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Abstract

We generalize our recent explicit construction of the full hierarchy of Baxter Q-operators of
compact spin chains with su(n) symmetry to the supersymmetric case su(n|m). The method is
based on novel degenerate solutions of the graded Yang-Baxter equation, leading to an amalgam
of bosonic and fermionic oscillator algebras. Our approach is fully algebraic, and leads to the
exact solution of the associated compact spin chains while avoiding Bethe ansatz techniques.
It furthermore elucidates the algebraic and combinatorial structures underlying the system of
nested Bethe equations. Finally, our construction naturally reproduces the representation, due
to Z. Tsuboi, of the hierarchy of Baxter Q-operators in terms of hypercubic Hasse diagrams.
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1 Introduction, Motivation, Overview, and Outlook

Quantum integrability is a very rich and intricate phenomenon, which was, surely somewhat
serendipitously, discovered some 80 years ago by Hans Bethe [1]. Its underpinnings and underly-
ing mathematical structures continue to be unearthed, and it is fair to say that no fully general
theory of quantum integrability exists to date. This is unfortunate, since integrability keeps
reappearing in surprising and important contexts within theoretical physics. A prime example
is the AdS/CFT correspondence. An overview of a very recent collection of up-to-date review
articles on this exciting and still quite mysterious appearance is [2]. In view of the sheer variety
of approaches and the manifest lack of an ab initio, transparent, constructive, and self-contained
solution, it should be obvious that the underlying fundamental principles of gauge/string inte-
grability have not been discovered yet.

It so turns out, that even the theory of nearest-neighbor quantum spin chains is not yet
complete. This is an important clue, as spin chains appear in the weak coupling limit of the
AdS/CFT system [3]. In [4] we presented an explicit construction of the two Baxter Q-operators
of the su(2) Heisenberg XXX spin chain, historically the first model solved by Bethe’s ansatz
[1]. For a very elementary review, see [5]. While Rodney Baxter introduced the notion of the
Q-operator in his seminal article [6] on the XYZ chain (alias the 8-vertex model, see also his
textbook [7]), the limiting procedure back to the XXX chain is not straightforward at all. In fact,
our construction is completely different from Baxter’s orginal one. In the course of generalizing
[4] to the su(n) case in [8], the Q-operator construction method was put on firm ground. Four
of its key features deserve special mentioning.

The first feature is that the set of su(n) Q-operators is constructed just like any “ordinary”
transfer matrix as the trace over monodromies built from products of Lax operators L(z), just as
in Baxter’s work [6] and in the quantum inverse scattering approach [9], where however the Lax
operators now correspond in general to novel degenerate solutions of the Yang-Baxter equation.
z is the spectral parameter. The fact that these new types of Lax operators were not previously
known is what we had in mind when stating above that the theory of integrable quantum spin
chains has not yet been completed. Bringing them this way into the standard framework [9]
allows to naturally include the Baxter Q-operators into the set of all mutually commuting oper-
ators of a given spin chain. It furthermore permits the derivation of the hierarchy of functional
fusion relations on the operatorial level with the help of certain factorization formulas [8]. Our
method therefore directly reproduces and explains the full set of functional equations of the su(n)
spin chain models, which was previously known only on the level of eigenvalues (as opposed to
operators), see [10] and references therein.

The second feature is a consequence of the first feature: the new degenerate solutions of the
Yang-Baxter equation lead in general on purely algebraic grounds to bosonic oscillator degrees
of freedom in the auxiliary channel of the Lax operators. These oscillators initially appeared in
the so-called BLZ construction of conformal field theory [11], and our new “Yangian” point of
view [8] therefore also contributes to a deeper explanation of the latter. Note that all physically
sensible representations of bosonic oscillators are infinite dimensional. We find it fascinating that
these representations are needed to fully describe the integrable structure of compact su(n) spin
chain models. We consider this to be an important hint on why spin chains may appear from
quantum sigma models, where infinite dimensional representations are required as in any other
quantum field theory. This is precisely what happens in the AdS/CFT integrable system [2].

The third feature is a consequence of the second feature: when constructing the Q-operators
by taking a trace over the oscillator degrees of freedom of the monodromies built from the new
types of Lax operators, one needs to include appropriate phase factors exp iΦA in order to ensure
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convergence of all matrix elements, as was already stressed in the original BLZ construction [11].
The physical interpretation of the “twist angles” ΦA is in terms of Aharonov-Bohm phase factors
for the n particles of the system. This slightly breaks the su(n) invariance of the chain while
being fully compatible with integrability. In fact, the angles should be considered as a beneficial
device allowing to expose the intricate integrable “inner mechanics” of the model. They may
always be considered as a small regulator, which is easily removed from physical observables
such as the spectrum. The proper Baxter Q-operators, however, simply do not exist, for good
reasons, without these regulating fluxes. It is interesting to observe that similar phase angles
also naturally appear in the AdS/CFT context, see [12], [13], [14], [15], [16] for the most recent
references on this subject.

The final, forth feature is again closely related to the operatorial construction of the hierarchy
of Q-operators constructed from the just discussed previous three features. It is possible to derive
certain Q-Q functional relations for the Q-operators. We suspect that the simplest and deepest
explanation/derivation for these still remains to be found. Going over to the eigenvalues of the
Q-operators, utilizing their analytic structure, which in the case of spin chains is polynomiality
in the spectral parameter z, and taking certain ratios at critical points in the z-plane, one
finally derives the spectrum of the chain in the form of the well-known Bethe equations. No
ansatz for the wavefunction is made. It is important to stress that the analytic structure of the
eigenvalues of the Q-operators, without which the spectrum could not be derived, immediately
follows from the trace-over-oscillator-states construction employed. It is not ad-hoc imposed, as
it is (essentially) the case in the current state-of the-art approaches to the AdS/CFT spectral
problem, see [17] (and in particular the conclusions of this review article), and references therein.

In the current work we generalize the su(n) Q-operator construction of our earlier paper [8]
to the su(n|m) case. Our main motivation is again the fact that such spin chains appear in
the form of “closed sectors” at the one-loop level in the planar AdS/CFT integrable system. In
particular, the “maximally compact closed sector” has symmetry su(3|2) [18], [19], see also [3].
A smaller closed sector, su(2|1), see [20], corresponds at one loop to the famous integrable t-J
model, and was first solved by coordinate Bethe ansatz in [21], and by algebraic Bethe ansatz in
[22, 23]. The nested Bethe equations of the general su(n|m) nearest neighbor magnet were first
derived in [24, 25], adapting the nested Bethe ansatz method invented, along with the Yang-
Baxter equation as well as the scattering interpretation of the Bethe ansatz, for the treatment of
the multi-species Bose gas in Yang’s seminal paper [26]. See also [27]. Finally, a further impetus
for being interested in supersymmetric Baxter operators, fully consistent with our just spelled
out main motivation, is that these have been argued in [28] to be relevant for the exact solution
of the AdS/CFT spectral problem.

