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Abstract

The need for controlled (privacy-preserving) sharing of sensitfigmation occurs in many different and realistic
everyday scenarios, ranging from national security to social netmgrkVe consider two interacting parties, at least
one of which seeks information from the other: the latter is either willing, anpeled, to share information. This
poses two challenges: (1) how to enable this type of sharing such thaspl@arn no information beyond what
they are entitled to, and (2) how to do so efficiently, in real-world practicaisge This paper explores the notion of
Privacy-Preserving Sharing of Sensitive Information (PPSSH,mnvides two concrete and efficient instantiations,
modeled in the context of simple database querying. Proposed techritnetion as grivacy shieldto protect
parties from disclosing more than the required minimum of their respesgivsitive information. PPSSI deployment
prompts several challenges, that are addressed in this paper. iEtexgerimental results attest to the practicality
of attained privacy features and show that they incur quite low overfeegd10% slower than standard MySQL).

1 Introduction

In today’s increasingly digital world, there is often a tiemsbetween safeguarding privacy and sharing information.
On the one hand, sensitive data needs to be kept confidentiisiiie other hand, data owners are often motivated or
forced to share sensitive information. Consider the follhgrexamples:

e Aviation Safety:The Department of Homeland Security (DHS) checks whethgmpassengers on each flight
from/to the United States must be denied boarding or diseékaban, based on several secret lists, including
theTerror Watch List(TWL). Today, airlines surrender their passenger manitestise DHS, along with a large
amount of sensitive information, including credit card rners |[§_’V]. Besides its obvious privacy implications,
this modus operandi poses liability issues with regard tosfly) innocent passengers’ data and concerns about
possible data logs. Ideally, the DHS would obtain information pertainimgly to passengers on one of its
watch-lists, without disclosing any information to theliaies.

e Law EnforcementAn investigative agency (e.g., the FBI) needs to obtaintedea information about a suspect
from other agencies, e.g., the local police, the militang DMV, the IRS, or the suspect’s employer. In many
cases, itis dangerous (or simply forbidden) for the FBI sxldise the subjects of its investigation. Whereas, the
other party cannot disclose its entire data-set and trestBi to only extract desired information. Furthermore,
FBI requests might need to be prethorizedoy some appropriate authority (e.g., a federal judge). Waig,
the FBI can only obtain information related to authorizegiuests.

e Healthcare:A health insurance company needs to retrieve informatiaugits client from other entities, such
as other insurance carriers or hospitals. The latter cgmmatde any information on other patients and the
former cannot disclose the identity of the target client.

Other examples of sensitive information sharing includéborative botnet detectioﬂbl], where parties sharé the
logs for the sole purpose of identifying common anomalies.

Motivated by above examples, this paper develops the aathite forPrivacy-Preserving Sharing of Sensitive
Information (PPSSI), and proposes two efficient and secure instantiations timatibn as grivacy shieldo protect
parties from disclosing more than the required minimum ofge/e information. We model PPSSI in the context of
simple database-querying applications with two partieraer in possession of a database, araient, performing
disjunctive equality queries. In terms of one of the examplove, the airline company (the server) has a database
with passenger information, while the DHS (the client) mogeeries corresponding to the TWL.

1see([7] for a litany of recent incidents where large amountsitiee data were lost or mishandled by government agencies.



Intended Contributions. In this paper, we explore the notion of Privacy-Preservihgriig of Sensitive Information
(PPSSI). Our main building blocks are efficient Private &&drisection (PSI) techniques. During the design of PPSSI,
we address several challenges stemming from adapting P&alistic database settings. Our extensive experimental
evaluation demonstrates that our techniques incur veryolmvhead: about0% slower than standard (non privacy-
preserving) MySQL. All source code is publicly availaBle.

Organization. In next section, we introduce PPSSI syntax, along with itgapy requirements, and review PSI
definitions. After reviewing related work in Sectibh 3, incBen[4, we discuss the insecurity of a strawman approach
obtained with a nize adaptation of PSI techniques to PPSSI. Then, Seliotrédinces a secure PPSSI approach
using a novel database encryption mechanism. Next, in@g@tiwe consider another approach geared for very large
databases. Sectibh 7 presents our experimental analydi§extiol B concludes the paper by discussing future work.

In AppendiXA, we illustrate the details of one PPSSI aldorit while AppendiXB anfIC present the preliminary
version of formal security proofs of solutions proposedéct®n% andlb. Finally, in AppendixID, we report complete
details and performance evaluation of all considered Rrig&t Intersection constructions.

2 Preliminaries

This section introduces Privacy-Preserving Sharing ofsiga Information (PPSSI), formalizes its privacy re-
quirements, and overviews Private Set Intersection (P8Ur-main building block.

2.1 PPSSI Syntax & Notation

We model PPSSI in the context of simple database queryinigj. drserver maintains a databagel3, containing
w records withm attributes(attry, - - -, attr,,). We denoteD B = {(R;)}}_,. Each record?; = {val;,};",, where
val;; is R;'s value for attributesttr;. A client poses simple disjunctive SQL queries, such as:

SELECT * FROM DB WHERE(attr? = vali OR - ORattr} = val?) 1)

As a result of the query, the client gets all record®ii satisfyingwhereclause, and nothing else. Whereas, the
server learns nothing about afyttr’, val} }1<i<,. We assume that the database schema (format) is known to the
client. Furthermore, without loss of generality, we asstina¢ the client only queries searchable attributes.

In an alternative version supportiagithorized querigsve require the client to receive query authorizations from
a mutually trusted offlineertification Authority(CA) prior to interacting with the server. That is, the cli@utputs
matching records only if the client holds pertinent authations for(attr}, val}).

Our notation is reflected in Tab[é 1. In addition, we usecy(-) and Decy(+) to denote, respectively, symmetric
key encryption and decryption (under kigy Public key encryption and decryption, under kegsandsk, are denoted
asE,,(-) and Eg ()1, respectively.c = Sign,, (M) denotes a digital signature computed over messdgesing
secret keysk. OperationVrfy,, (o, M) returnsl or 0 indicating whethew is a valid signature o/. Zj, refers to
a composite-order RSA group, whekeis the RSA modulus. We uséto denote RSA private key andto denote
corresponding public key. We ugg to denote a cyclic group with a subgroup of ordemwherep andq are large
primes, andy|p — 1. We useé¢ : G; x Gy — G, to denote a bilinear map andK PK to denote zero-knowledge
proof of knowledge. We usé/ (), H(-), Ha(-), Hs(+) to denote different hash functions. In practice, we impletme
H(m), Hy(m), Hy(m), H3(m) as SHA-10||m), SHA-1(1||m), SHA-1(2||m), SHA-1(3||m).

2.2 Privacy Requirements

We now define PPSSI privacy requirements for both standaddhathorized queries. We consider both Honest-
but-Curious (HbC) adversaries and malicious adversaAesHbC adversary faithfully follows all protocol’'s speci-
fications (but might attempt to infer additional informatiduring or after protocol execution). Whereas, malicious
adversaries may arbitrarily deviate from the protocol.

Privacy requirements are as follows:

e Server Privacy.The client learns no information about any record in sesvéatabase that does not satisfy the
where(attr; = val}) clause(s).

2Source code is availablelat t p: / / ppssi . googl ecode. coni fi | es/ ppssi-inp.tar.gz.


http://ppssi.googlecode.com/files/ppssi-imp.tar.gz

attr; | Ithattribute in the database schema | ctr;; number of times whereal;/ ; = val;;,Vj’ <=3
R; sthrecord in the database tag; tag forattr;, val;
valj,; | value inR; corresponding tattr, K’ key used to encrypt;

k; key used to encrypk;; k}/z key used to encrypt index
er; encryption ofR; ek;, encryption of keyk;
thj token evaluated overttr;, val; ; eind; encryption of indexj

Table 1: Notation.

e Server Privacy (Authorized Queriesfame as "Server Privacy” above, but, in addition, the clieatns no
information about any record satisfying tdere (attr; = wval}) clause, unless th&uttr;, val}) query is
authorized by the CA.

¢ Client Privacy. The server learns nothing about any client query parametersallattr; andval;, nor about
its authorizations, (for authorized queries).

e Client Unlinkability. The server cannot determine (with probability non-negligexceedingl /2) whether any
two client queries are related.

e Server Unlinkability. For any two queries, the client cannot determine whetherrangrd in the server's
database has changed, except for the records that aredd€hgnte client) as a result of both queries.

e Forward Security (Authorized QueriesThe client cannot violate Server Privacy with regard to ipiierac-
tions, using authorizations obtained later.

Note that Forward Security and Unlinkability requiremeaits crucial in many practical scenarios. Referring to one
example in Sectiohl1, suppose that the FBI queries an enmldgmbase without having authorization for a given
suspect, e.g., Alice. Server Privacy (Authorized Querdesures that the FBI does not obtain any information about
Alice. However, unless Forward Security is guaranteedhéf EBI later obtains authorization for Alice, it could
inappropriately recover her file from the (recorded) protdcanscript. On the other hand, Unlinkability keeps one
party from noticing changes in other party’s input. In pautar, unless Server Unlinkability is guaranteed, thentlie
can always detect whether the server updates its databsednetwo interactions. Unlinkability also minimizes the
risk of privacy leaks. Without Client Unlinkability, if theerver learns that the client's queries are the same in two
interactions and one of these query contents are leakedthirequery would be immediately exposed.

2.3 Private Set Intersection (PSI)

Private Set Intersection (PS[E[lS] constitutes our maiiding block. It allows two parties — a server and a client
— to interact on their respective input sets, such that tiemtconly learns the intersection of the two sets, while the
server learns nothing beyond client's set size. Below, wengew two recent PSI protocols 14,126]. They involve
linear communication and computational complexity (in $iee of client and server sets).

