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Abstract

Let W be a finite Weyl group and A be the corresponding Weyl
arrangement. A deformation of A is an affine arrangement which is
obtained by adding to each hyperplane H ∈ A several parallel trans-
lations of H by the positive root (and its integer multiples) perpendic-
ular to H. We say that a deformation is W -equivariant if the number
of parallel hyperplanes of each hyperplaneH ∈ A depends only on the
W -orbit of H. We prove that the conings of the W -equivariant defor-
mations are free arrangements under a Shi-Catalan condition and give
a formula for the number of chambers. This generalizes Yoshinaga’s
theorem conjectured by Edelman-Reiner.

1 Introduction

Let V be an ℓ-dimensional real vector space with an inner product I : V ×
V → R. Let S := Sym(V ∗) be the symmetric algebra of the dual space V ∗,
F the quotient field of S, and DerR(S) the S-module of R-linear derivations
of S to itself. For a finite Weyl group W , let us fix a positive system Φ+

with respect to W . For α ∈ Φ+ define

Hα := {v ∈ V | α(v) = 0} = ker(α), Hα,k := {v ∈ V | α(v) = k} (k ∈ Z).

Then Hα,k is a parallel translation of Hα. Then A := {Hα | α ∈ Φ+} is
the Weyl arrangement corresponding to W . A function m : A → Z≥0
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is called a multiplicity. For two multiplicities a,b, define a deformation
A[−a,b] of A by

A[−a,b] := {Hα,k | −a(Hα) ≤ k ≤ b(Hα), k ∈ Z, α ∈ Φ+},

which is an affine arrangement. For basic concepts in the arrangement theory,
consult [6].

Definition 1.1 A multiplicity a is said to be W -equivariant if a(H) =
a(wH) for every H ∈ A and w ∈ W . We say that A[−a,b] is a Shi-Catalan
arrangement if a and b are both W -equivariant and im(a− b) ⊆ {−1, 0}.

Suppose that A decomposes into W -orbits as A = A1 ∪ · · · ∪ Ak. Note
that every W -orbit is not irreducible because the type Bℓ-arrangement de-
composes into Aℓ

1 and Dℓ. Identify a W -equivariant multiplicity m with
a k-dimensional vector (m1, . . . , mk) when m(H) = mj (H ∈ Aj). Let

d
(1)
j , . . . , d

(ℓ)
j be the exponents of Aj with d

(1)
j ≤ · · · ≤ d

(ℓ)
j for 1 ≤ j ≤ k. Let

hj := d
(ℓ)
j + 1, which is equal to the Coxeter number of Aj when Aj is ir-

reducible. Note that Aj is not irreducible only when Aj is of the type A
ℓ
1. In

this case hj = 2 (see [2, 3]). Define a k-dimensional vector h := (h1, . . . , hk).
The following theorem is the main result of this article.

Theorem 1.2 If A[−a,b] is a Shi-Catalan arrangement, then its coning c
(

A[−a,b]
)

is free.

We have the following Corollary by Ziegler’s theorem (Theorem 2.3) and
Theorem 2.5 by Wakamiko and the authors.

Corollary 1.3 Suppose that W is irreducible and that A[−a,b] is Shi-Catalan.
Then

(i) if W is of the type G2, a = b = (b1, b2), and b1 + b2 is an odd integer,
then the exponents of c

(

A[−b,b]
)

are given by

1, 2 + (b · h), 4 + (b · h).

(ii) For all the other cases, the exponents of c
(

A[−a,b]
)

are given by

1, m(1) + (b · h), . . . , m(ℓ) + (b · h).

Here the dot · stands for the ordinary inner product of vectors andm(1), . . . , m(ℓ)

are the exponents of (a− b)−1(0), which is a union of W -orbits of A.
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Remark. For any W which may not be irreducible, the formula for the
exponents is easily obtained from Corollary 1.3.

We have the following formula for the number of chambers by the fac-
torization theorem (Theorem 2.2) in [11] and Zaslavsky’s theorem (Theorem
2.1) in [14]:

Corollary 1.4 Suppose that W is irreducible and that A[−a,b] is Shi-Catalan.
(i) If W is of the type G2, a = b = (b1, b2), and b1 + b2 is an odd integer,

then the number of chambers of A[−b,b] is equal to

(2 + 3b1 + 3b2)(4 + 3b1 + 3b2).

