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Abstract

The need for controlled (privacy-preserving) sharing of sensitiveinformation occurs in many different and realistic
everyday scenarios, ranging from national security to social networking. We consider two interacting parties, at least
one of which seeks information from the other: the latter is either willing, or compelled, to share information. This
poses two challenges: (1) how to enable this type of sharing such that parties learn no information beyond what
they are entitled to, and (2) how to do so efficiently, in real-world practical terms. This paper explores the notion of
Privacy-Preserving Sharing of Sensitive Information (PPSSI), and provides two concrete and efficient instantiations,
modeled in the context of simple database querying. Proposed techniques function as aprivacy shieldto protect
parties from disclosing more than the required minimum of their respectivesensitive information. PPSSI deployment
prompts several challenges, that are addressed in this paper. Extensive experimental results attest to the practicality
of attained privacy features and show that they incur quite low overhead(e.g.,10% slower than standard MySQL).

1 Introduction

In today’s increasingly digital world, there is often a tension between safeguarding privacy and sharing information.
On the one hand, sensitive data needs to be kept confidential;on the other hand, data owners are often motivated or
forced to share sensitive information. Consider the following examples:

• Aviation Safety:The Department of Homeland Security (DHS) checks whether any passengers on each flight
from/to the United States must be denied boarding or disembarkation, based on several secret lists, including
theTerror Watch List(TWL). Today, airlines surrender their passenger manifeststo the DHS, along with a large
amount of sensitive information, including credit card numbers [37]. Besides its obvious privacy implications,
this modus operandi poses liability issues with regard to (mostly) innocent passengers’ data and concerns about
possible data loss.1 Ideally, the DHS would obtain information pertainingonly to passengers on one of its
watch-lists, without disclosing any information to the airlines.

• Law Enforcement:An investigative agency (e.g., the FBI) needs to obtain electronic information about a suspect
from other agencies, e.g., the local police, the military, the DMV, the IRS, or the suspect’s employer. In many
cases, it is dangerous (or simply forbidden) for the FBI to disclose the subjects of its investigation. Whereas, the
other party cannot disclose its entire data-set and trust the FBI to only extract desired information. Furthermore,
FBI requests might need to be pre-authorizedby some appropriate authority (e.g., a federal judge). Thisway,
the FBI can only obtain information related to authorized requests.

• Healthcare:A health insurance company needs to retrieve information about its client from other entities, such
as other insurance carriers or hospitals. The latter cannotprovide any information on other patients and the
former cannot disclose the identity of the target client.

Other examples of sensitive information sharing include collaborative botnet detection [31], where parties share their
logs for the sole purpose of identifying common anomalies.

Motivated by above examples, this paper develops the architecture forPrivacy-Preserving Sharing of Sensitive
Information (PPSSI), and proposes two efficient and secure instantiations that function as aprivacy shieldto protect
parties from disclosing more than the required minimum of sensitive information. We model PPSSI in the context of
simple database-querying applications with two parties: aserver, in possession of a database, and aclient, performing
disjunctive equality queries. In terms of one of the examples above, the airline company (the server) has a database
with passenger information, while the DHS (the client) poses queries corresponding to the TWL.

1See [7] for a litany of recent incidents where large amounts sensitive data were lost or mishandled by government agencies.
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Intended Contributions. In this paper, we explore the notion of Privacy-Preserving Sharing of Sensitive Information
(PPSSI). Our main building blocks are efficient Private Set Intersection (PSI) techniques. During the design of PPSSI,
we address several challenges stemming from adapting PSI torealistic database settings. Our extensive experimental
evaluation demonstrates that our techniques incur very lowoverhead: about10% slower than standard (non privacy-
preserving) MySQL. All source code is publicly available.2

Organization. In next section, we introduce PPSSI syntax, along with its privacy requirements, and review PSI
definitions. After reviewing related work in Section 3, in Section 4, we discuss the insecurity of a strawman approach
obtained with a näıve adaptation of PSI techniques to PPSSI. Then, Section 5 introduces a secure PPSSI approach
using a novel database encryption mechanism. Next, in Section 6, we consider another approach geared for very large
databases. Section 7 presents our experimental analysis, and Section 8 concludes the paper by discussing future work.

In Appendix A, we illustrate the details of one PPSSI algorithm, while Appendix B and C present the preliminary
version of formal security proofs of solutions proposed in Section 5 and 6. Finally, in Appendix D, we report complete
details and performance evaluation of all considered Private Set Intersection constructions.

2 Preliminaries

This section introduces Privacy-Preserving Sharing of Sensitive Information (PPSSI), formalizes its privacy re-
quirements, and overviews Private Set Intersection (PSI) –our main building block.

2.1 PPSSI Syntax & Notation

We model PPSSI in the context of simple database querying. Init, a server maintains a database,DB, containing
w records withm attributes(attr1, · · · , attrm). We denoteDB = {(Rj)}

w
j=1. Each recordRj = {valj,l}

m
l=1, where

valj,l is Rj ’s value for attributeattrl. A client poses simple disjunctive SQL queries, such as:

SELECT * FROM DB WHERE(attr∗1 = val∗1 OR · · · ORattr∗v = val∗v) (1)

As a result of the query, the client gets all records inDB satisfyingwhereclause, and nothing else. Whereas, the
server learns nothing about any{attr∗i , val

∗
i }1≤i≤v. We assume that the database schema (format) is known to the

client. Furthermore, without loss of generality, we assumethat the client only queries searchable attributes.
In an alternative version supportingauthorized queries, we require the client to receive query authorizations from

a mutually trusted offlineCertification Authority(CA) prior to interacting with the server. That is, the client outputs
matching records only if the client holds pertinent authorizations for(attr∗i , val

∗
i ).

Our notation is reflected in Table 1. In addition, we useEnck(·) andDeck(·) to denote, respectively, symmetric
key encryption and decryption (under keyk). Public key encryption and decryption, under keyspk andsk, are denoted
asEpk(·) andEsk(·)

−1, respectively.σ = Signsk(M) denotes a digital signature computed over messageM using
secret keysk. OperationVrfypk(σ,M) returns1 or 0 indicating whetherσ is a valid signature onM . Z

∗
N refers to

a composite-order RSA group, whereN is the RSA modulus. We used to denote RSA private key ande to denote
corresponding public key. We useZ∗

p to denote a cyclic group with a subgroup of orderq, wherep andq are large
primes, andq|p − 1. We useê : G1 × G2 → Gt to denote a bilinear map andZKPK to denote zero-knowledge
proof of knowledge. We useH(·), H1(·), H2(·), H3(·) to denote different hash functions. In practice, we implement
H(m), H1(m), H2(m), H3(m) as SHA-1(0||m),SHA-1(1||m),SHA-1(2||m),SHA-1(3||m).

2.2 Privacy Requirements

We now define PPSSI privacy requirements for both standard and authorized queries. We consider both Honest-
but-Curious (HbC) adversaries and malicious adversaries.An HbC adversary faithfully follows all protocol’s speci-
fications (but might attempt to infer additional information during or after protocol execution). Whereas, malicious
adversaries may arbitrarily deviate from the protocol.

Privacy requirements are as follows:

• Server Privacy.The client learns no information about any record in server’s database that does not satisfy the
where(attr∗i = val∗i ) clause(s).

2Source code is available athttp://ppssi.googlecode.com/files/ppssi-imp.tar.gz.
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attrl lth attribute in the database schema ctrj,l number of times wherevalj′,l = valj,l, ∀j
′ <= j

Rj jth record in the database tagj,l tag forattrl, valj,l
valj,l value inRj corresponding toattrl k′j,l key used to encryptkj
kj key used to encryptRj k′′j,l key used to encrypt indexj
erj encryption ofRj ekj,l encryption of keykj
tkj,l token evaluated overattrl, valj,l eindj,l encryption of indexj

Table 1: Notation.

• Server Privacy (Authorized Queries).Same as ”Server Privacy” above, but, in addition, the clientlearns no
information about any record satisfying thewhere(attr∗i = val∗i ) clause, unless the(attr∗i , val

∗
i ) query is

authorized by the CA.

• Client Privacy.The server learns nothing about any client query parameters, i.e., allattr∗i andval∗i , nor about
its authorizations, (for authorized queries).

• Client Unlinkability.The server cannot determine (with probability non-negligibly exceeding1/2) whether any
two client queries are related.

• Server Unlinkability. For any two queries, the client cannot determine whether anyrecord in the server’s
database has changed, except for the records that are learned (by the client) as a result of both queries.

• Forward Security (Authorized Queries).The client cannot violate Server Privacy with regard to prior interac-
tions, using authorizations obtained later.

Note that Forward Security and Unlinkability requirementsare crucial in many practical scenarios. Referring to one
example in Section 1, suppose that the FBI queries an employee database without having authorization for a given
suspect, e.g., Alice. Server Privacy (Authorized Queries)ensures that the FBI does not obtain any information about
Alice. However, unless Forward Security is guaranteed, if the FBI later obtains authorization for Alice, it could
inappropriately recover her file from the (recorded) protocol transcript. On the other hand, Unlinkability keeps one
party from noticing changes in other party’s input. In particular, unless Server Unlinkability is guaranteed, the client
can always detect whether the server updates its database between two interactions. Unlinkability also minimizes the
risk of privacy leaks. Without Client Unlinkability, if theserver learns that the client’s queries are the same in two
interactions and one of these query contents are leaked, theother query would be immediately exposed.

2.3 Private Set Intersection (PSI)

Private Set Intersection (PSI) [18] constitutes our main building block. It allows two parties – a server and a client
– to interact on their respective input sets, such that the client only learns the intersection of the two sets, while the
server learns nothing beyond client’s set size. Below, we overview two recent PSI protocols [14, 26]. They involve
linear communication and computational complexity (in thesize of client and server sets).

PSI with Data Transfer (PSI-DT): It involves a server, on input a set ofw items, each with associated data record,
S = {(s1, data1), · · · , (sw, dataw)}, and a client, on input of a set ofv items,C = {c1, · · · , cv}. It results in the
client outputting{(sj , dataj) ∈ S | ∃ci ∈ C s.t. ci = sj} and the server – nothing exceptv. This variant is useful
whenever the server holds a set of records, rather than a simple set of elements.

