→ P(A)|W , and

(iii) an isomorphism of algebras D(A)|VW,a
→ D(A)|W .

Proof. (i) This part was proven in [21] and is in fact the definition of τW,a.
(iii) First we show that TW,a

(

D(A)|VW,a

)

⊂ D(A)|W . Choose a′ ∈ GS
w(A) so

that a, a′ is a good pair. Let D ∈ D(A)|VW,a
and choose f ∈ C∞

c (VW,a) such that
fD = D. Then we have

TW,a(D) = aDS(a′) = afDS(a′) = (f ◦ τ−1
W,a)aDS(a′) ∈ D(A)|W .

Next, we show that the restriction of TW,a to D(A)|VW,a
is multiplicative. The

function S(a′)a ∈ C∞
c (M) equals to 1 on VW,a, thus it acts as a two-sided unit on

D(A)|VW,a
. For any D1, D2 ∈ D(A)|VW,a

it follows

TW,a(D1D2) = aD1D2S(a
′) = aD1S(a

′)aD2S(a
′) = TW,a(D1)TW,a(D2) .

By replacing a with S(a) in the above arguments we see that TVW,a,S(a) restricts to
a homomorphism of algebras D(A)|W → D(A)|VW,a

. Since aDS(a′) = a′DS(a) for
any D ∈ D(A)|VW,a

, we have

TVW,a,S(a)(TW,a(D)) = S(a)aDS(a′)a′ = S(a)a′DS(a)a′ .

The function S(a)a′ ∈ C∞
c (M) equals to 1 on VW,a, hence TVW,a,S(a)(TW,a(D)) = D.

Analogous arguments show that TW,a ◦ TVW,a,S(a) = idD(A)|W .
(ii) This follows from (iii). �

4.2. Spectral semidirect product Lie groupoid. In Subsection 3.2 we have
constructed the Hopf algebroid G⋉U (b) associated to a semidirect product G⋉B
of an étale Lie groupoid G and a bundle of connected Lie groups B. Our aim now
is to describe to what extent the Lie groupoid G ⋉ B can be reconstructed from
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G ⋉ U (b). We will show how to assign to a Hopf C∞
c (M)-algebroid, satisfying

certain conditions, its spectral semidirect product Lie groupoid.
We will assume from now on that A is a Hopf C∞

c (M)-algebroid which is locally
free as a left C∞

c (M)-module. If the (R, C∞
c (M))-Lie algebra P(A) is S-invariant

and locally free of constant finite rank as a C∞
c (M)-module (if M is compact, this

last condition is equivalent to P(A) being finitely generated and projective as a
C∞
c (M)-module), then there exists a bundle of Lie algebras b(P(A)) over M such

that Γ∞
c (b(P(A))) ∼= P(A). Its fiber over x ∈ M is given by

b(P(A))x = P(A)(x) = P(A)/IxP(A) ,

with the Lie bracket induced from the one on P(A). The universal envelop-
ing algebra U (b(P(A))) is a Hopf C∞(M)-algebroid and a Hopf algebra over
C∞(M), while Uc(b(P(A))) = C∞

c (M) ⊗C∞(M) U (b(P(A))) is a Hopf C∞
c (M)-

algebroid and a Hopf algebra over C∞
c (M). Observe that we have Uc(b(P(A))) =

U (C∞
c (M),P(A)).

Proposition 4.6. Let A be a Hopf C∞
c (M)-algebroid which is locally free as a

C∞
c (M)-module. If the C∞

c (M)-module P(A) is S-invariant and locally free of

constant finite rank, then the natural homomorphism Uc(b(P(A))) → A induces

an isomorphism of algebras Uc(b(P(A))) → D(A).

Proof. The image of the natural homomorphism ν : Uc(b(P(A))) → A equals D(A)
by definition, so we only need to show that ν is injective. For this, it is sufficient to
prove that ν is locally injective. Choose any x ∈ M . Since P(A)x is a free C∞(M)x-
module, it follows from PBW-theorem that P(U (C∞

c (M),P(A))x) = P(A)x,
which proves that νx|P(A)x is injective. As it is well known, this implies that νx is
injective. �

Next, we will use the operators TW,a to define an action of the spectral étale
groupoid Gsp(A) on b(P(A)). Let a ∈ GS

w(A) be good, normalized on an open
subset W of M . By Proposition 4.5, the map TW,a restricts to an isomorphism
P(A)|VW,a

→ P(A)|W of Lie algebras. Moreover, by considering P(A)|W as a

left C∞
c (VW,a)-module via (τ−1

W,a)
∗ : C∞

c (VW,a) → C∞
c (W ), the map TW,a becomes an

isomorphism of C∞
c (VW,a)-modules, hence it is given by an isomorphism of vector

bundles (µW,a, τW,a) : b(P(A))|VW,a
→ b(P(A))|W . These maps, for all possible

choices of a and W , assemble to a smooth map

µ : Gsp(A)×M b(P(A)) → b(P(A)) .

