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Abstract: This paper presents a new fully homomorphic encryption scheme over the 
integers,which is different from the fully homomorphic encryption scheme in [vDGHV10], 
but the somewhat homomorphic encryption is similar to that in [vDGHV10]. By using the 
self-loop bootstrappable technique, a ciphertext is refreshed to a new ciphertext with same 
message of an original ciphertext and smaller error terms. The size of ciphertext is remained 
fixed and the expansion of ciphertext is O(n2) in our scheme. 
The security of our scheme is based on the hardness of finding an approximate-GCD problem 
over the integers, which is given a list of integers perturbed by the small error noises. 
Keywords: Fully Homomorphic Encryption, Approximate-GCD, GCD. 
 

1. Introduction 

The conclusion in [vDGHV10] said, “The primary open problem is to improve the efficiency 
of the scheme, to the extent that it is possible while preserving the hardness of the 
approximate-GCD problem”. In this paper, we affirmatively solve this open problem by the 
self-loop bootstrappable technique. The public key in our scheme is a list of approximate 

multiples  for an odd integer { } 1
2 , (i i i i

b a p e O nτ τ
=

= + = ) p , where ,  is the uniform 

random integers over 

ia ie

Z  such that 12n
ie −< . The secret key is p . To encrypt a message 

bit , the ciphertext is computed as m
, [ ]

2ii T T
c b

τ∈ ⊆
e m= + +∑ , where 12ne −< . To 

decrypt, we compute the message bit [ ] mod 2
p

m c= . Recall that [ ]p
z  is an integer in 

 throughout this paper. ( / 2, / 2p p− )

It is not difficult to verify that the above scheme has additively and multiplicatively 
homomorphic. Furthermore, we can use the self-loop bootstrappable technique to get a new 
fully homomorphic encryption scheme from this simple scheme. 
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1.1 Our Contribution 

Our somewhat homomorphic encryption (SHE) is similar to their SHE [vDGHV10], but our 
fully homomorphic encryption (FHE) is complete different from theirs. The main difference 
between two schemes is efficiency and security. The size of the public key in our scheme is 

 bits, the expansion factor of ciphertext is . As the scheme in [vDGHV10], the 

security of our scheme also depends on the hardness of finding an approximate-GCD over the 
integers, given a list of approximate multiples of 

3( )O n 2( )O n

p , but the noise of ciphertext in our 
scheme is bigger than theirs. 

1.2 Related work 

Since [RAD78] introduced a privacy homomorphism, many researchers [BGN05, ACG08, 
SYY99, Yao82] attempted to solve this open problem. [Gen09] constructed the first fully 
homomorphic encryption based on ideal lattice. In Gentry’s scheme, the public key is 

approximately  bits, the computation per gate costs  operations. [SV10] 

presented a fully homomorphic encryption scheme with both relatively small key  

bits , ciphertext size  bits and computation per gate at least  operations, 

which is in some sense a specialization and optimization of Gentry’s scheme. [vDGHV10] 
proposed a simple fully homomorphic encryption scheme over the integers whose security is 
based on the hardness of finding an approximate integer gcd. [SS10] improved Gentry's fully 
homomorphic scheme based on ideal lattices and leaded to a faster fully homomorphic 

scheme, with   bits complexity per elementary binary addition/multiplication gate.  

7n 6( )O n

3( )O n

1.5(O n )

)

3( )O n

3.5(O n

1.3 Outline 

Section 2 recalls some notations, and defines the homomorphic encryption. Section 3 presents 
a somewhat homomorphic encryption. Section 4 transforms the somewhat homomorphic 
encryption into a fully homomorphic encryption. Section 5 gives the security of scheme. 
Section 6 concludes this paper. 

2. Preliminaries 

Notations. To simplify the notation, all computation is over the field  throughout this 

paper. Let  be a security parameter, 

2F

n = ( )O nτ . [ ] {0,1,..., }n n= . Uw S←  chooses an 
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uniformly random element  in the set . w S
Homomorphic Encryption. We adapt the definitions of [Gen09] for our homomorphic 
encryption scheme. We only consider the boolean circuit including gates for addition and 
multiplication mod 2. A homomorphic public key encryption scheme consists of four 
algorithms: the key generating algorithm KeyGen, the encrypting algorithm Enc and the 
decryption algorithm Dec, and an additional algorithm Evaluate. The Evaluate takes as input 

a public key pk , a t-input circuit  with the gates of addition and multiplication, and any 

ciphertext  with 

C

1,..., tc c c=< > ( , )ic Enc pk mi= , and outputs a new ciphertext 

 such that ( , , )c Evaluate pk C c= 1( , ) ( ,..., )tDec sk c C m m= . 