Authorized PSI-DT (APSI-DT): It ensures that client input isauthorizedby a mutually trusted offline CA. Unless it
holds pertinent authorizations, the client does not learn whether its input is in the intersection. At the same time, the
server does not learn whether client’s input is authorized,i.e., verification of client authorizations is performed oblivi-
ously. More specifically, APSI-DT involves a server, on input of a set ofw items:S = {(s1, data1), · · · , (sw, dataw)},
and a client, on input of a set ofv items with associated authorizations (typically, in the form of digital signatures),C =
{(c1, σi) · · · , (cv, σv)}. It results in client outputting{(sj , dataj) ∈ S | ∃(ci, σi) ∈ C s.t. ci = sj ∧ Vrfypk(σi, ci) =
1} (wherepk is CA’s public key).

We also distinguish between (A)PSI-DT protocols based on whether or not they supportpre-distribution:

(A)PSI-DT with pre-distribution: The server can “pre-process” its input set independently from client input. This
way, the server canpre-distribute its (processed) input before protocol execution. Both pre-processing and pre-
distribution can be done offline, once for all possible clients.

(A)PSI-DT without pre-distribution: The server cannot pre-process and pre-distribute its input.
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Note that pre-distribution precludes Server Unlinkability, since server input is assumed to be fixed. Similarly, in the
context of authorized protocols with pre-distribution, Forward Security cannot be guaranteed.

3 Related Work

A number of cryptographic primitives provide privacy properties resembling those listed in Section 2.2. We
overview them below.

Secure Two-Party Computation (2PC).2PC allows two parties, on inputx andy, respectively, to privately compute
the output of a public functionf over(x, y). Both parties learn nothing beyond what can be inferred fromthe output
of the computation. Although one could implement PPSSI withgeneric 2PC, it is usually far more efficient to have
dedicated protocols, as 2PC incurs high computational overhead and involves several communication rounds.

Oblivious Transfer (OT). OT [34] involves a sender holdingn secret messages and a receiver willing to retrieve the
i-th among sender’s messages. It ensures that the sender doesnot learn which message is retrieved, and the receiver
learns no other message. While the OT functionality somehow resembles PPSSI requirements, note that, in PPSSI,
receiver’s inputs are queries, whereas, in OT, they are indices.

Private Information Retrieval (PIR). PIR [9] allows a client to retrieve an item from a server database, (1) without
revealing which item it is retrieving, and (2) incurring a communication overhead strictly lower thanO(n), wheren is
the database size. Observe that, in PIR, privacy of server’sdatabase is not protected – the client may receive additional
bits of information, besides the records requested. Symmetric PIR (SPIR) [20] additionally offers server privacy, thus
achieving OT with communication overhead lower thanO(n). However, similar to OT, a client of a symmetric PIR
needs to input the index of the desired item in server’s database – an unrealistic assumption for PPSSI. An extension to
keyword-based retrieval is known as Keyword-PIR (KPIR) [8]. However, KPIR still does not consider server privacy
and it involves multiple rounds of PIR executions.

Searchable Encryption (SE).Symmetric Searchable Encryption (SSE) [38] allows a clientto store, on an untrusted
server, messages encrypted using a symmetric-key cipher under its own secret key. Later, the client can search for
specific keywords by giving the server a trapdoor that does not reveal keywords or plaintexts. Boneh et al. [3] later
extended SSE to the public-key setting, i.e., anyone can useclient’s public key to encrypt and route messages through
an untrusted server (e.g., a mail server). The client can then generate search tokens, based on its private key, to let
the server identify messages including specific keywords. We conclude that Searchable Encryption targets related yet
different scenarios compared to PPSSI.

Privacy-Preserving Database Query (PPDQ).PPDQ techniques can be distinguished into two kinds. The first one
is similar to SSE: the client encrypts its data, outsources encrypted data to an untrusted service provider (while not
maintaining copies), and queries the service provider at will. In addition to simple equality predicates supported by
SSE, solutions like [21, 24] support general SQL operations. Again, this setting is different from PPSSI, as that data,
although stored by the server, belongs to the client; thus, there is no privacy restriction against the client. Moreover,
these solutions do not provide provably-secure guarantees, but are based on statistical methods.

The second kind of PPDQ is closely related to private predicate matching. Olumofin and Goldberg [33] propose a
transition from block-based PIR to SQL-enabled PIR. As opposed to PPSSI, however, server’s database is assumed to
be public, thus, its privacy is not protected. Then, Murat and Chris [27] consider a scenario where client matches clas-
sification rules against server’s database. However, they assume the client’s rule set to be fixed in advance and known
to the server. Additional work, such as [35, 10], requires several independent, mutually-trusted, and non-colluding
parties. Murugesan et al. [30] also allow “fuzzy” matching,yet their solution requires a number of (expensive) cryp-
tographic operations (i.e., public-key homomorphic operations) quadratic in the size of parties’ inputs, while we aim
at constructing scalable solutions with linear complexity.

4 A Strawman Approach

Looking at definitions in Section 2.3, it seems that PPSSI canbe realized by simply instantiating PSI-DT protocols
(or APSI-DT for authorized queries). We outline thisstrawmanapproach below and show that it is not secure.

For each record, consider the hash of every attribute-valuepair (attrl, valj,l) as a set element, andRj as its
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• Client’s input:{hci, σi}1≤i≤v , where:hci = H(attr∗i , val
∗
i ). σi is only used for APSI-DT protocols.

• Server’s input:{hsj,l}1≤j≤w,1≤l≤m, {Rj}1≤j≤w , where:hsj,l = H(attrl, valj,l)

1. Client ks
Obliviously computes:{tki←Token(hci)}∀i

+3 Server

2. Server:EDB ← EncryptDatabase(Token(·), {Rj}1≤j≤w)

3. Server
EDB

// Client

4. Client:∀1≤i≤vRi ← Lookup(tki,EDB), OutputR1 ∪ · · · ∪Rv.

Figure 1: Outline of our first PPSSI approach.

associated data. Server “set” then becomes:

S = {(H(attrl, valj,l), Rj)}1≤l≤m,1≤j≤w

Client “set” is: C = {H(attr∗i , val
∗
i )}1≤i≤v, i.e., elements corresponding to thewhereclause in Equation 1. Op-

tionally, if authorized queries are enforced,C is accompanied by signaturesσi overH(attr∗i , val
∗
i ), following the

APSI-DT syntax. Parties engage in an (A)PSI-DT interaction; at the end of it, the client obtains all records matching
its query.
The strawman approach faces two security issues:

Challenge 1: Multi-Sets. While most databases include duplicate values (e.g., “gender=male”), PSI-DT and APSI-
DT definitions assume that sets do not include duplicates.3 If server set contains duplicated values, the corresponding
messages to the client would be identical and the client would learn all patterns and distribution frequencies. This
raises a serious concern, as actual values can be often inferred from their frequencies. For example, consider a large
database where one attribute reflects “employee blood type”: since blood type frequencies are well-known for general
population, distributions for this attribute would essentially reveal the plaintext.

Challenge 2: Data Pointers.To enable querying by any attribute, each record –Rj – must be separately encrypted
m times, i.e., once for each attribute. As this would result inhigh storage/bandwidth overhead, one could encrypt
eachRj with a unique symmetric keykj and then usingkj (instead ofRj) as data associated withH(attrl, valj,l).
Although this would reduce the overhead, it would trigger another issue: in order to use the key – rather than the actual
record – as the associated “data” in the (A)PSI-DT protocol,we would need to store a pointer to the encrypted record
alongside eachH(attrl, valj,l). This would allow the client to identify allH(attrl, valj,l) corresponding to a given
encrypted record by simply identifying allH(attrl, valj,l) with associated data pointers equal to the given records.
Such a (potential) privacy leak would be aggravated if combined with the previous “attack” on multi-sets: given two
encrypted records, the client could establish their similarity based on the number of equal attributes.

5 The First PPSSI Approach

We now present our PPSSI construction that is both secure andreasonably practical. Like the strawman approach,
it relies on (A)PSI-DT. However, it addresses aforementioned challenges by introducing a novel database-encryption
technique. In order to guarantee bothServer UnlinkabilityandForward Security, we use (A)PSI-DTwithout pre-
distribution.

Our approach is illustrated in Figure 1. In step 1, the clientand the server engage in theobliviouscomputation
of Token function: at the end of it, the client obtainstki = Token(hci), wherehci = H(attr∗i , val

∗
i ). Note that

the server learns nothing abouthci or tki. Token function is computed using an (A)PSI-DT protocol, thus, different
(A)PSI-DTs instantiate it differently.

In step 2, the server runsEncryptDatabase procedure – described in Algorithm 1 and discussed in Section 5.1
– and creates the encrypted database,EDB that is transferred to the client in step 3. Finally, in step 4, the client runs
Lookup procedure – illustrated in Algorithm 2 and discussed in Section 5.2 – usingtki tokens overEDB; at the end
of it, the client obtains the set of records satisfying its query.

3Note that some PSI constructs (e.g., [29]) support multi-sets, however, their performance is not promising as they incur quadratic computational
overhead (in the size of the sets), as opposed to more recent (A)PSI-DT protocols with linear complexity (e.g., [26, 14, 12]). Also, they support
neitherdata transfernorauthorization.
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Algorithm 1: EncryptDatabase Procedure.
input : FunctionToken(·) and record set{Rj}1≤j≤w

output: Encrypted DatabaseEDB

1: Shuffle{Rj}1≤j≤w

2: maxlen ← max length among allRj

3: for 1 ≤ j ≤ w do
4: PadRj tomaxlen;

5: kj
r
← {0, 1}128;

6: erj ← Enckj
(Rj);

7: for 1 ≤ l ≤ m do
8: hsj,l ← H(attrl, valj,l);
9: tkj,l ← Token(hsj,l);

10: tagj,l ← H1(tkj,l||ctrj,l);

11: k′j,l ← H2(tkj,l||ctrj,l);

12: k′′j,l ← H3(tkj,l||ctrj,l);

13: ekj,l ← Enck′
j,l

(kj);

14: eindj,l ← Enck′′
j,l

(j);

15: LTablej,l ← (tagj,l, ekj,l, eindj,l);
16: end for
17: end for
18: ShuffleLTable with respect toj andl;
19: EDB ← {LTable, {erj}1≤j≤w};

Our protocol can be used with any (A)PSI-DT, however, we use the variants without pre-distribution, since they
provide Server Unlinkability and Forward Security. Following a thorough experimental analysis (Appendix D.5), we
select the PSI-DT protocol from [14] (denoted asDT10-1) and its APSI-DT counterpart from [14] (denoted asDT10-
APSI) for authorized queries. These protocols were proven secure against HbC adversaries [14]. However, it was later
shown that, with very similar overhead, to achieve securityagainst malicious adversaries [13].

