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Abstract. Differential cryptanalysis is a well-known statistical attack on block ciphers.
We present here a generalisation of this attack called multiple differential cryptanalysis. We
study the data complexity, the time complexity and the success probability of such an attack
and we experimentally validate our formulas on a reduced version of PRESENT. Finally, we
propose a multiple differential cryptanalysis on 18-round PRESENT for both 80-bit and
128-bit master keys.
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1 Introduction

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir [1, 2] in order
to break the Data Encryption Standard block cipher. This statistical cryptanalysis exploits
the existence of a differential, i.e., of a pair (α, β) of differences such that for a given in-
put difference α, the output difference after encryption equals β with a high probability.
This attack has been successfully applied to many ciphers and has been extended to var-
ious different attacks, such as truncated differential cryptanalysis, impossible differential
cryptanalysis...

In the original version of differential cryptanalysis [1], a unique differential is exploited.
Then, Biham and Shamir have improved their attack by considering together several dif-
ferentials having the same output difference [2]. Truncated differential cryptanalysis intro-
duced by Knudsen [3] uses differentials with many output differences that are structured
as a linear space.

Here, we consider what we name multiple differential cryptanalysis. Similarly to mul-
tiple linear cryptanalysis, multiple differential cryptanalysis is the general case where the
set of considered differentials has no particular structure, i.e., several input differences
are considered together and the corresponding output differences can be different from an
input difference to another.

The problem of estimating the data complexity, time complexity and success probabil-
ity of a differential cryptanalysis is far from being simple. Since 1991, it is widely accepted
that the data complexity of a differential cryptanalysis is of order p−1

∗ , where p∗ denotes
the probability of the involved differential [2]. Theoretical studies based on hypothesis
testing theory [4–6] confirm this statement and give more specific results. Concerning the
success probability, a formula has been recently established by Selçuk in [7]. This formula,
which is used in many recent papers on differential cryptanalysis, is derived from a Gaus-
sian approximation of the binomial distribution. However, as already explained by Selçuk,
the Gaussian approximation is not good in the setting of differential cryptanalysis. This
was the motivation of the general framework presented in [8], that studies the complexity
of any statistical cryptanalysis based on counters that follow a binomial distribution. But,
this work does not apply to multiple differential cryptanalysis since the involved counters
do not follow a binomial distribution in case.



Our contribution. The main purpose of this paper is to provide a detailed analysis of
the complexity of any multiple differential attack. It is worth noticing that it includes the
variants of differential attacks such as classical differential cryptanalysis or truncated dif-
ferential cryptanalysis... In Section 2, we introduce multiple differential cryptanalysis and
study the complexity of this attack. We mainly provide formulas for the data complexity
and the success probability of a multiple differential cryptanalysis. Then, in Section 3, we
validate this theoretical framework by many experiments on a reduced version of the cipher
PRESENT, namely SMALLPRESENT-[8]. Then, Section 4 focuses on the general problem
of computing the involved probabilities. This problem arises in any statistical attack and
is not that is not directly related to the use of several differentials. Finally, to conclude this
work, we propose a multiple differential cryptanalysis of 18-round PRESENT. This attack
is not the best known attack on PRESENT since Cho has presented some attacks up to 26
rounds [9]. Nevertheless, it improves the best previously known differential cryptanalysis
on 16 rounds due to Wang [10].

2 Theoretical framework

In this first section, we propose a framework for analysing multiple differential crypt-
analyses. More precisely we provide estimates for the data complexity and the success
probability of such differential attacks that use any number of differentials. The time and
memory complexities of these attacks are also discussed.

2.1 Presentation and notation

Let us start with some notation that will be used all along this paper. We consider an
iterative block cipher parametrised by a key K.

EK : Fm2 → Fm2
x 7→ y = EK(x),

where m is the block size. We denote by F the round function of this iterative cipher:
Fk(x) is the result of 1-round encryption of x using the subkey k. A multiple differential
cryptanalysis aims at recovering the key K∗ used to encipher the available sample. We
consider here a last-round differential cryptanalysis on an iterative block cipher that re-
covers nk bits of the last-round subkey that we will denote by k∗ (this subkey is derived
from the master key K∗). Such an attack belongs to the class of statistical cryptanalyses
and thus follows the three following steps.

– Distillation phase: Extract the information on k∗ obtained from the N available plain-
text/ciphertext pairs.

– Analysis phase: From this information, compute the likelihoods of the candidates for
the value of k∗ and generate the list L of the best ` candidates.

– Search phase: Look down the list of candidates and test all the corresponding master
keys until the good one is found.

Now, let us introduce the notation used for the differentials.

Definition 1. [11] An r-round differential for a block cipher is a couple of differences
(δ0, δr) ∈ Fm2 × Fm2 . The probability of the differential is defined by

Pr [δ0 → δr]
def= PrX,K [EK(X)⊕ EK(X⊕ δ0) = δr] .
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In the setting of multiple differential cryptanalysis, the attacker exploits a collection ∆ of
differentials. The natural way of ordering these differentials is to gather the differentials
with the same input difference. We denote by ∆0 the set of all input differences involved
in the set ∆

∆0
def= {δ0, ∃δr, (δ0, δr) ∈ ∆}.

We number the input differences in ∆0 so that ∆0 = {δ(1)
0 , . . . , δ

(|∆0|)
0 }. Hence, for a fixed

input difference δ(i)
0 ∈ ∆0, we obtain a set ∆(i)

r of the corresponding output differences:

∆(i)
r

def= {δr | (δ(i)
0 , δr) ∈ ∆}.

Therefore, the set of differentials ∆ can be expressed as

∆ =
{(
δ

(i)
0 , δ(i,j)

r

) ∣∣∣ i = 1 . . . |∆0| and j = 1 . . . |∆(i)
r |
}
.

It is worth noticing that this definition is more general than truncated differential crypt-
analysis since the set of output differences can be different from an input difference to
another.

As in differential cryptanalysis, the algorithm used in multiple differential cryptanalysis
consists in partially deciphering the N ciphertexts using all possible values for the last-
round subkey and in counting the number of occurrences of the differentials in ∆. In
other words, we count the number of plaintext pairs with a difference δ(i)

0 in ∆0 that lead
to an output difference in ∆

(i)
r after r rounds. However, this attack (as it is) may not

work because the cost of the partial decryption is prohibitive (there are too many pairs of
ciphertexts and too many possible values for the subkey). In order to decrease this cost, a
sieving phase is used1 to discard some pairs for which we already know that the difference
after r rounds cannot be in ∆(i)

r . This phase consists in precomputing the sets ∆(i)
r+1 of all

δr+1 in Fm2 such that there exists a j for which Pr
[
δ

(i,j)
r → δr+1

]
6= 0 and in discarding

every pair with an output difference not in ∆(i)
r+1. This set of differences is named a sieve.

The multiple differential attack is summarised in Algorithm 1.

Algorithm 1: Multiple differential cryptanalysis
Input: N chosen plaintext/ciphertext pairs (xi, yi) with yi = EK∗(xi))
Output: The key K∗ used to encipher the samples
Initialise a table D of 2nk counters to 0.1

foreach δ
(i)
0 ∈ ∆0 do2

foreach plaintext pair (xa, xb) such that xb = xa ⊕ δ(i)
0 do3

if ya ⊕ yb ∈ ∆(i)
r+1 then4

foreach candidate k do5

Compute δ = F−1
k (ya)⊕ F−1

k (yb);6

if δ ∈ ∆(i)
r then D[k]← D[k] + 1;7

Generate a list L of the ` candidates with the highest values of D[k] ;8

foreach k ∈ L do9

foreach possible master key K corresponding to k do10

if EK(x) = y = EK∗(x) then return K;11

Such attacks are successful when the correct subkey is in the list L of candidates. Four
important quantities have to be taken into consideration when quantifying the efficiency of
1 This is widely used in differential cryptanalysis.
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a statistical cryptanalysis. The success probability PS that is the probability of the correct
subkey to be in the list of the best candidates,

PS
def= Pr [k∗ ∈ L] ,

the data complexity N that is the number of plaintext/ciphertext pairs used for the attack,
the time complexity that heavily depends on the size ` of the list L and the memory
complexity. The first three quantities are closely related since increasing N will increase
PS and increasing ` will also increase PS together with the time complexity. We now study
the time and memory complexities, while formulas for the data complexity and the success
probability are provided in Section 2.4.

