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Abstract: This paper modifies the Smart and Vercauteren’s fully homomorphic encryption 
scheme [SV10] by applying self-loop bootstrappable technique. The security of the modified 
scheme only depends on the hardness of the polynomial coset problem, removing the 
assumption of the sparse subset sum problem in the original paper. 
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1. Introduction 

By applying self-loop bootstrappable technique, we modify the fully homomorphic 
encryption scheme in [SV10], which uses the elementary theory of algebraic number fields. 

The public key in their scheme consists of a prime p  and an integer mod pα . The private 

key consists of an integer . To encrypt a bit , we first select a small random polynomial S m

( )R x , then compute the ciphertext ( 2 ( )) modc m R pα= + . To decrypt a ciphertext , we 

can compute the message bit as follows: . 

c

( / 0.5 ) mm c c S p= − × +⎢ ⎥⎣ ⎦ od 2

1.1 Our Contribution 

The difference between our scheme and their work is mainly located on the fully 
homomorphic encryption. We use the self-loop bootstrappable technique, whereas the 
bootstrappable technique they use is to introduce a new assumption of SSSP. The security of 
the modified scheme is only based on the hardness of the polynomial coset problem. 

1.2 Related work 

Rivest, Adleman, and Dertouzos [RAD78] first investigated a privacy homomorphism, which 
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now is called the fully homomorphic encryption (FHE). Many researchers [BGN05, ACG08, 
SYY99, Yao82] have worked at this open problem. Until 2009, Gentry [Gen09] constructed 
the first fully homomorphic encryption using ideal lattice. In Gentry’s scheme, the public key 

is approximately  bits, the computation per gate costs  operations. Smart and 

Vercauteren [SV10] presented a fully homomorphic encryption scheme with both relatively 

small key  bits , ciphertext size  bits and computation per gate at least 

 operations, which is in some sense a specialization and optimization of Gentry’s 

scheme. Dijk, Gentry, Halevi, and Vaikuntanathan [vDGHV10] proposed a simple fully 
homomorphic encryption scheme over the integers, whose security depends on the hardness 
of finding an approximate integer gcd. Stehle and Steinfeld [SS10] improved Gentry's fully 

homomorphic scheme and obtained to a faster fully homomorphic scheme, with   

bits complexity per elementary binary addition/multiplication gate, but the hardness 
assumption of the security of the scheme in [SS10] is stronger than that in [Gen09].  

7n 6( )O n

3( )O n 1.5(O n )

3( )O n

3.5( )O n

1.3 Outline 

Section 2 gives their somewhat homomorphic encryption. Section 3 transforms the somewhat 
homomorphic encryption into a new fully homomorphic encryption by using self-loop 
bootstrappable technique. Section 4 concludes this paper and presents an open problem. 

2. Somewhat Homomorphic Encryption (SHE) 

To conveniently describe, we give their SHE [SV10], but do a minor modification when 
generating the secret key to obtain our fully homomorphic encryption. We only add the step 8 in 
the following SHE, all others are from that of [SV10].  

2.1 Construction 

Key Generating Algorithm (GenKey).  

(1) Set the plaintext space to be {0,1}m∈ . 

(2) Choose a monic irreducible polynomial ( ) [ ]F x Z x∈  of degree . N

(3) Repeat: 

 ,( ) ( / 2)R NS x B η∞← . 

 ( ) 1 2 ( )G x S x← + × . 

 ( ( ), ( ))p res G x F x← , where res is the resultant of . ( ), ( )G x F x
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(4) Until p  is prime. 

(5) Compute  over . Assume ( ) gcd( ( ), ( ))D x G x F x= [ ]pF x pFα ∈  is the unique 

root of . ( )D x

(6) Apply the XGCD-algorithm over  to obtain [ ]Q x 1

0
( ) [ ]N i

ii
K x z x Z x−

=
= ∈∑  such 

that ( ) ( ) mod ( )K x G x p F x× = . 