Scheme name Token definition PSI category
DT10-1 (Figure 3 of [14]) Token(hc) = ([(

∏v
i=1 hci) · g

Rc ]/hc)Rs mod p PSI-DT without pre-distribution
DT10-APSI (Figure 2 of [14]) Token(hc) = ([(

∏v
i=1 σi)

2
· gRc ]e/hc2)Rs mod N APSI-DT without pre-distribution

Table 2: Token definition for (A)PSI-DT without pre-distribution

For the sake of completeness, we defineToken function for the selected (A)PSI-DT constructions in Table2. Note
that bothToken definitions involve random valuesRc andRs contributed by client and server respectively. Therefore,
the server can only evaluateToken over its own inputs after step 1. These random values are selected at the beginning
of and kept fixed throughout the PPSSI protocol execution. They are chosen independently, for each invocation, in
order to guaranteeServer UnlinkabilityandForward Security. We present the complete details ofToken’s oblivious
computation in Appendix A (see Figure 10 and Figure 11).

Compared to the strawman approach, we modified the “encryption” technique: rather than (directly) using a
symmetric-key encryption scheme, theEncryptDatabase procedure is invoked.

5.1 Database Encryption with counters

We illustrateEncryptDatabase procedure in Algorithm 1. It takes in input the definition of theToken func-
tion, and server’s record set. It consists of two “phases”: (1) Record-leveland (2)Lookup-Tableencryptions.

Record-level encryption is relatively trivial (lines 1–6): first, the server shuffles record locations; then, it pads each
Rj up to a fixed maximum record size, picks a random symmetric keykj , and encryptsRj aserj = Enckj

(Rj).
Lookup-Table (LTable) encryption (lines 8–15) pertains toattribute name and value pairs. It enables efficient

lookup and record decryption. In step 8, the server hashes anattribute-value pair and uses the result as input toToken
function in step 9. In step 10, we use the concatenation ofToken output and a counter,ctrj,l, in order to compute
the tagtagj,l, later used as a lookup tag during client query. We usectrj,l to denote the index of duplicate value for
the l-th attribute. In other words,ctrj,l is the counter of occurrences ofvalj′,l = valj,l, ∀j

′ <= j. For example, the
third occurrence of value “Smith” for attribute “Last Name”will have the counter equal to3. The counter guarantees
that duplicate(attr, val) pairs correspond to different tags, thus addressing Challenge 1. Next, the server computes
k′j,l = H2(tkj,l||ctrj,l) andk′′j,l = H3(tkj,l||ctrj,l). Note thatk′j,l is used for encrypting symmetric keykj . Whereas,
k′′j,l is used for encrypting the index ofRj . In step 13, the server encryptskj asekj,l = Enck′

j,l
(kj). Then, the server

encryptseindj,l = Enck′′
j,l
(j). The encryption of index (data pointer) guarantees that theclient cannot link two tags

belonging to the same record, thus addressing Challenge 2. In step 15, the server inserts eachtagj,l, ekj,l andeindj,l
into LTable, which is{tagj,l, ekj,l, eindj,l}1≤j≤w,1≤l≤m. Next, the server shuffles LTable (step 18). The resulting
encrypted database,EDB, is composed of LTable and{erj}wj=1 (step 19).
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Algorithm 2: Lookup Procedure.
input : Search tokentk and encrypted databaseEDB = {LTable, {erj}1≤j≤w}
output: Matching record setR
1: ctr ← 1;
2: while ∃tagj,l ∈ LTable s.t. tagj,l = H1(tk||ctr) do
3: k′′ ← H3(tk||ctr);
4: j′ ← Deck′′ (eindj,l);
5: k′ ← H2(tk||ctr);

6: k ← Deck′ (ekj,l);
7: Rj ← Deck(erj′ );
8: R ← R ∪Rj ;
9: ctr ← ctr + 1;

10: end while

5.2 Lookup with counters

We now discussLookup procedure shown in Algorithm 2. It is used by the client to obtain the query result, i.e.,
to searchEDB for all records that match client’s search tokens.

In step 1, the client initializes a counter to 1. Next, it searchesLTable for tag tagj,l = H1(tk||counter).
If there is a match, the client attempts to recover the recordassociated withtagj,l. To do so, the client needs to
locate the associated record: it computesk′′ = H3(tk||ctr) and recoversj′ = Deck′′(eindj,l). Note thaterj′ now
corresponds to the associated record. To decrypterj′ , the client first recovers the keyk used to encrypterj′ , by
computingk′ = H2(tk||ctr) and obtainingk = Deck′(ekj,l). Finally, the client recoversRj by decryption, i.e.,
Rj = Deck(erj′).

5.3 Correctness

Assume that server’s database includes the attribute “gender” with two occurrences of value “male”. In Algo-
rithm 1, the sametk (step 9) will be generated for the two occurrences of (”gender”, ”male”). However, for the first oc-
currence,tag = H1(tk||1), k

′ = H2(tk||1), k
′′ = H3(tk||1) while, for the second occurrence,tag = H1(tk||2), k

′ =
H2(tk||2), k

′′ = H3(tk||2).
Suppose that the client searches for records matching “gender = male”, it first derivestk (step 1 of Figure 1). Next,

it matchesH1(tk||1) in LTable, derives keysk′ = H2(tk||1), k
′′ = H3(tk||1), and recovers the index in step 4 and

the record in step 7 of Algorithm 2. It also looks forH1(tk||2) and performs the same operations as before, except
thatk′ = H2(tk||2), k

′′ = H3(tk||2). Finally, the client looks forH1(tk||3): since it finds no match, it terminates.

5.4 Challenges Revisited

We claim that our approach addresses Challenge 1 and 2, discussed in Section 4. While we defer formal proofs
Appendix B, the intuition is as follows:

Multi-sets: The use of counters during database encryption makes eachtagj,l (resp.ekj,l, eindj,l) distinct inLTable,
thus hiding plaintext patterns.

Data Pointers: Storingeindj,l (rather thanj) in LTable, prevents the server from exposing the relationship between
an entryLTablej,l and its associated recordRj .

6 The Second PPSSI Approach for Very Large Databases

The first PPSSI approach in Section 5, combines efficiency with provably-secure guarantees. However, in the
context ofvery largedatabases, it faces two additional issues:

Challenge 3: Bandwidth. If server’s database is very large and/or communication takes place over a slow channel,
the bandwidth overhead incurred by the transfer of the encrypted database may become prohibitive.

Challenge 4: Liability. The transfer of the encrypted database to the client also prompts the problem of long-term
data safety and associated liability. An encryption schemeconsidered strong today might gradually weaken in the
long term. While we ensure that the client cannot decrypt records outside its query, it is not too far-fetched to imagine
that the client might decrypt the entire database in reasonably near future, e.g.,10 or 20 years later. However, data
sensitivity might not dissipate over time. For example, suppose that a low-level DoD employee is only allowed
to access unclassified data. By gaining access to the encrypted database containing top secret data and patiently
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• Client’s input:{hci}1≤i≤v , where:hci = H(attr∗i , val
∗
i )

• Server’s input:{hsj,l}1≤j≤w,1≤l≤m, {Rj}1≤j≤w ,
where:hsj,l = H(attrl, valj,l)

Offline:

1. Server:EDB ← EncryptDatabase(Token(·), {Rj}1≤j≤w)

2. Server
EDB

// IB

Online:

1. Client ks
Obliviously computes{tki←Token(hci)}∀i

+3 Server

2. Client:

(a) ∀i, Ri ← IBLookup(tki)

(b) ∀R ∈ Ri, OutputR

Figure 3: Outline of our second PPSSI approach based on IB.

waiting for the encryption scheme to “age”, the employee might obtain still-classified sensitive information. Further,
in several settings, parties (e.g., banks) may be prevented, by regulation, from releasing copies of their databases (even
if encrypted).

In the rest of this section, we introduce a novel architecture to addresses the challenges for very large databases.
Our new approach incurs very limited overhead (in terms of both computation and communication), even when com-
pared to non-privacy preserving querying systems.

6.1 Introducing the “Isolated Box”

In order to address Challenge 3 and 4, we propose a system architecture shown in Figure 2. It includes a new
component:“Isolated Box” (IB), a non-colluding, untrusted party connected with boththe server and the client.

The new interaction involving IB is shown in Figure 3. Duringthe (offline) setup phase, the server encrypts
its database, usingEncryptDatabase (Algorithm 1), and transfers the encrypted database to the IB. Server’s
computation ofToken functionality no longer depends on client’s input, thus, the server can evaluateToken(·)
without involving the client.

To pose a query, the client first engages with the server in oblivious computation ofToken (online step 1). Next,
for each computed token, it runs theIBLookup procedure (Algorithm 3) to retrieve matching records from the IB.

TheToken(·) functionality is now instantiated using (A)PSI-DTwith pre-distribution. Specifically, we select the
construction from [14] (denoted asDT10-2), [26] (denoted asJL10) and [12] (denoted asIBE-APSI ). Again, our
choices are based on these protocols’ efficiency and security models. Our experiments – in Appendix D.5 – show that
DT10-2, secure in the presence of HbC adversaries, is the most efficient construction, while JL10 combines reasonable
efficiency with security against malicious adversary. IBE-APSI is the only APSI-DT with pre-distribution, and it is
secure against HbC adversaries. For the sake of completeness, we defineToken function for the selected (A)PSI-DT
constructions in Table 3. Note thatd, k, z are server’s secret parameters. Complete details, for eachinstantiation, are
presented in Appendix A.

