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Abstract 
Modelling of solidification process by the method of cellular automaton (CA) requires determination of geometrical characteristics of the 
interface, i.e. of its direction and curvature. In previous studies the authors proposed a method to reduce the well-known effect of an 
artificial symmetry of the simulation results caused by the anisotropy of the CA computation grid (e.g. a preferred growth of the main 
dendrite arms along the grid lines or at an angle of 45° in the case of grids with square cells). The aim was achieved by application of the 
developed methods of computation of the transformation rate and front direction. In this study the authors examined the problem of an 
accuracy of the computations of an interface curvature. The obtained results show us that the error of the curvature computation introduced 
by some well-known methods exceeds by 100% a nominal value of this parameter. A method to estimate the accuracy of the applied 
solution has been proposed. Practical application of the proposed tests enables selection of a best solution, including the authors' own 
solutions, thus considerably improving an accuracy of the solidification modelling by the method of CA. 
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1. Introduction 
 
One of the methods used to forecast the microstructure of 

materials is by modelling the phase transformations and grain 
growth on cellular automata. In modelling of this type, the shape 
of crystals and their internal structure (e.g. the radius of the 
dendrite front curvature, secondary dendrite arm spacing, etc.) are 
not included in model assumptions, but are determined directly 
during the simulation. 

The cellular automata are an idealisation of a physical system 
in which space and time are discrete, and the physical quantities 
take only a finite set of values [1]. In modelling of phase 
transformations the mathematical tools operating in CA are used 
to define the state of cells (e.g. "solid", "liquid", "interface"). The 
well-known and available solutions combine modelling of the 
interface shape by CA method with modelling of mass and heat 

diffusion by the finite difference method on a CA grid. Modelling 
of this type allows for an effect of the alloy constituents 
segregation and its influence on changes in the temperature of 
thermodynamic equilibrium. The value of capillary undercooling 
related with the interface curvature is also taken into 
consideration. The capillary undercooling indicates changes in the 
temperature of the thermodynamic equilibrium on a non-zero 
curvature surface compared with the flat (zero curvature) surface. 

A review of the mathematical models using CA has been 
presented in [2]. 

A parabolic differential equation with partial derivatives (also 
known as diffusion equation or Fourier equation) is used in 
modelling of the temperature field: 
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and/or in modelling of the concentration field:  
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where: 
 T – temperature, 
 C – concentration, 
 τ – time, 
 c – volumetric heat capacity, 
 λ – thermal conductivity, 
 D – diffusion coefficient, 
 x, y – coordinates. 

The functions of source qT (heat) and qC (mass) have non-zero 
values only in these cells of the grid (called interface cells) which 
cross the interface. The value of these functions is proportional to 
the interface migration rate. To determine parameters of the 
vector of the interface movement velocity, it is necessary to 
determine the geometrical characteristics of the solid/liquid 
interface, i.e. its position, the direction of normal versor, and 
curvature.  

When the dendritic solidification is an object of the 
modelling, most of the well-known publications report on the 
presence of an artificial anisotropy in the results of the simulation, 
due to the symmetry of the applied grid. According to the results 
obtained in [3], the structure of the dendrites subject to modelling 
depends on the grid anisotropy rather than on the properties of the 
examined constituent. The effect of the grid anisotropy on the 
structure was also reported in the studies done on modelling of the 
recrystallization, e.g. [4, 5].  

It has been established that most responsible for the 
significant effect of the grid symmetry on the anisotropy of the 
results of the dendritic solidification simulation by CA are the 
methods used currently for determination of the phase 
transformation rate in the cells of an interface [6] and for 
determination of the direction of normal versor [7].  

Literature states several techniques applicable in computation 
of the transformation rate [2, 8, 9] and interface direction [8, 10]. 
In [6, 7] the following tests were proposed to check these methods 
of computations: Growth Rate Circle Test (GRCT) and Interface 
Direction Circle Test (IDCT). The proposed tests are meant to 
help in selection of the best solution, the authors' own solutions 
included, to reduce the artificial anisotropy of the simulation 
results.  