We shall find that the construction proceeds, modulo a number of tedious further details
mostly related to a multitude of minus signs, very much along the lines of the purely bosonic
case. In particular, the above four salient features remain. Now (first feature) one needs to study
degenerate solutions of the graded Yang-Baxter equation (section 2) in order to find the Lax
operators needed to build the supersymmetric Baxter operators, and to derive the factorization
formulas appropriate to this case (section 3). Not surprisingly (second feature), the new Lax
operators now contain a mixture of bosonic and fermionic oscillators, cf. section 2. Similar
operators have previously appeared in the literature on the graded, q-deformed systems with
slq(2|1) symmetry [29], but here we present the (non-deformed) general sl(n|m) derivation from
first principles (the Yang-Baxter equation). The (super)trace construction (third feature) of the
Q-operators (section 4) proceeds in similarity to the bosonic case, with some amusing differences.
We shall find that, for a slightly different reason, the twist angles corresponding to the fermionic
particles still need to be non-zero in order to avoid singular equations. In section 5 we discuss
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in some detail the complexification gl(1|1) of the simplest supersymmetric case su(1|1), both
for pedagogical reasons as well as a building block of the general case. As concerns the fourth
feature, the derivation of the Q-Q equations turns out to be much trickier in the supersymmetric
case; we present it in sections 3.2 and 6. The Bethe equations (7) then follow in much the same
way as in the bosonic case. We end by illustrating our approach in 8 in the well-known case of
the t-J model with su(2|1) symmetry with its 6 systems of Bethe ansatz equations.

As in the su(n) case our method again directly reproduces and explains the full set of func-
tional equations of the su(n|m) spin chain models, which were previously known only on the
level of eigenvalues as opposed to operators, see [30], [31], [32]. Here we would also like to point
out that very recently another, apparently both technically and conceptually rather different
construction of the su(n|m) Q-operators was proposed in the work [33], albeit with a similar
overall motivation. It would be interesting to understand the relation between this work and
our approach. There are also a number of interesting papers which deal with the construction of
Baxter Q-operators for non-compact spin chains. Apart from the articles cited already in [4], [8],
two notable studies on the non-compact sl(2|1) case are [34] and [35]. Again, the precise relation
to their approach (if any, it is clear that the method used in these works does not directly apply
to compact spin chains) remains to be understood.

One aspect of our construction method we find particularly appealing is that it naturally leads
to the full underlying combinatorial structure of the nested Bethe ansatz of su(n) or su(n|m)
integrable systems. It was discovered by Z. Tsuboi [32] that this structure is best depicted by
so-called Hasse diagrams. These are partially ordered sets of n (or n|m) distinguishable objects.
In the case at hand, the ordering is given by inclusion. This leads to Hasse diagrams with the
connectivity of an n+m dimensional hypercube. The 2n+m vertices of the hypercube correspond
to all possible subsets of the original n|m objects, and at each such vertex we have exactly one
Baxter Q-operator. Thus there are 2n+m distinct Q-operators. And indeed, this is also precisely
the possible number of degenerate solutions of the (graded) Yang-Baxter equation we find in
section 2! There exist (n + m)! different paths starting from the complete set (containing all
objects) down to the empty set (containing no objects). This corresponds to the total number
of possible nested Bethe ansatz systems. These are all fully equivalent, i.e. each system leads
by itself to the exact spectrum, as long as the twist angles ΦA are non-zero. Incidentally, the
above mentioned Q-Q relations relevant to the derivation of the Bethe equations also have a very
beautiful interpretation: They correspond to the plaquettes (four-cycles) of the hypercube.

In conclusion, the methodology for constructing the complete tower of Baxter Q-operators of
compact integrable spin chains with su(n) symmetry extends with small but interesting changes
to the supersymmetric su(n|m) case. The next step will be to include non-compact representa-
tions of the quantum space into our framework, and to construct the Baxter Q-operators of the
N = 4 one-loop spin chain with psu(2, 2|4) symmetry, cf. [36].

2 Graded Permutations and the Graded Yang-Baxter Equation

In this initial section we closely follow section 2 of our previous work [8], for the convenience of
the reader, and in order to extend our conventions to the graded (and thus supersymmetric) case.
The discussion will be terse, and the reader is asked to consult [8] for ampler explanations. For
a nearest neighbor, homogeneous, graded spin chain of length L, where each “spin” (a misnomer,
of course) takes any of the n + m values of the fundamental representation of su(n|m), the
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Hamiltonian reads

Hn|m = 2

L∑

l=1


1−

n+m∑

A,B=1

(−1)p(B) e
(l)
AB e

(l+1)
BA


 , (2.1)

with the superindices taking values A,B ∈ 1, 2, . . . , n+m. Here eAB denotes the (n+m)×(n+m)
matrix unit (eAB)ij = δAiδBj and the superscript “(l)” refers to the quantum space of the l-th
“spin” (better: species of lattice particle) in the chain. The parity function p(A) is a map

p : {1, . . . , n+m} → {0, 1} (2.2)

defining the grading of the vector space1. For A ∈ {1, 2, . . . , n} we say that the superindex A
takes “bosonic” values, and the grading is defined to be p(A) = 0. For A ∈ {n + 1 . . . , n +m}
the index A takes “fermionic” values, and the grading is defined to be p(A) = 1. As already
mentioned in section 1, we will consider flux angles ΦA, just as in our previous work [8]. This
translates into the following “quasiperiodic” boundary conditions:

e
(L+1)
AB := ei (ΦA−ΦB) e

(1)
AB , (2.3)

where Φ1,Φ2, . . . ,Φn+m is the set of fixed twist angles. It is easy to show that the Hamiltonian
(2.1) may be rewritten as2

Hn|m = 2

L∑

l=1

(1−Pl,l+1) , (2.4)

where Pl,l+1 denotes the graded permutation operator on adjacent chain sites l, l+1. It acts by
permuting adjacent species of particles on the lattice, picking up a minus sign iff two fermions
are exchanged, i.e. iff both particles carry a superindex in the set {n+1 . . . , n+m}. We see that
this Hamiltonian behaves differently when acting on a homogeneous vacuum state. We have

Hn|m · |B〉 = 0 , Hn|m · |F 〉 = 4L |F 〉 , (2.5)

where |B〉 is a “ferromagnetic” bosonic vacuum state where any one type of bosonic particle is
placed on all lattice sites (there are n such vacua), while |F 〉 is a fermionic vacuum state where
any one type of fermionic particle is placed on all lattice sites (there are m such vacua).

Let us now proceed as in [8] and derive the general form of linear solutions to the graded
Yang-Baxter equation with gl(n|m) symmetry3. To this end we represent the quantum space
of the Yang-Baxter equation by the Z2-graded vector space C

n|m which provides us with the
defining relations for the supersymmetric cousin of the previously discussed solutions. Consider
the graded Yang-Baxter equation

R(z1 − z2)L(z1)L(z2) = L(z2)L(z1)R(z1 − z2) , (2.6)

which acts in the space V ⊗ C
n|m ⊗ C

n|m, where V denotes a not yet specified space. Then the
intertwiner (R-matrix) R(z) acts linearly on C

n|m ⊗ C
n|m and is defined by

R(z) = z +P with P =
∑

A,B

(−1)B eAB ⊗ eBA , (2.7)

1In the following we will write in slight abuse of notation (−1)A instead of (−1)p(A).
2 Actually, in the presence of the fluxes ΦA the “backward” permutation PL,L+1 is special, and should include

the phase factors of (2.3).
3 From now on we will for simplicity consistently work with the complexified algebras gl(n|m) and sl(n|m)

instead of the real form su(n|m). The quantum space is however in this work always an L-fold tensor product of
fundamental representations of su(n|m).
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where P is again the just introduced graded permutation, exchanging the states in the two copies
of Cn|m⊗C

n|m. It is well known that (2.6) serves as the defining relation of the Yangian algebra
Y (gl(n|m)) [37]. More specifically, without loss of generality, choosing the L-operators to be of
the form

L(z) =
∑

A,B

(−1)AB+BLAB(z)⊗ eAB , (2.8)

the Yang-Baxter equation (2.6) immediately leads to the constraining relations

(z1 − z2) [LAB(z1), LCD(z2)] = (−1)AB+AC+BC
(
LCB(z2)LAD(z1)− LCB(z1)LAD(z2)