Scheme name Token definition PSI category
DT10-2 (Figure 4 of [14]) Token(hc) = (hc)d mod N PSI-DT with pre-distribution
JL10 (Figure 2 of [26]) Token(hc) = ((hc)(p−1)/q)k mod p PSI-DT with pre-distribution
IBE-APSI (Figure 5 of [12]) Token(hc) = ê(Q, hc)z APSI-DT with pre-distribution

Table 3: Token for (A)PSI-DT with pre-distribution

Trust Assumptions. The Isolated Box is assumed not to collude with either the server or the client. (Although, we
discuss the consequences of collusion in Section 6.6.) We remark that the use of non-colluding parties in the context
of Secure Computation was first suggested by [15], and then applied in [28, 27, 1].
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Algorithm 3: IBLookup Procedure
Client’s input : tki
IB’s input : EDB = {LTable, {erj}1≤j≤w}
Client’s output : Matching record setR

1. Client:ctr ← 1

2. Client:tagi ← H1(tki||ctr), k′′i ← H3(tki‖|ctr)}

3. Client
tagi,k

′′
i

// IB

4. IB: If (∃tagj,l ∈ LTablej,l s.t. tagj,l = tagi)
j′ ← Deck′′

i
(eindj,l),

ret ← {ekj,l, erj′}

else
ret ← ⊥

5. IB
ret

// Client

6. Client: If ret = ⊥, abort
elsek′i = H2(tki||ctr), ki = Deck′

i
(ekj,l)

Ri = Decki
(erj′ ), R ← R ∪Ri

ctr ← ctr + 1, Goto step 2.

While our requirement for the presence of IB might seem like a “strong” assumption, we stress that the IB is only
trusted not to collude with other parties. It simply stores server’s encrypted database and return ciphertexts matching
client’s encrypted queries (i.e.,tags), without learning any information about records and queries. Also note that, in
practice, the IB can be either instantiated as a (non-colluding) cloud server or as a piece of secure hardware installed
on server’s premises: it is only important to ensure that theserver does not learnwhat the IB reads from its storage
and transfers to the client.

6.2 Database Encryption

IB’s presence does not really affect database encryption, i.e.,Encryptdatabase procedure presented in Algo-
rithm 1. It only uses a differentToken(·) function. While in the first approach (Section 5) we rely on (A)PSI-DT
withoutpre-distribution (i.e., the server cannot runToken(·) before interacting with the client), we now use (A)PSI-
DT with pre-distribution. Thus, the server can evaluateToken(·) over its own inputs,offline, and then transfer the
encrypted database to the IB.

6.3 Query lookup
IBLookup procedure is used by the client to obtain records matching client’s query. It is shown in Algorithm 3.
Similar to our first approach, the client runs the lookup procedure after obtaining search tokens (via oblivious

computation ofToken – online step 1 in Figure 3). For each derived token,tki, it invokesIBLookup to retrieve
(from the IB) all records matchingtki.

We use the termtransactionto denote a complete query procedure, for eachtki (from the time the first query for
tki is issued, until the last response from the IB is received).Retrievaldenotes the receipt of a single response record
during a transaction. A transaction is composed of several retrievals between the client and the IB. The client retrieves
records one by one from the IB, by gradually incrementing thecounterctr. In step 1, the client setsctr to 1. In step
2, the client derivestagi and an index decryption keyk′′i from tokentki. After receivingtagi andk′′i in step 3, the IB
searches for matching tags in the lookup table in step 4. If there is a match, the IB recovers the indexj′ by decrypting
eindj,l with k′′i , assembles the corresponding recorderj′ and the ciphertext of its decryption keyekj,l into ret and
transmitsret to the client in step 5. Otherwise,⊥ is transmitted. If the client receives⊥, it aborts. Otherwise, it
decryptsekj,l into ki with k′i and recovers recordRi from erj′ usingki. Then, it incrementsctr and starts another
retrieval by returning to step 2.

6.4 Optimizations

Since transmission ofret may incur some delay, Algorithm 3 can be sped up by pipe-lining computation oftagi
andk′′i (step 2) in next retrieval with the transmission ofret (step 5) in current retrieval.

Note that the computation ofekj,l andeindj,l (steps 13–14 in Algorithm 1) can also be optimized. Since we use
a counter as input to computek′j,l (respectively,k′′j,l), eachk′j,l (respectively,k′′j,l) is different for anyj, l. Both k′j,l
andk′′j,l are 160-bit values (SHA-1), whilekj is 128 bits andj is clearly smaller. Hence, we can useone-time-pad
encryption (i.e.ekj,l = k′j,l ⊕ kj andeindj,l = k′′j,l ⊕ j) to speed up computation. In Algorithm 3,Deck′′

i
(eindj,l)

becomesk′′i ⊕ eindj,l andDeck′
i
(ekj,l) changes tok′i ⊕ ekj,l.
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6.5 Challenges Revisited

Since we use the same encryption procedure discussed in Section 5, Challenge 1 and 2 are already addressed.
Thus, we only consider Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline) to the IB, the latter returns to the client only records
matching its query. Therefore, bandwidth consumption is minimized.

Liability: Since the IB holds the encrypted database, the client only obtains the result of its queries, thus, ruling out
any potential liability issues.

Finally, the introduction of the IB enables Server Unlinkability and Forward Security, despite the fact that we use
(A)PSI-DT with pre-distribution techniques. Indeed, records not matching a query are never available to the client,
thus, it does not learn whether they have changed. Similarly, the client cannot use future authorizations to maliciously
obtain information from previous (recorded) interactions.

6.6 Discussion

Privacy Revisited.The introduction of the IB and the use of counter mode in database encryption provide additional
privacy properties. If the client performs only one query transaction, as in Algorithm 3, the IB can link alltag values
in step 3 to the same(attr, val) pair. This may pose a similar risk to that discussed in the “multi-set” challenge,
with respect to the IB. However, the counter allows the client to retrieve matching records one by one. Therefore, the
client can choose to add a random delay between two subsequent retrievals in a single transaction. If the distribution
of additional delay is indistinguishable from time gaps between two transactions, the IB cannot tell the difference
between two continuous retrievals within one transaction from two distinct transactions. As a result, the IB cannot
infer whether two continuously retrieved records share thesame(attr, val) pair and the distribution of the attribute
value remains hidden.

Also note that the introduction of the IB does not violate Client or Server Privacy. Client Privacy is preserved
because the client (obliviously) computes a token, which isnot learned by the server. The IB does not learn client’s
interests, since client’s input to the IB (tag) is statistically indistinguishable from a random value. Server Privacy is
preserved because the client does not gain any extra information by interacting with the IB. Finally, the IB only holds
the encrypted database and learns no plaintext.

Removing Online Server. Although it only needs to perform oblivious computation of tokens, we still require the
server to be online. Inspired by [22] and [16], we can replacethe online server with a tamper-proof smartcard,
dedicated to computingToken function. The server only needs to program its secret key into the smartcard, which
protects the key from being accessed by the client. This way,after handing the smartcard to the client, the server can
go offline. The smartcard is assumed to enforce a limit on the number ofToken invocations.

Limitations. We acknowledge that our second PPSSI approach has some limitations. Over time, as it serves many
queries, the IB gradually learns the relationship between tags and encrypted records through pointers associated with
each tag. This issue can be mitigated by letting the server periodically re-encrypt the database. IB also learns database
access patterns generated by query executions. Nonetheless, without knowing the distribution of query predicates, the
access pattern of encrypted data leaks very little information to the IB. Next, if the server and the IB collude, Client
Privacy is lost, since the IB learnstag that the client seeks, and the server knows the(attr, val) pair eachtag is related
to. On the other hand, if the client and the IB collude, the client can access the entire encrypted database, thus, liability
becomes a problem. Last, Server Unlinkability is protectedonly with respect to the client. Server Unlinkability
with respect to the IB is not guaranteed, since the IB learns about all changes in server’s database. Finally, note that
PPSSI currently supports only equality and disjunctive queries. Enabling conjunctive queries would require treating
all combinations of(attr, val) pairs as server’s set elements. Thus, client’s input would become exponential in terms
of the number of attributes. This remains an interesting challenge left as part of future work.

7 Performance Evaluation

In this section, we evaluate the performance of our PPSSI approaches. First, we benchmark cryptographic opera-
tions and use these results to derive step-by-step cost of proposed techniques. Next, we compare our first PPSSI ap-
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proach to PIR. Finally, we build a (limited) DBMS to compare our second PPSSI approach to a non privacy-preserving
MySQL database.

7.1 Benchmarking All PPSSI Components

The following benchmark refers to executions on an Intel Harpertown server with Xeon E5420 CPU (2.5 GHz,
12MB L2 Cache) and 8GB RAM inside. We build the benchmarking tool based on OpenSSL library (ver.1.0.0c) and
PBC library (ver.0.5.11).

7.1.1 Cryptographic Operations

We start with benchmarking modular arithmetic operations.In Table 4, we present performance results for modular
multiplication (mul) and modular inversion (inv) under different modulus sizes (column 1). We also report the per-
formance of modular exponentiation (exp) and modular exponentiation with Chinese Remainder Theorem (exp crt)
under different combinations of modulus sizes (column 1) and exponent sizes (column 4). We choose modulus size
to be 1024, 2048, 3072 bits respectively, which correspondsto 80, 112, and 128 symmetric key security level. (The
protection lifetime of 1024-bit modulus is supposed to lastuntil 2010, whereas, that of 2048-bit modulus is until 2030,
and 3072-bit – to 2030 and beyond [5]).exp crt can only be used when factorization ofN is known, thus, we only
measure its performance for exponent size|d| (beingd RSA secret key).

modulus (bits) mul (ms) inv (ms) exponent (bits) exp (ms) exp crt (ms)
|q|=160 0.001 0.016 – – –

|p| =1024 0.003 0.244
|q| =160 0.297 –
|p| =1024 1.725 –

|N |=1024 0.003 0.244
|d| =1024 1.725 0.534
|e| = 17 0.039 –

|q|=256 0.001 0.03 – – –

|p| =2048 0.009 0.765
|q| =256 1.685 –
|p| =2048 12.679 –

|N | =2048 0.009 0.765
|d| =2048 12.679 3.451
|e| =17 0.124 –

|p| =3072 0.02 0.837
|q| =256 3.719 –
|p| =3072 41.784 –

|N | =3072 0.02 0.837
|d| =3072 41.784 11.031
|e| = 17 0.263 –

Table 4: Benchmarkingmul andexp operations using the OpenSSL library.