Remark. In a multiple differential attack, the number of chosen plaintexts N and the
number of samples Ns are different quantities. The number of samples corresponds to the
number of pairs with a difference in ∆0 that we can form with N plaintexts. In an attack
with |∆0| input differences, we can choose the plaintexts such that the number of samples is
Ns = |∆0|N

2 . This is done by choosing the plaintext set of the form
⋃
x{x⊕δ, δ ∈ V ect(∆0)}

where V ect(∆0) is the linear space spanned by the elements of ∆0. Such sets are classically
named structures.

2.2 Time and memory complexities

In this section we discuss the details of Algorithm 1 in order to compute the time and the
memory complexities of the multiple differential cryptanalysis defined in Algorithm 1.

In order to analyse the time complexity of this attack we introduce some notation. Let
Sr

def= maxi{|∆(i)
r |} and Sr+1

def= maxi{|∆(i)
r+1|}. We denote by psieve the maximum over all

input differences in ∆0 of the probability to pass the sieve i.e. psieve = 2−mSr+1.
When performing a multiple differential cryptanalysis, one needs to check many times

if some difference belongs to a particular set A of differences. This step of the algorithm
can be done with a time complexity logarithmic in |A|. On the other hand, this requires
the use of |A| memory blocks. Now let us consider each important step of the algorithm.

The total number of pairs to test is Ns = |∆0|N/2. For each pair we have to check if
it passes the sieve. Thus the time complexity of this step is Ns log(Sr+1). Nevertheless,
one can decrease this complexity using the following simple trick. If there exists a set of
positions in {1 · · ·m} on which all elements in ∆r+1 vanish, then the plaintext/ciphertext
pairs can be gathered depending on the values of the ciphertexts on these bits. Pairs
formed by ciphertexts belonging to two different groups will not pass the sieve and thus
only the pairs formed by ciphertexts in the same group must be considered. Using this
trick together with plaintexts chosen to form structures, this step can take negligible time
regarding the rest of the attack. Since the proposed cryptanalysis is a last-round attack,
a partial inversion of the round function has to be performed for each pair that passes
the sieve and for each last-round subkey. Therefore this step has a complexity of about
2nk Nspsieve. Extracting the likeliest ` subkeys can be handled in linear time (regarding the
number of candidates 2nk). The last part of the algorithm corresponds to an exhaustive
search for the remaining bits of the master key. This step requires ` · 2nK−nk encryptions
where nK is the size of the master key.

Table 1 summarises the time complexities. The terms corresponding to steps with a
small time complexity are neglected here, and it is assumed that the generation of the
pairs has been done using the aforementioned trick.
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Table 1. Time complexity of a multiple differential cryptanalysis where Sr (resp. Sr+1) denote the maximal
number of output differences for a given input difference in ∆0 after r-rounds (resp. (r + 1)-rounds).

Encryptions Partial decryptions Comparisons

O
`
`2nK−nk

´
O
`
2nkNs2

−mSr+1

´
O
`
2nkNs2

−mSr+1 log(1 + Sr)
´

The partial decryption cost can be seen as a the 1/(r+1)-th of the cost of an encryption
for an (r+ 1)-round cipher. The memory complexity of the attack is essentially due to the
storage of the counters, of the plaintext/ciphertext pairs and of the sieves.

2.3 Theoretical framework

In this subsection we develop the theoretical framework used to analyse multiple differen-
tial cryptanalysis. In our context, the attacker obtains the ciphertexts corresponding to a
set of N chosen plaintexts generated using structures.

The determination of the data complexity and the success probability of a multiple
differential cryptanalysis requires the knowledge of the distribution of the counters used
in Algorithm 1 and particularly the distribution of D(k).

Definition 2. Let D(i)
x (k) be the basic counter corresponding to the set of differentials

with δ
(i)
0 as input difference and with output difference in ∆

(i)
r . For a given plaintext and

a given candidate k, D(i)
x (k) is defined as

D(i)
x (k) def=

{
1 if F−1

k

(
EK∗(x)

)
⊕ F−1

k

(
EK∗(x⊕ δ

(i)
0 )
)
∈ ∆(i)

r ,
0 otherwise.

The counters D(i)
x (k) follow a Bernoulli distribution since, for a fixed input difference and

a fixed plaintext, only one output difference can occur. For k = k∗, the value of F−1
k (x)

corresponds to the value obtained after r rounds of the cipher and thus the distribution of
D

(i)
x (k∗) depends on the probability of the corresponding differential. On the other hand,

for k 6= k∗, it is usually assumed that the value F−1
k (x) is uniformly distributed among all

the possible values. This assumption is known as the Wrong Key Randomisation Hypothesis
[12]. Most notably the distribution of the D(i)

x (k)’s is the same for all wrong candidates k.

Hypothesis 1. (Wrong-Key Randomisation Hypothesis in the differential crypt-
analysis setting).

PrX
[
F−1
k (EK∗(X))⊕ F−1

k (EK∗(X ⊕ δ
(i)
0 )) = δ(i,j)

r

]
=

{
p

(i,j)
∗ if k = k∗,

p(i,j) = 1
2m−1 for k 6= k∗.

In the following of this paper we will take the value 2−m instead of 1
2m−1 for p(i,j). Then,

using this hypothesis, we obtain that D(i)
x (k) follows a Bernoulli distribution with param-

eter p(i)
∗

def=
∑|∆(i)

r |
j=1 p

(i,j)
∗ if k = k∗ and p(i) def=

∑|∆(i)
r |

j=1 p(i,j) ≈ |∆(i)
r | 2−m otherwise. Then we

can defined the sum of this basics counters.

Definition 3. Let D(i)
x (k) be the basic counters defined in Definition 2. We define the

sums of the basic counters the set of all differentials and the counter we are interested in,
that is the mark obtained by a subkey during the attack:

Dx(k) def=
|∆0|∑
i=1

D(i)
x (k) and D(k) def=

1
2

∑
x

Dx(k).
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The factor 1/2 in the sum come from the fact that for any i, x and any key k, the counters
D

(i)
x (k) and D

(i)

x⊕δ(i)
0

(k) are equal. Hence, each statistical phenomenon is counted twice

when summing over all possible values for x. Instead of putting such a factor 1/2 it may
be possible to sum over one half of the whole set of x in a way that each pair of plaintexts
will be counted only once. For a fixed i, we consider only one input difference δ(i)

0 hence
it is easy to split the set of plaintext in two. The problem is not so easy when we have to
consider all input differences (i.e. for the sum

∑
xDx(k)). Indeed, it may not be possible

to find a set X containing N/2 plaintexts such that all pairs are counted once and only
once in other words, a set such that

∑
x∈X Dx(k) = 1

2

∑
xDx(k). The existence of such a

set X depends on the structure of the set of input differences ∆0.

