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Abstract

In tandem with recent progress on computing on encrypted data via fully homomorphic
encryption, we present a framework for computing on authenticated data via the notion of
slightly homomorphic signatures, or P -homomorphic signatures. With such signatures, it is
possible for a third party to derive a signature on the object m′ from a signature of m as long as
P (m,m′) = 1 for some predicate P which captures the “authenticatable relationship” between
m′ and m. Moreover, a derived signature on m′ reveals no extra information about the parent
m.

We carefully formulate the definition of this new primitive, and then provide generic con-
structions for all univariate and closed predicates, and specific efficient constructions for a broad
class of natural predicates such as quoting, weighted sums, averages, and Fourier transforms.

1 Introduction

While there has been considerable progress in computing on encrypted data [24, 44, 42], far less is
known about computing on unencrypted signed data. Over the past few years, two independent
lines of research touched on this area:

• Quoting/redacting: [43, 29, 1, 35, 27, 13, 12, 14] Given Alice’s signature on some message
m anyone should be able to derive Alice’s signature on a subset of m. Quoting typically
applies to signed text messages where one wants to derive Alice’s signature on a substring
of m. Quoting can also apply to signed images where one wants to derive a signature on a
subregion of the image (say, a face or an object) and to data structures where one wants to
derive a signature of a subset of the data structure such as a sub-tree of a tree.
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• Arithmetic: [30, 47, 18, 10, 23, 9, 8] Given Alice’s signature on vectors v1, . . . ,vk ∈ Fnp anyone
should be able to derive Alice’s signature on a vector v in the linear span of v1, . . . ,vk.
Arithmetic on signed data is motivated by applications to secure network coding [22]. We
show in Section 6 that these schemes can be used to compute authenticated linear operations
such as computing an authenticated weighted sum of signed data and an authenticated Fourier
transform. As a practical consequence of this, we show that an untrusted database storing
signed data (e.g., employee salaries) can publish an authenticated average of the data without
leaking any other information about the stored data.

In this paper, we put forth a general framework for computing on authenticated data that
encompasses both lines of research and much more. We first present clean definitions of security
that generalize and strengthen previous results. Then we show two generic solutions for computing
signatures on any predicate; however, these generic constructions are not efficient. We next present
efficient constructions for three problems: quoting substrings in Section 4, a subset predicate in
Section 5, and a weighted average over data in Section 6. Our quoting substring construction
is novel and significantly more efficient than the generic solutions. For the problems of subsets
and weighted averages we show somewhat surprising connections to respective existing solutions in
attribute-based encryption and network coding signatures.

1.1 Overview

A general framework. Let M be some message space and let 2M be its powerset. Consider
a predicate P : 2M ×M → {0, 1} mapping a set of messages and a message to a bit. Loosely
speaking we say that a signature scheme supports computations with respect to P if the following
holds:

Let M ⊂M be a set of messages and let m′ be a derived message, namely m′ satisfies
P (M,m′) = 1. Then there exists an efficient procedure that can derive Alice’s signature
on m′ from Alice’s independent signatures on all of the messages in M .

For the quoting application, the predicate P is defined as P (M,m′) = 1 iff m′ is a quote from the
set of messages M . Here we focus on quoting from a single message m so that P is false whenever
M contains more than one component1, and thus use the notation P (m,m′) as shorthand for
P ({m},m′). The predicate P for arithmetic computations is defined in Section 6 and essentially
says that P

(
(v1, . . . ,vk), v) is true whenever v is in the span of v1, . . . ,vk.

We emphasize that signature derivation can be iterative. For example, given a message-signature
pair (m,σ) from Alice, Bob can publish a derived message-signature pair (m′, σ′) for an m′ where
P (m,m′) holds. Charlie, using (m′, σ′), may further derive a signature σ′′ on m′′. In the quoting
application, Charlie is quoting from a quote which is perfectly fine.

Security. We give a clean security definition that captures two properties: unforgeability and
context hiding. We briefly discuss each in turn and give precise definitions in the next section.

• Unforgeability captures the idea that an attacker may be given various derived signatures
(perhaps iteratively derived) on messages of his choice. The attacker should be unable to
produce a signature on a message that is not derivable from the set of signed messages at
his possession. For example, suppose Alice generates (m,σ) and gives it to Bob who then

1We leave it for future work to construct systems for securely quoting from two messages (or possibly more) as
defined next.
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publishes a derived signature (m′, σ′). Then an attacker given (m′, σ′) should be unable to
produce a signature on m or on any other message m′′ such that P (m′,m′′) = 0.

• Context hiding captures an important privacy property: a signature should reveal nothing
more than the message being signed. In particular, if a signature on m′ was derived from
a signature on m, an attacker should not learn anything about m other than what can be
inferred from m′. For example, a signed average of some data reveals nothing more about the
data and a signed quote reveals nothing about the messages from which it was quoted; this
includes hiding its length and the position of the quote, and even the origin of the message it
was derived from.

Defining context hiding is an interesting and subtle task. In the next section, we give a clean
definition that captures a very strong privacy requirement. We discuss earlier attempts at defining
privacy following our definition in Section 2.3.

We note that notions such as group or ring signatures [19, 2, 15, 6, 40] have considered the
problem of hiding the identity of a signer among a set of users. Context hiding ensures privacy for
the data rather than the signer. Our goal is to hide the legacy of how a signature was created.

Efficiency. For practical purposes we require that the size of a signature, whether fresh or derived,
depend only on the size of the object being signed. This rules out solutions where the signature
grows with each derivation.

Generic Approaches. We begin with two generic constructions that can be inefficient. They
apply to univariate predicates, namely predicates P (M,m′) where M contains a single message
(P is false when |M | > 1). The first construction uses any standard signature scheme S where
the signing algorithm is deterministic. (One can enforce determinism using PRFs [25].) To sign
a message m ∈ M one simply uses S to sign each message m′ such that P (m,m′) = 1. 2 The
signature consists of all these signature components. To verify a signature for m verification checks
the signature component corresponding to the message m. To derive a signature m′ from m, one
simply copies the signature components for all m′′ such that P (m′,m′′) = 1. Soundness of the
construction follows from the security of the underlying standard scheme S and context hiding
from the fact that signing in S is deterministic.

Unfortunately, the signatures in this scheme may become large consisting up to |M| signature
components — effecting both the signing time and signature size. Our second generic construction
alleviates the space burden by using an RSA accumulator. The construction works in a similar brute
force fashion where a signature on m is an accumulator value on all m′ such that P (m,m′) = 1.
While this produces short signatures, the time component of both verification and derivation are
even worse than the first generic approach. Thus, both of these generic approaches are too expensive
for most interesting predicates. We detail these generic approaches and proofs in Appendix B, where
we also discuss a generic construction using NIZK.

Our Quoting Construction. We then turn to more efficient constructions, starting with quot-
ing. Since no schemes prior to this work satisfy our strong security requirements, we set out to
construct a secure signature for quoting substrings3, which although conceptually simple turns out
to be non-trivial to realize securely.

2For simplicity here we assume that the predicate P is closed in that if P (a, b) = P (b, c) = 1 then P (a, c) = 1.
3A substring of x1 . . . xn is some xi . . . xj where i, j ∈ [1, n] and i ≤ j. We emphasize that we are not considering

subsequences. Thus, it is not possible, in this setting, to extract a signature on “I like fish” from one on “I do not
like fish”.
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We first note that the application of the brute force generic construction to a quoting predicate
would result in n2 components for a signature on a signature of n characters. So any interesting
construction must perform more efficiently than this.

A natural approach would be to assign with each character in the message a randomly chosen tag
t from a large space. Then a signature of a string of n characters can consist of n standard signatures
where the i-th component signs the i-th character and the (i + 1)-st tag ti+1. In this manner the
characters are chained together. The derivation of a substring simply consists of “snipping” off the
relevant components and the verification algorithm verifies the individual signatures as well as the
chain structure. While such a structure prevents the forgery attacks outlined above, it does not
satisfy our context hiding goals. In particular, it is trivial to test (using the tags) if one signature
originated from another.

Our main construction provides a secure solution and is significantly more efficient than the
brute force construction. Our construction uses bilinear groups to link different signature compo-
nents together securely, but in such a way that the context can be hidden by a re-randomizing step
in the derivation algorithm. A signature in our system on a message of length n consists of n lg n
group elements; intuitively organized as lg n group elements assigned to each character. To derive a
new signature on a substring of ` characters, one roughly removes the group elements not associated
with the new substring and then re-randomizes the remaining part of the signature. This results in
a new signature of ` lg ` group elements. The technical challenge consists in simultaneously allowing
re-randomization and preserving the “linking” between successive characters. In addition, there
is a second option in our derive algorithm that allows for the derivation of a short signature of `
group elements; however the derive procedure cannot be applied again to this short signature.

We prove our construction selectively secure. 4 In addition, we give some potential future
directions for achieving adaptive security and removing the use of random oracles.

Computing Signatures on Subsets and Weighted Averages. Our final two contributions
are schemes for deriving signatures on subsets and weighted averages on signatures. Rather than
create entirely new systems, we show connections to existing Attribute-Based Encryption schemes
and Network Coding Signatures. Briefly, our subset construction extends the concept of Naor [7]
who observed that every IBE scheme can be transformed into a standard signature scheme by
applying the IBE KeyGen algorithm as a signing algorithm. Here we show an analog for known
Ciphertext-Policy (CP) ABE schemes. The KeyGen algorithm which generates a key for a set S
of attributes can be used as a signing algorithm for the set S. For known CP-ABE systems [3, 31]
it is straightforward to derive a key for a subset S′ of S and to re-randomize the signature/key.
To verify a signature on S we can apply Naor’s signature-from-IBE idea and encrypt a random
message X to a policy that is an AND of all the attributes in S and see if the signature can be used
as an ABE key to decrypt to X. Our construction for weighted sums is presented in Section 6.

Thinking Beyond Beyond simple quoting and summation, one can imagine predicates P that
support complex operations on signed messages. One natural set of examples are spreadsheet oper-
ations such as median, standard deviation, and rounding on signed data (satisfying unforgeability
and context hiding). Other examples include graph algorithms such as computing a signature on a
perfect matching in a signed bipartite graph. Not much is known beyond our generic (inefficient)
constructions and there is a wealth of deep problems to study.

4Following an analog of [16] selective security for signatures requires the attacker to give the forgery message
before seeing the verification key.
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2 Definitions

Definition 2.1 (Derived messages) Let M be a message space and let P : 2M×M→ {0, 1} be
a predicate from sets overM and a message inM to a bit. We say that a message m′ is derivable
from the set M ⊆M if P (M,m′) = 1. We denote by P ∗(M) the set of messages derivable from M
by repeated derivation. That is, let P 0(M) be the set of messages derivable from M and for i > 0
let P i(M) be the set of messages derivable from P i−1(M). Then P ∗(M) := ∪∞i=0P

i(M).
We define the closure of P , denoted P ∗, as the predicate defined by P ∗(M,m) = 1 iff m ∈

P ∗(M).