In reference literature one can also find a description of 
different methods used for computation of the interface curvature, 
and therefore in this study an attempt has been made at 
developing an Interface Curvature Test. The aim of the test is to 
assist the selection of a most accurate method to be used in 
determination of this curvature. 

 

2. Computation of the interface 
curvature 

 
2.1. The well-known methods of the computation of surface 
curvature 
 

The well-known techniques used for the computation of 
surface curvature can be divided into three groups: counting-cell 
technique [11, 12], differential technique [13], and geometric 
technique [2].  

In the counting-cell technique (CCT) it is assumed that the 
curvature is proportional to a difference between the actual 
number of the cells of the transformed phase in the examined 
neighbourhood (Ns) and the number of such cells on a planar front 
(Npl) [11]: 

 

t

spl

N
NN

a
−

=κ
2

 (3) 

 
where:  
 Nt – total number of cells in the examined 

neighbourhood; 
 a – cell size. 

In the differential method (DM), the line curvature is 
determined from space derivatives. The interface curvature equals 
the divergence of a normalised gradient of function F(x,y), 
describing the distribution of solid fraction in the examined 
neighbourhood [14]. In [10, 12] for computation of the curvature, 
the following equation was used: 
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where subscripts denote the differentiation done on the respective 
variables. 

Geometric method (GM) uses the flat line curvature definition 
as a limit for the quotient of a change of normal vector direction 
at the end points on the line segment (∆θ) divided by the length of 
this segment (∆s): 

 
s∆θ∆=κ  (5) 

 
 

2.2. Interface Curvature Circle Test 
 
The task of the first test is to estimate if the curvature has 

been computed in a correct way. In this test based on GRCT [6] it 
has been assumed that the grain growth velocity is constant and 
independent of the growth direction. For each cell of an interface 
the direction of the velocity vector is determined by a line joining 
the centre of this cell with the centre of the nucleus. The angle θ 
between the reference direction and the velocity vector depends 
only on the coordinates of the cell centre: 
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where: 
 i, j – indeces of the interface cell; 
 iN, jN – indeces of the cell-nucleus. 

The initial radius of the nucleus is equal to the length of the 
side of a cell in the CA grid (a). The growth velocity has been 
chosen so as to make the grain radius r increase by 1% of the 
value a at each time step ∆τ: 

 

τ∆
=

au 01.0
 (7) 

 
The change in the solid phase fraction was computed from an 

equation which ensures that the growing grain will preserve its 
isotropic shape [6]: 

 

θ+θ
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u
a
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The accuracy of computations of the interface curvature by 

means of equations (1) – CCT, (2) – DM and (3) – GM was 
estimated qualitatively from the graphs illustrating a deviation 
from the nominal curvature of the curvature computed for 
individual interface cells on the grain perimeter.  

The results of the test are shown in a dimensionless form in 
Figure 1 (as a length unit is used the length of a side of the CA 
grid cell). In computation of the curvature by means of CCT the 
environment of 3x3 AC cells has been used. In computation of the 
curvature by the differential method, the technique of 
interpolation of the field of the product fraction after 
transformation described in [15] has been used. The details of the 
geometric method used for computation of the interface curvature 
are presented in [2]. 

The curvature computed by CCT (Fig. 1a) is characterised by 
the scatter of results smaller than DM (Fig. 1b), but for small radii 
(typical of the dendritic front) it is burdened with a large 
systematic error. A maximum accuracy of the determination of a 
mean value of the curvature as well as a minimum scatter of the 
results are offered by the geometric method (Fig. 1c).  

 
 

2.3. Interface Curvature Kinetic Test 
 
The second of the proposed tests allows for an effect of the 

tested method on the correct modelling of the growing grain 
shape, taking into account the temperature field and capillary 
undercooling as well as its effect on the rate of transformation. In 
computations, a mathematical model of solidification described in 
[2] was used. 