Definition 4. The set of input differences ∆0 is admissible if there exists a set X of N/2
plaintexts that fulfils the condition

∀δ(i)
0 ∈ ∆0,∀x ∈ X , x⊕ δ(i)

0 6∈ X . (1)

An efficient way to test if a set ∆0 is admissible is provided in Appendix A.1. From now,
we consider that the set ∆0 has been chosen to be admissible. Hence, each pair is only
counted once, but some dependencies between counters still remain. Deriving a general
formula for the distribution of a sum of dependent variables is not so easy. Moreover, the
variables we consider have really small dependencies and hence, we will assume that they
are independent.

Hypothesis 2. For any subkey k (including k∗) and a set X that fulfils (1),

– For any x, the variables (D(i)
x (k))1≤i≤|∆0| are independent.

– The variables (Dx(k))x∈X are independent.

This hypothesis is not so far to being true. The same kind of hypothesis is done in differen-
tial cryptanalysis. Indeed, in the differential setting, the random variables Dx(k) follow a
Bernoulli distribution of parameters p∗ or p and the same kind of independence assumption
is used in order to say that the counters D(k) follow a binomial distribution.

Assuming Hypothesis 2, the end of this section is now dedicated to the problem of
finding good estimates for the distribution of the sum of M independent variables that
follow Bernoulli distributions with different parameters. Actually, we aim at applying this
estimate to the determination of the distributions of D(k) and D(k∗). In the following, we
use D(k) to instantiate some results but the results obviously hold for D(k∗), when p is
replaced by p∗.

The first technique to find a good estimate of the distribution of D(k) is to use the
following theorem which states that the distribution of the counters Di(k) is close to a
Poisson distribution.

Theorem 1. [13] Let D(i)
x (k) be M independent Bernoulli random variables with param-

eters p(i). Let Dx(k) def=
∑M

i=1D
(i)
x (k) and λ =

∑M
i=1 p

(i). Then, for all A ⊂ {0, 1, . . . ,M},
we have ∣∣∣∣∣Pr [Dx(k) ∈ A]−

∑
a∈A

λae−λ

a!

∣∣∣∣∣ <
M∑
i=1

(
p(i)
)2
.

Hence, the distribution ofDx(k) is close to a Poisson distribution of parameter
∑|∆0|

i=0 p
(i).

Then, using the stability of the Poisson distribution under addition, we conclude that
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∑
x∈X Dx(k) follows a Poisson distribution with parameter N

2 ·
∑|∆0|

i=0 p
(i).We then intro-

duce the following quantities that play a particular role in the analysis of the multiple
differential cryptanalysis.

p∗
def=
∑

i p
(i)
∗

|∆0|
=

∑
i,j p

(i,j)
∗

|∆0|
and p

def=
∑

i p
(i)

|∆0|
=

∑
i,j p

(i,j)

|∆0|
≈ |∆| · 2

−m

|∆0|
.

The bound on the error due to the use of the Poisson approximation is relatively small
regarding probabilities of order 10−1 but it is not clear that this approximation is still
accurate when considering tails of the distribution. Indeed, we have checked with some
experimental results that the cumulative function of the Poisson distribution is not a good
estimate of the tails of the cumulative distribution function of the counters D(k). For
this reason, we have to use another result from large deviations theory to obtain a better
estimate for the tails of the distribution of the D(k)’s.

Theorem 2. [14, chapter 5.4] Let D(k) =
∑

xDx(k) be a sum of M discrete, indepen-
dent and identically distributed random variables. Let µ(s) be the semi-invariant moment
generating function of each of the Dx(k). Then, for s > 0,

Pr
[
D(k) ≥Mµ′(s)

]
= eM [µ(s)−sµ′(s)]

[
1

|s|
√
π2Mµ′′(s)

+ o

(
1√
M

)]
.

where µ′ and µ′′ denote the first and second-order derivatives of µ.

From this theorem, we can compute accurate formulas for the tail of the distribution of
D(k) by computing the semi-invariant moment generating function in the special case
where all D(i)

x (k) follow a Bernoulli distribution. This computation is detailed in Ap-
pendix A.3 and leads us to Theorem 3. The result is expressed using the Kullback-Leibler
divergence.

Definition 5. Let 0 < x < 1 and 0 < y < 1 be two real numbers, the Kullback-Leibler
divergence is defined by:

D(x||y) def= x ln
(
x

y

)
+ (1− x) ln

(
1− x
1− y

)
.

Before giving the result obtained (Theorem 3), let us recall that Ns =
|∆0|N

2
. This

quantity appears naturally in the expression of the distribution tails.

Theorem 3. Let D(k) be a counter as defined in Definition 3 (D(k) is a sum of N/2
independent and identically distributed variables and takes values in {0, 1, . . . , Ns}). We
define two functions of τ and q real numbers in [0, 1] with τ 6= q:

G−(τ, q) def= e−NsD(τ ||q) ·

[
q
√

(1− τ)
(q − τ)

√
2πτNs

+
1√

8πτNs

]
, (2)

G+(τ, q) def= e−NsD(τ ||q) ·

[
(1− q)

√
τ

(τ − q)
√

2πNs(1− τ)
+

1√
8πτNs

]
. (3)

Then, the tails of the cumulative distribution function of D(k) can be approximated by:

Pr [D(k) ≤ τNs] = G−(τ, p)
[
1 +O

(
p− τ
p

)]
,

Pr [D(k) ≥ τNs] = G+(τ, p)
[
1 +O

(
p− τ
p

)]
.
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By combining the results of Theorem 1 and Theorem 3, we define the following estimate
for the cumulative distribution function of the counters D(k).

Proposition 1. Let GP(τ, q) be the cumulative distribution function of the Poisson dis-
tribution with parameter qNs. Let G−(τ, q) and G+(τ, q) as defined in Theorem 3. We
define G(τ, q) as

G(τ, q) def=


G−(τ, q) if τ < q − 3 ·

√
q/Ns,

1−G+(τ, q) if τ > q + 3 ·
√
q/Ns,

GP(τ, q) otherwise.

The cumulative distribution functions of the counters D(k) and D(k∗) can be approximated
by G and G∗, where

G∗(τ) def= G(τ, p∗) and G(τ) def= G(τ, p),

with p∗ =

∑
i,j p

(i,j)
∗

|∆0|
and p =

∑
i,j p

(i,j)

|∆0|
≈ |∆|

2m|∆0|
from the wrong-key randomisation

hypothesis.

2.4 Data complexity and success probability

For a set ∆0 that is admissible and if Hypothesis 2 holds, the distributions of the counters
are tightly estimated by Proposition 1 and are similar to the distributions involved in
[8]. Therefore we can use the same framework to estimate the data complexity and the
success probability of a multiple differential cryptanalysis. The results obtained are given
in Corollary 1 and Corollary 2.

Corollary 1. Using notation defined in Section 2.1, the data complexity of a multiple
differential cryptanalysis with success probability close to 0.5 is

N = −2 · ln(2
√
π` 2−nk)

|∆0|D(p∗||p)
,

where ` is the size of the list of the remaining candidates and nk is the number of bits of
the key we want to recover.

Proof. In [8], the authors approximate the tails of the binomial cumulative distribution
function by e−Ns·D(τ ||p) (1−p)

√
τ

(τ−p)
√

2πN(1−τ)
to obtain an estimate of the number of samples

required to perform a statistical cryptanalysis. Here, the tails of the cumulative distribu-
tion function of the counters D(k) are similar (see the definitions of G− and G+ given
in Theorem 3). Therefore, we can use the same method to derive the required num-
ber of samples. We fix the relative threshold τ to p∗ which corresponds to a success
probability close to 0.5. Then, Ns is found by solving equation 1 − G(p∗) = `

2nk (recall
that G depends on Ns). In differential cryptanalysis, p∗ is quite larger than p hence,
G(p∗) = 1−G+(p∗, p). Therefore a good estimate of Ns can be found using a fixed point

method for solving equation G+(p∗, p) =
`

2nk
. As in [8], we here obtain that Ns is close

to − 1
D(p∗||p)

[
ln
(

ν`2−nk√
D(p∗||p)

)
+ 0.5 ln(− ln(ν`2−nk))

]
where ν def= (p∗−p)

√
8π(1−p∗)p∗

2p∗(1−p)+(p∗−p)
√

1−p∗
. As

proposed in [8], ln(2
√
πD(p∗||p)) can be used as a good estimate of ln(ν), implying that

the number of samples Ns is close to − ln(2
√
π` 2−nk )

D(p∗||p) . The result finally follows from the

fact that the number of plaintexts is N = 2Ns
|∆0| .
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♦

In [8] it is also conjectured that for a value Ns of the form Ns = −c · ln(2
√
π` 2−nk )

|∆0|D(p∗||p) , the
success probability essentially depends on the value of the constant c.