)
. (2.9)

Here the brackets denote the supercommutator4. If we expand LAB(z) in a Laurent series

LAB(z) = L
(0)
AB + L

(1)
AB z−1 + L

(2)
AB z−2 + . . . , (2.10)

we can rewrite (2.9) in the form

[
L
(r)
AB , L

(s)
CD

]
= (−1)AB+AC+BC

min(r,s)∑

q=1

(
L
(r+s−q)
CB L

(q−1)
AD − L

(q−1)
CB L

(r+s−q)
AD

)
. (2.11)

In our discussion we will consider solutions to the graded Yang Baxter equation which are of the
form

LAB(z) = L
(0)
AB + z−1L

(1)
AB , (2.12)

and set all higher terms L
(r)
AB = 0 for r ≥ 2. From (2.11) we find that the elements L

(0)
AB

supercommute among themselves, as well as with the elements L
(1)
AB . Therefore we will assume

that they are Graßmann numbers. Furthermore, using the GL(n|m) invariance of the R-matrix

the entries L
(0)
AB can be transformed to diagonal form

L
(0)
AB = δAI δBI . (2.13)

Here I ⊆ {1, . . . , n +m} denotes an arbitrary set containing |I| elements. The only nontrivial

commutation relations which arise from (2.11) are among the elements L
(1)
AB :

[
L
(1)
AB, L

(1)
CD

]
= (−1)AB+AC+BC

(
L
(1)
CB L

(0)
AD − L

(0)
CB L

(1)
AD

)
. (2.14)

In the following we assign undotted and dotted indices in order to indicate that they take,
respectively, values in the set I and its complement Ī. Furthermore, we firstly introduce the
gl(I) ≡ gl(p|q) generators5 EAB obeying the usual commutation relations

[EAB , ECD] = EAD δCB − (−1)(A+B)(C+D)ECB δAD , (2.15)

and secondly |I| · |Ī | pairs of superoscillators, which supercommute with the generators EAB , and
satisfy [

ξȦB , ξ†
CḊ

]
= δBC δȦḊ . (2.16)

4 The supercommutator is given by [X,Y ] = XY − (−1)p(X)p(Y )Y X. The anticommutator will be denoted by
[·, ·]+ and the commutator by [·, ·]−.

5Where p and q are the number of elements in I with even and odd grading, respectively.

5



The commutation relations (2.14) can then be realized with use of the superoscillators (2.16)
and the gl(p|q) generators (2.15) in the following way:

L(1)
AB

=−(−1)B
(
E

AB
+HI

AB

)
; L

(1)

AḂ
= ξ†

AḂ
; (2.17)

L
(1)

ȦB
=−(−1)B ξȦB ; L

(1)

ȦḂ
= δȦḂ , (2.18)

with
HI

AB
=
∑

Ḋ∈Ī

(
ξ†
AḊ

ξ
ḊB

+ 1
2(−1)A+ḊδAB

)
. (2.19)

The definitions above serve as an evaluation homomorphism of the infinite-dimensional Yangian
algebra (2.11) into a finite-dimensional algebra composed out of gl(p|q) and the superoscillator
algebra defined in (2.16). It follows that any representation of this finite-dimensional algebra
defines a representation of the Yangian as well as a solution of the graded Yang-Baxter equation
(2.6).

For later purposes we arrange the elements LAB(z) in a 2× 2 block matrix and define6

LI(z) =




z δ
AB

− (−1)B
(
E

AB
+HI

AB

)
ξ†
AḂ

−(−1)B ξȦB δȦḂ


 . (2.20)

We will refer to (2.20) as the linear canonical L-operator. Any first order L-operator with L
(0)
AB

of rank |I| and with non-degenerate L
(1)

ȦḂ
can be brought to this form using the aforementioned

GL(n|m) invariance.

3 Fusion and Factorization of L-operators

An essential part of our analysis in the following is based on some remarkable decomposition
properties of the product of two L-operators of the form (2.20). The Yangian Y = Y (gl(n|m))
is a Hopf algebra, see e.g. [37]. In particular, its co-multiplication

Y → Y ⊗ Y (3.1)

is generated by the matrix product of two L-operators, corresponding to two different copies of
Y appearing on the RHS of (3.1). We are interested in the structure of the product

L(z) = L
[1]
I (z + ω1)L

[2]
J (z + ω2) , (3.2)

where suffices [1] and [2] have been added to emphasize that the matrix entries of the corre-
sponding L-operators act on different spaces, and in consequence supercommute.

The quantity (3.2) for two non-intersecting sets I ∩ J = ∅ will be considered in section 3.1.
In this case the product (3.2) is linear in the spectral parameter z and belongs to the family of
solutions (2.12) studied in the previous section. Following the same reasoning as in [8], this will
lead to a new instance of the remarkable factorization properties of the L-operators we found
in our earlier work. In turn, in section 3.2 the product (3.2) is considered for the case in which
I ∩ J 6= ∅. This case had not been discussed earlier in [8]. Our analysis will lead to a simple
and elementary derivation of an important set of functional relations in section 6.

6The dotted line is not separating fermionic entries from bosonic ones!
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3.1 Fusion: Non-Intersecting Sets

The procedure described below is a generalization of the one presented in [8]. Let us start by
taking I and J to be two non-intersecting sets. By permuting rows and columns one can rewrite
the LI(z) and LJ(z) operators in the following way

L
[1]
I (z) =




z δ
AB

− (−1)B
(
E[1]

AB
+H

[1] I
AB

)
ξ
† [1]

AḂ
ξ
† [1]

AB̈

−(−1)Bξ
[1]

ȦB
δȦḂ 0

−(−1)Bξ
[1]

ÄB
0 δ

ÄB̈




(3.3)

and

L
[2]
J (z) =




δAB −(−1)Ḃ ξ
[2]

AḂ
0

ξ
† [2]

ȦB
z δ

ȦḂ
− (−1)Ḃ

(
E[2]

ȦḂ
+H

[2]J

ȦḂ

)
ξ
† [2]

ȦB̈

0 −(−1)Ḃ ξ
[2]

ÄḂ
δÄB̈




, (3.4)

where
A,B,C ∈ I , Ȧ, Ḃ, Ċ ∈ J , Ä, B̈, C̈ ∈ I ∪ J . (3.5)

As extensively discussed in [8], the co-product of L
[1]
I (z) and L

[2]
J (z) generates a solution LI∪J(z)

to the Yang-Baxter equation. This is also valid for the graded Yang-Baxter equation. One finds

L
[1]
I

(
z + 1

2

∑

Ḋ∈J

(−1)Ḋ
)
L
[2]
J

(
z − λ− 1

2

∑

D∈I

(−1)D
)

= S LI∪J(z)GS−1 , (3.6)

which is a rather remarkable factorization formula. The similarity transform

S = exp


∑

A∈I

∑

Ḃ∈J

∑

C̈∈I∪J

ξ
† [1]

AḂ

(
(−1)A ξ

† [2]

ḂA
+ ξ

† [2]

ḂC̈
ξ[1]
C̈A

)

 , (3.7)

and the z independent matrix7

G =




δAB −(−1)Ḃ ξ
[2]

AḂ
0

0 δȦḂ 0

0 0 δÄB̈




(3.8)

have been introduced to write LI∪J(z) in the canonical form (2.20)

LI∪J(z) =




z δ
ÂB̂

− (−1)B̂
(
Ẽ

ÂB̂
+HI∪J

ÂB̂

)
ξ†
ÂB̈

−(−1)B̂ ξ
ÄB̂

δÄB̈




. (3.9)

7Note that ξAḂ contained in G supercommute with the elements of LI∪J (z).