(ii) For all the other cases, the number of chambers of A[−a,b] is equal to

ℓ
∏

j=1

(m(j) + (b · h)).

Here m(1), . . . , m(ℓ) are the exponents of (a− b)−1(0).

In particular, suppose that the W -equivariant multiplicities a and b in
Theorem 1.2 are both constant. Then Theorem 1.2 (ii) and Corollary 1.4 (ii)
are Yoshinaga’s results in [13] which were conjectured by Edelman and Reiner
in [5]. In this case, the deformation A[−a,b] is called an extended Catalan
arrangement when a = b and is called an extended Shi arrangement
when b = a+ 1. Then (a− b)−1(0) is equal to A if a = b and is the empty
arrangement if a 6= b. The Shi-Catalan arrangement generalizes these two
types of arrangements.

In Theorem 1.3, the case (i) is the unique obstruction for the formula in
(ii) to become a blanket formula covering all the cases. Recall that both of
A1 and A2 are of the type A2 in the W -orbit decomposition when A is of
the type G2. The reason of this unique exception stems from the fact that
one cannot choose a G2-invariant primitive derivation of A1 or A2 as shown
in [3].

The organization of this article is as follows. In Section 2, we review
and summerize basic concepts and their properties. In Section 3, we reduce
Theorem 1.2 to the irreducible 2-dimensional cases. Our main tools are
Yoshinaga’s freeness criterion in [13] and the freeness of W -equivariant Weyl
multiarrangements in [3]. In Section 4, we complete the proof of Theorem
1.2 by verifying the 2-dimensional cases thanks to [5, 4] for A2, [1] for B2,
and the addition-deletion theorem in [10].
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2 Basic concepts and their properties

An affine arrangement of hyperplanes is a finite collection of affine hyper-
planes in V . If every hyperplane H ∈ A goes through the origin, then A is
called to be central. When A is central, for each H ∈ A choose αH ∈ V ∗

with ker(αH) = H. Let x1, . . . , xℓ be a basis for the dual vector space V ∗ of
V . Let A be an affine arrangement in V and Q ∈ R[x1, . . . , xℓ] be a defining
polynomial for A. Let x0 be a new variable. Let cQ ∈ R[x0, x1, . . . , xℓ] be a
homogeneous polynomial defined by

cQ := x1+degQ
0 Q(x1/x0, x2/x0, . . . , xℓ/x0).

The coning cA is a central arrangement in cV := R ⊕ V defined by cQ.
Let H∞ be the hyperplane in cV defined by x0 = 0. For H ∈ A with
H = {α = k} (α ∈ V ∗, k ∈ R), let cH be the hyperplane in cV defined
by α − kx0 = 0. If A = {H1, . . . , Hn}, then cA = {H∞, cH1, . . . , cHn}. For
Y ∈ L(A) with Y = H1 ∩ · · · ∩Hk, define cY := cH1 ∩ · · · ∩ cHk ∈ L(cA).

Let π(A, t) denote the Poincaré polynomial [6] of A. Since V is a real
vector space, each connected component of the complement V \ ∪H∈AH is
called a chamber of A. Recall

Theorem 2.1 (Zaslavsky [14]) The number of chambers of A is equal to
π(A, 1).

In the rest of this section, suppose that A is central. Let DerS be the S-
module of R-linear derivations from S to itself. Recall the derivation module

D(A) = {θ ∈ DerS | θ(αH) ∈ αHS for all H ∈ A}

over S. We say that A is a free arrangement if D(A) is a free S-module.
When A is a free arrangement and θ1, . . . , θℓ are a homogeneous S-basis for
D(A), the integers deg θ1, . . . , deg θℓ are called the exponents of A:

expA = (deg θ1, . . . , deg θℓ).

Every Weyl arrangement is a free arrangement and their exponents are the
same as the exponents of the corresponding Weyl group by Saito (e.g., see
[8]).