In Corollary 2, we provide an estimate for the success probability of a multiple dif-
ferential cryptanalysis. This corollary can be proved using arguments similar to the one
exposed in the proof of Theorem 3 in [8].

Corollary 2. Let G∗(x) (resp. G(x)) be the estimate of the cumulative distribution func-
tion of the counter D(k∗) (resp. of D(k)) defined in Proposition 1. The success probability,
PS, of a multiple differential cryptanalysis is given by

PS ≈ 1−G∗
[
G−1

(
1− `− 1

2nk − 2

)
− 1
]

(4)

where the pseudo-inverse of G is defined by G−1(y) = min{x|G(x) ≥ y}.

2.5 Application to known differential cryptanalyses

Intuitively speaking, exploiting more differentials should decrease the cost of the attack
since we extract more information on the same key. Nevertheless, this intuition is not
always true. Let nk be the number of key-bits to recover and let us fix the size of the list
to `. Then, for a fixed c, taking Ns of the form Ns = −c · ln(2

√
π` 2−nk )

|∆0|D(p∗||p) , leads to the same
success probability whatever is the set of differentials considered (and hence whatever
are the values of |∆0|, p∗ and p). That means that the greater the value |∆0|D(p∗||p) is,
the more information we extract from the samples. This neither takes into account the
time complexity for extracting information nor the time complexity for analysing it. More
details on these complexities have been given in Section 2.2. We now focus on finding the
set of differentials that provides the more information to the attacker.

A general statement on the best way to choose differentials is not so easy to make.
Therefore, we will take a look at two particular cases.

Multiple inputs, single output. In [2], Biham and Shamir have exploited several
differentials to mount their attack on the DES. The differentials they use have all the same
output difference but different input differences. In this case, we have several differences
(δ(i)

0 , δr) with probabilities p(i)
∗ and a corresponding random probability p(i) ≈ 2−m when a

wrong candidate is used for deciphering. We also assume that differentials are sorted such
that the p(i)

∗ are in decreasing order. The goal is to find a criterion to determine whether
adding the best of the remaining differentials decreases the data complexity or not. For a
fixed success probability and a fixed size of list, the data complexity decreases if and only
if

|∆0|D

(∑|∆0|
i=1 p

(i)
∗

|∆0|

∣∣∣∣∣∣2−m) ≤ (|∆0|+ 1)D

(∑|∆0|+1
i=1 p

(i)
∗

|∆0|+ 1

∣∣∣∣∣∣2−m) . (5)

This implies for instance that, if we have a set of differentials with several input differences
and with the same probability, exploiting them will decrease the data complexity by a
factor |∆0| compared to a simple differential attack that uses only one of them.

Single input, multiple outputs. Some truncated differential attacks [3] can be seen
as multiple differential cryptanalyses with a single input and multiple outputs. Here we
assume that we exploit several differentials (δ0, δ

(j)
r ) with probability p

(j)
∗ for the correct

9



subkey. We assume that the p(j)
∗ are sorted in decreasing order. Adding one more differential

with the same input decreases the data complexity until

D

|∆r|∑
j=1

p
(j)
∗

∣∣∣∣∣∣2−m|∆r|

 ≤ D
|∆r|+1∑

j=1

p
(j)
∗

∣∣∣∣∣∣2−m(|∆r|+ 1)

 . (6)

Moreover, by studying the derivative of the Kullback-Leibler divergence one can obtain
that, if a > b and 0 < λ ≤ a−1, D(λa||λb) > λD(a||b). Therefore, if we have |∆r|
differences with the same input difference and the same probabilities, taking this set of
differentials decreases the data complexity by a factor greater than |∆r| compared to a
simple differential.

Multiple inputs, multiple outputs. Both previous cases are particular cases of the
general situation where the differentials are taken with several input differences and several
output differences. Determining the optimal set of differentials that must be chosen to
obtain the smallest data complexity is difficult. The reasons are that the differentials do
not have the same probabilities and both previously defined criteria use the Kullback-
Leibler divergence which is not so easy to study. For all attacks presented in the following
sections, we have decided to first determine the optimal set of output differences for each
input difference we consider. This has been done using the criterion defined in (6). Then,
we have constructed the final set using (5) once the p(i)

∗ ’s have been obtained. We do not
claim that the resulting set of differentials is optimal but it is an efficient way for choosing
the differentials that provides good sets. Finding an algorithm to find the optimal set
of differentials (in the sense that provides the more information to the attacker) is an
interesting open problem.

3 Experimental validation

In this section we experimentally validate the theoretical framework presented in Section 2.
To confirm the tightness of the formulas for the data complexity and the success probability
given by Corollary 1 and Corollary 2, we have mounted a multiple differential cryptanalysis
on a reduced version of PRESENT namely SMALLPRESENT-[8].

3.1 Description of PRESENT and SMALLPRESENT-[s]

PRESENT is a 64-bit lightweight block cipher proposed at CHES 2007 [15]. It is a Substi-
tution Permutation Network with 16 identical 4-bit S-boxes (see Fig. 4 in Appendix A.2).
PRESENT is composed of 31 rounds and is parametrised by a 80-bit or a 128-bit key. The
round function is depicted in Fig. 3 in Appendix A.2.

SMALLPRESENT-[s]. For relevant experiments, we need to be able to exhaustively
compute the ciphertexts corresponding to all possible plaintexts and for all possible keys.
Therefore, we chose to work on a reduced version of PRESENT named SMALLPRESENT-
[s] [16]. The family SMALLPRESENT-[s] has been designed to be used for such exper-
iments. Parameter s corresponds to the number of S-boxes per round. The block size is
then 4s. Here, we present the results obtained on SMALLPRESENT-[8] i.e. on the version
with 8 S-boxes and block size 32 bits. One round of SMALLPRESENT-[8] is depicted in
Fig. 4 in Appendix A.2.

10



Adapting the key-schedule. In the reduced cipher presented in [16], the key-schedule
is the same as for the full cipher PRESENT (i.e. with a 80-bit master key). But in the
original PRESENT, most of the bits of a subkey are directly reused in the next-round
subkey, while this is not the case with SMALLPRESENT-[8] since the number of key bits
is still 80 but each subkey only uses 32 bits. Then, we decided to modify the key-schedule
for our experiments on SMALLPRESENT-[8]. This new key-schedule uses a 40-bit master
key and is similar to the one of the full version.

The master key is represented as K = k39k38 . . . k0. At round i, the 32-bit round subkey
Ki = k39k38 . . . k8 consists of the 32 leftmost bits of the current content of the register.
After extracting the round key Ki, the key register is updated as follows: the key is rotated
by 29 bit positions to the left, the leftmost four bits are passed through the PRESENT
S-box, and the roundcounter value is XORed with bits k11k10k9k8k7.

