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Abstract. How will the combined impacts of land use
change, climate change, and hydrologic modeling influence
changes in urban flood frequency and what is the main un-
certainty source of the results? Will such changes differ by
catchment with different degrees of current and future ur-
ban development? We attempt to answer these questions in
two catchments with different degrees of urbanization, the
Fanno catchment with 84% urban land use and the Johnson
catchment with 36% urban land use, both located in the Pa-
cific Northwest of the US. Five uncertainty sources – gen-
eral circulation model (GCM) structures, future greenhouse
gas (GHG) emission scenarios, land use change scenarios,
natural variability, and hydrologic model parameters – are
considered to compare the relative source of uncertainty in
flood frequency projections. Two land use change scenarios,
conservation and development, representing possible future
land use changes are used for analysis. Results show the
highest increase in flood frequency under the combination
of medium high GHG emission (A1B) and development sce-
narios, and the lowest increase under the combination of low
GHG emission (B1) and conservation scenarios. Although
the combined impact is more significant to flood frequency
change than individual scenarios, it does not linearly increase
flood frequency. Changes in flood frequency are more sensi-
tive to climate change than land use change in the two catch-
ments for 2050s (2040–2069). Shorter term flood frequency
change, 2 and 5 year floods, is highly affected by GCM
structure, while longer term flood frequency change above
25 year floods is dominated by natural variability. Projected
flood frequency changes more significantly in Johnson creek
than Fanno creek. This result indicates that, under expected
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climate change conditions, adaptive urban planning based on
the conservation scenario could be more effective in less de-
veloped Johnson catchment than in the already developed
Fanno catchment.

1 Introduction

Human-induced land cover change and climate change are
important factors in urban flooding. Rapid population growth
and increasing migration from rural areas to cities lead to in-
tense urbanization, which often increases flood risk (Chang
and Franczyk, 2008). Many previous studies show that ur-
banization is a major cause of amplified peak flow and in-
creased flood risk (Brun and Band, 2000; Chang et al.,
2009; Changnon and Demissie, 1996; Crooks and Davies,
2001; Ott and Uhlenbrook, 2004; Ranzi et al., 2002; Rosso
and Rulli, 2002; Smith et al., 2002; Wheater and Evans,
2009; Zhu et al., 2007). According to recent studies, the
urban heat island effect and aerosol composition can alter
the climate mechanism, which plays an important role in
the storm evolution of urbanized regions (Ntelekos et al.,
2008, 2009). Global warming, the other main cause of hy-
drologic regime change, can induce the acceleration of the
water cycle (Huntington, 2006; Oki and Kanae, 2006), which
can consequently affect the frequency and intensity of future
storm events (Arnell, 2003; Booij, 2005; Hamlet and Let-
tenmaier, 2007; Milly et al., 2008). The Fourth Assessment
Report (AR4) of the Intergovernmental Panel on Climate
Change (IPCC) (Randall et al., 2007) projects that heavy pre-
cipitation events will be more frequent during the 21st cen-
tury over most of the Pacific Northwest of USA based on
simulations using Atmosphere-Ocean General Circulation
Models (GCMs). Although future climate projections have
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large uncertainty, identifying potential changes in flood risk
according to climate and land use changes is an important
area of concern to water resource managers and land use
planners (Hine and Hall, 2010).

For mitigation of and protection from potential flood risk
in urban areas, we need to improve our understanding of the
possible impacts of the ubiquitous uncertainty of urban flood
projection. This uncertainty stems from several sources; in-
ternal variability of the climate system, future GHG and
aerosol emissions, the translation of these emissions into
climate change by GCMs, spatial and temporal downscal-
ing, and hydrological modeling (Bates et al., 2008). Un-
certainty will not be radically removed or reduced until the
development of the new technology of climate and hydro-
logic modeling based on additional observation of hydrom-
eteorological variables, such as soil moisture, snow, actual
evapotranspiration, and groundwater. This uncertainty com-
plicates the accurate interpretation of climate impact assess-
ment. Therefore, many researchers have attempted to quan-
tify the irreducible uncertainty in hydrologic streamflow pro-
jections (New et al., 2007; Wilby, 2005; Chang and Jung,
2010; Kingston and Taylor, 2010), low flow (Wilby and Har-
ris, 2006), flooding (Booij, 2005; Kay et al., 2009; Raff et
al., 2009; Moradkhani et al., 2010), and drought (Ghosh and
Mujumdar, 2007; Mishra and Singh, 2009). Despite substan-
tial effort of previous studies, however, large uncertainty in
climate impact studies still remain (Bates et al., 2008).