7



Hatted indices take values from the merged ordered set I ∪ J , i.e. Â = (A, Ȧ). The objects Ẽ
ÂB̂

obey gl(I ∪ J) commutation relations and are of the form

ẼAB = E
[1]
AB + ξ

† [1]

AĊ
ξ[1]
ĊB

ẼAḂ = (−1)Ḃξ
† [1]

AḂ
λ− (−1)(Ḃ+Ḋ)(Ḃ+C)ξ

† [1]

AḊ
ξ
† [1]

CḂ
ξ[1]
ḊC

+ ξ
† [1]

AĊ
E

[2]

ĊḂ
− (−1)Ḃ+CE

[1]
AC ξ

† [1]

CḂ

ẼȦB = ξ
[1]

ȦB

ẼȦḂ = E
[2]

ȦḂ
+ λ (−1)ḂδȦḂ − (−1)(Ȧ+Ḃ)(Ḃ+C) ξ

† [1]

CḂ
ξ[1]
ȦC

,

(3.10)

where summation is understood to be over the range of the repeated indices.

3.2 Fusion : Intersecting Sets

In this section we consider products of the form (3.2) for general non-intersecting sets I, J and
K. Namely,

L
[1]
I∪J(z + ω1)L

[2]
I∪K(z + ω2) . (3.11)

In particular we are interested in the relation between

L
[1]
I∪J(z + ω1)L

[2]
I∪K(z + ω2) and L

[1]
I∪J ′(z + ω′

1)L
[2]
I∪K ′(z + ω′

2) , (3.12)

for J∪K = J ′∪K ′. This analysis leads to a derivation of an important set of functional relations
known as Q-Q relations8. For a discussion on this point and more functional relations see section
6.

Let us us take a closer look at (3.11). If the set I is not empty, this product takes the form

z2 L̃(0) + z L̃(1) + L̃(2) , (3.13)

and as such does not fit into the classification of Lax operators as written in (2.12). To analyze
this more complicated Lax operator, it is convenient to directly restrict the analysis to only a
part of the structure of (3.11). It will be argued that the remaining structure is then uniquely
fixed by the fact that (3.11) is a solution to the Yang-Baxter equation. For simplicity and for
the purposes of section 6 we will consider LI∪J and LI∪K with E ≡ 0 (see equation (2.20)),
the general case can then be analyzed in a similar way. The product (3.11) can be conveniently
rewritten as

S
(
z2 L(0) + z L(1) + L(2)

)
GS−1 , (3.14)

with

L(0) =




δAB 0 0

0 0 0

0 0 0


 (3.15)

L(1) =




− (−1)B JAB ξ†
AḂ

ξ†
AB̈

−(−1)B ξȦB δȦḂ 0

−(−1)B ξ̃ÄB 0 0




(3.16)

8To avoid misunderstandings, we recall that in the literature another set of functional relations is sometimes
referred to as Q-Q relations. In this paper Q will always refer to Baxter’s Q-operators.
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JAB = HI
AB + H̃I∪J

AB − (ω1 + ω2) δAB (−1)B , (3.17)

L
(2)

ÄB̈
= δÄB̈ − (−1)C ξ̃ÄC ξ†

CB̈
, (3.18)

where A,B,C ∈ I, Ȧ, Ḃ, Ċ ∈ J ∪ K and Ä, B̈, C̈ /∈ I ∪ J ∪ K. The operator H is defined in
(2.19). The similarity transform S and the matrix G are given in appendix A together with the
identification of the oscillators from (3.11), and the ones appearing in (3.16). The analysis of
(3.11) is greatly simplified by the following observation:

Proposition: The Yang-Baxter equation (2.6) for

LI2∪J∪K(z) ≡
(
z2 L(0) + z L(1) + L(2)

)
, (3.19)

together with (3.15), (3.16), (3.17), (3.18) fixes all the entries of L(2) uniquely9 up to the choice
of gl(J ∪K) generators EȦḂ. For this reason it will be denoted by

L
Rep

I2∪J∪K
(z|ω1 + ω2) , (3.20)

where Rep denotes some representation of the gl(J ∪K) algebra. The entries of LRep

I2∪J∪K
belong

to the direct product of the universal enveloping algebra of families of superoscillator algebra and
gl(J ∪K) generators EȦḂ.

A detailed proof of the statement above and the analysis of related structures will be presented
in a separate work. Let us stress a simple but important part of the derivation. On general
grounds the Yangian algebra contains Yangian subalgebras. In the present paper this property
takes the form

Y (gl(n|m)) ⊃ Y (gl(I))⊗ Y (gl(Ī)). (3.21)

A closer look at (3.14) and (3.15) immediately reveals that the representation of the Yangian
subalgebra Y (gl(Ī)) is of the type (2.12), being a linear function of the spectral parameter. It
fits in the classification scheme of section 2. For this reason one concludes that10

L
(2)

ȦB̈
= ξ†

ȦB̈
, L

(2)

ÄḂ
= −(−1)Ḃ L

(2)

ÄC̈
ξC̈Ḃ , (3.22)

L
(2)

ȦḂ
= − (−1)Ḃ


EȦḂ +

∑

C̈

(
ξ†
ȦC̈

ξC̈Ḃ + 1
2 (−1)Ȧ+C̈ δȦḂ

)

 , (3.23)

where EȦḂ are gl(J ∪K) generators and, together with the superoscillators (ξÄḂ , ξ
†

ȦB̈
), super-

commute with all the elements of (3.16). The involved part of the derivation of the proposition
above consists in showing that all the other entries of L(2)

L
(2)

ȦB
, L

(2)

ÄB
, L

(2)

AḂ
, L

(2)

AB̈
, L

(2)
AB , (3.24)

are uniquely fixed by the Yang-Baxter equation. As stated above, the detailed forms of the
quantities in (3.24) is built from oscillators and the generators EȦḂ. They do not contain new
degrees of freedom with respect to (3.16) and (3.22). This part of the derivation will be omitted.

9The uniqueness is up to algebra automorphisms. In the present construction they manifest themselves as
similarity transforms S .

10Compare with (2.17) and (2.19).
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The structure just described comes from the Yang-Baxter equation. Using this insight as a
guiding principle one can arrange (3.11) in the form stated in the proposition above choosing
S and G appropriately (appendix A) in (3.14). An explicit computation fixes the form of the
gl(J ∪K) generators EȦḂ . The realization of gl(J∪K) is a special case of (3.10), for convenience
we rewrite it here 11

EȦ1Ḃ1
= ξ

† [1]

Ȧ1Ċ2
ξ[1]
Ċ2Ḃ1

− α1 (−1)Ḃ1 δȦ1Ḃ1

EȦ1Ḃ2
= −ξ

† [1]

Ȧ1Ċ2

(
(−1)(Ḃ2+Ċ2)(Ḃ2+Ċ1)ξ

† [1]

Ċ1Ḃ2
ξ[1]
Ċ2Ċ1

− (α1 − α2) (−1)Ċ2 δĊ2Ḃ2

)

EȦ2Ḃ1
= ξ

[1]

Ȧ2Ḃ1

EȦ2Ḃ2
= −(−1)(Ȧ1+Ḃ1)(Ḃ1+Ċ2) ξ

† [1]

Ċ2Ḃ1
ξ[1]
Ȧ1Ċ2

− α2 (−1)Ḃ2 δȦ2Ḃ2

(3.25)

α1 ≡ ω1 −
1
2

∑

Ḋ2∈K

(−1)Ḋ2 , α2 ≡ ω2 +
1
2

∑

Ḋ1∈J

(−1)Ḋ1 , (3.26)

where sums over repeated indices are understood, and Ȧ1, Ḃ1, Ċ1 ∈ J , Ȧ2, Ḃ2, Ċ2 ∈ K. To
summarize: For any two non intersecting sets J ,K such that the set J ∪ K and the quantity
ω1+ω2 are fixed, the product (3.11) takes the same form up to appropriate S and G (see appendix
A) and gl(J ∪K) generators given by (3.25).