3.2 Experimental validation of the obtained formulas

To validate the formulas for the data complexity and the success probability given in
Corollary 1 and Corollary 2, we have mounted a toy attack on SMALLPRESENT-[8]
using both the 40-bit and the 80-bit key-schedules. This attack uses differentials on 9
rounds and aims at recovering some bits of the last-two-round subkeys, i.e. it corresponds
to an attack on 11 rounds of the cipher.

Design of the toy cryptanalysis. To empirically estimate the success probability of the
attack, we have to experiment this multiple differential attack a large number of times.
This implies that the number of key bits to recover has to be small enough (i.e. not
more than 32). We took differentials with output differences of the form 0x????0000. This
structure enable us to recover 16 bits of both last two subkeys. The set of input differences
is ∆0 = {0x3, 0x5, 0x7, 0xB, 0xD, 0xF}. This set is admissible since we can split the set of
plaintexts into two parts the even plaintexts and the odd plaintexts. This attack uses 55
differentials over 9 rounds of SMALLPRESENT-[8]. The probability of each differential
for both key-schedule (40-bit and 80-bit) has been estimated by a mean over 200 keys.
These 55 differentials are given in Appendix A.4 with the estimation of their probabilities.
The attack computes the list L of size ` = 212 of the likeliest candidates for the last two
round subkeys.

Validation of the formula given in Corollary 2. The theoretical success probability
of the attack is PS = 1−G∗

[
G−1

(
1− `−1

2nk−2

)
− 1
]
, where G∗(x) and G(x) are estimates

of the cumulative distribution function of the counter D(k∗) or of D(k). In Fig. 1, we
compare the experimental success probability with the theoretical success probabilities
obtained using the Gaussian approximation [7], using a Poisson estimation of the distri-
bution of the counters and using the hybrid cumulative function defined in Proposition 1.
For both key-schedules, 250 cryptanalyses have been performed to obtain the empirical
success rate. The curves obtained for 150, 200 and 250 experiments are quite similar thus
we expect that 250 experiments is enough for estimating the success probability. It is
worth noticing that the theoretical results in both figures use empirical estimates for the
probabilities of the differentials. It is clear from Fig. 1 that the Gaussian approximation
used up to now to analyse the complexity of differential cryptanalysis is not the most
relevant, as already explained in [7]. Using the Poisson distribution (that provides good
results in the case of simple differential cryptanalysis) is not here as good as using the hy-
brid cumulative function which results from large deviations theory to estimate the tails of
the distributions. Since `−1

2nk−2 is small, the tightness of the estimate for G−1
(

1− `−1
2nk−2

)
11
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Fig. 1. Comparison of success probabilities for the 40-bit (left) and 80-bit (right) key-schedule.

heavily depends on the accuracy of the tail estimate and thus the hybrid approach is the
most relevant one. This result shows that the formula for the success probability given in
Corollary 2 is a good approximation of the success probability of a multiple differential
cryptanalysis.

Validation of the formula given in Corollary 1. Using the same experiments, we
can also confirm the relevance of Corollary 1. It is conjectured in [8] that taking N of
the form N = −2 · c · ln(2

√
π` 2−nk )

|∆0|D(p∗||p) should lead to a success probability of about 50% for
c = 1, 80% for c = 1.5 and 90% for c = 2. In Table 2 we give the empirical success rates
corresponding to these three values of N for both attacks on the 40-bit and 80-bit versions
of SMALLPRESENT-[8].

Table 2. Empirical success probabilities corresponding to values of N given by Corollary 1.

c = 1.0 c = 1.5 c = 2.0

Key-schedule 40-bit 80-bit 40-bit 80-bit 40-bit 80-bit

N 228.92 229.06 229.50 229.65 229.92 230.06

PS 0.55 0.47 0.83 0.75 0.92 0.88

4 On the estimations of the probabilities p and p∗

We have shown that the formulas given by Corollary 1 and Corollary 2 are well-suited
for multiple differential cryptanalysis. But all simulations have been performed on a toy
example for which we were able to obtain good estimates of the probabilities of the differ-
entials. However, one of the main difficulties in statistical attacks is the estimation of the
underlying probabilities p(i,j)

∗ .

Differential probabilities and trails probabilities. Computing the probability of a
differential is, in general, intractable. Indeed, for an r-round differential (δ0, δr), there exist
many differential trails that have to be taken into account when computing the probability
of this differential.

Definition 6. A differential trail β on r rounds of a cipher is a (r+1)-tuple (β0, . . . , βr) of
elements of Fm2 . Its probability is the probability that a plaintext pair with difference β0 fol-

lows the difference path β when being encrypted: pβ
def= PrX,K

[
∀i, F iK(X)⊕ F iK(X⊕ β0) = βi

]
.
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The probability of a differential (δ0, δr) can be computed by summing all the differential
trails probabilities with input differences δ0 and output difference δr. For actual ciphers,
for a fixed differential, there is a lot of differential trails. This is the reason why, for most
ciphers, it is impossible to estimate the exact probability of a differential. Using a branch
& bound algorithm similar to the one used in linear cryptanalysis, it is possible to find all
possible trails with given input and output differences up to a fixed probability. Summing
the corresponding trail probabilities then provides a lower bound on the probability of the
differential and thus on the efficiency of the attack.

Key dependence of the probabilities of the differentials. For Markov ciphers,
introduced in [11], the classical way of estimating the probability of a differential trail is
to use the following theorem.

Theorem 4. [11] If an r-round iterated cipher is a Markov cipher and the r round keys
are independent and uniformly random, then the probability of a differential trail β =
(β0, β1, . . . , βr) is

pβ =
r∏
i=1

PrX,K
[
FK(X)⊕ FK(X′) = βi|X⊕X′ = βi−1

]
.

The point is that while many recent ciphers are Markov ciphers, their master key is not
large enough to lead to independent and uniformly distributed round subkeys and thus,
this theorem cannot be applied. Nevertheless, the independence of the round subkeys is
generally assumed to obtain an estimate of a differential trail probability.

Hypothesis 3. (Round subkeys independence).
The round subkeys of the cipher E are independent and uniformly random.

Using Theorem 4, we define the theoretical probability of a differential trail β = (β0, β1, . . . , βr)
as ptβ

def=
∏r
i=1 PrX,K [FK(X)⊕ FK(X′) = βi|X⊕X′ = βi−1] . Hence, one may be able to

estimate the probability PrX,K [δ0 → δr] of a differential δ = (δ0, δr) by summing the

theoretical probabilities of the trails that compose it: ptδ
def=
∑

β=(δ0,β1...,βr−1,δr)
ptβ.

Now, another problem arises: the problem of fixed-key dependence. Theorem 4 can be
used to estimate the probability of a differential δ = (δ0, δr) but in an attack, the key is
fixed and thus we are interested in the probabilities pKδ

def= PrX [EK(X)⊕ EK(X⊕ δ0) = δr] .
Most of the analyses assume that this probability does not depend on the key i.e., for two
keys K and K ′, pKδ = pK

′
δ = ptδ. This hypothesis is known as the stochastic indepen-

dence hypothesis. It is actually far from being true since evidences show that the values of
2m−1pKδ are binomially distributed around 2m−1ptδ [17, 18]. Nevertheless, in the setting of
multiple differential cryptanalysis, this phenomenon seems to fade. The hypothesis we are
using is then the following.

Hypothesis 4. (Stochastic equivalence in the multiple differential setting).
For any key K and for a set ∆ of differences large enough,

∑
δ∈∆ p

K
δ =

∑
δ∈∆ p

t
δ.