Floods in urban areas are controlled by the integrated con-
dition of geophysical characteristics, urban infrastructure,
drainage system, and hydro-climatologic regime (Epting et
al., 2009). Thus, different levels of urban development could
lead to different hydrologic responses among catchments,
though they are under identical climate change (Franczyk
and Chang, 2009). Kay et al. (2009) investigated the uncer-
tainty in climate change impact on flood frequency for two
catchments in England, showing that uncertainty can vary
significantly between catchments that have different rain-
fall regimes and topographic characteristics. Prudhomme
and Davies (2009) reported similar findings for four catch-
ments in Britain. Additionally, the combined effects of cli-
mate change and anthropogenic land use change significantly
aggravate the accuracy of hydrologic prediction associated
with overall urban environmental management (Brath et al.,
2006; Choi, 2008; Franczyk and Chang, 2009; Praskievicz
and Chang 2009a; Tu, 2009). However, relatively few studies
have examined the combined effects of climate change and
urban development on the uncertainty of urban flood projec-
tions in catchments with different degrees of urban develop-
ment. This study attempts to fill this gap using two future
land use change scenarios projected under two GHG emis-
sion scenarios.

The three research questions are: (1) What are the main
sources of uncertainties affecting the changes in urban flood
frequency? (2) How will the combined impacts of land
use change and climate change influence changes in flood
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Fig. 1. Fanno and Johnson Creek catchment boundary, river network, and the Portland 3 
urban growth boundary (UGB) 4 
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Fig. 1. Fanno and Johnson Creek catchment boundary, river net-
work, and the Portland urban growth boundary (UGB).

frequency? and (3) How is flood frequency projected to
change in two urban catchments with different degrees of ur-
ban development for the 2050s (2040–2069) with respect to
the reference period 1960–1989? This paper can contribute
to a better understanding of the combined impact of climate
and land use changes on urban flood frequency, and is ex-
pected to help decision makers with practical urban planning
and management to mitigate potential flood damage in urban
areas in a changing climate.

2 Methodology

2.1 A process of flood frequency uncertainty analysis

We investigate changes in flood frequency and the uncertain-
ties associated with the combined effects of climate change
and land use change in two catchments – Fanno Creek
(80.5 km2) and Upper Johnson (hereafter Johnson) Creek
(68.3 km2) in the Portland metropolitan area of Oregon,
USA. The Fanno catchment is highly developed with 84%
urban land use, and the Johnson catchment is moderately de-
veloped with 36% urban land use in 2001 (see Fig. 1).

To quantify uncertainty in flood frequency change, this
study considers five uncertainty sources; GCM structures,
future GHG emission scenarios, future land use scenarios,
hydrologic model parameters, and natural variability of the
climate system. The GCM simulations are downscaled using
the delta method to correct the bias between simulated and
observed precipitation and temperature, which is attributed
to scale mismatch between GCMs and catchment hydrologic
models, as well as the lack of sub-grid scale climate dynam-
ics such as orographically convective precipitation (Im et al.,
2010).
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Precipitation Runoff Modeling System (PRMS), a
physically-based, deterministic, and semi-distributed model,
is employed to simulate daily runoff changes and resulting
changes in flood frequency under different climate and land
use conditions. PRMS has been applied successfully in sev-
eral regions with varying climate and land use (Bae et al.,
2008a; Clark et al., 2008; Hay et al., 2006; Qi et al., 2009;
Viney et al., 2009). To better understand the wide array of
individual and combined factors that can affect the hydro-
logic response in a watershed system, Risley et al. (2010)
employed PRMS, driven by GCM outputs, in 14 watersheds
across the US, and conducted a comparative statistical anal-
ysis on the outputs. In the Willamette River basin, Ore-
gon, PRMS has been applied in a water quality study (Lae-
nen and Risley, 1997) and in a climate change impact study
(Chang and Jung, 2010). To consider PRMS model parame-
ter uncertainty, we extract acceptable parameter sets based
on the Nash-Sutcliffe efficiency (NSE) criterion that esti-
mates the degree of closeness between observed and simu-
lated streamflow. Latin Hypercube Sampling is employed to
efficiently sample the PRMS parameter sets within plausible
ranges. A similar approach was undertaken by Wilby and
Harris (2006).