A P -homomorphic signature scheme Π for message space M and predicate P is a triple of PPT
algorithms:

KeyGen(1λ): the key generation algorithm outputs a key pair (pk , sk). We treat the secret key
sk as a signature on the empty tuple ε ∈M∗. We also assume that pk is embedded in sk .

SignDerive(pk , ({σm}m∈M ,M),m′, w): the algorithm takes as input the public key, a set of mes-
sages M ⊆ M and corresponding signatures {σm}m∈M , a derived message m′ ∈ M, and possibly
some auxiliary information w. It produces a new signature σ′ or a special symbol ⊥ to repre-
sent failure. For complicated predicates P , the auxiliary information w serves as a witness that
P (M,m′) = 1. To simplify the notation we often drop w as an explicit argument.

As shorthand we write Sign(sk ,m) := SignDerive(pk , (sk , ε),m, ·) to denote signatures gen-
erated by sk on allowable m (namely m ∈ M such that P (ε,m) = 1). For a set of messages
M = {m1, . . . ,mk} ⊂ M∗ it is convenient to let Sign(sk ,M) denote independently signing each of
the k messages, namely:

Sign(sk ,M) :=
(

Sign(sk ,m1), . . . ,Sign(sk ,mk)
)
.

Verify(pk ,m, σ): given a public key, message, and purported signature σ, the algorithm returns 1
if the signature is valid and 0 otherwise.
We assume that testing m ∈M can be done efficiently, and that Verify returns 0 if m 6∈ M.

Correctness. We require that for all key pairs (sk , pk) generated by KeyGen(1n) and for all
M ∈M∗ and m′ ∈M we have:
• if P (M,m′) = 1 then SignDerive(pk , (Sign(sk ,M),M),m′) 6= ⊥, and

• for all signature tuples {σm}m∈M such that σ′ ← SignDerive(pk , ({σm}m∈M ,M),m′) 6= ⊥
we have Verify(pk ,m′, σ′) = 1.

In particular, correctness implies that a signature generated by SignDerive can be used as an
input to SignDerive so that signatures can be further derived from derived signatures, if allowed
by P .

Derivation efficiency. In many cases it is desirable that the size of a derived signature depend
only on the size of the derived message. This rules out signatures that expand as one iteratively
calls SignDerive. All the constructions in this paper are derivation efficient in this sense.

Definition 2.2 (Derivation-Efficient) A signature scheme is derivation-efficient if there exists
a polynomial p such that for all (pk , sk) ← KeyGen(1λ), set M ⊆ M∗, signatures {σm}m∈M ←
Sign(sk ,M) and derived messages m′ where P (M,m′) = 1, we have that

|SignDerive(pk , {σm}m∈M ,M,m′)| = p(λ, |m′|).
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2.1 Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability with respect to
adaptive chosen-message attacks [26]. The definition captures the idea that if the attacker is given a
set of signed messages (either primary or derived) then the only messages he can sign are derivations
of the signed messages he was given. This is defined using a game between a challenger and an
adversary A with respect to scheme Π over message space M described below.

— Game Unforg(Π,A, λ, P ):

Setup: The challenger runs KeyGen(1λ) to obtain (pk , sk) and sends pk to A. The challenger
maintains two sets T and Q that are initially empty.

Queries: Proceeding adaptively, the adversary issues the following queries to the challenger:

• Sign(m ∈M): the challenger generates a unique handle h, runs Sign(sk ,m)→ σ and places
(h,m, σ) into a table T . The challenger returns the handle h to the adversary.

• SignDerive(~h = (h1, . . . , hk), m′): the oracle retrieves the tuples (hi, σi,mi) in T for i =
1, . . . , k, returning ⊥ if any of them do not exist. Let M := (m1, . . . ,mk) and {σm}m∈M :=
{σ1, . . . , σk}. If P (M,m′) holds, then the oracle generates a new unique handle h′, runs
SignDerive(pk , ({σm}m∈M , M),m′) → σ′ and places (h′,m′, σ′) into T , and returns h′ to
the adversary.

• Reveal(h): Returns the signature σ corresponding to handle h, and adds (σ′,m′) to the set
Q.

Output: Eventually, the adversary outputs a pair (σ′,m′). The output of the game is 1 (i.e., the
adversary wins the game) if:

• Verify(pk ,m′, σ′) = 1 and,
• let M ⊆M be the set of messages in Q then P ∗(M,m′) = 0 where P ∗ is the closure of
P from Definition 2.1.

Else, the output of the game is 0. Define ForgA as the probability that Pr[Unforg(Π,A, λ, P ) =
1].

Interestingly, for some predicates it may be difficult to test if the adversary won the game. However,
for all the predicates we consider in this paper this will be quite easy.

Definition 2.3 (Unforgeability) A P -homomorphic signature scheme Π is unforgeable with
respect to adaptive chosen-message attacks if for all PPT adversaries A, the function ForgA is
negligible in λ.

A P -homomorphic signature scheme Π is selective unforgeable with respect to adaptive
chosen-message attacks if for all PPT adversaries A who begin the above game by announcing
the message m′ on which they will forge, ForgA is negligible in λ.

Properties of the definition. By taking P to be the equality oracle, namely P (x, y) = 1 iff
x = y, we obtain the standard unforgeability requirement for signatures. Thus, our notion is a
generalization of unforgeability.

Notice that Sign and SignDerive queries return handles, but do not return the actual signatures.
A system proven secure under this definition adequately rules out the following attack: suppose
(m,σ) is a message signature pair and (m′, σ′) is a message-signature pair derived from it, namely
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σ′ = SignDerive(pk , σ, m,m′). For example, suppose m′ is a quote from m. Then given (m′, σ′)
it should be difficult to produce a signature on m and indeed our definition treats a signature on
m as a valid forgery.

The unforgeability game imposes some constraints on P : (1) P must be reflexive, i.e. P (m,m) =
1 for all m ∈M, (2) P must be monotone, i.e. P (M,m′)⇒ P (M ′,m′) where M ⊆M ′. It is easy to
see that predicates that do not satisfy these requirements cannot be realized under Definition 2.3.

2.2 Security: Context Hiding (a.k.a., Privacy)

Let M be some set and let m′ be a derived message from M (i.e., P (M,m′) = 1). Context hiding
captures the idea that a signature on m′ derived from signatures on M should reveal no information
about M beyond what is revealed by m′. For example, in the case of quoting, a signature on a
quote from m should reveal nothing more about m: not the length of m, not the position of the
quote in m, etc. The same should hold even if the attacker is given signatures on multiple quotes
from m.

We put forth the following powerful statistical definition of context hiding and discuss its im-
plications following the definition. We were most easily able to leverage a statistical definition for
our proofs, although we also give an alternative computational definition in Appendix A.

Definition 2.4 (Strong Context Hiding) Let M ⊆ M∗ and m′ ∈ M be messages such that
P (M,m′) = 1. Let (pk , sk) ← KeyGen(1λ) be a key pair. A signature scheme (KeyGen,
SignDerive, Verify) is strongly context hiding (for predicate P ) if for all such triples ((pk , sk),M ,
m′), the following two distributions are statistically close:{(

sk , {σm}m∈M ← Sign(sk ,M), Sign(sk ,m′)
)}

sk ,M,m′{(
sk , {σm}m∈M ← Sign(sk ,M), SignDerive(pk , ({σm}m∈M ,M),m′)

)}
sk ,M,m′

The distributions are taken over the coins of Sign and SignDerive. Without loss of generality,
we assume that pk can be computed from sk.

The definition states that a derived signature on m′ is statistically indistinguishable from a
fresh signature on m′. This implies that a derived signature on m′ is indistinguishable from a
signature generated independently of M . Therefore, the derived signature cannot (provably) reveal
any information about M beyond what is revealed by m′. By a simple hybrid argument the same
holds even if the adversary is given multiple derived signatures from M .

Moreover, Definition 2.4 requires that a derived signature look like a fresh signature even if the
original signature on M is known. Hence, if for example someone quotes from a signed recommen-
dation letter and somehow the original signed recommendation letter becomes public, it would be
impossible to link the signed quote to the original signed letter. The same holds even if the signing
key sk is leaked.

Thus, Definition 2.4 captures a broad range of privacy requirements for derived signatures.
Earlier work in this area [29, 12, 14, 11] only considered weaker privacy requirements using more
complex definitions. The simplicity and breadth of Definition 2.4 is one of our key contributions.

Definition 2.4 uses statistical indistinguishability meaning that even an unbounded adversary
cannot distinguish derived signatures from newly created ones. In Appendix A, we give a definition
using computational indistinguishability which is considerably more complex since the adversary
needs to be given signing oracles. In the unbounded case of Definition 2.4 the adversary can simply
recover a secret key sk from the public key and answer its own signature queries which greatly
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simplifies the definition of context hiding. All the signature schemes in this paper satisfy the
statistical Definition 2.4.

Note that Definition 2.4 only guarantees privacy when (pk , sk) are generated honestly. In most
application scenarios we envision, the context-hiding property is most enjoyed by the original signer,
and so we consider it reasonable for the keys to be generated correctly. Future work may consider
more adversarial setups, say where the signer wishes derived signatures to leak information about
the original messages, but only to some trusted party.

A simpler approach to proving unforgeability. For systems that are strongly context hiding
unforgeability follows from a much simpler game than the one used in Section 2.1. In particular,
it suffices to just give the adversary the ability to obtain top level signatures signed by sk . In
Appendix A.2, we define this simpler unforgeability game and prove equivalence to Definition 2.3
using strong context hiding.

2.3 Related Work

Early work on quotable signatures [43, 29, 37, 36, 27, 13, 17, 11] supports quoting from a single
document, but does not achieve the privacy or unforgeability properties we are aiming for. For
example, if simple quoting of messages is all that is desired, then the following folklore solution
would suffice: simply sign the Merkle hash of a document. A quote represents some sub-tree of
the Merkle hash; so a quoter could include enough intermediate hash nodes along with the original
signature in any quote. A verifier could simply hash the quote, and then build the Merkle hash tree
using the computed hash and the intermediate hashes, and compare with the original signature.
Notice, however, that every quote in this scheme reveals information about the original source
document. In particular, each quote reveals information about where in the document it appears.
Thus, this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work on redacted signatures
of Chang et al. [17] and Brzuska et al. [11] (see also Naccache [38, p. 63] and [9, 8]). However,
there is a subtle, but fundamental difference between their definition and the privacy notion we
are aiming for. In our formulation, a quoted signature should be indistinguishable from a fresh
signature, even when the distinguisher is given the original signature. (We capture this by an even
stronger game where a derived signature is distributed statistically close to a fresh signature.) In
contrast, the definitions of [17, 11] do not provide the distinguisher with the original signature.
Thus, it may be possible to link a quoted document to its original source (and indeed it is in
the constructions of [17, 11]), which can have negative privacy implications. Overcoming such
document linkage while maintaining unforgeability is a primary technical challenge. This requires
moving beyond techniques that use visible nonces to link parts of messages.