Impact of the estimation of the probabilities of the differentials on the suc-
cess probabilities. We have pointed out the problems related to the estimation of the
probabilities of the differentials. They come from the large number of trails composing
the differential and the fact that their probabilities depend on the key. In our attack on
SMALLPRESENT-[8] with the 40-bit key-schedule, we have computed the success proba-
bility of the attack based on experimental values for the differential probabilities. We have
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also computed the theoretical values of the differential probabilities using trails up to prob-
ability 2−48. The theoretical probabilities of the differentials are given in Appendix A.4.
We observe that these values always underestimate the probability of the differentials. Us-
ing this estimation of the probability we have plot the success rate of the attack (Fig. 2)
and we show how this underestimation of the probabilities of the differentials affects the
estimation of the success probability of the attack
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Fig. 2. Success probability of an attack on SMALLPRESENT-[8] with the 40-bit key-schedule

Estimation of p. In the analysis of the distribution of the counters, we have assumed that
the p(i,j) were close to 2−m (Hypothesis 1). The probability p(i) of a wrong-key counter to be
incremented by a plaintext pair with difference δ(i)

0 has then been estimated by |∆(i)
r | 2−m.

Thus, p that is the mean of the p(i)’s has been estimated by |∆|
|∆0| 2

−m. We use the results of
the experiments on SMALLPRESENT-[8] (Section 3) to show that it is a good estimate
for p. Let us recall that we took |∆| = 55 differentials with |∆0| = 7 different input
differences. Using the whole codebook we obtain 231 · |∆0| samples and thus the expected
value of the counters corresponding to wrong subkeys is 231 · |∆0|

(
55
|∆0|

)
2−m = 27.5. The

mean over the counters corresponding to wrong candidates has been computed for every
attack performed and the results are in the range [27.14; 28.15] (the mean value is 27.68).
This confirms the relevance of the estimation p ≈ |∆|

|∆0| 2
−m.

5 Application to PRESENT

There exists a lot of attacks on reduced versions of PRESENT. These attacks are sum-
marised in Table 3. The best differential attack on PRESENT is due to Wang [10]. This
attack, using 24 differentials on 14 rounds with same output difference, can break 16
rounds of PRESENT.

We saw in Section 3 that experiments on SMALLPRESENT-[8] corroborate theoretical
expectations. Assuming that this holds for the full cipher PRESENT too, we propose a
multiple differential cryptanalysis for 18 rounds of PRESENT that improves the attack
by Wang. This attack on 18 rounds uses 561, 16-round differentials with 17 different input
differences forming the set ∆0 = {0x1001} ∪ {0xY00Z, Y, Z ∈ {2, 4, A, C}}. This set ∆0 is
admissible (This can be check using the method given in Appendix A.1). For each input
differences the set of output differences is of size |∆r| = 33 and each output differences is of
the form ∆r ∈ {0x????????00000000}. The sieves obtained after 18 rounds are similar for
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Table 3. Summary of the attacks on PRESENT.

#rounds version type of attack data time memory reference

8 128 integral 224.3 2100.1 277.0 [19]
16 80 differential 264.0 264.0 232.0 [10]
17 128 related keys 263 2104.0 253.0 [20]
19 128 algebraic diff. 262.0 2113.0 n/r [21]
24 80 linear 263.5 240.0 240.0 [22]
24 80 statistical sat. 257.0 257.0 232.0 [23]
25 128 linear 264.0 296.7 240.0 [24]
26 80 multiple linear 264.0 272.0 232.0 [9]

each input and of size |∆(i)
r+2| ≈ 232. The differential probabilities have been estimated by

summing trails with probability up to 2−80 for each differential. The estimates obtained on
the involved probabilities are p∗ = 2−58.50 and p = 2−58.96. The number of active S-boxes
is 8 for both final rounds, implying that the number of bits we recover is 64. In the case of
the 80-bit key-schedule, there are 12 bits shared by both two-last-round subkeys and thus
we actually recover nk = 52 bits. Moreover, we can use the trick of decomposing the two
rounds of the partial deciphering (see [10]). The sieves ∆(i)

r+1, that are the sets of possible
differences after r + 1 rounds, are of size at most 213.2 and thus, only 232−16.8 last-round
subkeys remain after deciphering one round. We give in Table 4 the complexities of the
attack for different values of the data complexity, depending on the size of the list of
remaining candidates.

Table 4. Different attacks on PRESENT with memory complexity 232

80-bit N ` PS time c.

260 251 76% 279.00

262 247 81% 275.04

264 236 94% 271.72

128-bit N ` PS time c.

260 263 76% 2127.00

262 260 88% 2124.00

264 246 90% 2110.00

6 Conclusions

In this paper, we propose a general framework for analysing the complexity of multiple
differential cryptanalysis. By studying the distributions of the counters involved in the
attack, we give formulas for the data complexity, the time complexity and the success
probability of such attacks. We have validated these theoretical results by mounting an
attack on SMALLPRESENT-[8]. Using this framework we propose an attack on 18 rounds
on PRESENT. This is not the best known attack on PRESENT since linear cryptanal-
ysis seems to perform better on this cipher, but it improves the best previously known
differential cryptanalysis of PRESENT [10].

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In Menezes, A., Vanstone,
S.A., eds.: Advances in Cryptology - CRYPTO 1990. Volume 537 of LNCS., Springer (1991) 2–21

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4
(1991) 3–72

3. Knudsen, L.R.: Truncated and higher order differentials. In Preneel, ed.: Fast Software Encryption -
FSE 1994. Volume 1008 of LNCS., Springer (1995) 196–211

4. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanalysis? In Lee, P.J.,
ed.: Advances in Cryptology - ASIACRYPT 2004. Volume 3329 of LNCS., Springer (2004) 432–450

15



5. Baignères, T., Vaudenay, S.: The complexity of distinguishing distributions. In Safavi-Naini, R.,
ed.: Information Theoretic Security International Conference - ICITS 2008. Volume 5155 of LNCS.,
Springer (2008) 210–222

6. Blondeau, C., Gérard, B.: On the data complexity of statistical attacks against block ciphers. In
Kholosha, A., Rosnes, E., Parker, M.G., eds.: Workshop on Coding and Cryptography - WCC 2009.
(2009) 469–488
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A Appendix

A.1 Checking if a set ∆0 is admissible

For a set of input differences ∆0 we want to determine whether this set is admissible,
that mean we want to know if it is possible to obtain the value of the counter D(k) by
summing N/2 of the Dx(k). This is possible if and only if there exists a set X containing
N/2 plaintexts such that ∀δ(i)

0 ∈ ∆0, ∀x ∈ X , x ⊕ δ(i)
0 6∈ X . This is the case if X and its

complement form the two parts of a bipartite graph where the edges correspond to the
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δ
(i)
0 . The existence of such a graph is equivalent to the non-existence of odd weight cycles

(i.e. null sums of an odd number of δ(i)
0 ).

Testing this can be efficiently done if we now look at the problem in terms of coding
theory. Let G be the matrix whose columns correspond to the binary decompositions of
the differences in ∆0. Then, saying that every odd combination of the columns is non-zero
is equivalent to say that the dual of the code determined by G has only codewords with
even Hamming weights. Also, this is equivalent to the fact that the dual of this dual code
contains the all-one vector. Since the dual of the dual of a code is the original code, we
deduce that the set ∆0 is admissible if and only if the code determined by G contains
the all-one vector. This can be tested in polynomial time using a Gaussian elimination.
Indeed, putting the matrix G in the systematic form (i.e. G′ = (I||A) where I is the
identity matrix), the following equivalence holds.

(1 . . . 1) ·G′ = (1 . . . 1)⇐⇒ ∆0 is admissible.

A.2 Specification of PRESENT and SMALLPRESENT

The following figures depict the round functions of PRESENT and SMALLPRESENT-[8].
The S-box used in both ciphers is also given.
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Fig. 3. One round of PRESENT.
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Fig. 4. One round of SMALLPRESENT-[8] and PRESENT/SMALLPRESENT S-box.

