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Abstract 
 
In recent years a rapid development of a new, interdisciplinary knowledge area, called data mining, is observed. Its main task is extracting 
useful information from previously collected large amount of data. The main possibilities and potential applications of data mining in 
manufacturing industry are characterized. The main types of data mining techniques are briefly discussed, including statistical, artificial 
intelligence, data base and visualization tools. The statistical methods and visualization methods are presented in more detail, showing 
their general possibilities, advantages as well as characteristic examples of applications in foundry production. Results of the author’s 
research are presented, aimed at validation of selected statistical tools which can be easily and effectively used in manufacturing industry. 
A performance analysis of ANOVA and contingency tables based methods, dedicated for determination of the most significant process 
parameters as well as for detection of possible interactions among them, has been made. Several numerical tests have been performed 
using simulated data sets, with assumed hidden relationships as well some real data, related to the strength of ductile cast iron, collected in 
a foundry. It is concluded that the statistical methods offer relatively easy and fairly reliable tools for extraction of that type of knowledge 
about foundry manufacturing processes. However, further research is needed, aimed at explanation of some imperfections of the 
investigated tools as well assessment of their validity for more complex tasks. 
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1. Introduction 
 
In many manufacturing companies large amounts of data are 

collected and stored, related to designs, products, equipment, 
materials, manufacturing processes etc. This data can be a source 
of valuable information. The extracting useful knowledge from 
that data, using intelligent and partly automated techniques, is 
called data mining. Data mining is viewed as a multidisciplinary 
field, which includes methodologies and tools from several 
disciplines such as database systems, visualization, statistics and 
learning (AI) systems. It is important that data mining techniques 
can provide various types of information. Much work has been 
done to develop methods of automated knowledge extraction from 
the recorded past data, usually in the form of logic rules of the 
type “if … then…”. 

Until now, data mining has been primarily used in business 
area and social sciences. Application to manufacturing and design 
on a large scale are seldom [1-4]. In the foundry production area 
there are several types of important practical problems that can be 
solved through extracting knowledge from a recorded past data, 
such as: 
 Prediction of results of manufacturing process changes, 

including indication of optimal or critical process 
parameters, e.g. combination of time and temperature for 
heat treatment, influence of variations of chemical 
composition of an alloy on its mechanical properties etc. 

 Detection of causes of deteriorating product quality. This 
can apply to the final products, e.g. increasing percent of 
defective castings, or intermediate products, e.g. lowered 
strength of molding sand. 

 Prediction of breakdowns of machines, furnaces etc. The 
reason of the failure can be a combination of circumstances 
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(operation parameters) which cannot be identified 
‘manually’. 

 Establishing rules for design of casting processes, e.g. 
rigging systems, or for process operations, e.g. molding 
sand preparation, melting procedures etc. 

It is worth noticing that many of the above problems, 
especially from the first three groups, can be solved by 
determination of the most significant input variables, including 
possible interactions between them. This can be done by means of 
various types of data mining tools, including relatively simple 
statistical methods, possibly assisted by some visualization tools.  

It is important to point out that statistical methods which are 
already present in manufacturing industry, mainly in the form of 
Statistical Process Control tools, are not able to provide that kind 
of knowledge. They are very useful in detecting the appearance of 
abnormalities of the process in the form of excessive variations of 
process parameters, but they are unable to indicate the causes of 
the irregularities. This has to be done by the technical staff.  

The purpose of the present work is first to demonstrate and to 
discuss some of the possibilities, advantages and problems related 
to statistical and visualization methods. In the second part of the 
paper some results of the author’s own research are presented, 
aimed at analysis of performance of some statistical methods.  