Table 5 shows the benchmark results of operations in bilinear mapê : G1×G2 → Gt under differentG1/G2 base
size and different group orders. We choose type A pairing provided in PBC library. Since type A provides2 · |base|
discrete logarithm security, we use half the group size as wedo in Table 4. We useexp(G1) andexp(G2) to denote
exponentiation in groupG1 andG2 respectively.

base (bits) order (bits) exp in G1/G2 (ms) exp in GT (ms) pairing (ms)
512 160 2.492 0.233 1.859
1024 256 8.896 0.998 9.481
1536 256 15.086 1.922 21.826

Table 5: Benchmarking operations on bilinear maps using the PBC library.

In Table 6, we evaluate different symmetric encryption schemes and hash functions. For symmetric encryption,
we only experiment with 128-bit key size, since it is the lowest supported by AES and it matches the security level of
3072-bit RSA keys. The decryption cost is same as the encryption cost, hence, we omit it here.

Symmetric encryption (ms/MB) Hash function (ms/MB)
RC4 AES-CBC AES-CTR SHA1 SHA256 SHA512
3.500 6.539 13.820 3.406 6.867 4.586

Table 6: Benchmarking (128-bit) symmetric-key encryptions and hash function computations.

7.1.2 PPSSI Operations

We now evaluate the performance of all operations involved in both of our PPSSI approaches. Remark that we use
2048-bit modulus and records of fixed2KB length.

11



Figure 4 measures the time needed to perform the oblivious computation ofToken function, for every possible
(A)PSI-DT instantiation. Observe that the cost always increases linearly with client’s query size. As for protocols
without pre-distribution, DT10-APSI is unsurprisingly more expensive than DT10-1. Whereas, DT10-2 and JL10 are,
respectively, the most and the least efficient ones of protocols with pre-distribution.

Then, Figure 5 evaluates the performance of the Lookup-Table encryption, performed by the server. This operation
includes server’s computation ofToken function over its own input (Note that this is not oblivious computation).
Again, running time always increase linearly with the product of the number of records (w) and the number of attributes
(m).

In Figure 6, we report the cost of the Record-level encryption. This only depends on the number of records.
Compared to the Lookup-table encryption, the Record-levelencryption incurs a negligible overhead.

Finally, Figure 7 presents the running time of the Lookup procedures (Algorithms 2 and Algorithms 3 without
consideration of communication delay). Unsurprisingly, cost is identical for both algorithms and increases linearly
with the number of matching records (vm).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1  2  3  4  5  6  7  8  9  10O
bl

iv
io

us
 C

om
pu

ta
tio

n 
of

 T
ok

en
 (m

s)

Client query set size (v)

DT10-1
DT10-APSI

DT10-2
JL10

IBE-APSI

Figure 4: Token Oblivious Computation.

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  8  9  10
Lo

ok
up

-ta
bl

e 
en

cr
yp

tio
n 

(m
s)

w * m

DT10-1
DT10-APSI

DT10-2
JL10

IBE-APSI

Figure 5: Lookup-Table Encryption
(line 8-15 of Algorithm 1).
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We conclude that, as all operations have linear complexity,our approaches scale efficiently for larger databases
and query sets. As a result, one can easily infer results run with even larger parameters, hence, we omit them here.

7.2 First PPSSI Approach vs PIR

We now aim at comparing the efficiency of proposed first PPSSI approach (Section 5) to that of related work
– SPIR. Recall that first PPSSI approach provides very similar privacy properties of SPIR. Indeed, both PPSSI and
SPIR hide client’s access patterns to the server and also protect privacy of server’s data (with respect to records not
matching the queries). However, one possible criticism against our side is that the communication overhead islinear
in the size of the database size, whereas, SPIR incurssub-linearcommunication overhead. Remark, however, that: (1)
SPIR does not support keyword search, and (2) SPIR introduces a remarkably higher computation overhead, which
ends up “overshadowing” the advantage in the communicationcomplexity. To support the latter claim, we compare the
overall performance of our first PPSSI approach with that of Gentry and Ramzan’s single-database PIR (GR-PIR) [19],
which is, to the best of our knowledge, the most efficient single-database PIR. Specifically, GR-PIR [19], assuming a
database withn records, incursO(k+ d) communication complexity (wherek ≤ log n andd is the bit-length of each
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record), andO(n) computation overhead. Also recall that, according to [32],any single-database PIR can be extended
to SPIR/OT and we are not aware of any SPIR/OT that is more efficient than GR-PIR.

In our comparison, we use a database withw = 1024 records andm = 5 attributes. Each record has size2KB.
We assume the client’s query size isv = 1024 and there will be 10(1%) records matching the query (vm). On a
conservative stance, we choose a relatively slow connection between the client and the server, i.e., a10Mbps link.
Remark that we choose 2048-bit modulus and we use RC4 and SHA1.

The result of our comparison is showed in Figure 8 and confirmsthat our approach is significantly more efficient
than GR-PIR. We break down the results into client, server and network transmission cost. Note that, for all schemes,
network cost (at the top stack in each bar) is negligible compared to client and server cost. Also observe that GR-PIR
imposes a significant overhead on both client and server. We do not show results for larger databases, since: (1) both
server and client computational costs will always increaselinearly for all schemes, and (2) for very large database, we
prefer the approach with the Isolated Box (whose overall performance is evaluated next).

7.3 Second PPSSI approach vs MySQL

To the best of our knowledge, there is no available approach to PPSSI that combines efficiency with provably
secure guarantees and that relies on a non-colluding, untrusted party, such as the Isolated Box. Therefore, we cannot
compare our second PPSSI approach for very large databases (Section 6) to any prior work. Nonetheless, we evaluate
its performance by measuring it against standard (non privacy-preserving) MySQL.

On a conservative stance, we use MySQL with indexing enabledon each searchable attributes. We run the IB and
the server on the same machine. Client is connected to the server and the IB through a100Mbps link. The testing
database has 45 searchable attributes and 1 unsearchable attribute (type “LARGEBLOB”) used to pad each record to a
uniform size. There are, in total,100, 000 records. All records have the same size, which we vary duringexperiments.

First, we compare theindex lookup time, defined as the time between SQL query issuance and the receipt of the
first response from the IB. We select a set of SQL queries that return0, 1, 10, 100, 1000, 10000 (±10%) responses,
respectively, and fix each record size at500KB. Figure 9(a) shows index lookup time for our PPSSI approach (with
respect to all underlying (A)PSI-DT instantiations), as well as MySQL, with respect to the response set size. All
proposed schemes’ cost are slightly more expensive than MySQL and are independent of the response size.

Next, we test the impact of the response set size on thetotal query time, which we define as the time between SQL
query issuance and the arrival of the last response from the IB. Figure 9(b) shows the time for the client to complete
a query for a specific response set size divided by the time taken by MySQL (again, with respect to all underlying
(A)PSI-DT instantiations). Results gradually converge to1.1 for increasing response set sizes, i.e., our approach is
only 10% slower than standard MySQL. This is because the extra delay incurred by cryptographic operations (in the
oblivious evaluation ofToken) is amortized by subsequent data lookups and decryptions. Note that we can also infer
the impact of various client query set size by multiplying the client query set size with each single query delay.

Last, we test the impact of record size on the total query time. We fix response set size at100 and vary each
record size between100KB and100MB. Figure 9(c) shows the ratio between our PPSSI approach and MySQL,
once more with respect to all underlying (A)PSI-DT instantiations. Again, results gradually converge well below1.1
with increasing record size. This occurs because, with bigger records, the overhead of record decryption becomes the
“bottleneck”.
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Figure 9: Performance comparison between the second PPSSI approach (Section 6) and MySQL.

8 Conclusion

In this paper, we proposed secure and efficient techniques for Privacy-Preserving Sharing of Sensitive Information
(PPSSI), which enable a client and a server to exchange information without leaking more than the required minimum
of information. Privacy guarantees are formally defined andachieved with provable security.

We implemented two variants of PPSSI: one is geared for small/medium-size data sets, while the other minimizes
communication overhead, as well as liability issues, for very large databases. The latter introduces a non-colluding,
untrusted party – the Isolated Box – which can be implementedas a piece of secure hardware.

Finally, we presented extensive experimental results, which confirmed that our PPSSI approaches are efficient
enough to be used in real-world applications. Our future work includes supporting versatile query predicates (e.g.,
conjunctive queries) as well as fuzzy queries over non-normalized data.
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A Details of Token Instantiations based on (A)PSI-DT’s

• Public input:p, q
• Client’s private input:{hci}∀i
• All operations are modulop
1. Client:PCH ←

∏v
i=1 hci, Rc

r
← Z∗

q , X ← PCH · gRc ,

∀i, PCHi ←
PCH
hci

, Rc,i
r
← Z∗

q , yi ← PCHi ·g
Rc,i

2. Client
X,{yi}∀i

// Server
3. Server:Rs

r
← Z∗

q , Z ← gRs , ∀i, zi ← yRs
i

4. Server
Z,{zi}∀i

// Client
5. Client:∀i,Token(hci) ← zi · Z

Rc · Z−Rc,i

Figure 10: Oblivious computation ofToken(·) using
DT10-1.

• Public input:e,N • Client’s private input:{hci}∀i
• CA’s private input:d • All operations are moduloN
1. CA:∀i, σi ← (hci)

d

2. CA
{σi}∀i

// Client
3. Client:PCH ←

∏v
i=1 hci, PCH∗ ←

∏v
i=1 σi, Rc

r
← Z∗

q ,

∀i, PCH∗
i ← PCH∗/σi, yi ← (PCH∗

i )
2 · gRc,i

X ← (PCH∗)2 · gRc

4. Client
X,{yi}∀i

// Server
5. Server:Rs

r
← Z∗

q , Z ← ge·Rs , ∀i, zi ← ye·Rs
i

6. Server
Z,{zi}∀i

// Client
7. Client:∀i,Token(hci) ← zi · Z

Rc · Z−Rc,i

Figure 11: Oblivious computation ofToken(·) using
DT10-APSI.