PSI with Data Transfer (PSI-DT): It involves a server, on input a set afitems, each with associated data record,
S = {(s1,datay), -, (sw,data,)}, and a client, on input of a set ofitems,C = {c1,---,¢,}. It results in the
client outputting{(s;, data;) € S|3¢; € C s.t. ¢; = s;} and the server — nothing except This variant is useful
whenever the server holds a set of records, rather than desgepof elements.

Authorized PSI-DT (APSI-DT): It ensures that client input suthorizedoy a mutually trusted offline CA. Unless it
holds pertinent authorizations, the client does not leamather its input is in the intersection. At the same time, the
server does not learn whether client’s input is authorized,verification of client authorizations is performediab
ously. More specifically, APSI-DT involves a server, on ihpla set ofw items:S = {(s1,datay), -+ , (Sw, datay)},
and a client, on input of a set ofitems with associated authorizations (typically, in theri@f digital signatures); =
{(c1,0:) -+, (cu,00)}. Itresults in client outputting(s;, data;) € S | A(ci, 0:) € C s.t. ¢; = 55 A Vrfy,, (04, ¢:) =

1} (wherepk is CA's public key).

We also distinguish between (A)PSI-DT protocols based oethdr or not they suppoptre-distribution

(A)PSI-DT with pre-distribution: The server can “pre-process” its input set independentiynfclient input. This
way, the server capre-distributeits (processed) input before protocol execution. Bothgraeessing and pre-
distribution can be done offline, once for all possible dken

(A)PSI-DT without pre-distribution: The server cannot pre-process and pre-distribute its.input



Note that pre-distribution precludes Server Unlinkapilgtince server input is assumed to be fixed. Similarly, in the
context of authorized protocols with pre-distributionyward Security cannot be guaranteed.

3 Related Work

A number of cryptographic primitives provide privacy projpes resembling those listed in Sectibnl2.2. We
overview them below.

Secure Two-Party Computation (2PC).2PC allows two parties, on inputandy, respectively, to privately compute
the output of a public functiorf over («,y). Both parties learn nothing beyond what can be inferred filoeroutput
of the computation. Although one could implement PPSSI wéheric 2PC, it is usually far more efficient to have
dedicated protocols, as 2PC incurs high computationah@agt and involves several communication rounds.

Oblivious Transfer (OT). OT ﬂ@] involves a sender holding secret messages and a receiver willing to retrieve the
i-th among sender’s messages. It ensures that the sendenatdearn which message is retrieved, and the receiver
learns no other message. While the OT functionality sometesembles PPSSI requirements, note that, in PPSSI,
receiver’s inputs are queries, whereas, in OT, they ared@sdi

Private Information Retrieval (PIR). PIR [3] allows a client to retrieve an item from a server datd) (1) without
revealing which item it is retrieving, and (2) incurring aremunication overhead strictly lower thé&h(n), wheren is

the database size. Observe that, in PIR, privacy of serdatabase is not protected — the client may receive additiona
bits of information, besides the records requested. SymfR (SPIR)[20] additionally offers server privacy, thu
achieving OT with communication overhead lower ti@fm). However, similar to OT, a client of a symmetric PIR
needs to input the index of the desired item in server’s datab an unrealistic assumption for PPSSI. An extension to
keyword-based retrieval is known as Keyword-PIR (KP@) [@bwever, KPIR still does not consider server privacy
and it involves multiple rounds of PIR executions.

Searchable Encryption (SE).Symmetric Searchable Encryption (S [38] allows a cliergtore, on an untrusted
server, messages encrypted using a symmetric-key cipluer its own secret key. Later, the client can search for
specific keywords by giving the server a trapdoor that dog¢seweal keywords or plaintexts. Boneh et al. [3] later
extended SSE to the public-key setting, i.e., anyone cacligs#’s public key to encrypt and route messages through
an untrusted server (e.g., a mail server). The client cam ¢femerate search tokens, based on its private key, to let
the server identify messages including specific keywords céviclude that Searchable Encryption targets related yet
different scenarios compared to PPSSI.

Privacy-Preserving Database Query (PPDQ)PPDQ techniques can be distinguished into two kinds. Thiedirs

is similar to SSE: the client encrypts its data, outsourcesypted data to an untrusted service provider (while not
maintaining copies), and queries the service provider kit Wi addition to simple equality predicates supported by
SSE, solutions lik D4] support general SQL operatidwgin, this setting is different from PPSSI, as that data,
although stored by the server, belongs to the client; thnesgetis no privacy restriction against the client. Morepver
these solutions do not provide provably-secure guaranbeesre based on statistical methods.

The second kind of PPDQ is closely related to private preédigaatching. Olumofin and Goldbe@33] propose a
transition from block-based PIR to SQL-enabled PIR. As @giido PPSSI, however, server's database is assumed to
be public, thus, its privacy is not protected. Then, Murat &hris ] consider a scenario where client matches clas-
sification rules against server’s database. However, tegyme the client’s rule set to be fixed in advance and known
to the server. Additional work, such a@[@ 10], requiresesd independent, mutually-trusted, and non-colluding
parties. Murugesan et aD30] also allow “fuzzy” matchiggt their solution requires a number of (expensive) cryp-
tographic operations (i.e., public-key homomorphic oflers) quadratic in the size of parties’ inputs, while we aim
at constructing scalable solutions with linear complexity

4 A Strawman Approach

Looking at definitions in Sectidn 2.3, it seems that PPSShearealized by simply instantiating PSI-DT protocols
(or APSI-DT for authorized queries). We outline tetsawmanapproach below and show that it is not secure.
For each record, consider the hash of every attribute-vahie (attr;, val; ;) as a set element, andd; as its



e Client's input: {hc;, 0 }1<i<v, Where:he; = H(attr},val?). oy is only used for APSI-DT protocols.

Obliviously computeitk;«+-Token(hc;) }vi
1. Client Server

2. ServerEDB <« Encr ypt Dat abase(Token(-), {R;}1<j<w)

EDB .
3. Server Client

4. Client:Vi<;<,R; + Lookup(tk;, EDB), OutputR1 U --- U Ry.

Figure 1: Outline of our first PPSSI approach.

associated data. Server “set” then becomes:
§= {(H(attrla U(lljvl), Rj)}lflﬁm,lgjgw

Client “set” is: C = {H (attr},val})}1<i<,, i.€., elements corresponding to twdereclause in Equatiof]1. Op-
tionally, if authorized queries are enforcedjs accompanied by signatures over H (attr;, val}), following the
APSI-DT syntax. Parties engage in an (A)PSI-DT interactairthe end of it, the client obtains all records matching
its query.

The strawman approach faces two security issues:

Challenge 1: Multi-Sets. While most databases include duplicate values (e.g., “gentde”), PSI-DT and APSI-
DT definitions assume that sets do not include duplidéserver set contains duplicated values, the correspandin
messages to the client would be identical and the client avtadrn all patterns and distribution frequencies. This
raises a serious concern, as actual values can be ofteremhfieom their frequencies. For example, consider a large
database where one attribute reflects “employee blood tygiece blood type frequencies are well-known for general
population, distributions for this attribute would esselhi reveal the plaintext.

Challenge 2: Data Pointers.To enable querying by any attribute, each recotl,— must be separately encrypted
m times, i.e., once for each attribute. As this would resulhigh storage/bandwidth overhead, one could encrypt
eachR; with a unique symmetric kek, and then using:; (instead ofR;) as data associated wiltd (attr;, val; ;).
Although this would reduce the overhead, it would triggesther issue: in order to use the key — rather than the actual
record — as the associated “data” in the (A)PSI-DT protoselwould need to store a pointer to the encrypted record
alongside eacltf (attr;, val;;). This would allow the client to identify alH (attr;, val, ;) corresponding to a given
encrypted record by simply identifying alf (attr;, val; ;) with associated data pointers equal to the given records.
Such a (potential) privacy leak would be aggravated if corabiwith the previous “attack” on multi-sets: given two
encrypted records, the client could establish their siityidased on the number of equal attributes.

5 The First PPSSI Approach

We now present our PPSSI construction that is both securesasdnably practical. Like the strawman approach,
it relies on (A)PSI-DT. However, it addresses aforememtbohallenges by introducing a novel database-encryption
technique. In order to guarantee b@&hkrver Unlinkabilityand Forward Security we use (A)PSI-DTwithout pre-
distribution.

Our approach is illustrated in Figulé 1. In step 1, the cleemd the server engage in tbbliviouscomputation
of Token function: at the end of it, the client obtains; = Token(hc;), wherehe; = H (attr},val}). Note that
the server learns nothing abdut; or tk;. Token function is computed using an (A)PSI-DT protocol, thusfeti#nt
(A)PSI-DTs instantiate it differently.

In step 2, the server rumcr ypt Dat abase procedure — described in AlgoritHm 1 and discussed in S
—and creates the encrypted datab®¥® B that is transferred to the client in step 3. Finally, in stethé client runs
Lookup procedure — illustrated in Algorithid 2 and discussed ini®8af.2 — usingk; tokens ovel£EDB; at the end
of it, the client obtains the set of records satisfying iteigu

3Note that some PSI constructs (e.9.] [29]) support multi-$etwever, their performance is not promising as they incudratic computational
overhead (in the size of the sets), as opposed to more recPSIAT protocols with linear complexity (e.d., [26] 14] L.2RIso, they support
neitherdata transfemor authorization



Algorithm 1: Encr ypt Dat abase Procedure.

input : FunctionToken(-) and record sefR; }1<j<w
output: Encrypted DatabaseDB

1 Sthﬂe{R]’}lgjgw 11: k = HQ(tk] lHCtT‘j )i

2: mazxlen < max length among alR; 12: k” — Hy(th;||ctr;,);
3:for1<j<uwdo 13: ki1 < Ency [(y);

4: PadR; to maxlen; ' 7t k;

5: kj L {071}128; 14: eznd N < Encku (j)

6: erj Ency, (Ry); 15: LTable;; < (tag] 1,ekj 1, eind;);
7. for1<lI<mdo 16:  end for

8: hsj i < H(attr;,valj); 17: end for

9: tk;,; < Token(hs; ), 18: ShuffleLTable with respect tgj and;

10: tagj,; < Hi(tkjllctr;); 19: EDB <« {LTable, {er;}1<j<w};

Our protocol can be used with any (A)PSI-DT, however, we agevariants without pre-distribution, since they
provide Server Unlinkability and Forward Security. Follog a thorough experimental analysis (Apperdix]ID.5), we
select the PSI-DT protocol fror{f[ll4] (denoted@B10-1) and its APSI-DT counterpart fro 4] (denoted@B10-
APSI) for authorized queries. These protocols were proven seagainst HbC adversari@[m]. However, it was later
shown that, with very similar overhead, to achieve secaginst malicious adversari[13].