 
 

2. Characterization of selected data 
mining tools for foundry applications 
 
 
2.1. Visualization tools 
 

Visualization tools are often treated as supplementary methods, 
providing better understanding and easier to interpret the knowledge 
discovered by the models [1]. Examples of such tools are flow charts, 
run charts, Pareto charts, Ishikawa diagrams, histograms, scatter plots, 
identification of outliers and others. However, some of those methods 
can be also extremely valuable for initial analysis of the problem, aimed 
at the right choice of the mode’s variables, i.e. identification of potential 
process parameters and interdependencies between them, which could 
play important role in the process. Below, examples of two methods, 
probably less recognized by foundry technical staff, will be given. 

The Pareto principle states that „not all of the causes of a particular 
phenomenon occur with the same frequency or with the same impact”. 
Such characteristics can be presented using Pareto charts, which show 
the most frequently occurring factors and help to make best use of 
limited resources by pointing at the most important problems to tackle. 
From the exemplary chart shown below it can be concluded that the 
foundry staff should concentrate on reducing 2 defects: ‘sand inclusions 
’ and ‘gas holes ’, which make up 72% of all defects. The Pareto 
diagrams can therefore be particularly useful in defining the targets of 
the whole data mining system.  

Cause-and-effect diagram is a kind of putting together of factors 
affecting a process. Because of its shape sometimes it is also called 
fishbone diagram, or Ishikawa diagram (due to the name of its author, 
professor Kaoru Ishikawa from Tokyo University). They can reveal 
important relationships among various process variables and possible 
causes of faults as well as provide additional insight into process 

behavior. Construction of the diagram requires the following 
consecutively taken actions:  
 make up a flow chart of the process,  
 define the problem to be solved, 
 find all possible causes of the problem (brain storm technique can 

be used), 
 group these causes into categories, 
 build the diagram which illustrates the relationships between the 

causes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Example of Pareto chart 
 

In Fig. 2 an example of Ishikawa diagram used in a USA foundry [5] is 
shown; some more examples can be found in [6, 7].  
 
 
2.2. Statistical methods 

 
Statistical methods can be of several different types, characterized 

below. 
Statistical regression models are probably the most popular in 

continuous type data analysis and generalization, often used in the form 
of so called empirical relationships. It is important that a particular form 
of the function must be assumed which requires a certain amount of 
knowledge about the modeled process. Choice of the type of function is 
usually carried out after plotting the experimental data. Significant 
difficulties occur for multivariable functions, which will be discussed 
later, in section 3.2. Linear and non-linear functions can be used (linear 
and non-linear regression tasks). The latter include polynomials (of 
arbitrary order) as well as other functions (e.g. power, exponential etc.). 
Analytical (unique) methods of determination of the parameters are 
available only for linear or polynomial types of functions. For other 
types, one can employ linearization of the function, or other 
optimization methods of the function parameters. 

Statistical ANOVA (analysis of variance) methods as well as 
contingency tables techniques can be applied to detect and measure 
strength of dependence between variables. They can be also used to 
determine relative significance of each of the input variables on the 
output variable as well interactions existing between two of them. This 
can be particularly useful for solving many of the foundry problems 
mentioned in chapter 1.  
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Fig. 2. Example of cause-and-effect (Ishikawa) diagram, used in Crane Valves foundry, USA [5] 

 
It is important that these statistical methods do not require any 

assumption about the form of the dependency between input and output 
variables, which is the main disadvantage of the statistical regression 
models (see section 3.2).  

It is worth noticing that the variables for ANOVA and 
contingency tables analyses must be of discrete type, i.e. nominal or 
ordinal. The data of continuous type must be converted to the ordinal 
type data before processing. This can be done by various algorithms, 
dependent on the characteristics of the data. 

Statistical clustering methods and multidimensional scaling are the 
methods which apply to situations, when there is no dependent variable. 
They are used for grouping (clustering) of variables exhibiting similar 
characteristics. This kind of analysis can be also useful in analysis of 
manufacturing processes. Examples of potential applications are briefly 
characterized below. 
 If a group, in which certain combinations of process parameters 

are included, is characterized also by a larger defectiveness of 
products, it could mean that this combination is a source of a 
lower quality. 