B Security Analysis of First PPSSI Approach

We useqi to denote theith query of the form(attr, val) issued by the client and useQi to denote all records
matching queryqi.
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• Public input:e,N
• Client’s private input:{hci}∀i
• Server’s private input:d = e−1 mod φ(N)

whereφ(N) denotes the order ofZ∗
N

1. Client:∀i, ri
r
← Z∗

N , yi ← (ri)
e · hci mod N

2. Client
{yi}∀i

// Server
3. Server:∀i, zi ← (yi)

d mod N

4. Server
{zi}∀i

// Client
5. Client:∀i,Token(hci) ← zi · r

−1
i mod N

Figure 12: Oblivious computation of
Token(·) using DT10-2.

• Public input:p, q
• Client’s private input:{hci}∀i
• Server’s private input:k ∈ Z∗

q

1. Client:∀i, αi
r
← Z∗

q ,

yi ← ((hci)
(p−1)/q)αi mod p

2. Client
{yi}∀i

// Server
3. Server:∀i, zi ← yki mod Z∗

p

π ← ZKPK{k|{zi = yki }∀i}

4. Server
{zi}∀i,π

// Client
5. Client: Aborts ifπ doesn’t verify.

∀i,Token(hci) ← z
1/αi

i mod p

Figure 13: Oblivious computation of
Token(·) using JL10.

• Public input:P,Q = P s

• Client’s private input:{hci}∀i
• CA’s private input:s.
• Server’s private input:z
1. CA:∀i, σi ← (hci)

s

2. CA
{σi}∀i

// Client
3. Server:R ← P z (Offline)

4. Server
R

// Client
5. Client:∀i,Token(hci) ← ê(R, σi)

Figure 14: Oblivious computation of
Token(·) using IBE-APSI.

B.1 Security against Honest-but-Curious/Malicious Client

We define against Honest-but-Curious/Malicious client by comparing its view under real model with that under
ideal model. In the ideal model, there is a trusted third party (TTP) serving as an honest server who, in response to the
queryqi, only repliesQi.

We first consider Honest-but-Curious adversary and analyzemalicious adversary at the end of this section. We
define a simulatorSIM that attempts to simulate to a real-model client based on output from ideal-model TTP as
follows:

Simulator SIM:
SIM is given input{q1, . . . , qn}

1. SIM picks all the secret and public parameters.

2. SIM interacts withA as a real-model server during oblivious computation of Token (step 1 of Figure 1).

3. SIM sends{q1, . . . , qn} to the TTP and receives{Q1, . . . , Qn}.

4. SIM runs an arbitrary function on{Q1, . . . , Qn} and outputs the result to the client.

We then define an experiment for any adversaryA:

The experimentSPrivC,A:

1. The adversaryA outputs to the challenger a list of queries{q1, . . . , qn}.

2. The challenger chooses a random bitb
r
← {0, 1} and does one of the following:

(a) If b = 0, then the challenger interacts withA as a real-model server.

(b) If b = 1, then the challenger interacts withA asSIM({Q1, . . . , Qn}).

3. The adversaryA outputs a bitb′.

4. The output of the experiment is defined to be1 if b′ = b, and0 otherwise.

Definition 1 The first PPSSI approach is secure against honest-but-curious client if, for all probabilistic polynomial-
time adversariesA, there exists a probabilistic polynomial-time simulatorSIM such that

Pr[SPrivC,A = 1] ≤
1

2
+ ǫ

This definition ensures that the client in the real model doesnot get more or different information than the ideal
implementation.
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Theorem 1 If the hash functionH(·), H1(·), H2(·), H3(·) are collision resistant,Enc is a semantic secure encryption,
and Token is unpredictable, then first PPSSI approach is secure against any probabilistic polynomial-time honest-but-
curious client.

Proof: Our goal is to construct a simulatorSIM such thatA cannot tell the difference between the view when interac-
tiing with SIM and the view when interacting with real-model server. OurSIM is constructed as follows:

1. SIM picks all the secret and public parameters on behalf of a real-model server and publish all public parameters.

2. SIM interacts withA as a real-model server during oblivious computation of Token (step 1 of Figure 1).

3. SIM queries TTP for{q1, . . . , qn} and gets back{Q1, . . . , Qn}.

4. LetQ denote∪iQi. SIM generatesw − |Q| random records of the same length as any other message inQ. Let
DB′ denote the concatenation ofQ and these random records. Note that|DB′| = w.

5. Use Algorithm 1 to encryptDB′ and returns encrypted databaseEDB′ to the client.

We first analyzeA’s view between tags inEDB and tags inEDB′. Note that a tag inLTable is com-
puted asH1(Token(H(attr, val))||ctr). For all (attr, val) pairs not queried by{q1, . . . , qn}, the computed tags
should be uniformly random unless (1) there existsj such thatH(qj) = H(attr, val); (2) there exists two pairs –
(attr′, val′), (attr′′, val′′) – such thatH1(Token(H(attr′, val′))||ctr′) = H1(Token(H(attr′′, val′′))||ctr′′); (3)A
forges Token(H(attr, val)) for certain(attr, val). All these happen with negligible probability ifH(·), H1(·) are
collision resistant and Token is unpredictable.

Next we analyzeA’s view between({ekj,l, eindj,l}1≤l≤m, erj)1≤j≤w in EDB and those inEDB′. For all
ek, eind, er whose corresponding tags do not match{q1, . . . , qn}, they should appear uniformly random toA unless
(1)A breaks symmetric encryption algorithm; (2) finds collisioninH2(·) orH3(·); (3)A can forge Token(H(attr, val))
for certain(attr, val). All these happen with negligible probability ifH2(·), H3(·) are collision resistant,Enc is se-
mantic secure and Token is unpredictable. ¤

In order to consider malicious adversary, we need to change the simulator definition and the experiment. InSIM,
there is no input of{q1, . . . , qn} and, inSPrivC,A, there is no step 1. Note, for the first PPSSI approach, it is secure
against malicious adversary only if [13] is used for oblivious computation of Token.

Theorem 2 If oblivious computation of Token protocol is secure against malicious client, the hash functionH(·),
H1(·), H2(·), H3(·) are collision resistant andEnc is a semantic secure encryption, then first PPSSI approach is
secure against any probabilistic polynomial-time malicious client.

Proof: SIM construction is the same as that in the proof for theorem 1 except that, in step 2,SIM extracts all
{q1, . . . , qn} from the ZKPK sent byA, which requires rewinding ofA. Then the proof follows that for Theorem 1.
¤

B.2 Security against Honest-but-Curious/Malicious Server

Given that the server gets no output from the protocol, the definition of client’s privacy requires simply that the
server cannot distinguish between cases in which the clienthas different inputs.

We define an experiment for any adversaryA:

The experimentSPrivS,A:

1. The adversaryA chooses its own databaseDB and outputs to the challenger two list of queries –
(q01 , . . . , q

0
n) and(q11 , . . . , q

1
n).

2. The challenger chooses a random bitb
r
← {0, 1} and does one of the following:

(a) If b = 0, then the challenger interacts withA as a honest client using queries(q01 , . . . , q
0
n).

(b) If b = 1, then the challenger interacts withA as a honest client using queries(q11 , . . . , q
1
n).

3. The adversaryA outputs a bitb′.

4. The output of the experiment is defined to be1 if b′ = b, and0 otherwise.
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Definition 2 The first PPSSI approach is secure against honest-but-curious/malicious server if, for all probabilistic
polynomial-time adversariesA,

Pr[SPrivS,A = 1] ≤
1

2
+ ǫ

Theorem 3 If oblivious computation of Token function is secure against any probabilistic polynomial-time honest-
but-curious/malicious server, the first PPSSI approach is secure against any probabilistic polynomial-time honest-but-
curious/malicious server.

Proof: In the first PPSSI approach, the only messagesA gets from the client is during oblivious Token compu-
tation. If oblivious computation of Token function is secure against any probabilistic polynomial-time honest-but-
curious/malicious server, the messagesA receives from the client should be perfectly hidden by randomness. There-
fore the theorem follows. ¤

C Security Analysis of Second PPSSI Approach

Since we do not consider collusion, the security against Honest-but-Curious/Malicious client and server follows
exactly from Theorem 1, 2, 3. So we only discuss security against Honest-but-Curious/Malicious Isolated Box.

C.1 Security against Honest-but-Curious/Malicious Isolated Box (IB)

We define security against Honest-but-Curious/Malicious Isolated Box (IB) by comparing its view when interact-
ing with an honest client and an honest server with its view when interacting with a simulatorSIM.

Simulator SIM:
SIM is given|XU | for anyU ⊆ {0, . . . , n} whereXU = ∩i∈UQi.

1. SIM outputs an encrypted databaseEDB′ toA.

2. SIM interacts withA as a client, simulating queries{q1, . . . , qn} (even thoughSIM does not know
{q1, . . . , qn}).

Note, in the above definition, the only informationSIM knows is the cardinality ofXU which is defined as the
intersection of a subset of query answers.

We then define an experiment for any adversaryA:

The experimentSPrivIB,A:

1. The adversaryA outputs to the challenger a databaseDB and a list of queries{q1, . . . , qn}.

2. The challenger chooses a random bitb
r
← {0, 1} and does one of the following:

(a) If b = 0, then the challenger interacts withA as an honest client and an honest server.

(b) If b = 1, then the challenger computes{Q1, . . . , Qn} based onDB, derives all intersectionsXU for
all U ⊆ {1, . . . , n} and interacts withA asSIM({|XU |}∀U⊆{1,...,n}).

