
Self-loop-based Modification of Smart and Vercauteren’s Fully

Homomorphic Encryption

Gu Chunsheng
School of Computer Engineering

Jiangsu Teachers University of Technology
Changzhou, China, 213001
guchunsheng@gmail.com

Abstract: This paper modifies the Smart and Vercauteren’s fully homomorphic encryption
scheme [SV10] by applying self-loop bootstrappable technique. The security of the modified
scheme only depends on the hardness of the polynomial coset problem, removing the
assumption of the sparse subset sum problem in the original paper.
Keywords: Fully Homomorphic Encryption, Polynomial Coset Problem, Sparse Subset Sum
Problem

1. Introduction

By applying self-loop bootstrappable technique, we modify the fully homomorphic
encryption scheme in [SV10], which uses the elementary theory of algebraic number fields.

The public key in their scheme consists of a prime p and an integer mod pα . The private

key consists of an integer . To encrypt a bit , we first select a small random polynomial S m

()R x , then compute the ciphertext (2 ()) modc m R pα= + . To decrypt a ciphertext , we

can compute the message bit as follows: .

c

(/ 0.5) mm c c S p= − × +⎢ ⎥⎣ ⎦ od 2

1.1 Our Contribution

The difference between our scheme and their work is mainly located on the fully
homomorphic encryption. We use the self-loop bootstrappable technique, whereas the
bootstrappable technique they use is to introduce a new assumption of SSSP. The security of
the modified scheme is only based on the hardness of the polynomial coset problem.

1.2 Related work

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which

 1

now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08,
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key

is approximately bits, the computation per gate costs operations. Smart and

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively

small key bits , ciphertext size bits and computation per gate at least

 operations, which is in some sense a specialization and optimization of Gentry’s

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully
homomorphic encryption scheme over the integers, whose security depends on the hardness
of finding an approximate integer gcd. Stehle and Steinfeld [SS10] improved Gentry's fully

homomorphic scheme and obtained to a faster fully homomorphic scheme, with

bits complexity per elementary binary addition/multiplication gate, but the hardness
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].

7n 6()O n

3()O n 1.5(O n)

3()O n

3.5()O n

1.3 Outline

Section 2 gives their somewhat homomorphic encryption. Section 3 transforms the somewhat
homomorphic encryption into a new fully homomorphic encryption by using self-loop
bootstrappable technique. Section 4 concludes this paper and presents an open problem.

2. Somewhat Homomorphic Encryption (SHE)

To conveniently describe, we give their SHE [SV10], but do a minor modification when
generating the secret key to obtain our fully homomorphic encryption. We only add the step 8 in
the following SHE, all others are from that of [SV10].

2.1 Construction

Key Generating Algorithm (GenKey).

(1) Set the plaintext space to be {0,1}m∈ .

(2) Choose a monic irreducible polynomial () []F x Z x∈ of degree . N

(3) Repeat:

 ,() (/ 2)R NS x B η∞← .

 () 1 2 ()G x S x← + × .

 ((), ())p res G x F x← , where res is the resultant of . (), ()G x F x

 2

(4) Until p is prime.

(5) Compute over . Assume () gcd((), ())D x G x F x= []pF x pFα ∈ is the unique

root of . ()D x

(6) Apply the XGCD-algorithm over to obtain []Q x 1

0
() []N i

ii
K x z x Z x−

=
= ∈∑ such

that () () mod ()K x G x p F x× = .

(7) Set . (() mod) mod(2)S K x x p=

(8) Compute the hamming weight of in binary representation . If S ()h S

()h S β> , then go to (2), otherwise (9), where (log)O nβ ≥ is an integer

corresponding to of the fully homomorphic encryption in [SV10]. 2s

(9) Output the public key is (,)pk p α= , the secret key is (,)sk p S= .

Encryption Algorithm (Enc). Given the public key pk and an message bit ,

choose a small random polynomial

{0,1}m∈

,() (/ 2)R NR x B μ∞← . Compute the ciphertext

(2 ()) modc R m pα= + .

Add Operation (Add). Given the public key pk , and the ciphertexts , evaluate the

ciphertext .

1 2,c c

1 2() modc c c p= +

Multiplication Operation (Mul). Given the public key pk and two ciphertexts ,

evaluate a new ciphertext .

1 2,c c

1 2() modc c c p= ×

Decryption Algorithm (Dec). Given the secret key and a ciphertext , decipher the

message bit .

sk c

(/ 0.5) mm c c S p= − × +⎢ ⎥⎣ ⎦ od 2

3. Fully Homomorphic Encryption (FHE)

We now construct an FHE by using the SHE by applying self-loop bootstrappable technique.
We give a new algorithm Recrypt, which freshens a ‘dirty’ ciphertext into a new

ciphertext with the ‘smaller’ error term and the same plaintext of . To implement this,

we generate the ciphertexts of the secret key and add them to the public key.

c

newc c

 3

KeyGen. Generate pk and as before. Assume sk log(2)pλ = ⎢ ⎥⎣ ⎦ and the binary

representation of is S 1...S S S Sλ λ− 0= Choose small random polynomials

,() (/ 2)i R NR x B μ∞∈ , {0,1,..., }i λ∈ , and compute (2 ()) modi i iS R Sα= + p .