(7) Set .  ( ( ) mod ) mod(2 )S K x x p=

(8) Compute the hamming weight of  in binary representation . If S ( )h S

( )h S β> , then go to (2), otherwise (9), where (log )O nβ ≥  is an integer 

corresponding to  of the fully homomorphic encryption in [SV10]. 2s

(9) Output the public key is ( , )pk p α= , the secret key is ( , )sk p S= . 

Encryption Algorithm (Enc). Given the public key pk  and an message bit , 

choose a small random polynomial 

{0,1}m∈

,( ) ( / 2)R NR x B μ∞← . Compute the ciphertext 

(2 ( ) ) modc R m pα= + . 

Add Operation (Add). Given the public key pk , and the ciphertexts , evaluate the 

ciphertext . 

1 2,c c

1 2( ) modc c c p= +

Multiplication Operation (Mul). Given the public key pk  and two ciphertexts , 

evaluate a new ciphertext . 

1 2,c c

1 2( ) modc c c p= ×

Decryption Algorithm (Dec). Given the secret key  and a ciphertext , decipher the 

message bit . 

sk c

( / 0.5 ) mm c c S p= − × +⎢ ⎥⎣ ⎦ od 2

3. Fully Homomorphic Encryption (FHE) 

We now construct an FHE by using the SHE by applying self-loop bootstrappable technique. 
We give a new algorithm Recrypt, which freshens a ‘dirty’ ciphertext  into a new 

ciphertext  with the ‘smaller’ error term and the same plaintext of . To implement this, 

we generate the ciphertexts of the secret key and add them to the public key.  

c

newc c
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KeyGen. Generate pk  and  as before. Assume sk log(2 )pλ = ⎢ ⎥⎣ ⎦  and the binary 

representation of  is S 1...S S S Sλ λ− 0=  Choose small random polynomials 

,( ) ( / 2)i R NR x B μ∞∈ , {0,1,..., }i λ∈ , and compute (2 ( ) ) modi i iS R Sα= + p . 

Output the secret key  and the public key ( )sk S= ( , , )pk p Sα= . 

Recrypting algorithm (Recrypt(pk, c)). 

(1) Set , ( 2 ) /i
ih c= × p {0,1,..., }i λ∈ , keeping only 4k λ= +  bits of precision after 

the binary point for each . ih

(2) Compute 
0 ii

g hλ

=
= × iS∑ , and 0, 1 0 1( , )g Add g g− −= . 

(3) Evaluate . mod 2u c=

(4) Output a new ciphertext . 0, 1( , )newc Add u g −=

Theorem 3.1. Recrypt algorithm correctly generates a ‘fresh’ ciphertext  with the same 

message of  when 

newc

c 2sβ ≤ , where the size of  is identical to that in [SV10]. 2s

Proof: By the DEC algorithm, we know 

0

0

( / 0.5 ) mod 2

mod 2 / 0.5 mod 2

mod 2 ( / ) 0.5 mod 2

mod 2 ( / ) ( 2 ) 0.5 mod 2

mod 2 ( 2 ) / 0.5 mod 2

i
ii

i
ii

c c S p

c c S p

c c p S

c c p S

c c p S

λ

λ

=

=

− × +⎢ ⎥⎣ ⎦
= + × +⎢ ⎥⎣ ⎦
= + × +⎢ ⎥⎣ ⎦

⎢ ⎥= + × +⎣ ⎦
⎢ ⎥= + × × +⎣ ⎦

∑
∑

. 

It is not difficult to verify that Recrypt algorithm correctly generates a new ciphertext of  

by using the ciphertext arithmetic operations when 

m

2sβ ≤ , namely, all computations in the 

Recrypt only replace  with its corresponding ciphertexts S S . Notice that Step (2) in 

Recrypt uses the methods of hamming weights, symmetric polynomials and the 
‘three-for-two’, all of which are explained in [Gen09, vDGHV10].■ 

4. Conclusion and Open Problem 

By using self-loop bootstrappable technique, we modified the fully homomorphic encryption 
scheme in [SV10], whose security only depends on the hardness of the polynomial coset 
problem. 
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An interesting open problems is how to efficiently generate the public key and the secret key. 
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