Explicitly, for any g ∈ Gsp(A)(x, y) and any p ∈ b(P(A))x we have

g · p = µ(g, p) = TW,a(D)(y) ,

where a is a good element of GS
w(A) normalized on W with y ∈ W such that ay = g

and D ∈ b(P(A))|VW,a
satisfies D(x) = p.

Proposition 4.7. The map µ defines an action of the groupoid Gsp(A) on the

bundle of Lie algebras b(P(A)).

Proof. Any g ∈ Gsp(x, y) acts as an isomorphism b(P(A))x → b(P(A))y of Lie
algebras by Proposition 4.5.

Represent an arrow 1x ∈ Gsp(A) by a smooth function f ∈ C∞
c (M) with fx = 1.

Choose a neighbourhood W of y such that f is normalized on W . For any p ∈
b(P(A))x, represented by D ∈ P(A)|W , we obtain

1x · p = TW,f (D)(x) = (fDS(f))(x) = (fDf)(x) = D(x) = p .

Let a, b ∈ GS
w(A) be good, normalized on open subsets Wa respectively Wb of

M , and let y ∈ Wa and z ∈ Wb be such that h = ay is an arrow from x to y and
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g = bz is an arrow from y to z. We can assume without loss of generality that
VWb,b = Wa. The arrow gh = (ba)z is then represented by the element ba ∈ GS

w(A),
which is good and normalized on Wb, and for any p ∈ b(P(A))x, represented by
D ∈ P(A)|VWa,a

, we have

(gh) · p = (TWb,ba(D))(z) = baDS(ba)(z) = b(aDS(a))S(b)(z) = g · (h · p) . �

The bundle b(P(A)) of Lie algebras integrates to a bundle Bsp(A) of simply
connected Lie groups [8]. Moreover, by the Lie’s second theorem for Lie algebroids
[15, 17], we can integrate the action of Gsp(A) on b(P(A)) to an action of Gsp(A)
on Bsp(A). The corresponding Lie groupoid

Gsp(A)⋉ Bsp(A)

will be referred to as the spectral semidirect product Lie groupoid associated to A.

4.3. Cartier-Gabriel-Kostant theorem for Hopf algebroids. The Cartier-
Gabriel-Kostant decomposition theorem describes the structure of Hopf algebras.
It states that a Hopf algebraH is isomorphic, under some conditions, to the twisted
tensor product H ∼= G(H)⋉U(P (H)), where the group of grouplike elements G(H)
naturally acts on the universal enveloping algebra U(P (H)) of P (H) by conjugation.
For example, this is true if H is cocommutative and the base field is algebraically
closed. To be able to similarly decompose a Hopf algebroid over C∞

c (M), one first
needs to impose several additional requirements, most of which are automatically
fulfilled in the case of Hopf algebras over R.

For any Hopf C∞
c (M)-algebroid A which is locally free as a left C∞

c (M)-module
and such that P(A) is a S-invariant, locally free left C∞

c (M)-module of constant
finite rank, we constructed the spectral semidirect product Lie groupoid Gsp(A) ⋉
Bsp(A) and the corresponding Hopf algebroid

Gsp(A)⋉ U (b(P(A))) .

To compare the Hopf algebroids Gsp(A) ⋉ U (b(P(A))) and A, we define a map

ΘA : Gsp(A)⋉ U (b(P(A))) → A

by

ΘA

(

n
∑

i=1

Di ◦ t|(ai)Wi

)

=

n
∑

i=1

Diai ,

where ai ∈ GS
w(A) is good, normalized on an open subset Wi of M , and Di ∈

U (b(P(A)))|Wi
= Uc(b(P(A)))|Wi

∼= D(A)|Wi
, for i = 1, . . . , n. The last isomor-

phism follows from Proposition 4.6.

Proposition 4.8. The map ΘA : Gsp(A)⋉ U (b(P(A))) → A is a homomorphism

of Hopf algebroids.