Theorem 2.2 (Factorization Theorem [10]) Suppose thatm(1), m(2), . . . , m(ℓ)

are the exponents of a free arrangement A. Then

π(A, t) =
ℓ
∏

i=1

(1 +m(i)t).
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For a multiplicity m : A → Z≥0, we call a pair (A,m) a multiarrange-
ment. Define

D(A,m) := {θ ∈ DerS | θ(αH) ∈ α
m(H)
H S for all H ∈ A}

which is a submodule of DerS. We say that the multiarrangement (A,m) is
free if the S-module D(A,m) is a free S-module. When (A,m) is free, the
exponenets of (A,m), denoted by exp(A,m), are defined by the degrees of
a homogeneous S-basis for D(A,m). Note that exp(A, 1) = expA.

For a given arrangement A and a fixed hyperplane H0 ∈ A, define a
multiarrangement (A′′, z), which we call the Ziegler restriction [15], by

A′′ := {H0 ∩K | K ∈ A′ := A \ {H0}}, z(X) := |{K ∈ A′ | X = K ∩H0}|

where A′′ is an arrangement living in H0 and X ∈ A′′. For any Y ∈ L(A)
define the localization AY of A at Y by AY := {H ∈ A | Y ⊆ H}.

Theorem 2.3 (Ziegler [15]) If A is a free arrangement, then

exp(A) = (1, d2, . . . , dℓ) ⇔ exp(A′′, z) = (d2, . . . , dℓ).

Theorem 2.4 (Yoshinaga’s criterion [13]) Suppose ℓ > 3. For a central
arrangement A and an arbitrary hyperplane H0 ∈ A, the following two con-
ditions are equivalent:

(1) A is a free arrangement,
(2) (2-i) the Ziegler restriction (A′′, z) is free and (2-ii) AY is free for

any Y ∈ L(A) \ {0} such that Y ⊂ H0.

The following result is by Table 4 in [12] for (i) and Theorem 1.3 in [3]
for (ii).

Theorem 2.5 Under the assumption of Corollary 1.3, one has
(i) If W is of the type G2, a = b = (b1, b2), and b1 + b2 is an odd integer,

exp(A(W ), a+ b+ 1) = (2 + 3b1 + 3b2, 4 + 3b1 + 3b2).

(ii) For all the other cases,

exp(A(W ), a+ b+ 1) = (m(1) + (b · h), . . . , m(ℓ) + (b · h)).

In particular, the multiarrangements (A(W ), a+ b+ 1) are free.
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3 The higher-dimensional cases

Now we begin our proof of Theorem 1.2 by an induction on the dimension ℓ.
In this section we reduce the proof to the two-dimensional cases by applying
Yoshinaga’s criterion Theorem 2.4. In the next section we will complete the
proof.

It suffices to verify the two conditions in Theorem 2.4. The condition
(2-i) follows from Theorem 2.5. Let us check the other condition (2-ii). For
this purpose we prove

Lemma 3.1 (i) For any X ∈ L(c
(

A[−a,b]
)

) with X ⊆ H∞, there exists a

unique Y ∈ L(A) such that X = cY ∩H∞ ∈ L(c
(

A[−a,b]
)

), and
(ii)

(

c
(

A[−a,b]
))

X
= c

(

(AY )
[−aY ,bY ]

)

= c
(

A(WY )
[−aY ,bY ]

)

,

where aY and bY are the restrictions of a and b respectively to AY .

proof. (i) For H ∈ A[−a,b], let H(0) ∈ A be the parallel hyperplane of H
through the origin. Then cH ∩H∞ = cH(0) ∩H∞. There exist H1, . . . , Hk ∈
A[−a,b] such that

X = H∞ ∩ cH1 ∩ cH2 ∩ · · · ∩ cHk.

Define Y = H
(0)
1 ∩H

(0)
2 ∩ · · · ∩H

(0)
k ∈ L(A).

(ii) The second equality follows from the fact that the parabolic subgroup
WY is equal to the group generated by the reflections with respect to the
Coxeter arrangement AY . We will prove the first equality. Note that

cH ∈
(

c
(

A[−a,b]
))

X
⇔ X = cY ∩H∞ ⊆ cH ⇔ X = cY ∩H∞ ⊆ cH(0)

⇔ Y ⊆ H(0) ⇔ H ∈ (AY )
[−aY ,bY ] ⇔ cH ∈ c

(

(AY )
[−aY ,bY ]

)

for H ∈ A[−a,b]. This completes the proof. �

Thanks to this lemma, the freeness of cA[−a,b] reduces into the freeness of
c
(

A(WY )
[−aY ,bY ]

)

for each Y ∈ L(A(W )) with Y 6= {0}. Note that AY is a
product of irreducible Weyl arrangements of strictly lower ranks. Also recall
that a product of free arrangements is also free. Consequently the proof
of Theorem 1.2 reduces to the irreducible Weyl arrangements of rank two or
lower. Note that the arrangement of the type A1 and the empty arrangement
are obviously free. Therefore, in the subequent section, we may assume that
A is an irreducible two-dimensional Weyl arrangement in order to complete
the proof of Theorem 1.2.
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4 The two-dimensional cases

In this section we assume that A is either of the type A2, B2 or G2.