Our fully homomorphic encryption scheme (FHE) computes arbitrary circuits of any depth by 
applying the self-loop bootstrapple encryption technique. 

3. Somewhat Homomorphic Encryption (SHE) 

We present a somewhat homomorphic encryption and simply analyze its performace. 

3.1 Construction 

Key Generating Algorithm (KeyGen).  

(1) Select an odd integer 
2 32np +>  such that 1/s p≈ , , and 

, where  is the number of  in the binary representation of 

. 

2 71 (2 nsp O − −= + )

]

( ) (log )h s O n= ( )h s 1

s

(2) Pick random integers  subject to the largest  is an odd integer, 
2( )(2 , 2 )O n n

ia ∈ 0a

, [ie Z i τ∈ ∈  with 12n
ie −< . Then compute 0 0 2b a p e0= + , and 

[ ]
0

2i i i b
b a p e= + . 

The public key is , the secret key is { } 0
( , )i i

pk n b τ

=
= ( )sk p= . 

Encryption Algorithm (Enc). Given the public key pk  and an message bit , 

choose a random subset 

{0,1}m∈

[ ]T τ⊆  and an independent perturbed error polynomial  with e

12ne −< . Compute the ciphertext 
0

2ii T b
c b e

∈
m⎡ ⎤= + +⎣ ⎦∑ . 

Add Operation (Add). Given the public key pk , and the ciphertexts , evaluate the 1 2,c c
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ciphertext [ ]
0

1 2 b
c c c= + . 

Multiplication Operation (Mul). Given the public key pk , and the ciphertexts , 

evaluate the ciphertext 

1 2,c c

[ ]
0

1 2( )
b

c Opt c c= × , where  is same as that in [vDGHV10]. Opt

Decryption Algorithm (Dec). Given the secret key , and a ciphertext c , decipher sk

[ ] mod 2
p

m c= . 

3.2 Performance of SHE 

The size of the public key  is  bits, the size of secret key  

is . The running times of Enc, Dec, Add, Mul are , , , and 

, respectively. The expansion factor of ciphertext is . In addition, we need 

to add  bits in the public key to use optimization algorithm . 

{ } 0
( , )i i

pk n b τ

=
= 3( )O n ( )sk s=

2( )O n 3( )O n 2( )O n 2( )O n

2( log )O n n 2( )O n

4( )O n Opt

4. Fully Homomorphic Encryption (FHE) 

We now construct a new fully homomorphic shceme by using SHE. Since the multiplication 
operation increase the degree of perturbed error noise, we require to reduce it to obtain fully 
homomorphic encryption. We apply self-loop Gentry’s bootstrappable technique by freshing a 

ciphertext  to get a new ciphertext  with the smaller error noise. To implement this 

function, we encrypt the secret key  generated by KeyGen and add the ciphertexts of  
to the public key. 

c newc

s s

4.1 FHE Scheme 

KeyGen Algorithm. 

(1) First, generate pk  and  as SHE. sk

(2) Assume . Choose random integers  ,  

with 

2

2

2 6

3
2n j

jj n
s s+ −

= +
=∑

2( )(2 , 2 )O n n
ja ∈ je Z∈

12n
je −< , , and compute 2[ 3j n∈ + ] 2 2

0
3 3

2j jj n j n b
s a p e s

+ + + +
⎡ ⎤= + +⎣ ⎦ . 

(3) Output the public key 
2 23 ( 3)

0 0
( , ,{ } , 2 )n j n

i i jj
pk n r b s sτ + − + +

= =
= =∑ , and the secret key 
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( )sk p= . 

The Enc, Dec, Add, Mul algorithms are identical to ones in the above SHE. 
Recrypting algorithm (Recrypt). Evaluate a new ciphertext 

0.5 mod 2 mod 2nc c s c= × + ⊕⎢ ⎥⎣ ⎦ . 