Proof. It is straightforward to check that ΘA is a well defined homomorphism of
coalgebras over C∞

c (M), so it is sufficient to prove that ΘA is multiplicative and
commutes with the antipodes.

Let a, b ∈ GS
w(A) be good, normalized on open subsets Wa respectively Wb of

M , and assume for simplicity that VWb,b = Wa. For any D ∈ U (b(P(A)))|Wa
and

E ∈ U (b(P(A)))|Wb
we have

ΘA

(

(E ◦ t|bWb
)(D ◦ t|aWa

)
)

= ΘA(EµbWb
(D) ◦ t|(ba)Wb

) = EµbWb
(D)ba .

On the other hand we have

ΘA(E ◦ t|bWb
)ΘA(D ◦ t|aWa

) = EbDa .
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Choose b′ ∈ GS
w(A) such that b, b′ is a good pair. Since D ∈ U (b(P(A)))|VWb,b

and S(b′)b equals 1 on VWb,b, we have D = DS(b′)b and hence

EbDa = EbDS(b′)ba = ETb,b′(D)ba = EµbWb
(D)ba .

To see that ΘA commutes with antipodes, it is now enough to observe that this
holds true on the subalgebras Uc(b(P(A))) (Proposition 4.6) and C∞

c (Gsp(A)) (see
[21]) which generate Gsp(A)⋉ U (b(P(A))) as an algebra. �

Our construction of ΘA extends the map C∞
c (Gsp(A)) → A given in [21] (which is

in fact defined for an arbitrary Hopf algebroid). The latter map is an isomorphism if
and only if A is locally grouplike, that is if Ax is freely generated byGS(Ax) for every
x ∈ M . In general, we consider C∞

c (Gsp(A)) as the best possible approximation of
A by a locally grouplike Hopf algebroid.

We resume by characterizing the Hopf algebroids A which can be decomposed
as Gsp(A) ⋉ U (b(P(A))). Since we do not assume A to be cocommutative, ΘA

is not necessarily an isomorphism (even if C∞(M) ∼= R). In his proof given in [6],
Cartier uses cocommutativity to show that H is freely generated by G(H) as a
left U(P (H))-module. For Hopf algebroids over C∞

c (M) we need to replace this
condition with a family of local conditions for each x ∈ M .

Let A be a Hopf C∞
c (M)-algebroid such that P(A) has trivial anchor. If we

localize D(A) at x ∈ M , we obtain the C∞(M)x-algebra D(A)x. Since C∞
c (M)

and D(A) commute, the left C∞(M)x-module Ax naturally becomes a left D(A)x-
module, for every x ∈ M . For any g ∈ GS(Ax) we denote by Ag

x the (free) left
D(A)x-submodule of Ax generated by g.

Theorem 4.9 (Cartier-Gabriel-Kostant). Let A be a Hopf C∞
c (M)-algebroid and

suppose that A is locally free as a C∞
c (M)-module. If

(i) the left C∞
c (M)-module P(A) is S-invariant locally free of constant finite

rank and

(ii) Ax =
⊕

g∈GS(Ax)
Ag

x for any x ∈ M ,

then the map ΘA : Gsp(A)⋉U (b(P(A))) → A is an isomorphism of Hopf C∞
c (M)-

algebroids. In particular, the Hopf C∞
c (M)-algebroid A is isomorphic to the Hopf

algebroid associated to its spectral semidirect product Lie groupoid Gsp(A)⋉Bsp(A).

Proof. The map ΘA is an isomorphism if and only if (ΘA)x is an isomorphism for
every x ∈ M . By definition of the groupoid Gsp(A) we have t−1(x) = GS(Ax) and
therefore

(

Gsp(A) ⋉ U (b(P(A)))
)

x
∼=

⊕

g∈GS(Ax)

U (b(P(A)))xδg ,

where δg ∈ C∞
c (Gsp(A)) is a function with germ 1 at g and support in a small

bisection of Gsp(A). This means that
(

Gsp(A) ⋉ U (b(P(A)))
)

x
is a free left

U (b(P(A)))x-module with basis {δg | g ∈ GS(Ax)}. If we identify Uc(b(P(A)))
with D(A) via ΘA, we can consider

(ΘA)x : (Gsp(A) ⋉ U (b(P(A))))x → Ax

as a homomorphism of left D(A)x-modules, uniquely determined by (ΘA)x(δg) = g.
It follows that (ΘA)x is an isomorphism if and only if Ax is a free left D(A)x-module
with basis GS(Ax). �
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