Scheme name Token definition PSI category
DT10-1 (Figure 3 of [14]) Token(he) = ([(TT_, hei) - 7<) /he)™ mod p PSI-DT without pre-distribution
DT10-APSI (Figure 2 of [14])| Token(hc) = ([(TT_, 04)® - g™]°/hc®)™ mod N | APSI-DT without pre-distribution

Table 2: Token definition for (A)PSI-DT without pre-distribution

For the sake of completeness, we defiioéen function for the selected (A)PSI-DT constructions in Télléote
that bothToken definitions involve random valuds. and R, contributed by client and server respectively. Therefore,
the server can only evaluafeken over its own inputs after step 1. These random values aretedlat the beginning
of and kept fixed throughout the PPSSI protocol executioreyTdre chosen independently, for each invocation, in
order to guaranteBerver UnlinkabilityandForward Security We present the complete detailsTaiken'’s oblivious
computation in Appendix A (see Figurel10 and Fidure 11).

Compared to the strawman approach, we modified the “enoryptechnique: rather than (directly) using a
symmetric-key encryption scheme, tBecr ypt Dat abase procedure is invoked.

5.1 Database Encryption with counters

We illustrateEncr ypt Dat abase procedure in Algorithni]1. It takes in input the definition b&fToken func-
tion, and server’s record set. It consists of two “phasekfRecord-levelnd (2)Lookup-Tableencryptions.

Record-level encryption is relatively trivial (lines 1+8iyst, the server shuffles record locations; then, it padb ea
R; up to a fixed maximum record size, picks a random symmetridskegind encryptsi; aser; = Ency, (R;).

Lookup-Table (LTable) encryption (lines 8-15) pertainsattribute name and value pairs. It enables efficient
lookup and record decryption. In step 8, the server hashagr@oute-value pair and uses the result as inpdidken
function in step 9. In step 10, we use the concatenatiohoéfen output and a countettr;;, in order to compute
the tagtag;,, later used as a lookup tag during client query. Wedsg; to denote the index of duplicate value for
the-th attribute. In other wordsstr;; is the counter of occurrences @il; ; = val;;,Vj’ <= j. For example, the
third occurrence of value “Smith” for attribute “Last Namwfll have the counter equal t& The counter guarantees
that duplicate(attr, val) pairs correspond to different tags, thus addressing Gigald. Next, the server computes
K’y = Ha(tkj,l|ctrj,) andk?, = Hs(tk;|[ctr;,). Note thatk’ ; is used for encrypting symmetric kéy. Whereas,
k”l is used for encrypting the index &f;. In step 13, the server encrygisasek;; = Enck/ ,(k;). Then, the server
encryptseind;; = Enck;/ (7). The encryption of index (data pointer) guarantees thaclibet cannot link two tags
belonging to the same record, thus addressing Challenges?ep 15, the server inserts edab; ;, ek;; andeind;;
into LTable, which is{tag; i, ek; i, eind;; }1<j<w1<i<m. Next, the server shuffles LTable (step 18). The resulting
encrypted databasEDB, is composed of LTable ankr; }_, (step 19).



Algorithm 2: Lookup Procedure.

input : Search tokemk and encrypted databa®#DB = {LTable, {er; }1<j<w}
output: Matching record seR.

1: ctr < 1; 6: k < Decy(ekj);
2: while 3tag;; € LTable s.t. tag;; = Hi(tk||ctr) do 7. Rj < Decy(erj);
3. k" « Hs(tk||ctr); 8: R+ RURj;

4:  j' < Decyr(eindy;); 9. ctr +ctr +1;

5. k' + Ha(tkl||ctr); 10: end while

5.2 Lookup with counters

We now discus&ookup procedure shown in Algorithid 2. It is used by the client toaabthe query result, i.e.,
to searcHEDB for all records that match client’s search tokens.

In step 1, the client initializes a counter to 1. Next, it sé@sLTable for tag tag;; = H;(tk||counter).
If there is a match, the client attempts to recover the reessbciated witltag; ;. To do so, the client needs to
locate the associated record: it computés= H3(tk||ctr) and recoverg’ = Decy (eind;;). Note thater; now
corresponds to the associated record. To dearypt the client first recovers the key used to encryper;,, by
computingk’ = Hy(tk||ctr) and obtainingk = Decy (ek;,;). Finally, the client recovers®t; by decryption, i.e.,
Rj = Deck(erj/).

5.3 Correctness

Assume that server's database includes the attribute tgemdth two occurrences of value “male”. In Algo-
rithm[dl, the samek (step 9) will be generated for the two occurrences of ("gehdmale”). However, for the first oc-
currencefag = H, (tk||1), k' = Ho(tk||1), k" = H3(tk||1) while, for the second occurrendeyg = Hy(tk||2), k' =
Hy(tk||2), k" = H3(tk||2).

Suppose that the client searches for records matching &genchale”, it first derivegk (step 1 of Figur&ll). Next,
it matchesH, (¢tk||1) in LTable, derives keys:’ = Ho(tk||1), k" = H3(tk||1), and recovers the index in step 4 and
the record in step 7 of Algorithil 2. It also looks féF, (¢k||2) and performs the same operations as before, except
thatk’ = H,(tk||2), k" = Hs(tk||2). Finally, the client looks foi; (¢k||3): since it finds no match, it terminates.

5.4 Challenges Revisited

We claim that our approach addresses Challenge 1 and 2sdetin Sectiohl4. While we defer formal proofs
AppendixB, the intuition is as follows:

Multi-sets: The use of counters during database encryption makeseagch(resp.ck; ;, eind; ;) distinctinLTable,
thus hiding plaintext patterns.

Data Pointers: Storingeind,; (rather thary) in LTable, prevents the server from exposing the relationship betwee
an entryLTable;; and its associated recor};.

6 The Second PPSSI Approach for Very Large Databases

The first PPSSI approach in Sectioh 5, combines efficiencly mibvably-secure guarantees. However, in the
context ofvery largedatabases, it faces two additional issues:

Challenge 3: Bandwidth. If server’'s database is very large and/or communicatioaggiface over a slow channel,
the bandwidth overhead incurred by the transfer of the griedydatabase may become prohibitive.

Challenge 4: Liability. The transfer of the encrypted database to the client alsopothe problem of long-term
data safety and associated liability. An encryption scheoresidered strong today might gradually weaken in the
long term. While we ensure that the client cannot decryptracoutside its query, it is not too far-fetched to imagine
that the client might decrypt the entire database in redspmeear future, e.g.10 or 20 years later. However, data
sensitivity might not dissipate over time. For example,mge that a low-level DoD employee is only allowed
to access unclassified data. By gaining access to the emdrgsttabase containing top secret data and patiently



CLIENT SERVER e Client'sinput:{hc¢; }1<i<y, Where:he; = H(attr}, val})
~ e Serversinput{hs; ;}1<j<w,i<i<m: {Rj}t1<j<w
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Figure 2: The introduction of the Isolated Box. Figure 3: Outline of our second PPSSI approach based on IB.

waiting for the encryption scheme to “age”, the employeehnaptain still-classified sensitive information. Further
in several settings, parties (e.g., banks) may be prevelyeggulation, from releasing copies of their databasesn(e
if encrypted).

In the rest of this section, we introduce a novel architectoraddresses the challenges for very large databases.
Our new approach incurs very limited overhead (in terms ¢ifi somputation and communication), even when com-
pared to non-privacy preserving querying systems.

6.1 Introducing the “Isolated Box”

In order to address Challenge 3 and 4, we propose a systeiteatahe shown in Figurgl 2. It includes a new
component!Isolated Box” (IB), a non-colluding, untrusted party connected with hibi server and the client.

The new interaction involving IB is shown in Figufé 3. Duritite (offline) setup phase, the server encrypts
its database, usingncr ypt Dat abase (Algorithm [d), and transfers the encrypted database to BheSkerver's
computation ofToken functionality no longer depends on client’s input, thus gerver can evaluatEoken(-)
without involving the client.

To pose a query, the client first engages with the server imiobs computation ofoken (online step 1). Next,
for each computed token, it runs thBLookup procedure (Algorithril3) to retrieve matching records frdma IB.

TheToken(-) functionality is now instantiated using (A)PSI-Dilith pre-distribution. Specifically, we select the
construction from|E4] (denoted d&3T10-2), @] (denoted agdL10) and ] (denoted alBE-APSI). Again, our
choices are based on these protocols’ efficiency and sgenoitiels. Our experiments — in Appenflix D.5 — show that
DT10-2, secure in the presence of HbC adversaries, is thegfiizgent construction, while JL10 combines reasonable
efficiency with security against malicious adversary. IBESI is the only APSI-DT with pre-distribution, and it is
secure against HbC adversaries. For the sake of completemesiefinéloken function for the selected (A)PSI-DT
constructions in Tablel 3. Note thdtk, z are server's secret parameters. Complete details, forinatzntiation, are
presented in Appendix A.