A particularly interesting case of the fusion considered in this section is the one in which
J ∪K contains only two elements:

J ∪K = {A,B} , (3.27)

this can happen in two inequivalent ways, namely

(i) : J = {A} , K = {B} , (3.28)

(ii) : J = {A,B} , K = ∅ . (3.29)

The result above reads respectively

(i) : L
[1]
I∪A(z + ω1)L

[2]
I∪B(z + ω2) ∼ L

π+
Λ

I2∪A∪B
(z|ω1 + ω2)G , (3.30)

(ii) : L
[1]
I∪A∪B(z + ω′

1)L
[2]
I (z + ω′

2) ∼ L
singlet

I2∪A∪B
(z|ω′

1 + ω′
2) , (3.31)

the symbol ∼ relates quantities that differ by similarity transform acting only in the oscillator
space. The explicit form of the gl({A,B}) generators in (3.30) and (3.31), denoted by π+

Λ

and singlet respectively, can be obtained specializing the expressions (3.25) and (3.26). For
convenience we write them explicitly in the following:

If p(A) = p(B), gl({A,B}) = gl(2) with generators12

(i) :





a† a+ 1
2 − (−1)p(A) ω1 ,

a†
(
(−1)p(A) (ω1 − ω2)− 1− a† a

)
,

a ,

−a† a− 1
2 − (−1)p(A) ω2 ,

(ii) :





−(−1)p(A) ω′
1 ,

0 ,

0 ,

−(−1)p(A) ω′
1 ,

(3.32)

11The oscillators that realize EȦḂ are not the one explicitly appearing in (3.16) and (3.22).
12These are EȦḂ generators written in the same order as in (3.25).
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If p(A) 6= p(B), gl({A,B}) = gl(1|1) with generators

(i) :





c† c− 1
2 − (−1)p(A) ω1 ,

(−1)p(A) (ω1 − ω2) c
† ,

c ,

−c† c+ 1
2 + (−1)p(A) ω2 ,

(ii) :





−(−1)p(A) ω′
1 ,

0 ,

0 ,

(−1)p(A) ω′
1 ,

(3.33)

where (a,a†) and (c, c†) are bosonic and fermionic oscillators respectively. The results from this
sections will be used in section 6.

4 Construction of the Q-operators

The purpose of this section is to construct T- and Q-operators. They form a family of operators
commuting with the Hamiltonian (2.1). These operators act on the quantum space which is an
L-fold tensor product13 of the fundamental representations of the algebra gl(n|m),

C
n|m ⊗ C

n|m ⊗ · · · ⊗ C
n|m

︸ ︷︷ ︸
L−times

. (4.1)

In this representation solutions of the Yang-Baxter equation (2.6) are (n+m)×(n+m) matrices,
acting in the quantum space of a single spin. Their matrix elements are operators in some
representation space V of the Yangian algebra Y (gl(n|m)). This representation space will be
called the auxiliary space. For each solution of (2.6) one can define a transfer matrix

TV (z) = StrV

{
DL(z)⊗ L(z)⊗ · · · ⊗ L(z)

}
. (4.2)

The tensor product in (4.2) is taken in the quantum spaces C
n|m, while the operator product

and the trace is taken with respect to the auxiliary space V . The quantity D is a boundary
twist operator acting only in the auxiliary space, i.e. it acts trivially in the quantum space. This
boundary operator is completely determined by the requirement of commutativity of the transfer
matrix (4.2) with the Hamiltonian (2.1), which leads to the following conditions

D
(
L(z)

)
AB

D−1 = ei (ΦB−ΦA)
(
L(z)

)
AB

, A,B = 1, . . . , n +m. (4.3)

Solving the latter for the L-operator (2.20) with the arbitrary set I, one obtains

DI =exp
{
− i
∑

A∈I

ΦAEAA − i
∑

A,B

(ΦA − ΦB) ξ
†
ABξBA

}
, (4.4)

where the last summation is over all oscillators present in LI .
Consider now the most general L-operator (2.20) with an arbitrary set I. Recall that the

matrix elements of (2.20) belong to the direct product of the algebra gl(I) and |I| · |Ī| copies of
superoscillator algebras. We therefore have to define the supertrace over both the superoscillator
representation space as well as over some gl(I) module. As stressed in [8], the supertrace is
completely determined by the commutation relations (2.16), definition (2.19) and the cyclic
property of the supertrace, the specific choice of the representations is not important as long
as the supertrace exists. It is convenient, however, for the purpose of direct calculations, to

13We define a tensor product as X ⊗ Y = (−1)(A+B)(C+D)XAB YCD eAB ⊗ eCD.
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specify the superoscillator algebra representation. For bosonic oscillators14(a†,a) we take the
infinite-dimensional Fock representation spanned by the vectors |k〉, k = 0, 1, . . . ,∞ which are
defined by

a|0〉 = 0 , a†|k〉 = |k + 1〉 . (4.5)

For fermionic oscillators14(c†, c) we take the two-dimensional representation spanned by the
vectors |0̄〉, |1̄〉 and defined by

c|0̄〉 = 0 , c†|1̄〉 = 0 , c†|0̄〉 = |1̄〉 , c|1̄〉 = |0̄〉 . (4.6)

Let P (ξ, ξ†) be an arbitrary polynomial of the superoscillators ξ and ξ†. Below it will be conve-
nient to use a normalized supertrace over the representation F ,

ŜtrF

{
eiΦhP (ξ, ξ†)

}
def
=

StrF

{
eiΦhP (ξ, ξ†)

}

StrF

{
eiΦh

} , (4.7)

where StrF denotes the standard supertrace. On the other hand, we will not spell out the
gl(I) module, the notation Rep will be used to label some unspecified choice. Of course the
representation Rep has to be chosen such that the supertrace exists. For the purpose of this
paper we will only use highest weight representations.

We are now ready to define various transfer matrices, all commuting with the Hamiltonian
(2.1) and among each other. Substituting (2.20) and (4.4) into (4.2) one can define rather general
transfer matrices

X
Rep
I (z) = eiz (

∑
A∈I(−1)AΦA) Str

gl(I)
Rep ŜtrF⋆

{
MI(z)

}
, (4.8)

where MI(z) is the corresponding monodromy matrix,

MI(z) = DI LI(z)⊗ LI(z)⊗ · · · ⊗ LI(z) . (4.9)

Here ŜtrF⋆ denotes the normalized supertrace (4.7) over all involved oscillator representations,
while StrRep denotes the supertrace over our chosen but unspecified representation of gl(I). The
exponential scalar factor in front of the supertrace is introduced for later convenience15. For the
constructions of the present paper it is natural to distinguish some X

Rep
I (z) in the family (4.8).

The operator (4.8) will be denoted by
X+

I (z,ΛI) (4.10)

where Rep is now an infinite-dimensional highest weight representation (Verma-module) π+
ΛI

.

The monodromy matrices X+
I (z,ΛI) and X

Rep
I (z) for a given Rep are related16. The relation

between the two is exactly the same as the one between the gl(I) characters over the correspond-
ing modules. In the case of finite dimensional representations of the gl(n) algebra this relation
is nicely encoded in the BGG result [39]. This result has been used in [8] to derive functional
relations among transfer matrices. For the gl(n|m) superalgebra the relation between infinite
dimensional Verma modules and finite dimensional representations has apparently been exten-
sively studied, but the results are less transparent compared to the gl(n) case due to atypical
representations17. More comments on this point are postponed to section 6.