Indeed, in most prior constructions, such as [17, 11], nonces are used to prevent “mix-and-
match” attacks (e.g., forming a “quote” using pieces of two different messages.) Unfortunately,
these nonces reveal the history of derivation, since they cannot change during each derivation
operation. Arguably, much of the technical difficulty in our current work comes precisely from the
effort to meet our definition and hide the lineage. The challenge is to “link” different parts of the
signature together to prevent these mix and match attacks without employing fixed nonces. We
introduce new techniques in this work which link pieces together using randomness that can be
re-randomized in controlled ways.

Another line of related work studies “sanitizable” signatures [37, 1, 35, 14, 12] that allow a proxy
to compute signatures on related messages, but requires the proxy to have a secret key. In contrast,
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our proposal is more along the lines of homomorphic encryption, where the proxy computes the
new signatures without any additional secret keys.

3 Preliminaries: Algebraic Settings

Bilinear Groups and the CDH Assumption. Let G and GT be groups of prime order p. A
bilinear map is an efficient mapping e : G × G → GT which is both: (bilinear) for all g ∈ G and
a, b ← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate) if g generates G, then e(g, g) 6= 1. We will
focus on the Computational Diffie-Hellman assumption in these groups.

Assumption 3.1 (CDH [20]) Let g generate a group G of prime order p ∈ Θ(2λ). For all PPT
adversaries A, the following probability is negligible in λ:

Pr[a, b,← Zp; z ← A(g, ga, gb) : z = gab].

4 A Powers-of-2 Construction for Quoting Substrings

We now provide our main construction for quoting substrings in a text document. It achieves the
best time/space efficiency trade-off to date, while satisfying our strong notions of unforgeability
and context hiding. We first describe it in detail and then provide an example of how it works. We
will have two different types of signatures called Type I and Type II, where a Type I signature can
be quoted down to another Type I or Type II signature. A Type II signature cannot be quoted any
further, but will be a shorter signature. The quoting algorithm will allow us to quote anything that
is a substring of the original message. We point out that the Type I, II signatures of this system
conform to the general framework given in Section 2. In particular, we can view a message M as a
pair (t,m) ∈ {0, 1}, {0, 1}∗. The bit t will identify the message as being Type I or Type II (assume
t = 1 signifies Type I signatures) and m will be the quoted substring. The predicate

P (M = (t,m),M ′ = (t′,m′)) =

{
1 if t = 1 and m′ is a substring of m;
0 otherwise.

The bit t′ will indicate whether the new message is Type I or II (i.e., whether the system can
quote further.) We note that this description allows an attacker to distinguish between any Type I
signature from any Type II signature since the “type bit” of the messages will be different and thus
they will technically be two different messages even if the substring components are equal. For this
reason we will only need to prove context hiding between messages of Type I or Type II, but not
across types.

For presentational clarity, we will split the description of our quoting algorithm into two quoting
algorithms for quoting to Type I and to Type II signatures; likewise we will split the description of
our verification algorithm into two separate verification algorithms, one for each type of signature.
The type of signature used or created (i.e., bit t) will be implicit in the description.

Notation: We use notation mi,j to denote the substring of m of length j starting at position i.

Intuition: We begin by giving some intuition. We design Type I signatures that allow re-quoting
and Type II signatures that cannot be further quoted, but are ultra-short. For an original message of
length n, our signature structure should be able to accommodate starting at any position 1 ≤ i ≤ n
and quoting any length 1 ≤ ` ≤ (n− i+ 1) substring.5

5Technically, our predicate P (m,m′) will take the quote from the first occurrence of substring m′ in m, but for
the moment imagine that we allowed quoting from anywhere in m.
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Figure 1: This diagram represents the elements of an original/Type I signature for length ` = 14.
We view each dot as the starting point of an arrow and establish simple rules for where these arrows
end. To quote a message, follow the arrows over the quote positions. Intuitively, each red/blue
arrow makes a power-of-two jump corresponding to the row it is in and allows one to include the
message positions it crosses in the quote (i.e., an arrow from column ic to i′c includes positions ic
to i′c − 1 in the quote). Each red (resp., blue) dot represents a start (resp., one) arrow starting
in (ic, ir) and ending in (ic + 2ir , ir − 1). These arrows correspond to the element pairs Si,j , S̃i,j
(resp., Ai,j , Ãi,j) in our construction. Each black dot represents a zero arrow starting in (ic, ir) and
ending in (ic, ir − 1) and corresponds to the element pair Di,j , D̃i,j in our construction. To form
a very short Type II signature for the substring m3,6 (the substring of m beginning at position 3
of length 6), combine the pairs associated with S3,2, A7,1 and D9,0 as illustrated above. Here, we
draw these arrows. A Type II quote always starts with a start arrow (red dot) and then contains
one or zero arrows (blue or black dots, respectively) according to the binary representation of the
length of the quote (e.g., for 6 = 1102 = 22 + 21, first a (red) start arrow from row 2, then a (blue)
one arrow from row 1, and finally a (black) zero arrow in row 0.) To form a Type I signature on
the substring m3,6, include all dots in the gray box. There are a few black dots at location 15 for
termination purposes.

To (roughly) see how this works for a message of length n, visualize n columns with (blg nc+ 1)
rows as in Figure 1, where the (1, 0) entry is in the bottom-left. The columns correspond to the
characters of the message, so if the message is “abcdefg” then there are seven columns, one under
each letter. The rows correspond to the numbers lg n down to 0. Each location in the matrix
(except along row 0) contains one or more out-going arrows. For clarity, we represent these arrows
in Figure 1 by colored dots at their point of origination. We’ll establish rules for when these arrows
exist and where each arrow ends shortly.

A Type II quote will trace a lg n path on these arrows through this matrix starting in a row
(with outgoing arrows) of the column that begins the quote and ending in the lowest row of the
first column after the quote ends. The starting row corresponds to the largest power of two less
than or equal to the length of the desired quote. E.g., to quote “bcdef”, start in row 2 under ‘b’
(because 22 = 4 is the largest power of two less than 5) and end in row 0 of ‘g’.

The main technical challenge is to make this a lgn-length path rather than a n-length path.
To do this, the key insight is to view the length of any possible quote as the sum of powers of two
and to allow arrows that correspond to covering the quote in pieces of size corresponding to one
operand of the sum at a time. Each location (ic, ir) in the matrix (except row 0) contains:
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• a “start” arrow: an arrow that goes down one row and over 2ir columns ending in (ic +
2ir , ir − 1), if this end point is in the matrix. This adds all characters from position ic to
ic + 2ir − 1 to the quoted substring; effectively adding the largest power-of-two-length prefix
of the remaining quote characters. This arrow indicates that the quote starts here. These are
represented as Si,j , S̃i,j pairs in our construction.

• a “one” arrow: same as start arrows; used to include characters after the initial prefix. These
are represented as Ai,j , Ãi,j pairs in our construction.

• a “zero” arrow: an arrow that goes straight down one row ending in (ic, ir − 1). This does
not add any characters to the quoted substring. These are represented as Di,j , D̃i, j pairs in
our construction.

A Type II quote always starts with a start arrow and then contains one and zero arrows
according to the binary representation of the length of the quote. In our example of original
message “abcdefg”, we have 7 columns and 3 rows. We will logically divide our desired substring
of “bcdef” (length 5 = 22 + 20 = 4 + 1) into its powers-of-two components “bcde”(length 4 = 22)
and “f” (length 1 = 20). Moving according to our starting position ’b’ and length 5 = 1012, we
start in row 2 of column ‘b’, take the start arrow (S2,2) to row 2 of column ‘f’, take the zero arrow
(D6,1) to row 1 of column ‘f’, and then take the one arrow (A6,0) to row 0 of column ‘g’. (Recall
that we land one past the last included character.)

For a quote of length `, the elements on this O(lg `) path of arrows form a very short Type II
signature. For Type I signatures, we include the elements corresponding to all arrows that make
connections within the columns corresponding to the quote. This allows quoting of quotes with a
signature size of O(` lg `).

It is essential for security that the signature structure and data algorithm enforce that the
quoting algorithm be used and not allow an attacker to “splice” together a quote from different
parts of the signature. We realize this by adding in random “chaining” variables. In order to
cancel these out and get a well formed Type II quote a user must intuitively follow the prescribed
procedure.

The Construction: We now describe our algorithms. While Sign is simply a special case of the
SignDerive algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The algorithm selects a bilinear group G of prime order p > 2λ with generator g.
Let L be the maximum message length supported and denote n = blg(L)c. Let H : {0, 1}∗ →
G and Hs : {0, 1}∗ → G be the description of two hash functions that we model as random
oracles. Choose random z0, . . . , zn−1, α ∈ Zp. The secret key is (z0, . . . , zn−1, α) and the
public key is:

PK = (H,Hs, g, g
z0 , . . . , gzn−1 , e(g, g)α).

Sign(sk ,M = (t,m) ∈ {0, 1} × Σ`≤L) : If t = 1, signatures produced by this algorithm are Type I
as described below. If t = 0, the Type II signature can be obtained by running this algorithm
and then running the Quote-Type II algorithm below to obtain a quote on the entire message.
The message space is treated as ` ≤ L symbols from alphabet Σ.

Recall: we use notation mi,j to denote the substring of m of length j starting at position i.

For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c, choose random values xi,j ∈ Zp. These will
serve as our random “chaining” variables, and they should all “cancel” each other out in our
short Type II signatures. By definition, set xi,−1 := 0 for all i = 1 to `+ 1.
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A signature is comprised of the following values for i = 1 to ` and j = 0 to blg(`− i+ 1)c, for
randomly chosen values ri,j ∈ Zp:

Si,j = gαg−xi+2j ,j−1Hs(mi,2j )
ri,j , S̃i,j = gri,j [start arrow: start and include power j]

Together with the following values for i = 3 to ` and j = 0 to min(blg(i−1)−1c, blg(`−i+1)c),
for randomly chosen values r′i,j ∈ Zp:

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j , Ãi,j = gr

′
i,j [one arrow: include power j and decrease j]

Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i−1)−1c, for randomly
chosen values r′′i,j ∈ Zp:

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j [zero arrow: decrease j]

We provide an example of how to form Type II signatures from this construction shortly. To
see why our Ai,j and Di,j values start at i = 3, note that Type II quotes at position i of
length 20 = 1 symbol include only the Si,0 value, where the x·,0−1 term is 0 by definition.
Type II quotes at position i of length 21 = 2 symbols include the Si,1 value plus an additional
Di+2,0 term to cancel out the xi+2,0 value (leaving only xi+2,−1 = 0.) Quotes at position i of
length 21 + 1 = 3 symbols include the Si,1 value plus an additional Ai+2,0 term to cancel out
the xi+2,0 value (leaving only xi+3,−1 = 0.) Since we index strings from position 1, the first
position to include an Ai,j or Di,j value is i+ 2 = 3.

SignDerive(pk , σ,M = (t,m),M ′ = (t′,m′)) : If P (M,M ′) = 0, output ⊥. Otherwise, if t′ = 1,
output Quote-Type I(PK, σ,m,m′); if t′ = 0, output Quote-Type II(PK, σ,m,m′), where
these algorithms are defined immediately below.