Scheme name Token definition PSI category

DT10-2 (Figure 4 of [14]) Token(hc) = (he)? mod N PSI-DT with pre-distribution
JL10 (Figure 2 of [26]) Token(he) = ((he)®~D/9)  mod p | PSI-DT with pre-distribution
IBE-APSI (Figure 5 of [12]) | Token(hc) = é(Q, he)* APSI-DT with pre-distribution

Table 3: Token for (A)PSI-DT with pre-distribution

Trust Assumptions. The Isolated Box is assumed not to collude with either theeseor the client. (Although, we
discuss the consequences of collusion in Seéfion 6.6.) Warnkethat the use of non-colluding parties in the context
of Secure Computation was first suggested by [15], and thelneaiin [28, 27/ 1].



Algorithm 3: | BLookup Procedure
Client's input : tk;

IB’s input :EDB = {LTable, {er; }1<j<w}
Client’s output: Matching record seR
1. Clientictr « 1 else
2. Client:tag; < Hy (th;||ctr), kY « Hs(th;|||ctr)} ret L
t .
tagi,k;’ 5. 1B e Client
3. Client B 6. Client: Ifret = L, abort
4. IB:If (3tag;, € LTable;; s.t.tag;; = tag;) elsek; = Ha(tk;||ctr), k; = Deck/(ek] 1)
g Deck;/(eindj,l), R; = Decy, (erj), R + R U RZ
ret « {ek;,er;} ctr < ctr + 1, Goto step 2.

While our requirement for the presence of IB might seem liksteohg” assumption, we stress that the IB is only
trusted not to collude with other parties. It simply storess/er’'s encrypted database and return ciphertexts magchin
client’s encrypted queries (i.dag9, without learning any information about records and cgeeriAlso note that, in
practice, the IB can be either instantiated as a (non-ciolfy)cdcloud server or as a piece of secure hardware installed
on server’s premises: it is only important to ensure thatséreer does not leanvhatthe IB reads from its storage
and transfers to the client.

6.2 Database Encryption

IB’s presence does not really affect database encryptienEncr ypt dat abase procedure presented in Algo-
rithm[d. It only uses a differerfoken(-) function. While in the first approach (Sectibh 5) we rely onR&)-DT
withoutpre-distribution (i.e., the server cannot riaken(-) before interacting with the client), we now use (A)PSI-
DT with pre-distribution. Thus, the server can evaluBitken(-) over its own inputspffline and then transfer the
encrypted database to the IB.

6.3 Query lookup

| BLookup procedure is used by the client to obtain records matchiegti query. It is shown in Algorithial 3.

Similar to our first approach, the client runs the lookup prhae after obtaining search tokens (via oblivious
computation ofToken — online step 1 in Figurgl3). For each derived token, it invokes| BLookup to retrieve
(from the IB) all records matching;.

We use the terntransactionto denote a complete query procedure, for edgh{from the time the first query for
tk; is issued, until the last response from the IB is receivB@)rievaldenotes the receipt of a single response record
during a transaction. A transaction is composed of sevetaévals between the client and the IB. The client retigeve
records one by one from the IB, by gradually incrementingchenterctr. In step 1, the client setsgr to 1. In step
2, the client derivegag; and an index decryption key’ from tokentk;. After receivingtag; andk!’ in step 3, the IB
searches for matching tags in the lookup table in step 4etktis a match, the IB recovers the indéy decrypting
eind;; with &/, assembles the corresponding recerg and the ciphertext of its decryption ke¥,; into ret and
transmitsret to the client in step 5. Otherwisd, is transmitted. If the client receives, it aborts. Otherwise, it
decryptsek;; into k; with k; and recovers recor®; from er;, usingk;. Then, it incrementstr and starts another
retrieval by returning to step 2.

6.4 Optimizations

Since transmission ofet may incur some delay, Algorithid 3 can be sped up by pipejmiomputation otag;
andk! (step 2) in next retrieval with the transmissionref (step 5) in current retrieval.

Note that the computation ef;; ; andeind,; (steps 13—14 in Algorithl1) can also be optimized. Since see u
a counter as input to compuke ; (respectively/?), eachk’ (respectively,k” ) is different for anyj, . Both k’
andk” are 160-bit values (SHA-1), whilg; is 128 bits andg is clearly smaIIer Hence, we can usee-time- pad
encryptlon (i.eekj =k, @ k; andemdﬂ = kJ, © j) to speed up computation. In Algoriti Becy (eind; ;)
becomes:] & eind,, andDeck; (ek;,) changes t(k ® ek;.



6.5 Challenges Revisited

Since we use the same encryption procedure discussed inr88¢ctChallenge 1 and 2 are already addressed.
Thus, we only consider Challenge 3 and 4.

Bandwidth: Once the server transfers its database (offline) to the I8 Jdtter returns to the client only records
matching its query. Therefore, bandwidth consumption isimized.

Liability: Since the IB holds the encrypted database, the client ortirebthe result of its queries, thus, ruling out
any potential liability issues.

Finally, the introduction of the IB enables Server Unlinki&p and Forward Security, despite the fact that we use
(A)PSI-DT with pre-distribution techniques. Indeed, records not matchimuery are never available to the client,

thus, it does not learn whether they have changed. Simitédyclient cannot use future authorizations to malicipusl

obtain information from previous (recorded) interactions

6.6 Discussion

Privacy Revisited. The introduction of the IB and the use of counter mode in degatencryption provide additional
privacy properties. If the client performs only one quepngaction, as in Algorithiid 3, the IB can link allg values

in step 3 to the sam@uttr, val) pair. This may pose a similar risk to that discussed in theltirset” challenge,
with respect to the IB. However, the counter allows the tlterretrieve matching records one by one. Therefore, the
client can choose to add a random delay between two subdegtiéevals in a single transaction. If the distribution
of additional delay is indistinguishable from time gapswvimn two transactions, the IB cannot tell the difference
between two continuous retrievals within one transactiomftwo distinct transactions. As a result, the 1B cannot
infer whether two continuously retrieved records sharestmae(attr, val) pair and the distribution of the attribute
value remains hidden.

Also note that the introduction of the IB does not violatee@ti or Server Privacy. Client Privacy is preserved
because the client (obliviously) computes a token, whiatoislearned by the server. The IB does not learn client’s
interests, since client’s input to the 1Bag) is statistically indistinguishable from a random valu@n&r Privacy is
preserved because the client does not gain any extra infiommiay interacting with the IB. Finally, the IB only holds
the encrypted database and learns no plaintext.

Removing Online Server. Although it only needs to perform oblivious computation okéns, we still require the
server to be online. Inspired bEg/]22] ad.dj[lB], we can repldoee online server with a tamper-proof smartcard,
dedicated to computingoken function. The server only needs to program its secret kaytimt smartcard, which
protects the key from being accessed by the client. This afégr handing the smartcard to the client, the server can
go offline. The smartcard is assumed to enforce a limit on timeber ofToken invocations.

Limitations. We acknowledge that our second PPSSI approach has somatibmit. Over time, as it serves many
queries, the IB gradually learns the relationship betwags tind encrypted records through pointers associated with
each tag. This issue can be mitigated by letting the servérdgieally re-encrypt the database. IB also learns datbas
access patterns generated by query executions. Nonetheldgsout knowing the distribution of query predicate® th
access pattern of encrypted data leaks very little infolonab the I1B. Next, if the server and the IB collude, Client
Privacy is lost, since the IB learnsgg that the client seeks, and the server knowsther, val) pair eachtag is related

to. On the other hand, if the client and the IB collude, thertlican access the entire encrypted database, thustyiabili
becomes a problem. Last, Server Unlinkability is proteaiaty with respect to the client. Server Unlinkability
with respect to the IB is not guaranteed, since the IB leabasiball changes in server’s database. Finally, note that
PPSSI currently supports only equality and disjunctiverigse Enabling conjunctive queries would require treating
all combinations of attr, val) pairs as server’s set elements. Thus, client’s input woattblme exponential in terms
of the number of attributes. This remains an interestindlehge left as part of future work.

7 Performance Evaluation

In this section, we evaluate the performance of our PPSSbappes. First, we benchmark cryptographic opera-
tions and use these results to derive step-by-step cosbpbped techniques. Next, we compare our first PPSSI ap-
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proach to PIR. Finally, we build a (limited) DBMS to compatg second PPSSI approach to a non privacy-preserving
MySQL database.

7.1 Benchmarking All PPSSI Components

The following benchmark refers to executions on an Intelggaiown server with Xeon E5420 CPU (2.5 GHz,
12MB L2 Cache) and 8GB RAM inside. We build the benchmarkiow based on OpenSSL library (ver.1.0.0c) and
PBC library (ver.0.5.11).

7.1.1 Cryptographic Operations

We start with benchmarking modular arithmetic operationdable4, we present performance results for modular
multiplication @ul) and modular inversionigv) under different modulus sizes (column 1). We also repartptér-
formance of modular exponentiatioex(p) and modular exponentiation with Chinese Remainder Thedesp_crt)
under different combinations of modulus sizes (column 1) exponent sizes (column 4). We choose modulus size
to be 1024, 2048, 3072 bits respectively, which correspoo@®®, 112, and 128 symmetric key security level. (The
protection lifetime of 1024-bit modulus is supposed to ladtl 2010, whereas, that of 2048-bit modulus is until 2030,
and 3072-bit — to 2030 and beyonﬂj [58xp_crt can only be used when factorization dfis known, thus, we only
measure its performance for exponent sidgbeingd RSA secret key).

modulus (bits) | mul (ms) | inv (ms) | exponent (bits)| exp (ms) | exp_crt (ms)
[4]=160 0.001 0.016 - - =

p| =1024 0.003 0.244 Z 2324 2:3% -
|N|=1024 0.003 0.244 Z :110724 é:ggg 053
T2=256 0.001 0.03 - = =

p| =2048 0.009 0765 (1 23338 112'%8759 -

|N| =2048 0.009 0765 |H=20% e 34651
lp| =3072 0.02 0837 7 zgggz 43i.771:4 =

|N| =3072 0.02 0837 |4=2" aLrer T1.03T

Table 4: Benchmarkingnul andexp operations using the OpenSSL library.