14a a† − a† a = 1 and c c† + c† c = 1.
15The overall normalization of transfer matrices is an interesting issue. For example, the universal R-matrix

approach leads to a normalization involving spectral parameter dependent ratios of gamma functions such that
the R-matrices satisfy certain crossing relations, see e. g. [38] and references therein.

16All the Casimir operators have to take the same values in Rep and π+
ΛI

.
17It is worth pointing out that a mechanism analog to atypicality exists also for some infinite dimensional

representations of gl(n). An example is the conserved current multiplet of the four dimensional conformal algebra.
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As stressed before the X-operators defined above are rather general transfer matrices. Two
limiting cases of these operators are particularly relevant. If one takes I to be the full set (4.8)
reduces to the standard T-operator

TRep(z) ≡ X
Rep

{1,...,n+m}(z) = TrRep {DL(z)⊗ L(z)⊗ . . .⊗ L(z)} (4.11)

where L(z) = L{1,...,n+m}(z) and Rep is some representation of gl(n|m). The boundary operator
reduces to

D = D{1,2,...,n,n+1,...,n+m} = exp

(
i

n+m∑

A=1

ΦAEAA

)
. (4.12)

The other limit corresponds to the trivial one-dimensional representation of gl(I). The resulting
operators are called Q-operators

QI(z) = X
singlet
I (z). (4.13)

The Q-operators are labeled by the set I. There are 2n+m such sets, and therefore the same
number of Q-operators. As already stressed in section 1, the Q-operators can be conveniently
associated with the nodes of a hypercubical Hasse diagram with order given by inclusion on the
sets I. For more on this, see section 6.

5 gl(1|1)

Before proceeding to the derivation of functional relations among the transfer matrices con-
structed in the previous section for gl(n|m) spin chains, we will analyze in this section the
gl(1|1) example. This case in conjunction with the gl(2) case serve as building blocks for the
higher rank gl(n|m) algebras. In the following we will put particular emphasis on the differences
between the gl(1|1) and gl(2) cases.

Let us first review the fusion procedure discussed in section 2 for the gl(1|1) example. Equa-
tion (3.6) in this case reads

L1(z1)L2(z2) = S Lε(z)GS−1 , (5.1)

or more explicitly

(
z1 − h1 c

†
1

−c1 1

)(
1 c2

c
†
2 z2 + h2

)
= ec

†
1c

†
2

(
z + ε− h1 −2 ε c†1

−c1 z − ε− h1

)(
1 c2
0 1

)
e−c

†
1c

†
2 , (5.2)

where

ε ≡
z1 − z2

2
, z ≡

z1 + z2
2

, hi = c
†
ici −

1
2 , i = 1, 2 . (5.3)

Here all superoscillators are of fermionic type and we denoted them by (c†, c). This formula is
the gl(1|1) analog of equation (3.48) of [4]. Following the same construction as in [4], one easily
finds

T+
ε (z) = 2i sin

(
Φ1 − Φ2

2

)
Q1(z1)Q2(z2) . (5.4)

It is worth stressing that the sine factor appears on the opposite side of the equation as compared
to the gl(2) case. This fact is a direct consequence of

Str e−iφh = 2i sin
φ

2
, Tr e−iφh =

(
2i sin

φ

2

)−1

. (5.5)
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To derive the needed functional relations it is important to connect the Q-operators with the
known T, namely

Tsinglet(z) = ei(Φ1−Φ2)z zL . (5.6)

Every T+
ε (z) is constructed as a supertrace over a two dimensional representation of gl(1|1)

labeled by the central charge ε. Let us review how the singlet (atypical) representation emerges
in this case (see e.g. [40]). If the central charge vanishes, i.e. ε = 0, the Fock vacuum is a
one-dimensional invariant subspace of the 2-dimensional fermionic Fock space. For ε = 0 the
gl(1|1) generators then act triangularly in the Fock space18. Therefore the supertrace splits into
two disjoint contributions. This implies, that

gl(1|1) : T+
ε=0(z) = Tsinglet(z + 1

2)−Tsinglet(z − 1
2 ) , (5.7)

where the minus sign comes from the supertrace. It is instructive to compare (5.7) with its gl(2)
analog

gl(2) : T+
j (z) = Tj(z) +T+

−j−1(z) , 2j ∈ Z≥0 . (5.8)

Equations (5.4), (5.7) immediately imply

2i sin

(
Φ1 − Φ2

2

)
Q{1}(z)Q{2}(z) = Q{1|2}(z+

1
2)Q∅(z−

1
2 )−Q{1|2}(z−

1
2)Q∅(z+

1
2 ) , (5.9)

where
Q∅(z) ≡ 1 , Q{1|2}(z) ≡ Tsinglet(z) . (5.10)

This relation is of a type different from the one we we had obtained earlier in the gl(2) case.
Interestingly, it can nevertheless still be depicted in an analogous way with the help of a Hasse
diagram. We now get the diagram in Fig. 1, where the dashed lines mean that we add a fermionic
index, while the solid lines are reserved for bosonic indices.

Q∅

Q{1} Q{2}

Q{1|2}

Figure 1: Hasse diagram for the gl(1|1) algebra.

6 Functional Relations

In this section we derive functional relations for the Q-operators using results from section 3.2.
The main result of the present section are equations (6.11), (6.12) (see [32]).

Using the results from section 3.1 and following the same reasoning as in [8] one can easily
derive

∆I(Φ)X
+(z,ΛI) = QA1(z + λ′

1)QA2(z + λ′
2) . . .QA|I|

(z + λ′
|I|) , (6.1)

18The two-dimensional representation is indecomposable but not irreducible.
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where ∆I(Φ) is the usual super-Vandermonde determinant

∆I(Φ) =

∏
i<j∈B(I)

(
2i sin

(
ΦAi

−ΦAj

2

))∏
i<j∈F (I)

(
2i sin

(
ΦAi

−ΦAj

2

))

∏
i∈B(I),j∈F (I)

(
2i sin

(
ΦAi

−ΦAj

2

)) , (6.2)

and X+ has been defined in (4.10). A beautiful feature of equation (6.1) is that the spectral
parameter shifts of each Q-operator become representation labels, generically complex, of the
gl(I) superalgebra. The gl(I) representations, denoted by the symbol + and the label ΛI , are
of highest weight type. They are fully determined by the existence of an highest weight state,
together with

EAA |h.w.s〉 = (−1)p(A) λA |h.w.s〉 , A ∈ I , (6.3)

and in conjunction with the gl(I) commutation relations. The shifted weights λ′ in (6.1) are
related to the weights appearing in (6.3) via

λ′
A ≡ λA + ρA , ρA ≡

1

2




|I|∑

B=A+1

(−1)p(B) −
A−1∑

B=1

(−1)p(B)


 . (6.4)

Any functional relation among X-operators (4.8) could be in principle derived using (6.1)
together with an entirely representation-theoretical analysis relating the operators XRep for a
given gl(I) representation Rep to the X+-operators. See the discussion in section 4. However, in
this paper we will follow a more direct path in order to derive a very important set of functional
relation (see (6.11), (6.12)), namely the so-called Q-Q relations. Our derivation will use results
from section 3.2, and the rather simple structure of gl(2) and gl(1|1) Verma modules reviewed
in section 5.