Quote-Type I(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces another
Type I signature that maintains the ability to be quoted again. Intuitively, this operation
will simply find a substring m′ in m, keep only the components associated with this substring
and re-randomize them all (both the xi,j and ri,j terms in every component.)

Ifm′ is not a substring ofm, then output⊥. Otherwise, let `′ = |m′|. Determine the first index
k at which substring m′ occurs in m. Parse σ as a collection of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j

values, exactly as would come from Sign with ` = |m|.

First, we choose re-randomization values (to re-randomize the xi,j terms of σ.) For i = 2 to
`′+ 1 and j = 0 to blg(i− 1)− 1c, choose random values yi,j ∈ Zp. Set yi,−1 := 0 for all i = 1
to `′ + 1. Later, we will choose ti,j values to re-randomize the ri,j terms of σ.

The quote signature σ′ is comprised of the following values:

For i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c, for randomly chosen ti,j ∈ Zp:

S′i,j = Si+k−1,j · g−yi+2j ,j−1Hs(mi+k−1,2j )
ti,j , S̃′i,j = ˜Si+k−1,j · gti,j [start arrow]

Together with the following values for i = 3 to `′ and j = 0 to min(blg(i−1)−1c, blg(`′−i+1)c),
for randomly chosen t′i,j ∈ Zp:

A′i,j = Ai+k−1,j · gyi,jg−yi+2j ,j−1H(mi+k−1,2j )
t′i,j , Ã′i,j = ˜Ai+k−1,j · gt

′
i,j [one arrow]
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Together with the following values for i = 3 to `′+1 and j = 0 to blg(i−1)−1c, for randomly
chosen t′′i,j ∈ Zp:

D′i,j = Di+k−1,j · gyi,jg−yi,j−1gzjt
′′
i,j , D̃′i,j = D̃i+k−1,j · gt

′′
i,j [zero arrow]

Quote-Type II(pk , σ,m,m′) : The quote algorithm takes a Type I signature and produces a
Type II signature. As before, if P (m,m′) 6= 1, then output ⊥.

A quote is computed from one start value and logarithmically many subsequent pieces depend-
ing on the bits of |m′|. All signature pieces must be re-randomized to prevent content-hiding
attacks.

Consider the length `′ written as a binary string. Let β′ be the largest index of `′ = |m′|
that is set to 1, where we start counting with zero as the least significant bit. That is, set
β′ = blg(`′)c. Select random values v, vβ′−1, . . . , v0 ∈ Zp. Set the start position as B := Sk,β′

and
k′ := k + 2β

′
. Then, from j = β′ − 1 down to 0, proceed as follows:

• If the jth bit of ` is 1, set B := B ·Ak′,j ·H(mk′,2j )vj , set k′ := k′+2j , and Zj := Ãk′,j ·gvj ;
• If the jth bit of ` is 0, set B := B ·Dk′,j · gzjvj and Zj := D̃k′,j · gvj .

To end, re-randomize as B := B ·Hs(mk,2β )v and S̃ := S̃k,β · gv; output the quote as

σ′ = (B, S̃, Zβ−1, . . . , Z0)

Verify(pk ,M = (t,m), σ) : If t = 1, output Verify-Type I(pk ,m, σ). Otherwise, output
Verify-Type II(pk ,m, σ), where these algorithms are defined immediately below.

Verify–Type I(pk ,m, σ) : Parse σ as the set of Si,j , S̃i,j , Ai,j , Ãi,j , Di,j , D̃i,j . Let ` = |m|.
Let Xi,j denote e(g, g)xi,j . We can compute these values as follows. The value Xi,−1 = 1,
since for all i = 1 to ` + 1, xi,−1 = 0. For i = 3 to ` + 1 and j = 0 to blg(i − 1) − 1c, we
compute Xi,j in the following manner:

1. Let I = i− 2j+1 and J = j + 1.

2. Next, compute

Xi,j =
(
e(g, g)α · e(Hs(mI,2J ), S̃I,J)

)
/ e(SI,J , g)

=
(
e(g, g)α · e(Hs(mI,2J ), grI,J )

)
/ e(gαg−xI+2J ,J−1Hs(mI,2J )rI,J , g)

= e(g, g)xI+2J ,J−1 = e(g, g)xi,j

The verification accepts if and only if all of the following checks hold:

• for i = 3 to ` and j = 0 to min(blg(i− 1)− 1c, blg(`− i+ 1)c),

e(Ai,j , g) = Xi,j/Xi+2j ,j−1 · e(H(mi,2j ), Ãi,j)

• and for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c,

e(Di,j , g) = Xi,j/Xi,j−1 · e(gzj , D̃i,j)
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Verify-Type II(pk ,m, σ) : We give the verification algorithm for Type II signatures.

Parse σ as (B, S̃, Zβ−1, . . . , Z0). Let ` = |m| and β be the index of the highest bit of ` that
is set to 1. If σ does not include exactly β Zi values, reject. Set C := 1 and k = 1. From
j = β − 1 down to 0, proceed as follows:

• If the jth bit of ` is 1, set C := C · e(H(mk,2j ), Zj) and k := k + 2j ;
• If the jth bit of ` is 0, set C := C · e(gzj , Zj).

Accept if and only if e(B, g) = e(g, g)α · e(Hs(m1,2β ), S̃) · C.

Theorem 4.1 (Security under CDH) If the CDH assumption holds in G, then the above quotable
signature scheme is selectively quote unforgeable and context-hiding in the random oracle model.

Proof of the above theorem appears in Appendix C.

Efficiency Discussion This construction presents the best known balance between time and
space complexity. The quotable (Type I) signatures require O(` lg `) elements in G for a message
of length `. The group elements in both types of signatures are elements of G, and not the target
group GT . Typically, elements of the base group are significantly smaller than elements of the
target group. Computing quotes requires O(` lg `) modular exponentations for a quote of length `
for re-randomization. Similarly, verification also requires O(` lg `) pairings.

The non-quotable (Type II) signatures require only O(lg `) elements in G. Computing quotes
is very efficient as it requires only O(lg `) modular exponentiations for a quote of length ` for
re-randomization. Similarly, verification requires only O(lg `) pairings.

Removing the Random Oracle and Obtaining Full Security There are a few different
options for adapting the above construction to the standard model. We observe that our signa-
tures share many properties with the private keys of hierarchical identity-based encryption (HIBE)
schemes. To remove the random oracle, while remaining under a selective definition, we can use the
Boneh-Boyen techniques [5] to instantiate H(m) = gmh, where h ∈ G is added to the public key
and there is a method for mapping the message space to Zp. Similarly, we can remove the random
oracle by instantiating H with the Waters hash [45] and applying his proof techniques. This can
be viewed as a full security construction with a reduction to the concrete security parameter by
roughly a factor of (1/O(q))lg `, where q is the number of signing queries and ` is the length of
the quote. A direction for achieving full security is to use the recent “Dual System” techniques
introduced by Waters [46]. One obstacle in adapting the Waters system is that it contains “tags”
in the private key structure, which would likely make our re-randomization step difficult for our
context hiding property. Lewko and Waters [32] recently removed the tags, which may make their
techniques and construction more suitable for our application. One drawback in using their HIBE
techniques to construct signatures is that even the signatures resulting from their construction
require (slightly non-standard) decisional complexity assumptions. Thus, it is unknown how to
balance time/space efficiently while achieving full security in the standard model from a simple
computational assumption such as CDH.

5 A Construction for Subset Predicates based on ABE

In this section we briefly point out a surprising connection to Attribute Based Encryption (ABE).
We show that existing constructions for Ciphertext-Policy ABE [3, 31] naturally lead to context
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hiding quotable signatures for arbitrary message subsets (as opposed to the substring predicate
considered in the previous section). In particular, a message will be a sets of strings (strings can
be used to encode elements for different types of sets), and the predicate P (~m,m′) = 1 iff m′ ⊆ mi

for some mi ∈ ~m. Observer that this disallows “collusions” between two different signatures where
m′ is a subset of the union of multiple messages, but not any single one. (Otherwise, this would be
trivially realizable from standard signatures schemes.)

Our main tool is an observation of Naor that shows that secret keys in Identity Based Encryp-
tion [7] can function as signatures. Recall that in (ciphertext-policy) attribute based encryption an
authority provides secret keys to a user based on the user’s list of attributes. The main challenge
in building such systems is preventing collusion attacks: two (or more) users with distinct sets of
attributes should be unable to create a secret key for a combination of their attributes.

If we treat words in a message m ∈ Σ∗ as attributes, that is, we treat a message m =
(a1, . . . , a`) ∈ Σ` as a sequence of attributes a1, . . . , a`, then we can define the signature on m
as a set of ` secret keys corresponding to the ` attributes in the message. Verifying the signa-
ture can be done by trying to decrypt some test ciphertext using the secret keys in the signature.
Now, given a signature on m we derive a signature on a subset of the words in m by simply re-
moving the secret keys corresponding to words not in the subset. For context hiding we need to
re-randomize the resulting set of secret keys. (Not all CP-ABE schemes may support the removal
and re-randomization of secret keys in this manner, but the schemes of [3, 31] do.)

Since ABE security prevents collusion attacks, it is straight forward to show that these signatures
are unforgeable in the sense of Definition 2.3. Moreover, due to the re-randomization of secret keys,
a derived signature is sampled from the same distribution as a fresh signature and is independent
from the given signature. This implies strong context hiding in sense of Definition 2.4.

This unexpected connection between quoting and ABE leads to the following theorem, stated
informally.

Theorem 5.1 (informal) The Ciphertext-Policy ABE systems in [3, 31] translate using Naor’s
transformation into a signature scheme supporting quoting for arbitrary subsets of a message. Se-
curity of the CP-ABE implies unforgeability and context hiding.

6 An Arithmetic Example: Computing Weighted Averages

So far we only constructed schemes for univariate predicates P . We now give an example where
one computes on multiple signed messages. Let p be a prime, n a positive integer, and T a set of
tags. The message space M consists of pairs:

M := T × Fnp

Now, define the predicate P as follows: P (ε,m) = 1 for all m ∈M and6

P

( (
(t1,v1), . . . , (tk,vk)

)
, (t,v)

)
= 1 ⇐⇒

{
t = t1 = · · · = tk, and
v ∈ span(v1, . . . ,vk)

Thus, given signatures on vectors v1, . . . ,vk grouped together by the tag t, anyone can create a
signature on a linear combination of these vectors. This can be done iteratively so that given signed
linear combinations, new signed linear combinations can be created. Unforgeability means that if
the adversary obtains signatures on vectors v1, . . . ,vk for particular tag t ∈ T then he cannot
create a signature on a vector outside the linear span of v1, . . . ,vk.

6Recall, the signature on ε is the output the KeyGen algorithm.
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Signature schemes for this predicate P are presented in [10, 9, 8] while schemes over Z (rather
than Fp) are presented in [23]. These schemes were originally designed to secure network coding
where context hiding is not needed since there are no privacy requirements for the sender (in fact,
the sender is explicitly transmitting all his data to the recipient). The question then is how to
construct a system for predicate P above that is both unforgeable and context hiding. Fortunately,
we do not need to look very far. The linearly homomorphic signature schemes in [10] can be shown
to be context hiding. We state this in the following theorem.