Table[B shows the benchmark results of operations in bilimesé : G x G2 — G, under differenti; /G base
size and different group orders. We choose type A pairingigeal in PBC library. Since type A provides |base|
discrete logarithm security, we use half the group size admia Tabld%. We usexp(G;) andexp(Gs) to denote
exponentiation in group:; andGs respectively.

base (bits) | order (bits) | expin G1 /G2 (ms) | expin Gy (ms) | pairing (ms)
512 160 2.492 0.233 1.859
1024 256 8.896 0.998 9.481
1536 256 15.086 1.922 21.826

Table 5: Benchmarking operations on bilinear maps using the PB@njbr

In Table[®, we evaluate different symmetric encryption sebe and hash functions. For symmetric encryption,
we only experiment with 128-bit key size, since it is the Istveupported by AES and it matches the security level of
3072-bit RSA keys. The decryption cost is same as the enorypbst, hence, we omit it here.

Symmetric encryption (ms/MB) Hash function (ms/MB)
RC4 | AES-CBC | AES-CTR | SHA1 | SHA256 | SHA512
3.500 6.539 13.820 3.406 6.867 4.586

Table 6: Benchmarking (128-bit) symmetric-key encryptions anchifasction computations.

7.1.2 PPSSI Operations

We now evaluate the performance of all operations involwdabith of our PPSSI approaches. Remark that we use
2048-bit modulus and records of fixed B length.
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Figure[4 measures the time needed to perform the oblivioogpatation ofToken function, for every possible
(A)PSI-DT instantiation. Observe that the cost alwayséases linearly with client’s query size. As for protocols
without pre-distribution, DT10-APSI is unsurprisingly necexpensive than DT10-1. Whereas, DT10-2 and JL10 are,
respectively, the most and the least efficient ones of podsagith pre-distribution.

Then, Figur&b evaluates the performance of the LookupeTaidryption, performed by the server. This operation
includes server’'s computation dbken function over its own input (Note that this is not obliviousneputation).
Again, running time always increase linearly with the preichf the number of records) and the number of attributes
(m).

In Figure[®, we report the cost of the Record-level encryptidhis only depends on the number of records.
Compared to the Lookup-table encryption, the Record-lemetyption incurs a negligible overhead.

Finally, Figurel T presents the running time of the Lookupcpaures (Algorithmgl2 and Algorithni$ 3 without
consideration of communication delay). Unsurprisinglystcis identical for both algorithms and increases linearly
with the number of matching records,().

@ 450 140
£ DT10-1 —— = . DT10-1 —— =
S 400 | |DT10-APS| - X 2 120 ||DT10-APS| -
£ L DT10-2 e £ DT10-2 -
2 JLLO e | S 100 JL1O -
5 300 IBE-APS| ---®--- | .- ol = IBE-APS| ---m---
S 250 -l g
g g
S 200 o
§ 150 i
g 100 E

o
é so! =
= o B -
© 1 2 3 4 5 6 7 8 9 10

Client query set size (v) w*m
Figure 4: Token Oblivious Computation. Figure 5: Lookup-Table Encryption
(line 8-15 of Algorithni).
. 0.006 [ Record-level Encryption —— T 0.009 ‘ Lookup (Alg.2) —»— A
@) 0.008 IBLookup (Alg.3) ---
E o0.005
< & 0007 ¢
¥ 0.004 | £ 0.006 |
> —
S 2 0.005 [
$ 0.003 8
T S 0004 f
% o002} € 0003 |
g —  o0.002 }
g 0.001
3 0.001 4
o o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Server set size (w) matching records

Figure 6: Record-level Encryption Figure 7: Lookup (Alg.[2) and IBLookup (Ald.13).

(line 1-6 of Algorithm[1).

We conclude that, as all operations have linear complegity,approaches scale efficiently for larger databases
and query sets. As a result, one can easily infer results imewen larger parameters, hence, we omit them here.

7.2 First PPSSI Approach vs PIR

We now aim at comparing the efficiency of proposed first PP$®taach (Sectiofl5) to that of related work

— SPIR. Recall that first PPSSI approach provides very sirpiigacy properties of SPIR. Indeed, both PPSSI and
SPIR hide client’s access patterns to the server and alsegpnarivacy of server’s data (with respect to records not
matching the queries). However, one possible criticisniresgaur side is that the communication overhealihisar

in the size of the database size, whereas, SPIR irstlrdinearcommunication overhead. Remark, however, that: (1)
SPIR does not support keyword search, and (2) SPIR intredaicemarkably higher computation overhead, which
ends up “overshadowing” the advantage in the communicatamplexity. To support the latter claim, we compare the
overall performance of our first PPSSI approach with thaterit® and Ramzan'’s single-database PIR (GR-RIR) [19],
which is, to the best of our knowledge, the most efficient leiftatabase PIR. Specifically, GR-P@[19], assuming a
database with records, incur®(k + d) communication complexity (where < log n andd is the bit-length of each
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Figure 8: Performance comparison between the first PPSSI approactiai#fg) and GR—PIF#I]IQ].

record), and)(n) computation overhead. Also recall that, accordin@b [38Y; single-database PIR can be extended
to SPIR/OT and we are not aware of any SPIR/OT that is moreesifithan GR-PIR.

In our comparison, we use a database with- 1024 records andn = 5 attributes. Each record has siz& B.
We assume the client’s query sizeuis= 1024 and there will be 1q1%) records matching the query,(). On a
conservative stance, we choose a relatively slow conrmebtitween the client and the server, i.el,0d/bps link.
Remark that we choose 2048-bit modulus and we use RC4 and SHA1

The result of our comparison is showed in Figldre 8 and confthasour approach is significantly more efficient
than GR-PIR. We break down the results into client, servdrraatwork transmission cost. Note that, for all schemes,
network cost (at the top stack in each bar) is negligible caneqb to client and server cost. Also observe that GR-PIR
imposes a significant overhead on both client and server. Wetishow results for larger databases, since: (1) both
server and client computational costs will always incrdamarly for all schemes, and (2) for very large database, we
prefer the approach with the Isolated Box (whose overafioperance is evaluated next).

7.3 Second PPSSI approach vs MySQL

To the best of our knowledge, there is no available approadPPSSI that combines efficiency with provably
secure guarantees and that relies on a non-colluding,siettgparty, such as the Isolated Box. Therefore, we cannot
compare our second PPSSI approach for very large datat&esg#of{6) to any prior work. Nonetheless, we evaluate
its performance by measuring it against standard (non@ripaeserving) MySQL.

On a conservative stance, we use MySQL with indexing enairieeach searchable attributes. We run the 1B and
the server on the same machine. Client is connected to thiersamd the IB through &00Mbps link. The testing
database has 45 searchable attributes and 1 unsearchablgeftype “LARGEBLOB”) used to pad each record to a
uniform size. There are, in total)0, 000 records. All records have the same size, which we vary dukpgriments.

First, we compare thindex lookup timgdefined as the time between SQL query issuance and the etz
first response from the IB. We select a set of SQL queries #tatn0, 1, 10, 100, 1000, 10000 (+10%) responses,
respectively, and fix each record size580KB. Figure[9(a) shows index lookup time for our PPSSI appno@dth
respect to all underlying (A)PSI-DT instantiations), adlves MySQL, with respect to the response set size. All
proposed schemes’ cost are slightly more expensive tharQUyhd are independent of the response size.

Next, we test the impact of the response set size ototaéquery timewhich we define as the time between SQL
query issuance and the arrival of the last response fromBhEigjure[9(b) shows the time for the client to complete
a query for a specific response set size divided by the timentaly MySQL (again, with respect to all underlying
(A)PSI-DT instantiations). Results gradually convergd tbfor increasing response set sizes, i.e., our approach is
only 10% slower than standard MySQL. This is because the extra detayried by cryptographic operations (in the
oblivious evaluation offoken) is amortized by subsequent data lookups and decryptiooi® tRat we can also infer
the impact of various client query set size by multiplying ttient query set size with each single query delay.

Last, we test the impact of record size on the total query.tivve fix response set size &80 and vary each
record size betweeh00K B and 100M B. Figure[9(c) shows the ratio between our PPSSI approach 80U,
once more with respect to all underlying (A)PSI-DT instatitins. Again, results gradually converge well belbw
with increasing record size. This occurs because, withdyigecords, the overhead of record decryption becomes the
“bottleneck”.
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Figure 9: Performance comparison between the second PPSSI app&eatio(6) and MySQL.

8 Conclusion

In this paper, we proposed secure and efficient techniquérifcacy-Preserving Sharing of Sensitive Information
(PPSSI), which enable a client and a server to exchangeniafiwn without leaking more than the required minimum
of information. Privacy guarantees are formally defined actdeved with provable security.

We implemented two variants of PPSSI: one is geared for smadlium-size data sets, while the other minimizes
communication overhead, as well as liability issues, fayVarge databases. The latter introduces a non-colluding,
untrusted party — the Isolated Box — which can be implemeaseal piece of secure hardware.

Finally, we presented extensive experimental resultschvibnfirmed that our PPSSI approaches are efficient
enough to be used in real-world applications. Our futurekwocludes supporting versatile query predicates (e.g.,
conjunctive queries) as well as fuzzy queries over non-atized data.
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A Details of Token Instantiations based on (A)PSI-DT’s

e Public input:p, ¢ o PUDIC ; — - -
o e . ublic input:e, N e Client’s private input{hc; }v;
* Clients private input{hc; }v; e CAs private input:d e All operations are moduldv
e All operations are modulp 1. CA:Vi. o Nd
. ” . Vi, oy + (he;)
1. Client: PCH < []i_; hei, Re < Z3, X < PCH - gfte, (01}
Vs
Vi, PCH; + £€5 R, ; & 7%,y + PCH;-g%ei || 2. CA i Client
(2 . « "
X {yitvi 3. Client: PCH < [[i_; hci, PCH* <= TI;_, 0i, Re < Z3,
2. Client Server Vi, PCH} < PCH* /o;,y; < (PCH})? . glteii
3. ServerR, <~ 7%, Z < g Vi, z; < y!* X « (PCH*)2 - gRe
Z{zi}vi ) X Ayitvi
4. Server Client 4. Client Server
5. Client:Vi, Token(he;) « z; - ZTe . Zz7 e, 5. Server:R, < 73, 7 g® T Vi, z; yf‘RS
ZA{zi}vi )
6. Server Client
7. Client:Vi, Token(he;) < z; - ZBe . 27 fesi
Figure 10: Oblivious computation oToken(-) using Figure 11: Oblivious computation oToken(-) using
DT10-1. DT10-APSI.