Let us focus on equations (3.30), (3.31). The left hand side of (3.30), (3.31) gives, upon
taking the appropriate regulated trace according to section 4,

(i) : QI∪A(z + ω1)QI∪B(z + ω2) , (ii) : QI∪A∪B(z + ω′
1)QI(z + ω′

1) , (6.5)

respectively. What about the right hand side of the same equation? As stressed in section
3.2, if ω1 + ω2 = ω′

1 + ω′
2, the right hand sides of (3.30), (3.31) differ only by the way the

gl(A ∪ B) algebra is realized and a decoupled G-matrix. When taking traces, equations (3.30),
(3.31) respectively give the following structure of auxiliary spaces

ŜtrF⋆ Strπ+
Λ
Ŝtrosc in G , (6.6)

ŜtrF⋆ , (6.7)

where F⋆ is the same in the two cases. The relation between (6.6) and (6.7) neatly reduces to
the relation between the representation π+

Λ and the singlet representation of gl(A∪ B) in (3.32)
and (3.33). This point has been analyzed in some details in section 5 for the two rather different
basic cases, namely gl(2) and gl(1|1). The existence of a one-dimensional submodule invariant
under the action of gl({A,B}) generators (i), which in that case is just the Fock vacuum (see
(3.32) and (3.33)) implies

p(A) = p(B) , gl(2) : ω1 − ω2 = (−1)p(A) , (6.8)

p(A) 6= p(B) , gl(1|1) : ω1 − ω2 = 0 . (6.9)
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This condition, together with the requirement that the action of the gl({A,B}) generators (i)
on this one-dimensional submodule should be the same as the one of the generators (ii) in (3.32)
and (3.33) entirely fixes19 the shifts ω1, ω2, ω

′
1, ω

′
2. The subtraction of Verma module is then

precisely the same as in (5.8) and (5.7). Upon carefully dealing with the DI factors (see (4.4))
and keeping track of normalizations one immediately obtains the Q-Q relations written below.
As nicely depicted in Fig. 2 four different cases as to be considered separately, namely

(p(A), p(B)) ∈ {(0, 0); (1, 1); (1, 0); (0, 1)} , (6.10)

corresponding to four different types of Hasse plaquettes.

QI

QI∪A QI∪B

QI∪A∪B

QI

QI∪A QI∪B

QI∪A∪B

QI

QI∪A QI∪B

QI∪A∪B

QI

QI∪A QI∪B

QI∪A∪B

a) b) c) d)

Figure 2: Different types of the Hasse plackets: a) bosonic-bosonic, b) bosonic-fermionic, c)
fermionic-fermionic, d) fermionic-bosonic.

These four diagrams correspond to two distinct types of relations: bosonic-bosonic or fermionic-
fermionic type

(−1)A2i sin

(
ΦA −ΦB

2

)
QI∪A∪B(z)QI(z) = QI∪A(z+

1
2)QI∪B(z−

1
2)−QI∪A(z−

1
2 )QI∪B(z+

1
2)

(6.11)
and bosonic-fermionic or fermionic-bosonic type

(−1)A2i sin

(
ΦA −ΦB

2

)
QI∪A(z)QI∪B(z) = QI∪A∪B(z+

1
2)QI(z−

1
2)−QI∪A∪B(z−

1
2)QI(z+

1
2)

(6.12)
This knowledge is enough to draw the Hasse diagram for any algebra gl(n|m). As we will show
in the next section, the relations (6.11) and (6.12) are sufficient to derive the Bethe equations.

We would like to add here an intriguing observation. One immediately notices that the
relations (6.11) and (6.12) look exactly the same if we rename the indices of the Q-operators.
In fact, relation (6.11) tells us that when taking a product of the upper Q-operator with the
lower one in Fig. 2a, this then equals the difference of products of the right and left Q-operators
with appropriately shifted arguments. The formula (6.12) gives similar information about figure
2b if we formally exchange the upper and lower with the right side and left side Q-operators.
On the other hand, if we relabel the Q-operators in Fig. 2a, the relation stemming from (6.12)
will have the same interpretation as the one of (6.11). This can be seen when clockwise turning
the Hasse plaquette in Fig. 2b by 90◦. This rotation changes fermionic lines to bosonic ones,
and inverts the arrows. Analogously, turning the plaquette in Fig. 2c by 180◦, we obtain once

19They are fixed up to an overall shift that can be reabsorbed in the definition of the spectral parameter z.
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again the bosonic-like Hasse plaquette described by the same relation (6.11). This way we can
rotate the entire Hasse diagram such that all lines will be bosonic, and we will end up with
the situation known from the gl(n) Hasse diagram. It is known that such Hasse diagrams can
be solved by determinant formulas. The only difference is that the determinants we will get
here will be built from non-partonic objects, as it was the case for gl(n). We will aptly call the
procedure presented above “bosonization of the Hasse diagram” (compare with [28]). We can
also fermionize a Hasse diagram by rotating it such that all lines will be fermionic. This case
leads to determinant formulas as well.

7 Bethe Equations

The derivation of the Bethe equations of the supersymmetric gl(n|m) spin chains from the hier-
archy of Baxter operators proceeds in much the same way as in the gl(n) case [8]. Once again
it is very useful to work with hypercubic Hasse diagrams. We simply have to consider any path
on the Hasse diagram leading from Q{1,...,n+m} to Q∅. Each such path corresponds to a set of
nested Bethe equations. In total there are (n +m)! different paths and thus the same number
of sets of equations. There is one major difference in comparison with gl(n) case. In the latter
all sets of the Bethe equations look the same, in line with the fact that there is a unique Dynkin
diagram for the gl(n) algebra. In the supersymmetric case we have distinct Dynkin diagrams
which differ by the various possible gradings of the diagram nodes. A white node of the diagram
corresponds to a doublet (one positive and one negative root) of bosonic simple roots, and a
crossed node to a doublet of fermionic simple roots of the gl(n|m) algebra. Clearly there is a
minimum of one crossed node, while the other extreme is that all nodes are fermionic. In the
Hasse diagram picture these differences are encoded in the order of dashed and solid lines along
the chosen path.

Now there are two distinct types of equations we get when taking ratios of the Q-Q relations,
which are associated to the plaquettes of the hypercubic Hasse diagram, at special points of the
spectral parameter z. For the Q-Q relations of type (6.11) we get the same equation as in the
gl(n) case

− 1 =
QI(z

I∪A
k − 1

2 )

QI(zI∪Ak + 1
2 )

QI∪A(z
I∪A
k + 1)

QI∪A(zI∪Ak − 1)

QI∪A∪B(z
I∪A
k − 1

2)

QI∪A∪B(zI∪Ak + 1
2)

. (7.1)

On the other hand, for the Q-Q relations (6.12), when evaluating at z = zI∪Ak , we get

1 =
QI(z

I∪A
k + 1

2)QI∪A∪B(z
I∪A
k − 1

2)

QI(zI∪Ak − 1
2)QI∪A∪B(zI∪Ak + 1

2)
. (7.2)

For a given path we get a, in general, mixed set of equations of both types (7.1) and (7.2),
depending on which path we take. For any node on the path we have to take a look at the Hasse
diagram and check if the incoming and outgoing lines on the path are of the same, or a different
type. In the former situation we write equation (7.1), and in the latter equation (7.2). This
way we can immediately read off all possible sets of Bethe equations from the Hasse diagram.
It is important to stress that all these (n +m)! sets, despite the fact that they will look rather
different, will give exactly the same solution of our spectral problem.