Theorem 6.1 If the CDH assumption holds in group G, then the signature scheme NCS1 from [10]
is unforgeable and context-hiding in the random oracle model, assuming tags are generated inde-
pendently at random by the unforgeability challenger when respoding to Sign queries.

Unforgeability is Theorem 6 in [10], which holds only when tags ti ∈ T are generated inde-
pendently at random by the signer. While context hiding has not been considered before for this
scheme, it is not difficult to show that the scheme is context hiding. The scheme is unique in the
sense that every vector v has a unique valid signature.7 It is easy to show that any homomorphic
unique signature must be context hiding and hence NCS1 is context hiding.

Viewed in this way, the scheme NCS1 gives the ability to carry out authenticated addition on
signed data. Consider a server that stores signed data samples s1, . . . , sn in Fp. The signature on
sample si is actually a signature on the vector (si|ei) ∈ Fn+1

p , where ei is the ith unit vector in
Fnp . The server stores (i, si) and a signature on (si|ei). (The vector ei need not be stored with the
data and can be reconstructed from i when needed.) Using SignDerive, the server can compute
a signature σ on the sum (

∑n
i=1 si, 1, . . . , 1). Since the schemes are context hiding, the server can

publish the sum
∑n

i=1 si and the signature σ on the sum and (provably) reveal no other information
on the original data. The “augmentation” (1, . . . , 1) proves that the published message really is the
claimed sum of the original samples (the tag t prevents mix-and-match attacks between different
data sets). We can similarly publish a sum of any required subset.

More generally, the server can publish an authenticated inner product of the samples s :=
(s1, . . . , sn) with any public vector c ∈ Fnp without leaking additional information about the samples.
This is needed, for example, to publish a weighted average of the original data set. Similarly, recall
that the Fourier transform of the data (s1, . . . , sn) is a specific linear operator (represented by a
specific n× n matrix) applied to this vector. Therefore, we can publish signed Fourier coefficients
of the data. If we only publish a subset of the Fourier coefficients then, by context hiding, we are
guaranteed that no other information about (s1, . . . , sn) is revealed.

7 Conclusion and Open Directions

We presented a new vision for computing on authentication data via the notion of slightly homomor-
phic signatures. We formulated strong notions of unforgeability and privacy that are not captured
by prior definitions. Finally, we provide generic constructions for all univariate and closed pred-
icates, and specific efficient constructions for a broad class of natural predicates such as quoting,
weighted sums, averages, and Fourier transforms.

While these predicates are an important step, there are a wealth of desirable predicates P
that one could imagine supporting complex operations on signed messages, such as speadsheet

7Recall that in unique signatures [33] in addition to the regular unforgeability requirement there is an additional
uniqueness property: for any honestly-generated public key pk and any message m in the message space, there do
not exist values σ1, σ2 such that σ1 6= σ2 and yet Verify(pk ,m, σ1) = Verify(pk ,m, σ2) = 1.
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operations, graph algorithms and image processing. Many of these directions appear to offer deep
problems requiring new techniques for efficient realization.
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A A Computational Definition of Context Hiding

Let (KeyGen,SignDerive,Verify) be a P -homomorphic signature scheme for predicate P and
message M. Consider the following game to model context hiding:

Setup: The challenger runs the algorithm (pk , sk) ← KeyGen(1λ) to obtain the public key pk
and the secret key sk , and gives pk to the adversary.

Query Phase 1: Proceeding adaptively, the adversary may query any of the three oracles from
the unforgeability game:

• Sign(m ∈M): (same as in the unforgeability game)

• SignDerive(i ∈ Z,m′): (same as in the unforgeability game)

• Reveal(i ∈ Z): (same as in the unforgeability game)

Challenge: At some point, the adversary issues a challenge (m,m′) where P (m,m′) = 1. The
challenger computes the following three values: σ ← Sign(sk ,m), σ0 ← Sign(sk ,m′) and
σ1 ← SignDerive(pk , σ,m,m′). The challenger then picks a random b ∈ {0, 1} and returns
(σ, σb) to the adversary.

Query Phase 2: Proceeding adaptively, the adversary may query the oracles from Phase 1.

Output: Eventually, the adversary will output a bit b′ and is said to win if b = b′.

We define AdvCH
A to be the probability that adversary A wins in the above game minus 1

2 .

Definition A.1 (Context Hiding) For a predicate P and message space M, a P -homomorphic
signature scheme (KeyGen,Sign,SignDerive, Verify) is context hiding if for all probabilistic
polynomial time adversaries A, AdvCH

A is negligible in λ.

A.1 Relation to Strong Context Hiding

Lemma A.2 A homomorphic signature scheme that is strongly context hiding is context hiding.

Proof. (Sketch) Let Π = (KeyGen,SignDerive,Verify) be a homomorphic signature scheme
and let A be an adversary that has advantage AdvCHA (Π) = p(λ) in the context-hiding game. The
advantage probability forA is taken over the random coins of the key generation, random coins of the
Sign and SignDerive operations used in the first query phase, the random coins used by algorithm
A, and the random coins used by the rest of the experiment. Therefore by an averaging argument,
there must exist some particular key pair (PK,SK) ← KeyGen(1λ; z1), some particular random
tape zq for the Sign and SignDerive operations used in the first query phase, some particular
random coins zA for A, and some particular message pair (m,m′) output by A over which the
probability of A winning the context-hiding game in this case is at least p(λ). Let the values of the
random tapes be given as non-uniform advice.
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We show how this information can be used to construct a (non-uniform) adversary A′ that
distinguishes {(SK, σ,Sign(SK,m′)} from {(SK, σ,SignDerive(PK, σ,m,m′)} with probability
p(λ) for the triple ((PK,SK),m,m′). Thus, if Π is strongly context hiding, then p(λ) must be
exponentially small, and so Π must also be context-hiding.

The adversary A′ works as follows: On input the challenge tuple (SK, σ, σ′), A′ begins to run
the context-hiding experiment for A(PK; zA). A′ answers the queries that A asks by using SK
and the random tape zq to run Sign and SignDerive. When A outputs a challenge message pair
(m,m′) (which must occur by construction), then A′ answers with (σ, σ′). A′ answers the second-
phase queries of A using SK and fresh random coins. Finally, when A outputs b′, A′ echoes this
answer as output and halts.

First observe that A′ performs a perfect simulation of the context-hiding game. When the input
pair (σ, σ′) corresponds to (Sign(SK,m),Sign(SK,m′)), then A′ simulates the context-hiding
game for b = 0. In the other case, A′ simulates the context-hiding game for b = 1. Therefore, A′

distinguishes
{(SK,Sign(SK,m),Sign(SK,m′))}SK,m,m′
{(SK,Sign(SK,m),SignDerive(PK, σ,m,m′))}SK,m,m′

with probability p(λ). �

A.2 Simplified Unforgeability Under Strong Context Hiding

We now show how the strong context hiding property can help simplify the security argument for
unforgeability. In particular, we introduce a weaker notion of unforgeability in which the adversary
only makes calls to the Sign oracle and immediately receives a signature.

— Game NHU(Π,A, λ, P ): This game is the same as the Unforg(Π,A, λ, P ) game with the
exception that only the following query is allowed:

— Sign(m ∈M): the oracle computes σ ← Sign(SK,m), adds m to Q and returns σ.

Note, the only difference between game NHU and the standard unforgeability game for a signature
scheme is that in this game, the adversary only wins if it produces a forgery on a signature m∗

such that for all m ∈ Q, P (m,m∗) = 0, whereas in the standard unforgeability game, the adversary
wins if it produces a signature on any message that is not in Q.

Definition A.3 A quoteable signature scheme Π is NHU-unforgeable if for all efficient adversaries
A, it holds that Pr[NHU(Π,A, λ, P ) = 1] < negl(λ) for some negligible function λ.

Lemma A.4 A signature scheme that is NHU-unforgeable and strongly context hiding is Unforg-
unforgeable.

Proof. Our plan is to present a series of hybrid experiments that are meant to simplify the quotable
unforgeability game.

Hybrid H1(Π,A, λ, P ) Consider the first hybrid experiment H1 which is the same as the un-
forgeability game Unforg(Π,A, λ, P ), with the exception that all Sign and SignDerive queries are
lazily evaluated. That is, when A makes a query, the experiment responds in the following way:

— Sign(m): generate a handle i and record information (i, ?,m, ε) in T and return i
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— SignDerive(i,m′): retrieve (i, z,m, ·) from T , return ⊥ if it does not exist or if P (m,m′) 6= 1,
generate a new handle i′, record (i′, ?,m′, i) in T , and return i′

— Reveal(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← SignDerive(PK, z1,m1,m). Replace the entry with
(i, σ,m, i1), and return σ.

Claim A.5 Pr[H1(Π,A, λ, P ) = 1] = Pr[Unforg(Π,A, λ, P ) = 1].

This claim follows by inspection. For any query that is eventually revealed, the same operations
are performed in both H1 and the original game. For any query that is never revealed, no operation
in H1 is performed; but this does not affect the view of the adversary, and therefore does not affect
the output of the adversary.

Hybrid H2,i(Π,A, λ, P ) The second hybrid is the same as H1 except that the first i queries to
Reveal are answered using Reveal2 described below, and the remaining queries are answered as per
H1: (The only difference is that Sign(SK,m1) is used in place of SignDerive(PK, z1,m1,m) in
the second to last sentence.)

— Reveal2(i): retrieve (i, z,m, i1) from T (returning ⊥ if it does not exist). If z 6=?, then return
z. Otherwise, if i1 = ε, then compute σ ← Sign(SK,m), replace the entry (i, z,m, ε) with
(i, σ,m, ε), and return σ. Finally, if i1 6= ε, then recursively call z1 ← Reveal(i1), obtain
(i1, ·,m1, ·) from T and compute σ ← Sign(SK,m1). Replace the entry with (i, σ,m, i1), and
return σ.

Claim A.6 H2,0(Π,A, λ, P ) is identically distributed to H1(Π,A, λ, P ).

By inspection.

Claim A.7 H2,i(Π,A, λ, P ) is identically distributed to H2,i−1(Π,A, λ, P ) for i ≥ 1.

This claim follows via the strong context-hiding property of the signature scheme because this
property guarantees Sign(SK,m′) and SignDerive(PK, σ,m,m′) are statistically close.

Suppose that A makes ` = poly(λ) queries. Observe that H2,`(Π,A, λ, P ) only evaluates Sign,
and only does so on messages that are immediately returned to the adversary. Thus, H2,` is
syntactically equivalent to the NHU game. Since the H2,` game enablesA to produce a forgery with
the same probability as Unforg(Π,A, λ, P ), we have that Unforg(Π,A, λ, P ) = NHU(Π,A, λ, P )
which completes the lemma. �

B Generic Constructions for Univariate Predicates

Let M be a finite message space. We say that a predicate P : M∗ ×M → {0, 1} is a simple
predicate if the following properties hold:

1. P is false whenever its left input is a tuple of length greater than 1,

2. P is a closed predicate (i.e., P is equal to its closure P ∗; see Section 2.1.)
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3. For all m ∈M, P (m,m) = 1.