Output the secret key and the public key ()sk S= (, ,)pk p Sα= .

Recrypting algorithm (Recrypt(pk, c)).

(1) Set , (2) /i
ih c= × p {0,1,..., }i λ∈ , keeping only 4k λ= + bits of precision after

the binary point for each . ih

(2) Compute
0 ii

g hλ

=
= × iS∑ , and 0, 1 0 1(,)g Add g g− −= .

(3) Evaluate . mod 2u c=

(4) Output a new ciphertext . 0, 1(,)newc Add u g −=

Theorem 3.1. Recrypt algorithm correctly generates a ‘fresh’ ciphertext with the same

message of when

newc

c 2sβ ≤ , where the size of is identical to that in [SV10]. 2s

Proof: By the DEC algorithm, we know

0

0

(/ 0.5) mod 2

mod 2 / 0.5 mod 2

mod 2 (/) 0.5 mod 2

mod 2 (/) (2) 0.5 mod 2

mod 2 (2) / 0.5 mod 2

i
ii

i
ii

c c S p

c c S p

c c p S

c c p S

c c p S

λ

λ

=

=

− × +⎢ ⎥⎣ ⎦
= + × +⎢ ⎥⎣ ⎦
= + × +⎢ ⎥⎣ ⎦

⎢ ⎥= + × +⎣ ⎦
⎢ ⎥= + × × +⎣ ⎦

∑
∑

.

It is not difficult to verify that Recrypt algorithm correctly generates a new ciphertext of

by using the ciphertext arithmetic operations when

m

2sβ ≤ , namely, all computations in the

Recrypt only replace with its corresponding ciphertexts S S . Notice that Step (2) in

Recrypt uses the methods of hamming weights, symmetric polynomials and the
‘three-for-two’, all of which are explained in [Gen09, vDGHV10].■

4. Conclusion and Open Problem

By using self-loop bootstrappable technique, we modified the fully homomorphic encryption
scheme in [SV10], whose security only depends on the hardness of the polynomial coset
problem.

 4

An interesting open problems is how to efficiently generate the public key and the secret key.

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc.
of STOC 1996, pages 99-108, 1996.
[ACG08] C. Aguilar Melchor, G. Castagnos, and G. Gaborit. Lattice-based homomorphic
encryption of vector spaces. In IEEE International Symposium on Information Theory,
ISIT'2008, pages 1858-1862, 2008.
[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. Lecture Notes in Computer Science, 2005, Volume 3378, pages 325-341, 2005.
[vDGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Proc. of Eurocrypt, volume 6110 of LNCS, pages 24-43.
Springer, 2010.
[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. of STOC,
pages 169-178, 2009.
[GHV10] C. Gentry and S. Halevi and V. Vaikuntanathan. A Simple BGN-type Cryptosystem
from LWE. In Proc. of Eurocrypt, volume 6110, pages 506-522, 2010.
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proc. of STOC, pages 197-206, 2008.
[LPR10] V. Lyubashevsky and C. Peikert and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Proc. of Eurocrypt, volume 6110, pages 1–23, 2010.
[Mic07] D. Micciancio Generalized compact knapsaks, cyclic lattices, and efficient one-way
functions. Computational Complexity, 16(4):365-411.
[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussion measures. SIAM Journal Computing, 37(1):267-302, 2007.
[Reg09] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
Journal of the ACM (JACM), v.56 n.6, pages1-40, 2009.
[SS10] D. Stehle and R. Steinfeld. Faster Fully Homomorphic Encryption. Cryptology ePrint
Archive: Report 2010/299: http://eprint.iacr.org/2010/299.
[SV10] N. P. Smart and F. Vercauteren Fully Homomorphic Encryption with Relatively Small
Key and Ciphertext Sizes. Lecture Notes in Computer Science, 2010, Volume 6056/2010,
420-443.
[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
40th Annual Symposium on Foundations of Computer Science, pages 554{567. IEEE, 1999.
[RAD78] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169-180, 1978.
[Yao82] A. C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science (FOCS '82), pages 160-164. IEEE, 1982.

 5

	Self-loop-based Modification of Smart and Vercauteren’s Fully Homomorphic Encryption
	1. Introduction
	1.1 Our Contribution
	1.2 Related work
	1.3 Outline

	2. Somewhat Homomorphic Encryption (SHE)
	2.1 Construction

	3. Fully Homomorphic Encryption (FHE)
	4. Conclusion and Open Problem
	References