B Security Analysis of First PPSSI Approach

We useg; to denote thath query of the form(attr, val) issued by the client and usg; to denote all records
matching queryy;.
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e Public inpute, N e Public input:p, ¢ e Publicinput:P,Q = P*
e Client's privaté input{hc; hvs e Client’s private input{hc; }v; e Client's private input{hc; bv;
e Server's private inputd = e~ ' mod ¢(N) e Server's private inputk € Zg o CAs private inputs.
whereg(N) denotes the order @, 1. Client:Vi, a; < Z7, I Sé;\./%r's per(_att(ehlnp)titz
. Vi, 0y Ci
1. Client:¥i, r; <~ 2%, y; < (r;)® - he; mod N yi 4 ((he;)P=D/9)2i mod p ‘ ( ) !
oiVyi
) {yi}vi 2. Client {yitvi s 2. CA AL Client
2. Client Server - ent & } EIVeTl 3. server:R « P# (Offline)
3. Server¥i, z; + (y;)% mod N 3. Servervi, z; < y; mod Z R
(2 }vi 7 ZKPK{k|{z = y¥}vi} 4. Server Client
4. Server Client {zibyim 5. Client:Vi, Token(he;) < é(R, 0;)
5. Client:Vi, Token(he;) < z; - r[l mod N 4. Server Client
5. Client: Aborts ifr doesn't verify.
Vi, Token(he;) + zil/ai mod p

Figure 12: Oblivious computation of Figure 13: Oblivious computation of ~ Figure 14: Oblivious computation of
Token(-) using DT10-2. Token(+) using JL10. Token(+) using IBE-APSI.
B.1 Security against Honest-but-Curious/Malicious Client

We define against Honest-but-Curious/Malicious client bynparing its view under real model with that under
ideal model. In the ideal model, there is a trusted thirdyp@TP) serving as an honest server who, in response to the
queryg;, only replies@;.

We first consider Honest-but-Curious adversary and anatya&ious adversary at the end of this section. We
define a simulato6IM that attempts to simulate to a real-model client based opubdtom ideal-model TTP as
follows:

Simulator SIM:
SIM is given input{q1,...,qn}
1. SIM picks all the secret and public parameters.

2. SIM interacts withA as a real-model server during oblivious computation of Toegep 1 of Figurgll).
3. SIM sends{q, ..., q,} tothe TTP and receive8)1, ..., Qn}.
4. SIM runs an arbitrary function ofQ1, . .., @, } and outputs the result to the client.

We then define an experiment for any adversdry

The experimentSPrivc, 4:
1. The adversaryl outputs to the challenger a list of querigs, . .., ¢, }-

2. The challenger chooses a randonmbbit- {0, 1} and does one of the following:

(a) If b = 0, then the challenger interacts withas a real-model server.
(b) If b =1, then the challenger interacts withasSIM({Q1, ..., Q. }).

3. The adversaryl outputs a bit/.

4. The output of the experiment is defined tolbié b’ = b, and0 otherwise.

Definition 1 The first PPSSI approach is secure against honest-but-gsigtient if, for all probabilistic polynomial-
time adversariesd, there exists a probabilistic polynomial-time simulafdi such that

1
Pr[SPrive 4 = 1] < 5te

This definition ensures that the client in the real model dagsgget more or different information than the ideal
implementation.
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Theorem 1 If the hash functiodZ (-), H1(-), Ha(+), Hs(-) are collision resistantE'nc is a semantic secure encryption,
and Token is unpredictable, then first PPSSI approach isreegainst any probabilistic polynomial-time honest-but-
curious client.

Proof: Our goal is to construct a simulatéiVl such that4 cannot tell the difference between the view when interac-
tiing with SIM and the view when interacting with real-model server. QI is constructed as follows:

1. SIM picks all the secret and public parameters on behalf of anealel server and publish all public parameters.
2. SIM interacts withA4 as a real-model server during oblivious computation of Tofstep 1 of Figurgll).

3. SIM queries TTP fo{ ¢, . .., ¢, } and gets backQ@, ..., Q. }.
4

. Let@ denoteU;Q;. SIM generatess — |Q| random records of the same length as any other messageliat
DB’ denote the concatenation @fand these random records. Note tHaB’| = w.

5. Use Algorithnfll to encrypb B’ and returns encrypted databd&&BB’ to the client.

We first analyzeA's view between tags ifEDB and tags inEDB’. Note that a tag inLTable is com-
puted asH;(Token(H (attr,val))||ctr). For all (attr,val) pairs not queried byq1,...,q,}, the computed tags
should be uniformly random unless (1) there exjstuch thatf (¢;) = H (attr,val); (2) there exists two pairs —
(attr’,val"), (attr” ,val”) — such thatfl; (Token(H (attr’,val’))||ctr’) = Hy(Token(H (attr” val”))||ctr”); (3) A
forges TokelH (attr,val)) for certain(attr,val). All these happen with negligible probability i (-), Hi(-) are
collision resistant and Token is unpredictable.

Next we analyzed's view between({ek;;, eind;;}1<i<m,er;j)i<j<w in EDB and those inEDB’. For all
ek, eind, er whose corresponding tags do not mafeh, . . . , ¢,, }, they should appear uniformly random.tbunless
(1) A breaks symmetric encryption algorithm; (2) finds collisio/; (-) ong( ); (3) A can forge Toke(¥H (attr, val))
for certain(attr, val). All these happen with negligible probability H»(-), H3(-) are collision resistantZnc is se-
mantic secure and Token is unpredictable. |

In order to consider malicious adversary, we need to chamgsimulator definition and the experiment.SM,
there is no input of ¢4, ..., ¢, } and, inSPrivc_4, there is no step 1. Note, for the first PPSSI approach, itagrse
against malicious adversary only.13] is used for oblivdiccomputation of Token.

Theorem 2 If oblivious computation of Token protocol is secure agamsalicious client, the hash functioH (),
Hy (), H5(+), Hs(-) are collision resistant andZnc is a semantic secure encryption, then first PPSSI approach is
secure against any probabilistic polynomial-time maligalient.

Proof: SIM construction is the same as that in the proof for thedrém Epmixthat, in step 2SIM extracts all
{q1,--.,qn} from the ZKPK sent byA, which requires rewinding afl. Then the proof follows that for Theorem 1.
O

B.2 Security against Honest-but-Curious/Malicious Server

Given that the server gets no output from the protocol, tHmitien of client’s privacy requires simply that the
server cannot distinguish between cases in which the di@ndifferent inputs.
We define an experiment for any adversary

The experimentSPrivs_4:
1. The adversaryd chooses its own databadeB and outputs to the challenger two list of queries —
(¢1s---,qp) and(qi, ..., qp)-

2. The challenger chooses a randonmbbit- {0, 1} and does one of the following:

(@) If b = 0, then the challenger interacts withas a honest client using querigg, . . ., ¢%).
(b) If b = 1, then the challenger interacts withas a honest client using querigs, . .., q}).

3. The adversaryl outputs a bit/.

4. The output of the experiment is defined tolbié b’ = b, and0 otherwise.
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Definition 2 The first PPSSI approach is secure against honest-but-gsifimalicious server if, for all probabilistic
polynomial-time adversaried,

1
Pr[SPrivs 4 = 1] < 5 +e
Theorem 3 If oblivious computation of Token function is secure agaars/ probabilistic polynomial-time honest-

but-curious/malicious server, the first PPSSI approacke@ise against any probabilistic polynomial-time honest-b
curious/malicious server.

Proof: In the first PPSSI approach, the only messadegets from the client is during oblivious Token compu-
tation. If oblivious computation of Token function is seewagainst any probabilistic polynomial-time honest-but-
curious/malicious server, the messagegeceives from the client should be perfectly hidden by ramdess. There-
fore the theorem follows. O

C Security Analysis of Second PPSSI Approach

Since we do not consider collusion, the security againstedthut-Curious/Malicious client and server follows
exactly from Theoreml ] 2] 3. So we only discuss securityrejdionest-but-Curious/Malicious Isolated Box.

C.1 Security against Honest-but-Curious/Malicious Isolag¢d Box (IB)

We define security against Honest-but-Curious/Maliciaaddted Box (IB) by comparing its view when interact-
ing with an honest client and an honest server with its viewminteracting with a simulat&iM.

Simulator SIM:
SIM is given| Xy | foranyU C {0,...,n} whereXy = Nicy Q.

1. SIM outputs an encrypted databdSB B’ to A.

2. SIM interacts with.A as a client, simulating querie§y, ..., ¢,} (even thoughSIM does not know

{q1,--,qn})-

Note, in the above definition, the only informatiéhv knows is the cardinality oXy; which is defined as the
intersection of a subset of query answers.
We then define an experiment for any adversdry

The experimentSPrivig 4:
1. The adversaryl outputs to the challenger a databdB8 and a list of querie$q, . .., ¢, }.

2. The challenger chooses a randonmbbit {0, 1} and does one of the following:

(a) If b =0, then the challenger interacts withas an honest client and an honest server.