In this section, we present and discuss generic approaches to computing on authenticated data
with respect to any simple predicate P . Note that the quoting of substrings or subsequences (i.e.,
redacting) are examples of simple predicates.

We begin with two inefficient constructions. The first takes a brute force approach that con-
structs long signatures that are easy to verify. The second takes an accumulator approach that
constructs shorter signatures at the cost of less efficient verification. We conclude by discussing the
limitations of a generic NIZK proof of knowledge approach.

B.1 A Brute Force Construction From Any Signature Scheme

Let (G,S, V ) be a signature scheme with a deterministic signing algorithm.8 One can construct a
P -homomorphic signature scheme for any simple predicate P as follows:

KeyGen(1λ) : The setup algorithm runs G(1λ)→ (pk , sk) and outputs this key pair.

Sign(sk ,m ∈M) : While Sign is simply a special case of the SignDerive algorithm, we will
explicitly provide both algorithms here for clarity purposes.

The signature σ is the tuple (S(sk ,m), U = {S(sk ,m′) | m′ ∈ P 0({m})}).

SignDerive(pk , σ,m,m′) : The derived signature is computed as follows. First check that P (m,m′) =
1. If not, then output ⊥. Otherwise, parse σ = (σ1, . . . , σk) where σi corresponds to message
mi. If for any i, V (pk ,mi, σi) = 0, then output ⊥. Otherwise, the signature is comprised
as the set containing σi for all mi such that P (m′,mi) = 1. Again, by default, let the first
sub-signature of the output be the signature on m′.

Verify(pk ,m, σ) : Parse σ = (σ1, . . . , σk). Output V (pk ,m, σ1).

Efficiency Discussion The efficiency of the above approach depends on the message space and
the predicate P . For instance, the brute force approach for signing a message of n characters, where
P (m,m′) outputs 1 if and only if m′ is a substring of m, will result in O(n2) sub-signatures (one
for each of the O(n2) substrings). If one wanted to “quote” subgraphs from a graph, this approach
is intractable, as a graph of n nodes will generate an exponential in n number of subgraphs.

Theorem B.1 (Security from Any Signature) If (G,S, V ) is a secure deterministic signature
scheme, then the above signature scheme is unforgeable and context-hiding.

Proof of the above theorem is rather straightforward. The context-hiding property follows from
the uniqueness of the signatures generated by the honest signing algorithms. The unforgeability
property follows from the fact that an adversary cannot obtain a signature on any message not
derivable from those she queried or one could use this signature to directly break the regular
unforgeability of the underlying signature scheme. The correctness property is actually the most
complex to verify: it requires the two restrictions on the predicate P made above.

8Given a signature scheme with a probabilistic signing algorithm, one can convert it to a scheme with a determin-
istic signing algorithm by: (1) including a pseudorandom function (PRF) seed as part of the secret key and (2) during
the signing algorithm, applying this PRF to the message and using the output as the randomness in the signature.
Given any signature scheme, one can also construct a PRF.
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B.2 An Accumulator-based Construction

Assumption B.2 (RSA [39]) Let k be the security parameter. Let a positive integer N be the
product of two random k-bit primes p, q. Let e be a randomly chosen positive integer less than and
relatively prime to φ(N) = (p − 1)(q − 1). Then no PPT algorithm given (N, e) and a random
y ∈ Z∗N as input can compute x such that xe ≡ y mod N with non-negligible probability.

Lemma B.3 (Shamir [41]) Given x, y ∈ Zn together with a, b ∈ Z such that xa = yb and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ Zn such that za = y.

Theorem B.4 (Prime Number Theorem) Define π(x) as the number of primes no larger than
x. For x > 1,

π(x) >
x

lg x
.

Consider the following RSA accumulator solution which supports short signatures, but the
computation required to derive a new signature is expensive. Let P be any univariate predicate
with the above restrictions.

We now describe the algorithms. While Sign is simply a special case of the SignDerive
algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1λ) : The setup algorithm chooses N as a 20λ-bit RSA modulus and a random value
a ∈ ZN . It also chooses a hash function Hp that maps arbitrary strings to 2λ-bit prime
numbers, e.g., [28], which we treat as a random oracle.9 Output the public key pk = (Hp, N, a)
and keep as the secret key sk , the factorization of N .

Sign(sk ,m ∈M) : Let U = P 0({m}) = {m′ | m′ ∈ M and P (m,m′) = 1}. Compute and output
the signature as

σ := a
1/(

Q
ui∈U

Hp(ui)) mod N.

SignDerive(pk , σ,m,m′) : The derivation is computed as follows. First check that P (m,m′) = 1.
If not, then output ⊥. Otherwise, let U ′ = P 0({m′}). Compute and output the signature as

σ′ := σ
Q
ui∈U−U′

Hp(ui) mod N.

Thus, the signature is of the form a
1/

Q
ui∈U′

Hp(ui) mod N .

Verify(pk ,m, σ) : Accept if and only if a = σ
Q
ui∈U

Hp(ui) mod N where U = P 0(m).

Efficiency Discussion In the above scheme, signatures require only one element in Z∗N . However,
the cost of signing depends on P and the size of the message space. For example, computing an
`-symbol quote from an n-symbol message requires O(n(n−`)) evaluations of Hp() and O(n(n−`))
modular exponentiations. The prime search component of Hp will likely be the dominating factor.
Verification requires O(`2) evaluations of Hp() and O(`2) modular exponentiations, for an `-symbol
quote. Thus, this scheme optimizes on space, but may require significant computation.

Theorem B.5 (Security under RSA) If the RSA assumption holds, then the above signature
scheme is unforgeable and context-hiding in the random oracle model.

We provide a proof of above theorem by showing the following lemmas.
9We choose our modulus and hash output lengths to obtain λ-bit security based on the recent estimates of [21].
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Lemma B.6 (Context-Hiding) The homomorphic signature scheme from §B.2 is strongly context-
hiding.

Proof. This property is derived from the fact that a signature on any given message is deterministic.
Let the public key PK be (Hp, N, a) and challenge be any m,m′ where P (m,m′) = 1. Let U =
P 0(m) and U ′ = P 0(m′). Observe that

Sign(sk ,m) = σ = a1/
Q
u∈U Hp(u) mod N

Sign(sk ,m′) = σ0 = a1/
Q
u′∈U′ Hp(u

′) mod N

SignDerive(pk , (σ,m),m′) = σ
Q
u∈U−U′ Hp(u) mod N

=
[
a1/

Q
u∈U Hp(u)

]Q
u∈U−U′ Hp(u)

mod N

= a1/
Q
u′∈U′ Hp(u

′) mod N

= σ0

Because Sign(sk ,m′) and SignDerive(pk , (σ,m),m′) are identical, for any adversary A, the prob-
ability that A distinguishes the two is exactly 1/2, and so the advantage in the strong context
hiding game is 0. �

Lemma B.7 (Unforgeability) If the RSA assumption holds, then the Section B.2 homomorphic
signature scheme is unforgeable in the Unforg game in the random oracle model.

Proof. Our reduction only works on certain types of RSA challenges, as in [28]. In particular, this
reduction only attempts to solve RSA challenges (N, e∗, y) where e∗ is an odd prime. Fortunately,
good challenges will occur with non-negligible probability. We know that e∗ is less than and
relatively prime to φ(N) < N , which implies it cannot be 2. We also know, by Theorem B.4, that
the number of primes that are less than N is at least N

lgN . Thus, a loose bound on the probability
of e∗ being a prime is ≥ ( N

lgN )/N = 1
lgN = 1

20λ .
Now, we describe the reduction. Our proof first applies Lemma A.4, which allows us to only

consider adversaries A that ask queries to Sign oracle in the NHU game. Moreover, suppose
adversary A queries the random oracle Hp on at most s unique inputs. Without loss of generality,
we will assume that all queries to this deterministic oracle are unique and that whenever Sign is
called on message M , then Hp is automatically called with all unique substrings of M . Suppose an
adversary A can produce a forgery with probability ε in the NHU game; then we can construct
an adversary B that breaks the RSA assumption (with odd prime e∗) with probability ε/s minus a
negligible amount as follows.

On input an RSA challenge (N, e∗, y), B proceeds as follows:

Setup B chooses 2λ-bit distinct prime numbers e1, e2, . . . , es−1 at random, where all ei 6= e∗.
Denote this set of primes as E. Next, B makes a random guess of i∗ ∈ [1, s] and saves this value
for later. Then it sets

a := y
Q
ei∈E

ei .

Finally, B give the public key PK = (N, a) to A and will answer its queries to random oracle
Hp interactively as described below.
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Queries Proceeding adaptively, B answers the oracle and sign queries made by A as follows:

1. Hp(x) : When A queries the random oracle for the jth time, B responds with e∗ if j = i∗, with
ej if j < i∗ and ej−1 otherwise. Recall that we stipulated that each call to Hp was unique.
Denote x∗ as the input where Hp(x∗) = e∗.

2. Sign(M): Let U = P 0(M). If x∗ ∈ U , then B aborts the simulation. Otherwise, B calls
Hp on all elements of U not previously queried to Hp. Let primes(U) denote the set of
primes derived by calling Hp on the strings of U . Then, it computes the signature as σ :=
y

Q
ei∈(E−primes(U)) ei mod N and returns (M,σ).

Response Eventually, A outputs a valid message-signature pair (M,σ), where M is not a deriva-
tive of an element returned by Sign. If M was not queried to Hp or if M 6= x∗, then B aborts the
simulation. Otherwise, let U = P 0(x∗)− {x∗} and primes(U) denote the set of primes derived by
calling Hp on the strings of U . It holds that a1/

Q
ei∈primes(U) ei = y

Q
ei∈E−primes(U) ei = σe

∗
mod N .

Since y, σ ∈ ZN and gcd(e∗,
∏
ei∈E−primes(U) ei) = 1 (recall, they are all distinct primes), then B

can apply the efficient algorithm from Lemma B.3 to obtain a value z ∈ ZN such that ze
∗

= y
mod N . B outputs z as the solution to the RSA challenge.

Analysis We now argue that any successful adversary A against our scheme will have success
in the game presented by B. To do this, we first define a sequence of games, where the first
game models the real security game and the final game is exactly the view of the adversary when
interacting with B. We then show via a series of claims that if A is successful against Game j, then
it will also be successful against Game j + 1.

Game 1: The same as Game NHU, with the exception that at the beginning of the game B
guesses an index 1 ≤ i∗ ≤ s and e∗ is the response of the i∗th query to Hp.

Game 2: The same as Game 1, with the exception that A fails if any output of Hp is repeated.

Game 3: The same as Game 2, with the exception that A fails if it outputs a valid forgery (M,σ)
where M was not queried to Hp.

Game 4: The same as Game 3, with the exception that A fails if it outputs a valid forgery (M,σ)
where M 6= x∗.

Notice that Game 4 is exactly the view of the adversary when interacting with B. We complete
this argument by linking the probability of A’s success in these games via a series of claims. The
only non-negligible probability gap comes between Games 3 and 4, where there is a factor 1/s loss.