Let us now rewrite the Bethe equations in their traditional form. It follows from our con-
struction that the Q-operator is a polynomial in the spectral parameter z, with some exponent
normalization factor

QI(z) = eiz (
∑

A∈I(−1)AΦA)
∏

k

(z − zIk) . (7.3)
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We would like to stress once more that this absolutely crucial statement on the analytic structure
of the eigenvalues of the Q-operator is not assumed, but obtained by construction! Plugging this
into the relations (7.1) and (7.2), we will get

e(−1)Ai+1 i (ΦAi+1
−ΦAi

) =
∏

k

zIil − z
Ii−1

k − 1
2

zIil − z
Ii−1

k + 1
2

∏

k 6=l

zIil − zIik + 1

zIil − zIik − 1

∏

k

zIil − z
Ii+1

k − 1
2

zIil − z
Ii+1

k + 1
2

(7.4)

for the bosonic-bosonic or fermionic-fermionic node on the Hasse diagram, and

e(−1)Ai+1 i (ΦAi+1
−ΦAi

) =
∏

k

zIil − z
Ii−1

k + 1
2

zIil − z
Ii−1

k − 1
2

∏

k

zIil − z
Ii+1

k − 1
2

zIil − z
Ii+1

k + 1
2

(7.5)

for the bosonic-fermionic or fermionic-bosonic node on the Hasse diagram. The Bethe equations
corresponding to the lowest and highest level of the nested system can be obtained using the a
priori knowledge of the Q-operators at the “top” and “bottom” of the Hasse diagram:

Q∅ = 1 , Q{1,...,n+m} = eiz
∑

A(−1)A ΦA zL . (7.6)

To conclude our solution procedure for the gl(n|m)-spin chain we just state the well-known
expression for the eigenvalues of (2.1) (or equivalently (2.4) of the Hamiltonian of the graded
spin chain. It only involves the roots zIn+m−1 of any of the n +m possible sets In+m−1 on the
last-level of the nested Bethe equations:

En|m = 2

mn+m−1∑

k=1

1

1
4 −

(
z
In+m−1

k

)2 , or En|m = 4L− 2

mn+m−1∑

k=1

1

1
4 −

(
z
In+m−1

k

)2 . (7.7)

Here mn+m−1 is the number of roots of the QIn+m−1(z) function. The left expression in (7.7) is
for a bosonic vacuum, c.f. (2.5), which corresponds to the case where In+m−1 is such that one
of the first n “bosonic” indices is missing from the set {1, 2, . . . , n+m}. The right expression in
(7.7) is, in view of the non-trivial vacuum energy of the r.h.s. of (2.5), for a fermionic vacuum,
which corresponds to the case where In+m−1 is such that one of the m “fermionic” indices {n+
1, n + 2, . . . , n+m} is missing from the set {1, 2, . . . , n +m}.

8 gl(2|1)

To illustrate some of the content of the previous sections we will present here the application
of our formalism to the case of the gl(2|1) algebra. In this case both the gl(2) and gl(1|1) Q-Q
relations appear in the analysis. Physically it corresponds to the diagonalization of the t-J model,
which was first solved by Bethe ansatz in [21],[22, 23]. A major part of this section can also be
found in other papers, see e.g. [30, 29].

For the gl(2|1) algebra we deal with two bosonic indices and one fermionic index. There are
8 different Q-operators

Q∅, Q{1}, Q{2}, Q{3}, Q{1,2}, Q{1|3}, Q{2|3}, Q{1,2|3} , (8.1)

which form the cubic Hasse diagram depicted in Figure 3 . In order to derive Bethe equations
for the gl(2|1) algebra we will be interested in paths starting from Q∅ and leading to Q{1,2|3}.
There are six such paths on the Hasse diagram, while there are three different Dynkin diagrams of
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Q∅

Q{1} Q{2} Q{3}

Q{1,2} Q{1|3} Q{2|3}

Q{1,2|3}

Figure 3: Hasse diagram for the gl(2|1) algebra.

gl(2|1). Each Dynkin diagram corresponds to two paths, related by the gl(2) symmetry between
the bosonic indices 1 and 2. The paths are presented in the Figure 4.

Let us present here the three different sets of Bethe equations. We see that the various types
of Bethe equations correspond to the different distributions of the fermionic nodes on the Dynkin
diagram20. In the language of the Hasse diagrams it corresponds to the different orders of the
bosonic and fermionic lines on the paths in Fig. 4. We mark the momentum carrying node by
putting 1 next to it.
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20We use the standard notation where an empty node is bosonic and a crossed node is fermionic.
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Q∅

Q{1}

Q{1,2}

Q{1,2|3}

Q∅

Q{2}

Q{1,2}

Q{1,2|3}

Q∅

Q{1}

Q{1,3}

Q{1,2|3}

Q∅

Q{2}

Q{2,3}

Q{1,2|3}

Q∅

Q{3}

Q{1,3}

Q{1,2|3}

Q∅

Q{3}

Q{2,3}

Q{1,2|3}

a) b) c)

Figure 4: All different paths in the Hasse diagram of gl(2|1) algebra.

A final comment about the gl(2|1) algebra is that, according to the discussion from section
6, upon rotating the Hasse diagram in the Fig. 3 such that the operator Q{3} will be the base
of the cube, we will get a Hasse diagram with just bosonic lines. Such a diagram can be solved
in terms of determinants, which leads us to a determinant formula for all operators. These may
all be written in terms of the lowest two layers of the Hasse diagram, which are given by the
operators Q{3},Q{1|3},Q{2|3}, and Q∅.
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A Details for Section 3.2

The G matrix in (3.14) is given by

G =




δAB 0 0

0 gȦḂ 0

0 0 δÄB̈


 , gȦḂ =




δȦ1Ḃ1
− (−1)Ḃ2 ξ

[2]

Ȧ1Ḃ2

0 δȦ2Ḃ2


 , (A.1)

The similarity transform S in (3.14) is given by

S = S0 S1 S2 S3 , (A.2)

with
S0 = exp

[
(−1)Ȧ1ξ

†[1]

Ȧ1Ḃ2
ξ
†[2]

Ḃ2Ȧ1

]
, (A.3)
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S1 = exp
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−(−1)Ċ2ξ

†[2]

AC̈
ξ
[2]

C̈Ċ2
ξ[1]
Ċ2A

− (−1)C+Ċ2ξ
†[2]

CĊ1
ξ
†[1]

Ċ1Ċ2
ξ[1]
Ċ2C
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(A.4)

S2 = exp
[
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Ċ1Ċ2
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Ċ2C̈

(
I−1

)
C̈Ä

ξ[1]
ÄĊ1

]
, (A.5)

S3 = exp
[
ξ
†[1]

Ȧ1B̈
(log I)B̈C̈ ξ

[1]

C̈Ȧ1

]
, (A.6)

IÄB̈ ≡ δÄB̈ − (−1)Cξ
[1]

ÄC
ξ
†[2]

CB̈
. (A.7)

Despite the rather complicated structure of the similarity transform S, the function of its con-
stituents is rather neat. S0 is introduced in order to disentangle the oscillators in the G matrix
from the remaining oscillators in (3.14). S1 is choosen to have L(1) in the canonical form (3.16).
S2 and S3 are introduced in order to have the L(2) elements in equations (3.22), (3.23) in that
canonical form. Let us stress that S2 and S3 do not act on L(1).

A.1 Identification of Oscillators

This appendix contains the explicit identification of the superoscillators in equations (3.16),
(3.17), (3.18), (3.22), (3.23) with the superoscillators in (3.11). The identification is

(
ξȦ1B

, ξȦ2B
, ξÄB, ξ̃ÄB, ξÄḂ1

, ξÄḂ2

)
=
(
ξ
[2]

Ȧ1B
, ξ

[1]

Ȧ2B
, ξ

[2]

ÄB
, ξ

[1]

ÄB
, ξ

[1]

ÄḂ1
, ξ

[2]

ÄḂ2

)
. (A.8)

The analogous equation for ξ† is easily obtained.
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