A.3 Proof of Theorem 3

In this section we use the notation defined in Section 2.1 and Section 2.3. To use Theorem 2
we need to compute the semi-invariant moment generating function of each Dx(k). Let us
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recall that Dx(k) =
∑|∆0|

i=1 Dx(k)(i) where Dx(k)(i) follows a Bernoulli distribution with
parameter p(i) or p(i)

∗ . For the sake of simplicity, we denote by qi the parameter of the
involved Bernoulli distribution i.e. , qi = p(i) or qi = p

(i)
∗ and d will denote #∆0. To prove

the theorem we need to introduce some notation:

q̄
def=
∑d

i=1 qi
d

, m2
def=
∑

i q
2
i

d
, s0

def= ln
(
τ(1− q̄)
q̄(1− τ)

)
The semi-invariant moment generating function [14] of the Dx(k) and its derivatives are

µ(s) =

dX
i=1

ln (1− qi + qie
s) , µ′(s) =

dX
i=1

qie
s

1− qi + qies
and µ′′(s) =

dX
i=1

qie
s(1− qi)

(1− qi + qies)2
.

Let sr be the value such that µ′(sr) = dτ . The meaning of Theorem 3 is that substi-
tuting s0 for sr gives a good estimate of the tails of the distribution. Let f be the function
such that f(sr) = sr:

f(s) def= ln (dτ)− ln

(
d∑
i=1

qi
1− qi + qies

)
.

We first notice that µ′′(s) = µ′(s)(1 − f ′(s)). This, together with the definition of sr
and Theorem 2, leads to the following formula where M = N/2.

Pr [D(k) ≥ dτM ] = eM [µ(sr)−srdτ ]

[
1

|sr|
√

2πdτM(1− f ′(sr))
+ o

(
1√
M

)]
. (7)

Now, we are going to quantify the error made substituting s0 for sr in (7), but we first
need to estimate f(s0)− s0.

Lemma 1. Using the previous notation we have

f(s0)− s0 =
τ − q̄
q̄2
· (q̄2 −m2) + o

(
τ − q̄
q̄2
· (q̄2 −m2)

)
.

Proof. First, we extract s0 from the formula.

f(s0) = ln (dτ)− ln

 
dX
i=1

qi
1− qi + qies0

!
= ln

„
dτ

(1− τ)q̄

«
− ln

 
dX
i=1

qi
(1− qi)(1− τ)q̄ + qi(1− q̄)τ

!

= ln

„
(1− q̄)τ
(1− τ)q̄

«
− ln

 
1− q̄
d

dX
i=1

qi
(1− qi)(1− τ)q̄ + qi(1− q̄)τ

!

= s0 − ln

 
1

d

dX
i=1

qi ·
1− q̄

(1− qi)(1− τ)q̄ + qi(1− q̄)τ

!
.

Then we quantify the difference

f(s0)− s0 = − ln

 
1

d

dX
i=1

qi ·
1− q̄

qi(τ − q̄) + q̄(1− τ)

!
= − ln

 
1

d

dX
i=1

qi(1− q̄)
q̄(1− τ)

· 1

1 + qi(τ−q̄)
q̄(1−τ)

!

= − ln

 
1

d

dX
i=1

qi
q̄

(1− q̄)[1 + τ + o (τ)]

»
1− qi(τ − q̄)

q̄(1− τ)
+ o

„
qi(τ − q̄)

q̄

«–!

= − ln

 
dX
i=1

qi
dq̄

+

dX
i=1

τ − q̄
dq̄

»
qi −

q2
i

q̄

–
+ o

„
τ − q̄
dq̄

»
qi −

q2
i

q̄

–«!

= − ln

„
1 +

τ − q̄
q̄2
· (q̄2 −m2) + o

„
τ − q̄
q̄2
· (q̄2 −m2)

««
=
τ − q̄
q̄2
· (q̄2 −m2) + o

„
τ − q̄
q̄2
· (q̄2 −m2)

«
.

♦
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Lemma 2. Using the previous notation we have
sr = s0 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)
and f ′(s0) = τ

m2

q̄2
+ o

(
τ
m2

q̄2

)
.

Proof. The Taylor expansion of f is f(sr) = f(s0)+(sr−s0)f ′(s0)+O
(
f ′′(s0)(sr − s0)2

)
.

Thus, since f(sr) = sr, we get sr = s0 +O

(
f(s0)− s0

1− f ′(s0)

)
.

By definition, f ′(s0) =
∑d

i=1
q2
i e
s0

(1−qi+qies0 )2 ·
[∑d

i=1
qi

1−qi+qies0

]−1
and es0 = τ/q̄+o (τ/q̄).

Therefore,

f ′(s0) =

[
d∑
i=1

q2
i e
s0 (1 + o (1))

]
·

[
d∑
i=1

qi (1− o (1))

]−1

=
[
dτ

q̄
m2 + o

(
dτ

q̄
m2

)]
· (dq̄)−1

[
1 + o (1)

]
,

leading to f ′(s0) = τ m2
q̄2 + o

(
τ m2
q̄2

)
. Then, using the fact that 1

1−f ′(s0) = O (1) and
Lemma 1, we obtain that

sr = s0 +O

(
f(s0)− s0

1− f ′(s0)

)
= s0 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)
.

♦

Lemma 3. Using the previous notation we obtain

µ(sr) = d ln
(

1− q̄
1− τ

)
+O

(
d

(τ − q̄)
q̄2

· (q̄2 −m2) max(τ − q̄, τ)
)
,

1− f ′(sr) = 1− τ +O

(
max(τ − q̄, τ)

q̄2
(q̄2 −m2)

)
.

Proof. Using Lemma 2 we have esr = es0×eO
“
τ−q̄
q̄2
·(q̄2−m2)

”
= es0

[
1 +O

(
τ−q̄
q̄2 · (q̄2 −m2)

)]
.

Therefore,

µ(sr) =
d∑
i=1

ln (1− qi + qie
sr) =

d∑
i=1

ln
(

1− qi + qie
s0

[
1 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)])

=
d∑
i=1

ln
([

1− qi + qie
s0
] [

1 +O

(
qi τ

q̄

τ − q̄
q̄2
· (q̄2 −m2)

)])

=
d∑
i=1

ln (1− qi + qie
s0) +O

(
dτ · τ − q̄

q̄2
· (q̄2 −m2)

)
.

And finally, µ(sr) = µ(s0) +O
(
dτ · τ−q̄

q̄2 · (q̄2 −m2)
)

. Moreover,

µ(s0) =
d∑
i=1

ln (1− qi + qie
s0)

=
d∑
i=1

ln ((1− qi)q̄(1− τ) + qi(1− q̄)τ)− d ln (q̄(1− τ))

=
d∑
i=1

ln (q̄ − qiq̄ − q̄τ + qiτ)− d ln (q̄(1− τ))
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µ(s0) =
d∑
i=1

ln
(
q̄(1− τ) + qi(τ − q̄)

(1− q̄)q̄

)
− d ln

(
1− τ
1− q̄

)

= d ln
(

1− q̄
1− τ

)
+

d∑
i=1

ln
(

1 +
(qi − q̄)(τ − q̄)

(1− q̄)q̄

)

= d ln
(

1− q̄
1− τ

)
+

d∑
i=1

(qi − q̄)(τ − q̄)
(1− q̄)q̄

+O

(
d

(τ − q̄)2

q̄2
· (q̄2 −m2)

)
= d ln

(
1− q̄
1− τ

)
+O

(
d

(τ − q̄)2

q̄2
· (q̄2 −m2)

)
.

Therefore µ(sr) = d ln
(

1−q̄
1−τ

)
+ O

(
d (τ−q̄)

q̄2 · (q̄2 −m2) max(τ − q̄, τ)
)

. The second part of
the lemma is given by the Taylor expansion of f ′(sr):

f ′(sr) = f ′(s0) +O (s0 − sr) = τ
m2

q̄2
+O

(
τ − q̄
q̄2

(q̄2 −m2)
)
.