Define AdvA[Game x] as the advantage of adversary A in Game x.

Claim B.8 If Hp is a truly random function, then

AdvA[Game 1] = AdvA[Game NHU].

Proof. The value e∗ was chosen independently at random by the RSA challenger, just as Hp would
have done. �
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Claim B.9 If Hp is a truly random function, then

AdvA[Game 2] = AdvA[Game 1]− 2s2λ
22λ

.

Proof. Consider the probability of a repeat occurring when s 2λ-bit primes are chosen at random.
By Theorem B.4, we know that there are at least 22λ/(2λ) 2λ-bit primes. Thus, a repeat will occur
with probability <

∑s s/(22λ/2λ) = 2s2λ/22λ, which is negligible since s must be polynomial in λ.
�

Claim B.10 If Hp is a truly random function, then

AdvA[Game 3] = AdvA[Game 2]− 2λ
22λ

.

Proof. If M was never queried to Hp, then σ can only be a valid forgery if A guessed the 2λ-bit
prime that Hp would respond with on input M . By Theorem B.4, there are at least 22λ/2λ such
primes and thus the probability of A’s correct guess is at most 2λ/22λ, which is negligible. �

Claim B.11

AdvA[Game 4] =
AdvA[Game 3]

s
.

Proof. At this point in our series of games, we conclude that A forges on one of the s queries to Hp

and that 1 ≤ i∗ ≤ s was chosen at random. Thus, the probability that A forges on the i∗th query
is 1/s. �

This completes our proof. �

B.3 On the Limitations of Using a Generic NIZK Proof of Knowledge Approach

Another general approach that one might be tempted to try is to use an NIZK [4] proof of knowledge
system to generate a signature on m′ by proving that one knows a signature on some m such that
P (m,m′) holds. Unfortunately, this approach has the standard drawback of generality in that it
requires circuit-based (non black-box) reductions. In particular, the statements to prove in non-
interactive zero-knowledge require transforming the circuits of the signature scheme and the quoting
predicate into an instance of Hamiltonian circuit or 3-SAT. Even if one were to tailor an NIZK proof
of knowledge for these specific statements and therefore avoid costly reductions, another problem
emerges with re-quoting. When a quote is re-quoted, then the same process happens for both the
original signature scheme circuit, the predicate, and the proof system. Aside from the inefficiency,
using standard NIZKPoK systems would leak information about the size of the original message
and quotes, and therefore would not satisfy our context hiding property10.

C Security Proof for Powers-of-Two Construction

We now provide a proof of Theorem 4.1 in Section 4 by showing the following lemmas.
10Using non-interactive CS-proofs [34] in the random oracle model may reduce the size of the proof, but we do not

know how to avoid leaking the size of the theorem statement which also violates the context hiding property.

27



Lemma C.1 (Strong Context-Hiding) The Section 4 quotable signature scheme is strongly
context-hiding.

Proof. Given any two challenge messages M = (t,m),M ′ = (t′,m′) such that P (M,M ′) = 1, we
claim that whether t′ = 1 or 0, SignDerive(pk , σ,M ′,M) has an identical distribution to that of
Sign(sk ,M), which implies that the two distributions are statistically close.

{(SK, σ ← Sign(SK,M),Sign(SK,M ′)}SK,M,M ′

{(SK, σ ← Sign(SK,M),SignDerive(PK, σ,M,M ′)}SK,M,M ′

Let `, `′ denote |m| and |m′| respectively. Let Γ = min(blg(i−1)−1c, blg(`− i+1)c). Sign(SK,M)
is composed of the following values:

Si,j = gαg−xi+2j ,j−1Hs(mi,2j )
ri,j , S̃i,j = gri,j , for i = 1 to ` and j = 0 to blg(`− i+ 1)c

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j , Ãi,j = gr

′
i,j , for i = 3 to ` and j = 0 to Γ

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j , for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen ri,j , r
′
i,j , r

′′
i,j , xi,j ∈ Zp.

Case where t′ = 1 (Type I Signatures). Let Γ′ = min(blg(i − 1) − 1c, blg(`′ − i + 1)c). When
t′ = 1, Sign(SK,M ′) is composed of the following values:

S′′i,j = gαg
−x′

i+2j ,j−1Hs(m′i,2j )
vi,j , S̃′′i,j = gvi,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c

A′′i,j = gx
′
i,jg
−x′

i+2j ,j−1H(m′i,2j )
v′i,j , Ã′′i,j = gv

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′′i,j = gx
′
i,jg−x

′
i,j−1gzjv

′′
i,j , D̃′′i,j = gv

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen vi,j , v
′
i,j , v

′′
i,j , x

′
i,j ∈ Zp.

And SignDerive(PK, σ,M,M ′) is Quote-Type I(PK, σ,m,m′), which is comprised of the fol-
lowing:

S′i,j = gαg−wi+2j ,j−1Hs(m′i,2j )
rI,j+ti,j , S̃′i,j = grI,j+ti,j , for i = 1 to `′ and j = 0 to blg(`′ − i+ 1)c

A′i,j = gwi,jg−wi+2j ,j−1H(m′i,2j )
r′I,j+t

′
i,j , Ã′i,j = gr

′
I,j+t

′
i,j , for i = 3 to `′ and j = 0 to Γ′

D′i,j = gwi,jg−wi,j−1gzj(r
′′
I,j+t

′′
i,j), D̃′i,j = gr

′′
I,j+t

′′
i,j , for i = 3 to `′ + 1 and j = 0 to blg(i− 1)− 1c

for randomly chosen ti,j , t
′
i,j , t

′′
i,j , yi,j ∈ Zp, where m′ occurs at position k as a substring of m,

I = i+ k − 1 and wi,j = xI,j + yi,j .
Since all exponents have been independently re-randomized, one can see by inspection that

SignDerive(pk , σ,M ′,M) has identical distribution as that of Sign(sk ,M ′).

Case where t′ = 0 (Type II Signatures). Parse m′ = m′βm
′
β−1 . . .m

′
0 where m′j is of length 2j

or a null string where β = blg(`′)c. `′i denotes i-th bit of `′ when we start counting with zero as
the least significant bit. m′ occurs at position k of m. Sign(SK,M ′) = (B, S̃, Zβ−1, . . . , Z0) is the
following, for random u, ui ∈ Zp:

B = gα ·Hs(m′β)u
∏

j<β, `′j=1

H(m′j)
uj

∏
j′<β, `′

j′=0

gzj′uj′

S̃ = gu, Zj = guj
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Let each m′j start at position sj in m′. SignDerive(PK, σ,M,M ′) = Quote-Type II(PK, σ,m,m′)
is (B′, S̃′, Z ′β−1, . . . , Z

′
0) such that

B′ = gα ·Hs(m′β)rk,β+v
∏

j<β, `′j=1

H(m′j)
r′k+sj−1,j+vj

∏
j′<β, `′

j′=0

g
zj′ (r

′′
k+sj′−1,j′+vj′ )

S̃′ = grk,β+v, Z ′j = g
r′′k+sj−1,j+vj

for randomly chosen v, vj ∈ Zp. Since all exponents have been independently re-randomized,
one can see by inspection that SignDerive(PK, σ,M,M ′) has identical distribution as that of
Sign(sk ,M ′).

Thus, the our powers-of-2 construction is strongly context-hiding. �

Lemma C.2 (Unforgeability) If the CDH assumption holds in G, then the Section 4 quotable
signature scheme is selectively unforgeable in the Unforg game in the random oracle model.

Proof. (Sketch) We first apply Lemma A.4, which allows us to only consider adversaries A that
asks queries to Sign oracle in the simpler NHU game.

Suppose an adversary A can produce a forgery with probability ε in the selective NHU un-
forgeability game; then we can construct an adversary B that breaks the CDH assumption with
probability ε plus a negligible amount.

We are now ready to describe B which solves the CDH problem. On input the CDH challenge
(g, ga, gb), B begins to run A and proceeds as follows:

Selective Disclosure A first announces the message M∗ on which he will forge.

Setup Let L be the maximum size of any message and let n = blg(L)c. Let M∗ = (t∗,m∗) and
`∗ = |m∗| and let β be the highest bit of `∗ set to 1 (numbering the least significant bit as zero).
Set e(g, g)α := e(ga, gb), which implicitly sets the secret key α = ab.

For i = 0 to n− 1, choose a random vi ∈ Zp and set

gzi =

{
gbvi if the ith bit of `∗ is 1;
gvi otherwise.

Finally, B give the public key PK = (g, gz0 , . . . , gzn−1 , e(g, g)α) to A and will answer its queries
to random oracles H and Hs interactively as described below.

Random Oracle Queries Proceeding adaptively, Amay make any of the following queries which
B will answer as follows:

1. H(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Otherwise, imagine dividing up m∗ into a sequence of segments
whose lengths are decreasing powers of two; that is, the first segments would be of length 2β

where β is the largest power of two less than `∗, the second segment would contain the next
largest power of two, etc. Let m∗(j) denote the segment of m∗ corresponding to power j. If no
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such segment exists, let m∗(j) =⊥. Select a random γ ∈ Zp and return the response as:

H(x) =


gγ

if |x| = 2j and j < β and m∗(j) = x

(x is on the selective path);

gbγ
otherwise
(x is not on the selective path).

Note that H(m∗(j)) is set according to the first method for all segments of m∗ except the first
segment m∗(β).

2. Hs(x): The random oracle is answered as follows. If the query has been made before, return
the same response as before. Select a random δ ∈ Zp and return the response as:

Hs(x) =

{
gδ if |x| = 2β and m∗(β) = x;

gbδ otherwise.

Note that Hs(m∗(j)) is set according to the first method only for the first segment of m∗.

Signature and Quote Queries

Sign (M): Let M = (t,m) and ` = |m|. Recall that β∗ is highest bit of `∗ set to 1 and that we
are counting up from zero as the least significant bit.

We describe how to create signatures.

1. When t = 1 and m∗ is not a substring of m (Type I Signature Generation):
Here mi,j denotes the substring m of length j starting at position i. It will help us to first
establish the variables Xi,j , which will be set to 1 if on the selective forgery path and 0
otherwise. We give a set of “rules” defining terms and make a few observations. Then we
describe how the reduction algorithm creates the signatures.
Rules.
For i = 1 up to `+ 1,
For j = blg(`− i+ 1)c down to −1,

(a) If j + 1 = β∗ and mi−2j+1,2j+1 = m∗(j+1), then set Xi,j = 1.

(b) Else, if j + 1 < β∗ and (j + 1)th bit of `∗ is 1 and mi−2j+1,2j+1 = m∗(j+1) and
Xi−2j+1,j+1 = 1, then set Xi,j = 1.

(c) Else if j + 1 < β∗ and (j + 1)th bit of `∗ is 0 and Xi,j+1 = 1, then set Xi,j = 1.

(d) Else set Xi,j = 0.

Observations. Before we show how B will simulate the signatures, we make a set of useful
observations.

(a) For all i and j ≥ β∗, Xi,j = 0.