Theorem 4.1. Recrypt correctly generates a ‘fresh’ ciphertext  with the same message 

of  and the perturbed error noise  subject to 

newc

c e 1/22 ( / 8)e p< . 

Proof: We know the general form of ciphertext 2c ap e m= + +  subject to 2e p≤ / 8

+

. So,  

0.5 mod 2 ( 2 ) 0.5 mod 2 mod 2c s ap e m s a× + = + + × + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . 

By using , we obtain the message 

. Thus, Recrypt only substitutes  with 

0 mod 2 ( 2 ) mod 2 mod 2c c ap e m a m= = + + =

0 mod 2m c a= + s s , which is the form of the 

ciphertexts of bits in . It is not difficult to verify that Recrypt algorithm correctly computes 

a new ciphertext  of  in  by using the ciphertext arithmetic circuit and the fact 

, and  has the error noise less than 

s

newc m c

( ) (log )h s O n= newc 1/22 ( / 8)e p< . Notice that 

Recrypt uses the methods of the hamming weights, the symmetric polynomials and the 
three-for-two, all of which are explained in [Gen09, vDGHV10].■ 
Now we only require to prove the scheme can compute the circuit depth of Recrypt. 
Lemma 4.1. The Dec algorithm from the above scheme is correct, if the error noise of 

ciphertext is less than / 8p  when decrypted. 

Lemma 4.2. The above scheme is correct for arbitrary arithmetic circuit  with addition 

and multiplication gates, and circuit depth 

C

2logd n= . 

Proof. Assume 2j j j jc a p e m+ + 1,2j, = =  are the ciphertexts of arbitrary two bits of  

generated by KeyGen in FHE. To correctly decrypt, the perturbed error noise of ciphertext 
output by arithmetic circuit can not be too large. The error noise in addition gate is linearly 
rising, whereas the error noise in multiplication gate is exponentially increasing. So, the 
multiplication operation dominates the depth of arithmetic circuit. Now, we estimate the 
bound of the perturbed error term in the ciphertext generated by one multiplication operation. 

s

1 2

1 1 1 2 2

1 2

 ( 2 ) ( 2
 ( 2 )

c c c
a p e m a p e m
a f e m m

= ×
= + + × + +
= × + +

2 )

( 2 ) 2a a p e m a a e a m= + + × + + 1 2 2 1 2(2 )e e e m m e

. 

where , 1 1 1 2 1 2 1 2 = × + + . 
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So, 2
1 2 2 1 22 2 (2 ) 2 2 ne e e m m e= × + + < . 

Since the perturbed error noise in the ciphertexts  are less than . So, the error term 

for one multiplication operation is less than . Thus, To correctly decrypt, the depth  

of arithmetic circuit must be satisfied inequality 

1 2,c c 2n

2(2 )n d

2(2 ) / 8
dn p≤ , namely, 

2log(log( / 8) / ) logd p n= = n .■ 

4.2 Performance of FHE 

The size of the public key 
2 23 ( 3)

0 0
( , ,{ } , 2 )n j n

i i jj
pk n r b s sτ + − + +

= =
= =∑  is , the size of 

secret key  is . The expansion factor of ciphertext is .  

4( )O n

( )sk p= 2( )O n 2( )O n

5. Security analysis 

To reduce the security of our scheme to the hardness of the approximate-GCD over the binary 
polynomials, we first define the approximate-GCD problem. 
Definition 5.1. (Approximate-GCD over the Integers (AGCD)) Given a list of approximate 

multiples of p : 
2( ) ( ) 1

0{ : (2 ,2 ), , . . 2O n O n n
i i i i i i ib a p e a e Z s t e }τ−

== + ∈ ∈ < , find p .  

The following theorem is proved in [vDGHV10]. 
Theorem 5.1. Suppose there is an algorithm  which breaks the semantic security of our 
SHE with advantage 

A
ε . Then there is an algorithm  for solving AGCD with advantage at 

least 
D

/ 2ε . The running time of  is polynomial in the running time of , and D A 1/ ε . 

6. Conclusion 

We have designed a new fully homomorphic encryption scheme over the integers. The 
security of our scheme relies on the hardness of solving approximate-GCD problem over the 
integers. 
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