(A) (the A2 type) As for A2, Theorem 1.2 is proved in [5] for the
extended Catalan arrangements and in [4] for the extended Shi arrangements.

(B) (the B2 type) As for B2, Theorem 1.2 is proved in [1], which we
will review. Start from the free arrangement

x = −sz, . . . , sz

y = −sz, . . . , sz

x± y = 0,

z = 0.

where z = 0 is the infinite hyperplane. The arrangement above is free with
exponents (1, 2s + 1, 2s + 3), the proof of which is an easy exercise and left
to the reader. Define hyperplanes

H4a−3 : x− y = −az, H4a−2 : x+ y = az,

H4a−1 : x− y = az, H4a : x+ y = −az

for a = 1, 2, . . . , t. Add H1, H2, . . . , H4t to the arrangement above in this
order. Then the addition theorem completes the proof in the case of the
type B2.

(G) (the G2 type) Lastly we study the type G2. Let A = A(G2)
defined by Q1Q2 = 0 with

Q1 = x(y − 1√
3
x)(y +

1√
3
x),

Q2 = y(y +
√
3x)(y −

√
3x).

Put Ai := {Qi = 0}. Then A has an orbit decomposition

A = A1 ∪ A2

such that both A1 and A2 are of the type A2. Hence we have to verify the
freenss of the following four types of Shi-Catalan arrangements:
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(G-i) (the Catalan-Catalan type) the arrangement A[2s+ 1, 2t+ 1]
is defined by

x = −s, . . . , s

y − 1√
3
x = − 2√

3
s, . . . ,

2√
3
s,

y +
1√
3
x = − 2√

3
s, . . . ,

2√
3
s,

y = − 1√
3
t, . . . ,

1√
3
t,

y −
√
3x = − 2√

3
t, . . . ,

2√
3
t,

y +
√
3x = − 2√

3
t, . . . ,

2√
3
t

with s, t ∈ Z≥0, which equals A[−a,b] where a = b = (s, t).

(G-ii) (the Shi-Catalan type) The arrangement A[2s, 2t+1] is defined
by

x = −s+ 1, . . . , s

y − 1√
3
x = − 2√

3
(s− 1), . . . ,

2√
3
s,

y +
1√
3
x = − 2√

3
(s− 1), . . . ,

2√
3
s,

y = − 1√
3
t, . . . ,

1√
3
t,

y −
√
3x = − 2√

3
t, . . . ,

2√
3
t,

y +
√
3x = − 2√

3
t, . . . ,

2√
3
t

with s, t ∈ Z≥0, which equals A[−a,b] where a = (s− 1, t) and b = (s, t).
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(G-iii) (the Catalan-Shi type) The arrangement A[2s + 1, 2t] is de-
fined by

x = −s, . . . , s

y − 1√
3
x = − 2√

3
s, . . . ,

2√
3
s,

y +
1√
3
x = − 2√

3
s, . . . ,

2√
3
s,

y = − 1√
3
(t− 1), . . . ,

1√
3
t,

y −
√
3x = − 2√

3
(t− 1), . . . ,

2√
3
t,

y +
√
3x = − 2√

3
(t− 1), . . . ,

2√
3
t

with s, t ∈ Z≥0, which equals A[−a,b] where a = (s, t− 1) and b = (s, t).