Testing of model equations was carried out on a square CA 
200×200 cells lattice of the side length a = 1 µm. The nucleus of 

an initial radius equal to the side length of a cell in the CA grid 
was placed in the centre of the computation grid. The adopted 
initial value of temperature within the simulated area was: 

 

101.00 −−=
c
LTT M , K (9) 

 
where: 
 TM – melting temperature; 
 L – solidification heat; 
 c –  specific heat. 

To eliminate the anisotropy of temperature field imposed by 
the square shape of the grid, a first-type boundary condition 
(T=T0) was introduced to the grid cells distant from the grain 
centre by a section larger than 100·a. 

In the test, besides the heat flow, also the effect of capillary 
undercooling on the transformation rate and precipitation of the 
solidification heat was taken into account. The adopted value of 
Gibbs-Thomson coefficient was assumed to be equal to: 

 

c
La ⋅⋅

=Γ
01.0

 (10) 

 
 Under such assumptions, the kinetic undercooling was of the 

same order of magnitude as that of the capillary undercooling 
computed from the following equation:  

 
κ⋅Γ=∆ κT  (11) 

 
This is why the shape of the growing grain was sensitive to an 

inaccuracy of the computation of local curvature. The same 
material constants as for the Fe-C alloy were selected:  
• liquidus temperature TM = 1673 K, 
• heat of solidification L = 1.97·109 J/m3, 
• specific heat c = 5.84·106 J/K·m3,  
• heat conductivity λ = 30 W/K·m. 

 
Figure 2 shows the results of computations of a mean 

curvature on the perimeter of the growing grain (the thick black 
line) and of a standard deviation of this value (thin line) as 
obtained by the Interface Curvature Kinetic Test. The thick grey 
line in this drawing shows a nominal value of the curvature 
computed from the following equation: 
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where: 

fi,j – fraction of the transformation product in grid cell (i,j). 
 
From this drawing it follows that the use of CCT (Fig. 2a) 

gives a significant underestimation of the surface curvature of the 
growing grain. The value of standard deviation is comparable 
with the mean values, which also indicates a large scatter of the 
data in respect of the mean. 
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Fig. 1. The results of Interface Curvature Circle Test: a) CCT, b) 
DM, c) GM (black – mean value) 
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Fig. 2. The results of Interface Curvature Kinetic Test: a) CCT, b) 
DM, c) GM (thick black line – mean curvature obtained in the 
test; thin line – standard deviation of the curvature on grain 
perimeter, thick grey line – nominal curvature) 
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Fig. 3. Results of Interface Curvature Kinetic Test:  0 – reference curve, 1 – CCT, 2 – DM, 3– GM  

 
 

When the differential method is used (Fig. 2b), large 
deviations of the mean test result from the nominal value of the 
curvature are observed to occur periodically with prevalence of 
the positive deviations. Compared with the methods described 
previously, the geometric method (Fig. 2c) gives but only a 
minimum positive deviation of the computed curvature from the 
nominal value and is characterised by a minimum and stable level 
of the standard deviation. 

Figure 3 shows the kinetics of changes in the grain radius 
during Interface Curvature Kinetic Test. The reference curve 
(line  0) in this drawing was plotted by numerical modelling under 
the assumption that the solidification front curvature in individual 
cells of the interface equals the nominal value computed from 
equation (10).  

From this drawing it follows that, compared with the 
reference line (line 1), the underestimated curvature in the case of 
CCT results in an overestimated grain growth velocity. The use of 
differential method (line 2) initially retards the grain growth to 
accelerate it after some 2.5 µs. The use of geometric method 
(line 3) gives the best consistency between the grain radius 
computed in tests and the reference values. 
 

 

3. Conclusions 
 

A test has been developed by means of which it is possible to 
evaluate the accuracy of computations of the interface curvature 
in modelling of solidification by the technique of cellular 
automaton.  

By means of this test it has been proved that the most accurate 
technique of computation of the interface curvature in 
mathematical modelling of the solidification on CA is the 
geometric method using equation (3). 
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