(b) For all i, Xi,−1 = 0. Otherwise, mi−`∗,`∗ = m∗.

(c) For all i, j, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1. If the jth bit were 0,
then Xi,j−1 would have been set to 1 by Rule 1c.

(d) For all i, j, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1. If the jth bit were 0,
then the only way to set Xi,j−1 to 1 would be by Rule 1c, however, Xi,j = 0 so Rule 1c
does not apply.
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(e) For all i, j, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j ) = gbγ for some known γ ∈ Zp.
Otherwise, Xi+2j ,j−1 would have been set by Rule 1b to be 1.

(f) For all i, j, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j ) = gbγ for some known γ ∈ Zp. If
Xi+2j ,j−1 = 1 and Xi,j = 0, then Xi+2j ,j−1 was set to be 1 either by Rule 1a or Rule 1c.
If it were Rule 1a, then j = β∗ and it follows from the programming of the random
oracle that H(mi,2j ) = gbγ . If it were Rule 1c, then the jth bit of `∗ is 0, meaning m(j)

cannot be on the selective path and therefore again H(mi,2j ) = gbγ .
(g) For all i, j, if Xi+2j ,j−1 = 0, then Hs(mi,2j ) = gbδ for some known δ ∈ Zp. If j 6= β∗, this

follows immediately from the programming of the random oracle. Otherwise, if j = β∗,
then the only way for Xi+2j ,j−1 = 0 would be if m(β) 6= m∗(β) by Rule 1a. Thus, it also
follows that Hs(mi,2j ) = gbδ.

Signature Components. Next, for i = 1 to ` + 1 and j = 0 to blg(` − i + 1)c, choose a
random x′i,j ∈ Zp and logically set xi,j := x′i,j + Xi,j · (ab). For i = 1 to ` + 1, set xi,−1 := 0
(as consistent with Observation 1b.)
A signature is comprised of the following values:
Start. For i = 1 to ` and j = 0 to blg(`− i+ 1)c:
(a) If Xi+2j ,j−1 = 0, then it follows by Observation 1g that Hs(mi,2j ) = gbδ for some known

δ ∈ Zp, so choose random si,j ∈ Zp, implicitly set ri,j := −a/δ + si,j and set

Si,j = g−xi+2j ,j−1gbδsi,j

= gαg−xi+2j ,j−1Hs(mi,2j )
ri,j

S̃i,j = g−a/δ+si,j = gri,j

(b) Else Xi+2j ,j−1 = 1, so choose random ri,j ∈ Zp and with xi+2j ,j−1 := x′
i+2j ,j−1

+ ab set

Si,j = g
−x′

i+2j ,j−1Hs(mi,2j )
ri,j

= gαg−xi+2j ,j−1Hs(mi,2j )
ri,j

S̃i,j = gri,j

Across. Together with the following values for i = 3 to ` and j = 0 to min(blg(i − 1) −
1c, blg(`− i+ 1)c):
(a) If Xi,j = 1 and Xi+2j ,j−1 = 1, choose random r′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab

and xi+2j ,j−1 = x′
i+2j ,j−1

+ ab and set

Ai,j = gx
′
i,jg
−x′

i+2j ,j−1H(mi,2j )
r′i,j

= gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j

Ãi,j = gr
′
i,j

(b) Else, if Xi,j = 1 and Xi+2j ,j−1 = 0, then H(mi,2j ) = gbγ for some known γ ∈ Zp by
Observation 1e. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j +ab, xi+2j ,j−1 =
x′
i+2j ,j−1

and r′i,j := −a/γ + s′i,j and set

Ai,j = gx
′
i,jg−xi+2j ,j−1gbγs

′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j

Ãi,j = gr
′
i,j
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(c) Else, if Xi,j = 0 and Xi+2j ,j−1 = 1, then H(mi,2j ) = gbγ for some known γ ∈ Zp by
Observation 1f. Choose random s′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi+2j ,j−1 =
x′
i+2j ,j−1

+ ab and r′i,j := a/γ + s′i,j and set

Ai,j = gxi,jg
−x′

i+2j ,j−1gbγs
′
i,j

= gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j

Ãi,j = gr
′
i,j

(d) Else, Xi,j = 0 and Xi+2j ,j−1 = 0, so choose random r′i,j ∈ Zp and set

Ai,j = gxi,jg−xi+2j ,j−1H(mi,2j )
r′i,j , Ãi,j = gr

′
i,j

Down. Together with the following values for i = 3 to `+ 1 and j = 0 to blg(i− 1)− 1c:
(a) If Xi,j = 1 and Xi,j−1 = 1, choose random r′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab

and xi,j−1 = x′i,j−1 + ab and set

Di,j = gx
′
i,jg−x

′
i,j−1gzjr

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = gr
′′
i,j

(b) Else, if Xi,j = 1 and Xi,j−1 = 0, then the jth bit of `∗ is 1 by Observation 1c. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j + ab, xi,j−1 = x′i,j−1

and r′′i,j := −a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = g−a/vj+s
′′
i,j = gr

′′
i,j

(c) Else, if Xi,j = 0 and Xi,j−1 = 1, then the jth bit of `∗ is 1 by Observation 1d. Thus
zj = bvj , so choose random s′′i,j ∈ Zp with implicitly set xi,j = x′i,j , xi,j−1 = x′i,j−1 + ab
and r′′i,j := a/vj + s′′i,j and set

Di,j = gx
′
i,jg−xi,j−1gbvjs

′′
i,j = gxi,jg−xi,j−1gzjr

′′
i,j

D̃i,j = ga/vj+s
′′
i,j = gr

′′
i,j

(d) Else, Xi,j = 0 and Xi,j−1 = 0, so choose random r′′i,j ∈ Zp and set

Di,j = gxi,jg−xi,j−1gzjr
′′
i,j , D̃i,j = gr

′′
i,j

2. When t = 0 and m 6= m∗ (Type II Signature Generation):
Let ` = |m|, and β = blg(`)c. `∗i denotes i-th bit of `∗ when we start counting with zero as
the least significant bit, and `i denotes i-th bit of `.
Parse m∗ as m∗β∗m

∗
β∗−1 . . .m

∗
0 where m∗i is a string of length 2i or a null string. mi is of length

2i if `i = 0, and is null otherwise. Similarly, parse m as mβmβ−1 . . .m0.
B constructs (B, S̃, Zβ−1, . . . , Z0) in the following way:

• If mβ 6= m∗β∗ , then Hs(mβ) = gbδ for a δ which is known to B.

(a) B sets S̃ := g−a/δ+r for a randomly chosen r and B := gbδr.
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(b) For j = β − 1 down to 0, Zj := grj for a randomly chosen rj , and
– If `j = 1, then B := B ·H(mj)rj .
– If `j = 0, then B := B · gzjrj .

• Otherwise, if β = β∗ and mβ = m∗β∗ , there exists js < β such that
– `js 6= `∗js , or
– `js = `∗js = 1 and H(mjs) 6= H(m∗js).

so B can construct a signature (B, S̃, Zβ−1, . . . , Z0) in the following way.
(a) B sets S̃ := grc for a randomly chosen rc and B := gδrc .
(b) For j = β − 1 down to js + 1 and j = js − 1 to 0, Zj := grj for randomly chosen rj ,

and
– If `j = 1, then B := B ·H(mj)rj .
– If `j = 0, then B := B · gzjrj .

(c) For j = js,
– If `j = 1, whether `∗j = 0 or not, B knows γ such that H(mj) = gbγ . B sets
Zj = g−a/γ+rj for a randomly chosen rj , and B := B · gbγrj .

– If `j = 0 and `∗j = 1, then B knows v such that gzj = gbv. B sets Zj = g−a/v+rj

for a randomly chosen rj , and B := B · gbvrj .
B returns (B, S̃, Zβ−1, . . . , Z0).

Response Eventually, A outputs a valid signature σ∗ on M∗ = (t∗,m∗). Recall that `∗ = |m∗|
and β = blg(`∗)c. Here `∗i denotes i-th bit of `∗ when we start counting with zero as the least
significant bit. Parse m∗ as m∗βm

∗
β−1 . . .m

∗
0 where m∗i is a string of length 2i (when `∗i = 1) or a

null string (when `∗i = 0).
Because of the selective disclosure and setup, B knows the following exponents:

– γ such that Hs(m∗β ) = gγ .
– δj such that H(m∗

sj ,2j
) = gδj when `∗j = 1 and j 6= β.

– zj when `∗j = 0.

t∗ is either 1 or 0.

• If t∗ = 1,
si denotes the position where m∗i starts. B can compute the information of some xi,j with
the following components of σ∗.

– S1,β = gαg
−x

1+2β,β−1Hs(m∗β)rc , S̃1,β = gr1,β

B knows γ such that Hs(m∗β) = gγ , so B can compute gαg−x1+2β,β−1 = S1,β/S̃1,β
γ
.

– For j = β − 1 down to 0,

∗ when `j = 1, Asj ,j = gxsj ,jg−xsj−1,j−1H(m∗j )
r′sj ,j , Ãsj ,j = g

r′sj ,j

B knows δ such that H(m∗j ) = gδ, so B can compute gxsj ,jg−xsj−1,j−1 = Asj ,j/Ãsj ,j
δ
.

∗ when `j = 0, Dsj ,j = gxsj ,jg−xsj−1,j−1g
zjr
′′
sj ,j , D̃sj ,j = g

r′′sj ,j

B knows zj , so B can compute gxsj ,jg−xsj−1,j−1 = Dsj ,j/D̃sj ,j
zj

.
so B can compute gxsj ,jg−xsj−1,j−1 .

B has the values of gxsj ,jg−xsj−1,j−1 for j = β−1 down to 0 and gαg−x1+2β,β−1 , so can compute

gαg
−x

1+2β,β−1

β−1∏
j=0

gxsj ,jg−xsj−1,j−1 = gαg−xs−1,−1 = gα
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• If t∗ = 0,
B parses σ∗ as (B, S̃, Zβ−1, . . . , Z0), with

S̃ = gc, Zβ−1 = gcβ−1 , . . . , Z0 = gc0

for some c, cβ−1, . . . , c0 ∈ Zp.

B = gα ·Hs(m∗β)c
∏

j<β, `∗j=1

H(m∗j )
cj

∏
j′<β, `∗

j′=0

(gzj′ )cj′

because the signature is valid.

– B knows γ such that Hs(m∗β) = gγ . B sets C := S̃γ .
– From j = β − 1 down to 0, B proceeds as:

∗ If `j = 1, B knows δj such that H(m∗j ) = gδj . B sets C := C · Zδjj ;
∗ If `j = 0, B knows zj . B sets C := C · Zzjj .

Then
C = Hs(m∗β)c

∏
j<β, `∗j=1

H(m∗j )
cj

∏
j′<β, `∗

j′=0

(gzj′ )cj′

so B can compute B/C = gα.

Thus, whether t∗ is 1 or 0, B can solve for gα = gab and correctly answer to the CDH challenge.

Analysis The distribution of the above game and the security game are identical. Thus, whenever
A is successful in a forgery against our scheme, B will solve the CDH challenge.

�
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