(b) If b =1, then the challenger computé®1, ..., Q, } based orD B, derives all intersection&; for
allU € {1,...,n} and interacts withd asSIM({| Xv | }vucqi,....n})-

3. The adversaryl outputs a bit/.

4. The output of the experiment is defined tolkié b’ = b, and0 otherwise.

Definition 3 The second PPSSI approach is secure against honest-biotisimalicious IB if, for all probabilistic
polynomial-time adversaried, there exists a probabilistic polynomial-time simulafdi such that

1
Pr[SPriv|B)A = 1] < 5 +e€

Theorem 4 If the hash functioZ (-), H1 (), Ha(+), Hs(-) are collision resistantEnc is a semantic secure encryption,
and Token is unpredictable, then the second PPSSI appraaskdure against any probabilistic polynomial-time
honest-but-curious/malicious IB.
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Proof: Our goal is to construct a simulat6tM such thatA cannot tell the difference between the view when inter-
acting withSIM and the view when interacting with an honest client and arebbgerver. OugIM is constructed as
follows:

1. SIM createE£DB’:

e Pickw random messages of same length as encrypted messages.
e Thencreatd.Table’ = {(tag},, ek}, eind};)}1<j<wi<i<m Wheretag;, €g {0, 1}, ek}, €r {0,1},
eind;-’l €g {0,1}, 1, is the output length of hash functiol,is the output length of encryption function.

2. For each query;, SIM prepares the matching tag $6t= {tag: ... tagliQ”} such that N;cpy T;| = | Xy| for
anyU C {0,...,n} as follows:

e ForallU, computel X7| whereXy = X¢\ Ujpr(s o Xov. Given|Xy|, | X¢| can be computed as

| Xv| =[Xv| - Xv N (U s 0 Xo)|

=|Xu| —( Z | X N Xu| - Z [(Xu N Xoyy) N (Xu N Xy
U’ |>|U] UL [>|U||U5|>|U U #U;

4t (_1)(Z)+"'+(\UT'+1) | Moo (Xu N X))

where| Xy, NN Xy, | = | Xv,0--uu;

. Itis easy to observe thaf ;. [Xv| = U, Q]

e Randomly picky ., \XU| different tags fromLTable’ and store them iiy’. For each’, initialize Qy; as
follows:

(a) Pick|Xy| distinct tags fromt” and add them tQ);.
(b) UpdateY «+ Y\Qy.

e ForA = 1,...,n, setT) = UxeyQu and append a random tag (used to terminate a query) which is
different from all tags iflTable’ to 7. Note|T)| = |Q,| + 1.

3. SIM plays the role of a client as follows: for theh query, makeT, | probes wherdéth probe is thé)th element
in T).

We first analyze the view ofd between tags ifEDB and those inEDB’. The distribution of tags ifEDB
and those irEDB’ is the same unless one of the following happens: (1) themssittr;, val;) # (attr;,val;)
but H (attr;,val;) = H(attrj,val;); (2) H(attr;,val;) # H(attrj,val;) but Hy(Token(H (attr’,val’))||ctr’) =
H, (Token(H (attr”,val"))||ctr"); (3) A forges TokeQH (attr,val)) for certain(attr, val). All these happen with
negligible probability if H(-), Hy(-) are collision resistant and Token is unpredictable.

Next we analyzed’s view betweer({ek; ;, eind;,; }1<i<m,erj)i<j<w iN EDB and those irEDB’. They should
appear uniformly random tgl unless (1)A breaks symmetric encryption algorithm; (2)finds collision in Hy(-)
or Hs(-) (which breaks one-time-pad encryption); (8)can forge Toke(H (attr,val)) for certain(attr,val). All
these happen with negligible probabilityfs(-), Hs(-) are collision resistantznc is semantic secure and Token is
unpredictable.

Last we show thatd cannot distinguish the way that an honest client’'s queriesaaswered usinEDB and the
way thatSIM’s queries are answered usilDB’. For an honest client's query, there ard@;| matches inEDB.
For theSIM’s ith query, it make$T;| probes and there will bE;| — 1 matches. Sincél;| — 1 = |Q;| and.A cannot
distinguisher; from er;., the view in the real protocol and that in the interactiorhv@tM are identical. (]

D Comparion of State-of-the-art PSI-DT

In the following, we review and compare state-of-the-art i8tocols and focus on PSI-DT variants. We assume
client and server set sizes arandw, respectively.
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D.1 PSI-DT without Pre-distribution

FNPO4. Freedman, Nissim, and Pink@[18] wdaivious polynomial evaluatioto implement PSI. Their approach
can be slightly modified to support PSI-DT. The modified pcoto- denoted as FNP04 — works as follows: the
client first setups an additively homomorphic encryptiohesoe, such as Paillier, with key pdik., sk.). Client
defines a polynomiaf (y) = [];_,(y — ¢;) = >.i_, a;y* whose roots are its inputs. It encrypts each coefficient
a; under its public keyk. and sends encrypted coefficieqt&nc,y, (a;)}¥_, to the server. Since the encryption is
homomorphic, the server can evaludiec(f(s;)) for eachs; € S independenlty from the client. Then, the server
returns{(Enc(r; - f(s;) + s;), Enc(r’; - f(s;) + data;))}}_, to the client where; andr’; are fresh random numbers
for each input inS. Client, for each returned paie;, e,-), decryptse; by computinge’ = Decg, (e;). Thenifd € C,

the client continues to decrypt and gets the associated data. Otherwise, the client ordysgete random value and
moves onto the next returned pair. In order to speed up thHerpence, FNP04 can use modified EIGamal encryption
instead of Paillier. Specifically, the client us¢s instead ofa; as the input to the EIGamal encryption wheres a
generator with ordeg modulop. And when it decrypts;, it recoversg®. Client can still decide whethef € C by
comparingg® to ¢%,Ve; € C. In terms of data, the server can choose a randonykegnd uses it to symmetrically
encryptdata;. Then the server send$Enc(r; - f(s;) +s;), Enc(r} - f(s;) +k;), Encx; (datay))}i_, to the client.

If the client can recoveg”s, it can also decryptlata;. Using balanced bucket allocation to speed up operations,
client overhead is dominated l6y(v + w) |¢|-bit mod p exponentiations (in EIGamal). Whereas, server overhead is
dominated byO(w log log v) |g|-bit modp exponentiations.

KSO05. Kissner and Son@g] also use oblivious polynomial evadueatio construct a variety of set operations. How-
ever, their solution is designed for mutual intersectiorravulti-setthat may contain duplicate elements, and it is
unclear how to adapt it to transfer associated data. Alsir, tachnique incurs quadrati®(vw)) computation (but
linear communication) overhead. As we use a different ntbtioohandle multi-sets (see Sectidn 5) and we only
consider one-way PSI, we do not consider KSO5 any further.

DT10-1. De Cristofaro and Tsudik present an unlinkable PSI-DT molt¢Fig. 3 in ml]) with linear computation and
communication complexities. This protocol, denoted as @T loperates as follows: The setup phase yields primes
(e.g. 1024 bits) and (e.g. 160 bits), s.ty|p— 1, and a generatarwith orderg modulop. In the following, we assume
computation is done mog. First, the client sends to the ser&r= [([];_, H(c;)) - '] where R, is randomly
selected fron¥,. Also, for eachl < i < v, the client sends,; = [(Hl# H(ep)) - T, where theR..;’s are random

in Z,. The server picks a randoR, in Z, and replies withZ = g’ andy, = yfs (for everyy; it received). Also, for
each items; (1 < j < w), it computesK.; = (X/H(s;))", and sends theagt; = H;(K,.;) with the associated
data record encrypted undey = Hs(K,.;). The client, for each of its elements, compuf€s; = v, - ZBe . g~ Rei
and the tag; = Hi(K.;). Only if ¢; is in the intersection (i.e., there exists an elemgnt= ¢;), the client finds a
pair of matching tagét;, ¢;). Besides learning the elements intersection, the clientlearypt associated data records
by key Hy(K..;). Client overhead amounts (v) |¢|-bit modulop exponentiations and multiplications and server
overhead i$) (v + w) |¢|-bit modulop exponentiations.

D.2 PSI-DT with Pre-distribution

JLO9. Jarecki and Liu|E5] (following the idea irELIZS]) give a PSIFbased on Oblivious PRF (OPRIE[N]. We
denote this protocol as JL09 (and present the improved OBR$treiction discussed in [2]). Recall that an OPRFis a
two-party protocol that securely computes a pseudorandaictibn 5 (), on keyk contributed by a server and input
x contributed by a client, such that the server learns nothbwutz, while the client learng(«). The main idea is
the following: For every itens; € S, the server publishes a set of péi; (f1.(s;)), Enc, s, (s,)) (data;)}. Then,
the client, for every itema; € C, obtainsf;(c;) by OPRF with the server. As a result, the client can Hséf(c;)) to
checkifc; € C NS and if so then it use&, (fx(c;)) to recoverdata;. JLO9 incursO(w + v) server exponentiations,
andO(v) client exponentiations. Exponentiations &hg-bit moduloN?, whereN is the RSA modulus.

JL10. Another recent work by Jarecki and LE[ZG] (denoted as Jlldwrages an idea similar to JL@[ZS] to achieve
PSI-DT. Instead of using OPRF, JL10 uses the newly-intred&arallel Oblivious Unpredictable FunctiofPOUF),
fr(z) = (H(x)* mod p), in the Random Oracle Model. In order to obliviously compfitér), the client first picks

a random exponent and sendg; = H (c;)“ to the server. The server replies to the client with= (y,)*. Then the
client recoversf, (x) = z'/. The computational complexity of this protocol amount§i@) online exponentiations
for both server and client, as the server can pre-procefmé)fits O(w) exponentiations. Exponentiations arbit
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modulop, similar to DT10-1.

DT10-2. In Fig. 4 of [14], De Cristofaro and Tsudik present a PSI-DFdzhon blind-RSA signatures in the Random
Oracle Model (ROM). We denote this protocol as DT10-2. Thetqwol uses the hash of RSA signatures as a PRF
in ROM and achieves the same asymptotic complexities as E2Tdd JL10, but (1) the server now computes RSA
signatures (e.g., 1024-bit exponentiations), and (2htl®rkload is reduced to only multiplications if the RSA fiab
key, e, is chosen short enough (e.g.+ 3).