3. The adversaryA outputs a bitb′.

4. The output of the experiment is defined to be1 if b′ = b, and0 otherwise.

Definition 3 The second PPSSI approach is secure against honest-but-curious/malicious IB if, for all probabilistic
polynomial-time adversariesA, there exists a probabilistic polynomial-time simulatorSIM such that

Pr[SPrivIB,A = 1] ≤
1

2
+ ǫ

Theorem 4 If the hash functionH(·), H1(·), H2(·), H3(·) are collision resistant,Enc is a semantic secure encryption,
and Token is unpredictable, then the second PPSSI approach is secure against any probabilistic polynomial-time
honest-but-curious/malicious IB.
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Proof: Our goal is to construct a simulatorSIM such thatA cannot tell the difference between the view when inter-
acting withSIM and the view when interacting with an honest client and an honest server. OurSIM is constructed as
follows:

1. SIM createsEDB′:

• Pickw random messages of same length as encrypted messages.

• Then createLTable′ = {(tag′j,l, ek
′
j,l, eind

′
j,l)}1≤j≤w,1≤l≤m wheretag′j,l ∈R {0, 1}lh , ek′j,l ∈R {0, 1}le ,

eind′j,l ∈R {0, 1}ld, lh is the output length of hash function,le is the output length of encryption function.

2. For each queryqi, SIM prepares the matching tag setTi = {tagi1 . . . tag
i
|Qi|

} such that| ∩i∈U Ti| = |XU | for
anyU ⊆ {0, . . . , n} as follows:

• For allU , compute|X̂U | whereX̂U = XU\ ∪|U ′|>|U | XU ′ . Given|XU |, |X̂U | can be computed as

|X̂U | =|XU | − |XU ∩ (∪|U ′|>|U |XU )|

=|XU | − (
∑

|U ′|>|U |

|XU ∩XU ′ | −
∑

|U ′
1
|>|U |,|U ′

2
|>|U |,U ′

1
6=U ′

2

|(XU ∩XU ′
1
) ∩ (XU ∩XU ′

2
)|

+ · · ·+ (−1)(
n

n)+···+( n

|U|+1) · | ∩|U ′|>|U | (XU ∩XU ′)|)

where|XU1
∩ · · · ∩XUi

| = |XU1∪···∪Ui
|. It is easy to observe that

∑
U⊆{1,...,n} |X̂U | = | ∪n

j=1 Qj |

• Randomly pick
∑

∀U |X̂U | different tags fromLTable′ and store them inY . For eachU , initialize Q̂U as
follows:

(a) Pick|X̂U | distinct tags fromY and add them tôQU .

(b) UpdateY ← Y \Q̂U .

• For λ = 1, . . . , n, setTλ = ∪λ∈U Q̂U and append a random tag (used to terminate a query) which is
different from all tags inLTable′ to Tλ. Note|Tλ| = |Qλ|+ 1.

3. SIM plays the role of a client as follows: for theλth query, make|Tλ| probes whereθth probe is theθth element
in Tλ.

We first analyze the view ofA between tags inEDB and those inEDB′. The distribution of tags inEDB

and those inEDB′ is the same unless one of the following happens: (1) there exists(attri, vali) 6= (attrj , valj)
but H(attri, vali) = H(attrj , valj); (2) H(attri, vali) 6= H(attrj , valj) but H1(Token(H(attr′, val′))||ctr′) =
H1(Token(H(attr′′, val′′))||ctr′′); (3) A forges Token(H(attr, val)) for certain(attr, val). All these happen with
negligible probability ifH(·), H1(·) are collision resistant and Token is unpredictable.

Next we analyzeA’s view between({ekj,l, eindj,l}1≤l≤m, erj)1≤j≤w in EDB and those inEDB′. They should
appear uniformly random toA unless (1)A breaks symmetric encryption algorithm; (2)A finds collision inH2(·)
or H3(·) (which breaks one-time-pad encryption); (3)A can forge Token(H(attr, val)) for certain(attr, val). All
these happen with negligible probability ifH2(·), H3(·) are collision resistant,Enc is semantic secure and Token is
unpredictable.

Last we show thatA cannot distinguish the way that an honest client’s queries are answered usingEDB and the
way thatSIM’s queries are answered usingEDB′. For an honest client’s queryqi, there are|Qi| matches inEDB.
For theSIM’s ith query, it makes|Ti| probes and there will be|Ti| − 1 matches. Since|Ti| − 1 = |Qi| andA cannot
distinguisherj from er′j , the view in the real protocol and that in the interaction with SIM are identical. ¤

D Comparion of State-of-the-art PSI-DT

In the following, we review and compare state-of-the-art PSI protocols and focus on PSI-DT variants. We assume
client and server set sizes arev andw, respectively.
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D.1 PSI-DT without Pre-distribution

FNP04. Freedman, Nissim, and Pinkas [18] useoblivious polynomial evaluationto implement PSI. Their approach
can be slightly modified to support PSI-DT. The modified protocol – denoted as FNP04 – works as follows: the
client first setups an additively homomorphic encryption scheme, such as Paillier, with key pair(pkc, skc). Client
defines a polynomialf(y) =

∏v
i=1(y − ci) =

∑v
i=0 aiy

i whose roots are its inputs. It encrypts each coefficient
ai under its public keypkc and sends encrypted coefficients{Encpkc

(ai)}
k
i=0 to the server. Since the encryption is

homomorphic, the server can evaluateEnc(f(sj)) for eachsj ∈ S independenlty from the client. Then, the server
returns{(Enc(rj · f(sj)+ sj), Enc(r′j · f(sj)+ dataj))}

n
j=0 to the client whererj andr′j are fresh random numbers

for each input inS. Client, for each returned pair(el, er), decryptsel by computingc′ = Decskc
(el). Then ifc′ ∈ C,

the client continues to decrypter and gets the associated data. Otherwise, the client only gets some random value and
moves onto the next returned pair. In order to speed up the performance, FNP04 can use modified ElGamal encryption
instead of Paillier. Specifically, the client usesgai instead ofai as the input to the ElGamal encryption whereg is a
generator with orderq modulop. And when it decryptsel, it recoversgc

′

. Client can still decide whetherc′ ∈ C by
comparinggc

′

to gci , ∀ci ∈ C. In terms of data, the server can choose a random keygkj and uses it to symmetrically
encryptdataj . Then the server sends{(Enc(rj ·f(sj)+sj), Enc(r′j ·f(sj)+kj), Encgkj (dataj))}

w
j=0 to the client.

If the client can recovergkj , it can also decryptdataj . Using balanced bucket allocation to speed up operations,
client overhead is dominated byO(v + w) |q|-bit modp exponentiations (in ElGamal). Whereas, server overhead is
dominated byO(w log log v) |q|-bit modp exponentiations.

KS05. Kissner and Song [29] also use oblivious polynomial evaluation to construct a variety of set operations. How-
ever, their solution is designed for mutual intersection over multi-setthat may contain duplicate elements, and it is
unclear how to adapt it to transfer associated data. Also, their technique incurs quadratic (O(vw)) computation (but
linear communication) overhead. As we use a different method to handle multi-sets (see Section 5) and we only
consider one-way PSI, we do not consider KS05 any further.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT protocol (Fig. 3 in [14]) with linear computation and
communication complexities. This protocol, denoted as DT10-1, operates as follows: The setup phase yields primesp
(e.g. 1024 bits) andq (e.g. 160 bits), s.t.q|p−1, and a generatorg with orderq modulop. In the following, we assume
computation is done modp. First, the client sends to the serverX = [(

∏v
i=1 H(ci)) · g

Rc ] whereRc is randomly
selected fromZq. Also, for each1 ≤ i ≤ v, the client sendsyi = [(

∏
l 6=i H(cl)) · g

Rc:i], where theRc:i’s are random

in Zq. The server picks a randomRs in Zq and replies withZ = gRs andy′i = yRs

i (for everyyi it received). Also, for
each itemsj (1 ≤ j ≤ w), it computesKs:j = (X/H(sj))

Rs , and sends thetag tj = H1(Ks:j) with the associated
data record encrypted underkj = H2(Ks:j). The client, for each of its elements, computesKc:i = y′i · Z

Rc · Z−Rc:i

and the tagt′i = H1(Kc:i). Only if ci is in the intersection (i.e., there exists an elementsj = ci), the client finds a
pair of matching tags(t′i, tj). Besides learning the elements intersection, the client can decrypt associated data records
by keyH2(Kc:i). Client overhead amounts toO(v) |q|-bit modulop exponentiations and multiplications and server
overhead isO(v + w) |q|-bit modulop exponentiations.

D.2 PSI-DT with Pre-distribution

JL09. Jarecki and Liu [25] (following the idea in [23]) give a PSI-DT based on Oblivious PRF (OPRF) [17]. We
denote this protocol as JL09 (and present the improved OPRF construction discussed in [2]). Recall that an OPRF is a
two-party protocol that securely computes a pseudorandom functionfk(·), on keyk contributed by a server and input
x contributed by a client, such that the server learns nothingaboutx, while the client learnsfk(x). The main idea is
the following: For every itemsj ∈ S, the server publishes a set of pair{H1(fk(sj)), EncH2(fk(sj))(dataj)}. Then,
the client, for every itemci ∈ C, obtainsfk(ci) by OPRF with the server. As a result, the client can useH1(fk(ci)) to
check ifci ∈ C ∩ S and if so then it usesH2(fk(ci)) to recoverdataj . JL09 incursO(w + v) server exponentiations,
andO(v) client exponentiations. Exponentiations are|N |-bit moduloN2, whereN is the RSA modulus.

JL10. Another recent work by Jarecki and Liu [26] (denoted as JL10)leverages an idea similar to JL09 [25] to achieve
PSI-DT. Instead of using OPRF, JL10 uses the newly-introducedParallel Oblivious Unpredictable Function(POUF),
fk(x) = (H(x)k mod p), in the Random Oracle Model. In order to obliviously computefk(x), the client first picks
a random exponentα and sendsyj = H(cj)

α to the server. The server replies to the client withzj = (yj)
k. Then the

client recoversfk(x) = z1/α. The computational complexity of this protocol amounts toO(v) online exponentiations
for both server and client, as the server can pre-process (offline) itsO(w) exponentiations. Exponentiations areq-bit
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modulop, similar to DT10-1.