 If a group, in which extreme values of parameters (close to the 
specified limits) are included, is associated with a particular 
operator, it is likely that he or she does not his work properly.  

 If the clustering algorithm tends to group the process parameters 
in a number of significantly distinct groups which is greater from 
the number of different product types, it could indicate, that the 
process suffers from some severe and undesired variations. 

Applications of the clustering methods to analysis and knowledge 
extraction in the manufacturing environment, particularly foundry 
production, are seldom.  
 

3. Performance analysis of selected 
statistical data mining methods 
 
3.1. Methodology 
 

The general methodology employed in this research is based on 
utilization of simulated data sets containing assumed, but hidden 
relationships between variables. The data records were generated in 
the following way. First, an analytical formula of the type Y = f(X1, 
X2, …) was assumed. Then for random values of independent 
variables X1, X2, … the dependent variable Y was calculated. 
Finally, a Gaussian type noise with maximum deviations ±20% was 
imposed on the independent variables. Usually 1000 records for each 
data set were generated in that way. All the values were normalized 
within 0 – 1 interval. 

Most of the data sets were generated repeatedly 5 times and the 
results of significance and interaction coefficients were presented in 
the form of their averages and 95% confidence intervals. Employment 
of that procedure allowed to evaluate the sensitivity of the analyzed 
coefficients to the noise present in the data.  

For the statistical methods which require discrete types of data the 
number of intervals used for conversion real (continuous) values to 
categories was 10. 

Additionally, the previously used industrial data set was 
utilized which relates chemical composition of ductile cast iron 
with its tensile ultimate strength (for details, see [8]).  

For determination of the relative significance factors of 
independent variables two statistical methods were used: single-
factor analysis of variance (ANOVA) and contingency tables. For 
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the industrial data set a 2nd order polynomial approximation (with 
mixed terms) was also applied, for comparison.  

The ANOVA based significance factors were defined as the 
F-statistics values calculated for dependency between given 
independent and dependent variables, normalized by dividing 
them by the maximum value obtained for all independent 
variables. Similarly, the contingency tables based significance 
factors were defined as the normalized V-Cramer measures.  

The significance factors calculated from the polynomial, also 
calculated for the industrial data set, were simple the normalized 
sums of the 2nd order and linear terms coefficients for the given 
variable, ignoring the mixed terms which included that variable. 

The definition of interaction coefficient is based on the multi-
factor analysis of variance and is defined as: 

 
 
                                                                                              (1) 
 

 
where Fi and Fj are test statistics for single variables(factors) i and 
j, respectively, and Fi,j is the test statistics for the interaction of 
those variables. 

The software used for ANOVA computations was Statistica 
version 7 package (by StatSoft). For the contingency tables and 
polynomial calculations a software developed by the present 
author, using VBA for Excel as the programming language, was 
applied. 

 
 

3.2. Results 
 
Exemplary results of the relative significance factors of 

independent variables obtained for the simulated data sets are 
shown in Fig. 3 and Fig. 4. It can be seen that the both 
investigated statistical methods reflect the general expected 
tendencies, however, their values are not accurate.  

The ANOVA based factors essentially underestimate the 
significance of less important variables while the contingency 
based factors overestimate them. This observation is valid not 
only for the input variables without interactions, like those 
presented in Fig. 3, but also for the strongly interacting variables, 
like X1 and X2 in Fig. 4. The ANOVA based factors also exhibit 
much higher sensitivity to the noise present in the data. Some 
more results of that type can be found in [9]. 

In Fig. 5 the relative significance coefficients for the 
industrial data sets are presented. Here, the general tendency of 
higher significance predictions of ANOVA based method, 
compared to contingency tables, does not hold. However, the 
distinct role of copper, which was the main component used by 
the foundry to obtain high strength grades of SG iron, was 
identified, as the most important one, by both ANOVA and 
contingency tables methods.  