(G-iv) (the Shi-Shi type) The arrangement A[2s, 2t] is defined by

x = −s+ 1, . . . , s

y − 1√
3
x = − 2√

3
(s− 1), . . . ,

2√
3
s,

y +
1√
3
x = − 2√

3
(s− 1), . . . ,

2√
3
s,

y = − 1√
3
(t− 1), . . . ,

1√
3
t,

y −
√
3x = − 2√

3
(t− 1), . . . ,

2√
3
t,

y +
√
3x = − 2√

3
(t− 1), . . . ,

2√
3
t

with s, t ∈ Z≥0, which equals A[−a,b] where a = (s− 1, t− 1) and b = (s, t).
We prove that these Shi-Catalan arrangements are all free by using the

addition theorem. Since the counting of intersections on a newly-added hy-
erplane is easy, we just show the order of adding hyperplanes H and the
number of intersections |H ∩A| in the tables below.

(G-i) (G-iii) (when s+t is odd) First let us consider cA[2s+1, 2t+1]
when s+ t is odd. We prove that cA[2s+ 1, 2t+ 1] is free with

exp cA[2s+ 1, 2t+ 1] = (1, A+ 2, A+ 4)

where A = 3s+3t. We use induction on t ≥ 0. It is easy to check the freeness
when t = 0. Assume that t ≥ 1. Then the addition table is as follows:
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added hyperplane number of intersections exponents

y =
t+ 1√

3
z A + 5 (1,A+3,A+4)

y −
√
3x =

2(t+ 1)√
3

z A + 5 (1,A+4,A+4)

y +
√
3x =

2(t+ 1)√
3

z A + 5 (1,A+4,A+5)

y = −t + 1√
3
z A + 5 (1,A+4,A+6)

y −
√
3x = −2(t + 1)√

3
z A + 5 (1,A+4,A+7)

y +
√
3x = −2(t + 1)√

3
z A + 5 (1,A+4,A+8)

y =
t+ 2√

3
z A + 9 (1,A+5,A+8)

y −
√
3x =

2(t+ 2)√
3

z A + 9 (1,A+6,A+8)

y +
√
3x =

2(t+ 2)√
3

z A + 9 (1,A+7,A+8)

y = −t + 2√
3
z A + 9 (1,A+8,A+8)

y −
√
3x = −2(t + 2)√

3
z A + 9 (1,A+8,A+9)

y +
√
3x = −2(t + 2)√

3
z A + 9 (1,A+8,A+10)

As a consequence, cA[2s+ 1, 2t+ 1] and cA[2s+ 1, 2t+ 2] are free with

exp cA[2s+ 1, 2t+ 1] = (1, A+ 2, A+ 4),

exp cA[2s+ 1, 2t+ 2] = (1, A+ 4, A+ 5).

(G-i) (G-iii) (when s+t is even) Next consider G(2s+1, 2t+1) when
s+ t is even. Then the same table in the above shows that cA[2s+1, 2t+1]
and cA[2s+ 1, 2t+ 2] are free with

exp cA[2s+ 1, 2t+ 1] = (1, A+ 1, A+ 5),

exp cA[2s+ 1, 2t+ 2] = (1, A+ 4, A+ 5).

(G-ii)(G-iv) Next let us consider cA[2s, 2t+ 1] and cA[2s, 2t+ 2]. We
prove that they are free with

exp cA[2s, 2t+ 1] = (1, A+ 1, A+ 2),

exp cA[2s, 2t+ 2] = (1, A+ 3, A+ 3).
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We begin with cA[2s, 2t+1]. In this case the order of adding hyperplanes is
important. The addition table is as follows:

added hyperplane number of intersections exponents

y =
t+ 1√

3
z A + 3 (1, A+ 2, A+ 2)

y +
√
3x =

2√
3
(t+ 1)z A + 3 (1, A+ 2, A+ 3)

y −
√
3x =

2√
3
(t + 1)z A + 4 (1, A+ 3, A+ 3)

y −
√
3x = − 2√

3
(t + 1)z A + 4 (1, A+ 3, A+ 4)

y +
√
3x = − 2√

3
(t + 1)z A + 5 (1, A+ 4, A+ 4)

y = −t + 1√
3
z A + 5 (1, A+ 4, A+ 5)

Hence cA[2s, 2t+ 1] and cA[2s, 2t+ 2] are free with

exp cA[2s, 2t+ 1] = (1, A+ 1, A+ 2),

exp cA[2s, 2t+ 2] = (1, A+ 3, A+ 3).

The above tables show that each Shi-Catalan arrangements of the type
G2 is free. Thus we complete the proof of Theorem 1.2.
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