In summary, we consider JL09, JL10 and DT10-2 in the cont&RSI-DT with pre-distribution. Note that,
although faster than protocols without pre-distributithgse protocols do not achieve Server Unlinkability.

D.3 APSI-DT without Pre-distribution

DT10-APSI. In Fig.2 of ], De Cristofaro and Tsudik also present an AB$ technique mirroring its PSI-DT
counterpart, DT10-1. We denote this protocol as DT10-ARSiperates as follows: the client first obtains autho-
rization from the court for its element, where an authorization corresponds to an RSA-signaiyes H(c;)<.
Then, the client sends the sen&r= [([];_, o;) - g"*<] for a randomR.. Then, for each element, it sendsy, =
[(Hl# o) - g1, where theR,..;'s are additional random values. The server picks a randdoey&,, and replies
with Z = g¢fts |y} = y¢f'= (for each received;). Also, for each element;, she compute®,.; = (X¢/H(s;))",
and sends theag t; = H;(K.;) and the associated data record encrypted under thé key H,(K.;). Client,
for each of its elements, computés.; = y. - Z% . Z—Fei and the tag, = Hy(K..;). Client can find a pair of
matching tagt;, t;) only if ¢; is in the intersection andl; is a valid signature on;, Besides learning the elements in
the intersection, the client can decrypt associated datads. The computation overheadl$v) exponentiations for
the client, and) (v + w) — for the server. Exponentiations dr€|-bit moduloN, whereN is the RSA modulus.

CZ09. Camenisch and ZaverucHa [6] provide mutual set interseetith authorization on both parties’ input. The
proposed protocol builds upon oblivious polynomial evétwaand has quadratic computation and communication
overhead. Also, it does not provide data transfer.

As a result, we only consider the DT10-APSI protocol in thatest of APSI-DTwithout pre-distribution. Note
that DT10-APSI provides both Server and Client Unlinkapilas well as Forward Security.

D.4 APSI-DT with Pre-distribution

IBE-APSI. The protocol in Fig. 5 oﬂEZ] presents a protocol based onéBeRranklin Identity-based Encryptidﬂ [4],
which can be adapted to APSI-DT with pre-distribution. Wadate this protocol as IBE-APSI. Note that such a con-
struct is described in the context of a different primitivBrivacy-Preserving Information Transfer (PPIT). However
it can be converted to APSI-DT.

First, the authorization authority (acting as the IBE PK@j)egrates a primg two groupsG;, G, of orderg, a bilinear
mape : G; x Gy — Ga2. Arandoms € Z, is selected as a secret master key. Then, a random generatds; is
chosen, and) is set such thaf) = s - P. (P, Q) are public parameters. Client obtains authorization foelament

¢; as an IBE secret key;; = s - H(¢;). In the pre-distribution phase, the server first selectsdomz € G; and
then, for each(s;, data;), publishes(t;, e;) wheret; = H,(e(Q, H(s;))?) ande; is the IBE encryption oflata;
under identifiers;. Then, the server gives the clieRt = zP and the client compute$ = H;(e(R,0;)). For any
t;, s.t. ) = t;, the client can decrypt;. The protocol can be speeded up by encryptinginder symmetric key
Hy(e(Q, H(s;))?). The computation overhead for the client amount©te) pairing operations, while there is no
online overhead for the server.

Remark that IBE-APSI has two drawbacks compared to APSIipfovides neither Server Unlinkability nor Forward
Security.

D.5 Benchmark of (A)PSI-DTs

In this section, we benchmark several (A)PSI-DT protocald @ompare their performance through experimental
results. During the process, we try to identify the most iffit(A)PSI-DT protocols (with or without pre-distributi,
and select the building blocks of our PSSI solutions.

Candidate Protocols.We discuss efficient implementation of the following (A)F3T protocols:
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w/o Pre-Distribution w/ Pre-Distribution
FNPO4 ([18]), JL09 ([25]), JL10 (]26]),

DT10-1 (Fig.3in[14]) DT10-2 (Fig.4 in [14])

APSI-DT | DT10-APSI (Fig.2 in[14]) | IBE-APSI (Fig.5in [12])

PSI-DT

Table 7: Candidate PSI-DT and APSI-DT protocols.

120

128-bit RC4 —O—

128-bit AES CBC -3+ fg
> 10000
£
£
z § 1000
H g
£ £ 100
: 3
4 JLO9 -~k
@ DT10-APS| ==X~
2 1 IBE-APSI -
0 2000 4000 6000 8000 10000
Data size (MB) Server Set Size (w)
Figure 15: Symmetric key en-/de-cryption Figure 16: Server pre-computation overhead.

performance.

Each protocol was implemented in C++ using GMP (ver. 5.01) RBC (ver. 0.57) libraries. All benchmarks
were collected on a Ubuntu 9.10 desktop platform with IntebX E5420 CPU (2.5GHz and 6MB cache) and 8GB
RAM.

For protocols supporting data transfer, data associatdd egich server element can be arbitrarily long. Also,
performance of some protocols is dominated by each elemdata size, rather than set size (e.g., in FNP04). In
order to obtain a fair comparison, we need to capture theifisit” cost of each protocol. To this end, we employ the
following strategy to eliminate data size effects: Firstall protocols, we encrypt each element’s data with a distin
random symmetric key and consider these keys as the newiassbdata. Assuming that a different key is selected at
each interaction, this technique does not violate Servéinkhbility. This way, the computation cost of each protoco
is measured based on the same fixed-length key, regardldataddize. In our experiments, we set symmetric key size
to 128 bits.

As a result, each protocol execution involves additionarbead of symmetric en-/de-cryption of records. Fig-
ure[I% compares the resulting overhead (for variable dats)siusing either RC4 [86] or AES-CBC [11] (with 128-bit
keys). Therefore, to estimate the total cost of a protoam, meeds to combine: (1) symmetric encryption overhead,
(2) computation cost of each protocol, and (3) data trardsfy for transmitting the encrypted data and PSI values.

We further assume that the client does not perform any pmgpatation, while the server performs as much pre-
computation on its input as possible. This reflects thetsealhere client input is (usually) determined in real time,
while server input is pre-determined. Figliré 16 shows tleeqemputation overhead for each protocol.

Next, we evaluate online computation overhead. Figlrésnt{I& present client online computation overhead
with respect to client and server input sizes, respectiiétyure$ 1P and 20 show server online computation overhead
with respect to client and server input size, respectively.

Furthermore, Figures 21 afdl22 evaluate protocol bandveolthplexity with respect to client and server input
sizes. For protocols with pre-distribution, bandwidth semption (since the transfer of database encryption is per-
formed offline) does not include pre-distribution overhe&tbte that, in these figures, we sometimes use the same
marker for different protocols to indicate that these pcote share the same value. Client input sizgesp., server
input sizew) is fixed at5, 000 in figures where x-axis refers to the server (resp., the gliaput size.

Finally, note that, in all experiments, we use a 1024-bit Rddulus and a 1024-bit cyclic-group modulus with
a 160-hit subgroup order. All test results are averaged tw@rdependent runs. All protocols are instantiated under
the assumption dflonest-but-CuriougHbC) adversaries and in thandom Oracle Mod€éROM).

PSI-DT without pre-distribution. We now focus on the comparison between FNP04 and DT10-1. réslir-
show that that FNP0O4 is much costlier than DT10-1 in terindient and server online computation as well as
bandwidth consumption. For each client set size, DT10-dntloverhead ranges front0ms to 4,400ms, while
FNPO4 server overhead — betwekr00ms and 15,000ms. For each chosen server set size, server overhead in
DT10-1 is unded, 300ms, while in FNP04 it exceedss, 000m.s.
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Figure 20: Server online computation w.r.t. Figure 21: Bandwidth consumption w.r.t. Figure 22: Bandwidth consumption w.r.t.
server set size. client set size. server set size.

PSI-DT with pre-distribution. Next, we compare JL09, JL10 and DT10-2, i.e., PSI-DTs withdtistribution. Recall
that all protocols are instantiated in the HbC model, thu®KIK are not included for JLO9 and JL10. Figured17-22
show that DT10-2 incurs client overhead almost two ordemmagnitude lower than JLO9 and JL10. Indeed, DT10-
2 involves two client multiplications for each item, whileQP performs two heavy homomorphic operations and
JL10 — two exponentiations. In JL10, the server online caatmn overhead results from160-bit exponentiations,
whereas, in DT10-2, it results fromRSA exponentiations. Since these exponentiations candeglspg up using the
Chinese Remainder Theorem, the gap (for server computatiernead) between JL10 and DT10-2 is only double.
Summing up server and client computation overhead, DT16s@lts to be the most efficient. In terms of bandwidth
consumption, DT10-2 and JL10 are almost the same, while IH.8igghtly more expensive.

APSI-DT without pre-distribution. The only protocol available in this context is DT10-APSI (Ascussed in Ap-
pendixD.3). Figuré =20 illustrates that client overh&adetermined only by client set size, whereas, server over-
head is determined by both client and server set sizes. Nateteasurements obtained for APSI-DT naturally mirror
those of DT10-1, as the former simply adds authorizatiodieftinputs (by merging signatures into the protocol).

APSI-DT with pre-distribution. The only protocol we evaluate for APSI-DT with data pre-dlsttion is IBE-APSI

(as discussed in AppendixD.4). Figurd[I4-18 shows thahicbeerhead increases linearly with client set size and
does not depend on server set size. Recall that, in IBE-ARSkerver needs to compute pairing operations for each
item, independent of client input. Moreover, since theserafions can be pre-computed, server-side overhead and
bandwidth consumption are negligible, as shown in Fi

During the pre-computation phase, the server needs to demppairing and exponentiations, which makes pre-
computation relatively expensive. Thus, note that, If 8etynlinkability is desired, server would need to repeat, fo
every interaction, the operations otherwise performesg dating pre-computation.

4In these figures, y-values for IBE-APSI are all 0 which is diuthe scope of the y-axis.
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