The significance factor for copper obtained from the 
polynomial terms is different. It is quite likely, that the 2nd order 
polynomial was not able to correctly approximate complex 
relationships evidently existing in this case. Of course, one reason 
could be the assumed definition of the significance of single 
variables, ignoring the mixed terms in which that variable 

possibly also appears. This example illustrates evident 
disadvantages of the statistical regression methods. If the number 
of independent variables is large then the polynomial which 
would be capable of reflecting all possible interactions between 
variables should contain all the possible mixed terms and thus it 
would become extremely complex. This leads to problems related 
to finding of the model’s constants as well as the analysis of the 
variables’ significances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison of relative significance factors of independent 
variables without interactions, obtained by two statistical methods from 

5 generations of simulated data sets; vertical bars denote 95% 
confidence intervals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparison of relative significance factors of independent 
variables with, and without, interactions, obtained by two statistical 

methods as averages from 5 generations of simulated data sets 
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Fig. 5. Significance factors of alloying components calculated for 

tensile strength of ductile cast iron, based on an industrial data 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Interaction coefficients between two input variables 
obtained for three simulated data sets by the multifactor ANOVA 
based procedure; a – data with strong interactions between two 

variables X1, X2 and with no other interactions; b and c – data 
with no interactions 

 
In Fig. 6 exemplary results of the interaction coefficients 

calculated according formula (1) for several pairs of input 
variables are shown.  

It can be seen that the ANOVA based method correctly 
predicts distinct interaction between variables X1 and X2 
appearing in the first type of relationship (Fig. 6a) as well as the 
absence of other interactions in that data. Also for all pairs of 
variables appearing in the relationship presented in Fig. 6b it 
correctly indicates lack of interactions (small values of the 
coefficients). However, in the presence of other, more significant 
variables, as in the data generated according relationship shown in 
Fig. 6c, the behavior of the interaction coefficients is not entirely 
acceptable. In particular, unexpectedly large interaction is 
predicted by the ANOVA for the variables X1 and X2 which are 
obviously also independent on each other in that data set. 

Another case of unexpected values of the multifactor 
ANOVA based interaction coefficients is presented in Fig. 7. In 
both relationships: Y = X1·X2 and Y = X1·X2+X3+X4+X5 the 
interactions between variables X1 and X2 should be this same. 
However, the formula (1) gives essentially lower interaction 
coefficient values for the second relationship, i.e. for the case 
where also other input variables contribute to the output variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Interaction coefficients between two variables with strong 

interactions obtained for two simulated data sets by the 
multifactor ANOVA based procedure 

 
 

4. Discussion of results and conclusions 
 

Application of data mining techniques in foundry industry 
creates new chances for achieving a better quality of products (final 
and intermediate) and higher production effectiveness. This can be 
accomplished by extraction and visualization of the knowledge 
hidden in the recorded past data. Although most of the advanced 
modeling methods concentrated until now on design and control of 
production processes (for foundry industry see [10-24]), their 
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application to the knowledge extraction seems to be a natural step 
forward now.  

The performance of statistical techniques considered in the 
present research is only partly acceptable and a vast further work is 
needed. In general, it should include further analysis of behavior of 
various data mining methods and development of improved 
definitions of significance and interaction of variables (e.g. 
detection of synergetic action of several variables) as well as 
development of the software oriented at manufacturing problems.  

In particular, the unexpected behavior of the multifactor 
ANOVA based interaction coefficients has to be investigated and 
explained. Also, the large and ambiguous differences between 
significance factors obtained form ANOVA and contingency tables 
for more complex relationships existing in the data require further 
exploration and clarification.  

It is worth noticing that the methods of evaluation of relative 
significance of input variables based on single factor ANOVA and 
the contingency tables are utilized also in some commercial 
statistical software packages. They are recommended as important 
tools for preliminary identification of the less significant variables, 
which could be possibly ignored in application of advanced data 
mining models, such as artificial neural networks or classification 
and regression trees. The present results clearly indicate that this 
should be done with caution.  
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