DT10-2. In Fig. 4 of [14], De Cristofaro and Tsudik present a PSI-DT based on blind-RSA signatures in the Random
Oracle Model (ROM). We denote this protocol as DT10-2. The protocol uses the hash of RSA signatures as a PRF
in ROM and achieves the same asymptotic complexities as DT10-2 and JL10, but (1) the server now computes RSA
signatures (e.g., 1024-bit exponentiations), and (2) client workload is reduced to only multiplications if the RSA public
key,e, is chosen short enough (e.g.,e = 3).

In summary, we consider JL09, JL10 and DT10-2 in the context of PSI-DT with pre-distribution. Note that,
although faster than protocols without pre-distribution,these protocols do not achieve Server Unlinkability.

D.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig.2 of [14], De Cristofaro and Tsudik also present an APSI-DT technique mirroring its PSI-DT
counterpart, DT10-1. We denote this protocol as DT10-APSI.It operates as follows: the client first obtains autho-
rization from the court for its elementci, where an authorization corresponds to an RSA-signature:σi = H(ci)

d.
Then, the client sends the serverX = [(

∏v
i=1 σi) · g

Rc ] for a randomRc. Then, for each elementci, it sendsyi =
[(
∏

l 6=i σl) · g
Rc:i], where theRc:i’s are additional random values. The server picks a random value,Rs, and replies

with Z = geRs , y′i = yeRs

i (for each receivedyi). Also, for each elementsj , she computesKs:j = (Xe/H(sj))
Rs ,

and sends thetag tj = H1(Ks:j) and the associated data record encrypted under the keykj = H2(Ks:j). Client,
for each of its elements, computesKc:i = y′i · Z

Rc · Z−Rc:i and the tagt′i = H1(Kc:i). Client can find a pair of
matching tag(t′i, tj) only if ci is in the intersection andσi is a valid signature onci, Besides learning the elements in
the intersection, the client can decrypt associated data records. The computation overhead isO(v) exponentiations for
the client, andO(v + w) – for the server. Exponentiations are|N |-bit moduloN , whereN is the RSA modulus.

CZ09. Camenisch and Zaverucha [6] provide mutual set intersection with authorization on both parties’ input. The
proposed protocol builds upon oblivious polynomial evaluation and has quadratic computation and communication
overhead. Also, it does not provide data transfer.

As a result, we only consider the DT10-APSI protocol in the context of APSI-DTwithoutpre-distribution. Note
that DT10-APSI provides both Server and Client Unlinkability, as well as Forward Security.

D.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 5 of [12] presents a protocol based on Boneh-Franklin Identity-based Encryption [4],
which can be adapted to APSI-DT with pre-distribution. We denote this protocol as IBE-APSI. Note that such a con-
struct is described in the context of a different primitive –Privacy-Preserving Information Transfer (PPIT). However,
it can be converted to APSI-DT.
First, the authorization authority (acting as the IBE PKG) generates a primeq, two groupsG1,G2 of orderq, a bilinear
mape : G1 × G1 → G2. A randoms ∈ Zq is selected as a secret master key. Then, a random generatorP ∈ G1 is
chosen, andQ is set such thatQ = s · P . (P,Q) are public parameters. Client obtains authorization for anelement
ci as an IBE secret key,σi = s · H(ci). In the pre-distribution phase, the server first selects a randomz ∈ G1 and
then, for each(sj , dataj), publishes(tj , ej) wheretj = H1(e(Q,H(sj))

z) andej is the IBE encryption ofdataj
under identifiersj . Then, the server gives the clientR = zP and the client computest′i = H1(e(R, σi)). For any
t′i, s.t. t′i = tj , the client can decryptej . The protocol can be speeded up by encryptingej under symmetric key
H2(e(Q,H(sj))

z). The computation overhead for the client amounts toO(v) pairing operations, while there is no
online overhead for the server.
Remark that IBE-APSI has two drawbacks compared to APSI-DT:it provides neither Server Unlinkability nor Forward
Security.

D.5 Benchmark of (A)PSI-DTs

In this section, we benchmark several (A)PSI-DT protocols and compare their performance through experimental
results. During the process, we try to identify the most efficient (A)PSI-DT protocols (with or without pre-distribution),
and select the building blocks of our PSSI solutions.

Candidate Protocols.We discuss efficient implementation of the following (A)PSI-DT protocols:
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w/o Pre-Distribution w/ Pre-Distribution

PSI-DT
FNP04 ([18]), JL09 ([25]), JL10 ([26]),

DT10-1 (Fig.3 in [14]) DT10-2 (Fig.4 in [14])
APSI-DT DT10-APSI (Fig.2 in [14]) IBE-APSI (Fig.5 in [12])

Table 7: Candidate PSI-DT and APSI-DT protocols.
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Figure 16: Server pre-computation overhead.

Each protocol was implemented in C++ using GMP (ver. 5.01) and PBC (ver. 0.57) libraries. All benchmarks
were collected on a Ubuntu 9.10 desktop platform with Intel Xeon E5420 CPU (2.5GHz and 6MB cache) and 8GB
RAM.

For protocols supporting data transfer, data associated with each server element can be arbitrarily long. Also,
performance of some protocols is dominated by each element’s data size, rather than set size (e.g., in FNP04). In
order to obtain a fair comparison, we need to capture the “intrinsic” cost of each protocol. To this end, we employ the
following strategy to eliminate data size effects: First, in all protocols, we encrypt each element’s data with a distinct
random symmetric key and consider these keys as the new associated data. Assuming that a different key is selected at
each interaction, this technique does not violate Server Unlinkability. This way, the computation cost of each protocol
is measured based on the same fixed-length key, regardless ofdata size. In our experiments, we set symmetric key size
to 128 bits.

As a result, each protocol execution involves additional overhead of symmetric en-/de-cryption of records. Fig-
ure 15 compares the resulting overhead (for variable data sizes), using either RC4 [36] or AES-CBC [11] (with 128-bit
keys). Therefore, to estimate the total cost of a protocol, one needs to combine: (1) symmetric encryption overhead,
(2) computation cost of each protocol, and (3) data transferdelay for transmitting the encrypted data and PSI values.

We further assume that the client does not perform any pre-computation, while the server performs as much pre-
computation on its input as possible. This reflects the reality where client input is (usually) determined in real time,
while server input is pre-determined. Figure 16 shows the pre-computation overhead for each protocol.

Next, we evaluate online computation overhead. Figures 17 and 18 present client online computation overhead
with respect to client and server input sizes, respectively. Figures 19 and 20 show server online computation overhead
with respect to client and server input size, respectively.

Furthermore, Figures 21 and 22 evaluate protocol bandwidthcomplexity with respect to client and server input
sizes. For protocols with pre-distribution, bandwidth consumption (since the transfer of database encryption is per-
formed offline) does not include pre-distribution overhead. Note that, in these figures, we sometimes use the same
marker for different protocols to indicate that these protocols share the same value. Client input sizev (resp., server
input sizew) is fixed at5, 000 in figures where x-axis refers to the server (resp., the client) input size.

Finally, note that, in all experiments, we use a 1024-bit RSAmodulus and a 1024-bit cyclic-group modulus with
a 160-bit subgroup order. All test results are averaged over10 independent runs. All protocols are instantiated under
the assumption ofHonest-but-Curious(HbC) adversaries and in theRandom Oracle Model(ROM).

PSI-DT without pre-distribution. We now focus on the comparison between FNP04 and DT10-1. Figures 17-
22 show that that FNP04 is much costlier than DT10-1 in terms of client and server online computation as well as
bandwidth consumption. For each client set size, DT10-1 client overhead ranges from460ms to 4, 400ms, while
FNP04 server overhead – between1, 300ms and15, 000ms. For each chosen server set size, server overhead in
DT10-1 is under1, 300ms, while in FNP04 it exceeds15, 000ms.
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Figure 17: Client online computation
w.r.t. client set size.
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Figure 18: Client online computation
w.r.t. server set size.
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Figure 19: Server online computation w.r.t.
client set size.
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Figure 20: Server online computation w.r.t.
server set size.
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Figure 21: Bandwidth consumption w.r.t.
client set size.
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Figure 22: Bandwidth consumption w.r.t.
server set size.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and DT10-2, i.e., PSI-DTs with pre-distribution. Recall
that all protocols are instantiated in the HbC model, thus ZKPK’s are not included for JL09 and JL10. Figures 17-22
show that DT10-2 incurs client overhead almost two orders ofmagnitude lower than JL09 and JL10. Indeed, DT10-
2 involves two client multiplications for each item, while JL09 performs two heavy homomorphic operations and
JL10 – two exponentiations. In JL10, the server online computation overhead results fromv 160-bit exponentiations,
whereas, in DT10-2, it results fromv RSA exponentiations. Since these exponentiations can be speeded up using the
Chinese Remainder Theorem, the gap (for server computationoverhead) between JL10 and DT10-2 is only double.
Summing up server and client computation overhead, DT10-2 results to be the most efficient. In terms of bandwidth
consumption, DT10-2 and JL10 are almost the same, while JL09is slightly more expensive.

APSI-DT without pre-distribution. The only protocol available in this context is DT10-APSI (asdiscussed in Ap-
pendix D.3). Figure 17-20 illustrates that client overheadis determined only by client set size, whereas, server over-
head is determined by both client and server set sizes. Note that measurements obtained for APSI-DT naturally mirror
those of DT10-1, as the former simply adds authorization of client inputs (by merging signatures into the protocol).

APSI-DT with pre-distribution. The only protocol we evaluate for APSI-DT with data pre-distribution is IBE-APSI
(as discussed in Appendix D.4). Figure 17-18 shows that client overhead increases linearly with client set size and
does not depend on server set size. Recall that, in IBE-APSI,the server needs to compute pairing operations for each
item, independent of client input. Moreover, since these operations can be pre-computed, server-side overhead and
bandwidth consumption are negligible, as shown in Figures 19-22.4

During the pre-computation phase, the server needs to compute w pairing and exponentiations, which makes pre-
computation relatively expensive. Thus, note that, If Server Unlinkability is desired, server would need to repeat, for
every interaction, the operations otherwise performed only during pre-computation.

4In these figures, y-values for IBE-APSI are all 0 which is out of the scope of the y-axis.
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