Therefore

1− f ′(sr) = (1− τ)
[
1 +O

(
τ(q̄2 −m2)
q̄2(1− τ)

)]
+O

(
τ − q̄
q̄2

(q̄2 −m2)
)

= (1− τ) +O

(
max(τ − q̄, τ)

q̄2
(q̄2 −m2)

)
. ♦

Proof of Theorem 3.
We will use (7), Lemma 2 and Lemma 3. In this part we will consider that τ is greater

than q̄. First we consider the exponential term.

eM [µ(sr)−srdτ ] = exp
[
M d ln

(
1− q̄
1− τ

)
−M ln

(
τ(1− q̄)
q̄(1− τ)

)
dτ +O

(
M dτ

τ − q̄
q̄2

(q̄2 −m2)
)]

= e−NsD(τ ||q̄)
[
1 +O

(
Nsτ

τ − q̄
q̄2

(q̄2 −m2)
)]

.

Then, we focus on the polynomial term of the formula.[
|sr|
√

2πτNs(1− f ′(sr))
]−1

=
[
|s0|+O

(
τ − q̄
q̄2

(q̄2 −m2)
)]−1

×

[√
2πτNs

√
1− τ +O

(
τ

q̄2
(q̄2 −m2)

)]−1

=
[
s0

√
2πτNs(1− τ)

[
1 +O

(
τ

q̄2
(q̄2 −m2)

)]]−1

.

Since we supposed τ greater than q̄, s0 is positive and,

s0
def= − ln

(
q̄(1− τ)
τ(1− q̄)

)
= − ln

(
1− τ − q̄

τ(1− q̄)

)
=

τ − q̄
τ(1− q̄)

[
1 +

τ − q̄
2τ(1− q̄)

+ o

(
τ − q̄
τ

)]
.

Thus,[
sr
√

2πτNs(1− f ′(sr))
]−1

=
1 +O

(
τ
q̄2 (q̄2 −m2)

)
s0

√
2πτNs(1− τ)

=
τ(1− q̄)

(τ − q̄)
√

2πτNs(1− τ)
·
[
1 +

(τ − q̄)
2τ(1− q̄)

+ o

(
τ − q̄
τ

)]
=

√
τ(1− q̄)

(τ − q̄)
√

2πNs(1− τ)
+

1√
8πT

+ o

(
1√
T

)
.
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To conclude, we inject those two terms in (7) and get

Pr [D(k) ≥ τNs] =

[ √
τ(1− q̄)

(τ − q̄)
√

2πNs(1− τ)
+

1√
8πT

+ o

(
1√
T

+
1√
M

)]

× e−NsD(τ ||q̄) · [1 +O

(
Nsτ

τ − q̄
q̄2

(q̄2 −m2)
)

]

= e−NsD(τ ||q̄)

[ √
τ(1− q̄)

(τ − q̄)
√

2πNs(1− τ)
+

1√
8πT

+ o

(
1√
T

)]
.

The formula for Pr [D(k) ≤ τNs] can be obtained using the same reasoning.

A.4 Differentials used for the toy cryptanalysis

The 55 differentials used for the toy cryptanalysis presented in Section 3.2 are the following.

Table 5. Differentials used in our attack on SMALLPRESENT-[8]. The theoretical probabilities are ob-
tained with trails up to probability 2−48. Probabilities for the 40-bit key-schedule and the 80-bit key-
schedule are obtained by a mean over 200 keys.

Differential Theo. 40-bit 80-bit Differential Theo. 40-bit 80-bit

0x3 → 0x40400000 2−30.28 2−29.80 2−29.85 0x5 → 0x40400000 2−30.20 2−29.76 2−29.80

0x3 → 0x04040000 2−30.33 2−29.80 2−29.84 0x5 → 0x04040000 2−30.25 2−29.87 2−29.73

0x3 → 0x50500000 2−30.46 2−29.96 2−30.07 0x5 → 0x50500000 2−30.34 2−29.87 2−29.76

0x3 → 0x05050000 2−30.58 2−29.98 2−29.99 0x5 → 0x10100000 2−30.50 2−30.06 2−30.28

0x3 → 0x10100000 2−30.59 2−29.90 2−30.10 0x5 → 0x05050000 2−30.52 2−30.02 2−30.06

0x3 → 0x01010000 2−30.64 2−29.94 2−30.45 0x5 → 0x01010000 2−30.55 2−29.96 2−29.94

0x3 → 0x80800000 2−30.70 2−30.17 2−30.24 0x5 → 0x08080000 2−30.57 2−30.01 2−29.97

0x3 → 0x08080000 2−30.70 2−30.10 2−30.01 0x5 → 0x80800000 2−30.57 2−29.98 2−30.04

0x3 → 0x0a0a0000 2−30.97 2−30.27 2−30.32 0x5 → 0x0a0a0000 2−30.77 2−30.08 2−30.04

0x7 → 0x40400000 2−29.47 2−29.20 2−29.21 0xB → 0x40400000 2−30.21 2−29.60 2−29.88

0x7 → 0x04040000 2−29.54 2−29.23 2−23.23 0xB → 0x04040000 2−30.26 2−29.75 2−29.92

0x7 → 0x50500000 2−29.59 2−29.26 2−29.30 0xB → 0x50500000 2−30.41 2−29.96 2−29.99

0x7 → 0x10100000 2−29.74 2−29.33 2−29.70 0xB → 0x05050000 2−30.59 2−29.97 2−30.06

0x7 → 0x05050000 2−29.76 2−29.37 2−29.43 0xB → 0x08080000 2−30.64 2−29.94 2−30.02

0x7 → 0x01010000 2−29.86 2−29.54 2−29.56 0xB → 0x80800000 2−30.65 2−29.95 2−30.06

0x7 → 0x0a0a0000 2−30.00 2−29.63 2−29.65 0xB → 0x10100000 2−30.73 2−30.13 2−30.33

0x7 → 0x80800000 2−30.19 2−29.61 2−29.72 0xB → 0x01010000 2−30.81 2−30.13 2−30.18

0x7 → 0x08080000 2−30.21 2−29.66 2−29.66 0xB → 0x0a0a0000 2−30.86 2−30.09 2−30.10

0x7 → 0x40500000 2−30.76 2−30.22 2−30.09 0xF → 0x40400000 2−29.49 2−29.26 2−29.36

0xD → 0x05050000 2−29.81 2−29.30 2−29.39 0xF → 0x04040000 2−29.56 2−29.23 2−29.31

0xD → 0x40400000 2−29.82 2−29.42 2−29.42 0xF → 0x50500000 2−29.80 2−29.46 2−29.45

0xD → 0x04040000 2−29.91 2−29.50 2−29.46 0xF → 0x05050000 2−29.82 2−29.39 2−29.37

0xD → 0x10100000 2−30.01 2−29.50 2−29.83 0xF → 0x80800000 2−29.88 2−29.32 2−29.37

0xD → 0x50500000 2−30.08 2−29.60 2−29.71 0xF → 0x08080000 2−29.88 2−29.58 2−29.38

0xD → 0x01010000 2−30.15 2−29.52 2−30.14 0xF → 0x10100000 2−30.10 2−29.69 2−29.76

0xD → 0x0a0a0000 2−30.25 2−29.74 2−29.78 0xF → 0x01010000 2−30.16 2−29.68 2−29.94

0xD → 0x80800000 2−30.39 2−29.82 2−29.96 0xF → 0x0a0a0000 2−30.22 2−29.67 2−29.80

0xF → 0x00110000 2−30.60 2−29.97 2−29.78
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