It is also important to find whether the changes in flood
frequency for the future period are larger than the natural
(or model internal) climate variability (Hagemann and Ja-
cob, 2007). It is especially likely that precipitation change
derived from different initial conditions of GCMs could lead
to different interpretation of the results due to large natural
internal variability. To estimate natural climate variability,
we employ the moving block Bootstrap resampling method
(Ebtehaj et al., 2010), which produces a large number of new
climate series through random selection of observed climate
data. This method allows us to explore the range of different
flood frequencies that could be obtained by our finite sam-
pling of the internal climate variability (Kay et al., 2009).
The US Geological Survey’s PeakFQ program (Flynn et al.,
2006) is applied to estimate flood frequency with different
recurrence intervals such as 2, 5, 10, 25, 50, and 100 years.
To represent realistic future land use changes, we use two
land use change scenarios: the conservation and the devel-
opment scenarios, developed by the PNWERC (2002), these
are both compared with 2001 land use. Further details of the
data and methods used in this study are given in the following
sections.

2.2 Study area and data

Fanno creek and the Johnson creek are important resources
in the Portland metropolitan area, located in the valley of the
Willamette River basin in Oregon (see Fig. 1). As a source
of recreation and wildlife (Laenen and Risley, 1997), they
contribute to the regional socio-economic and environmental
systems. Two catchments are located in a modified marine
temperate climate region in which summers are warm and
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Fig. 2. Monthly runoff rate (%) that indicates the ratio of
monthly runoff to monthly precipitation for 2000–2006 and
monthly coefficient of determination between the Fanno daily
streamflow (USGS 14206950) and the Johnson daily streamflow
(USGS 14211500).

dry but winters are cold and wet. More than 80% of the an-
nual precipitation occurs from October through May and less
than 10% precipitation falls during July and August (Prask-
ievicz and Chang, 2009b). This seasonality of precipitation
causes periodic flooding and companying travel disruptions
in winter (Chang et al., 2010).

In our study areas, most precipitation is in the form of
rainfall. Unusual snow melts quickly during subsequent rain
storms (Lee and Snyder, 2009). Therefore, the surface hy-
drology of these regions is highly dominated by frequent
rainfall. Although Fanno and Johnson are close to each
other and have identical climate conditions, they show dif-
ferent hydrologic regimes. Fanno shows a higher runoff ra-
tio, defined as the ratio of total monthly runoff to precipi-
tation, than Johnson for most months except March, which
shows almost the same runoff ratio value in both catchments
(see Fig. 2). Monthly runoff rates show the highest inter-
basin differences in the dry season (June–August). This is
attributed to different infiltration mechanisms as well as to
geographic characteristics such as slope, soil, and shape of
the catchment. Due to different geology and soils, precipita-
tion in Fanno is less infiltrated and rapidly reaches the river,
while the more infiltrated precipitation in Johnson is evapo-
rated in warm and dry climate conditions. In the wet season
(November–March), continuing rainfall results in saturated
soil condition that can behave like an impervious surface, so
differences in the monthly runoff rate are smaller than those
of the dry season. The coefficient of determination of daily
streamflow between the two catchments also shows higher
linear relations (above 0.74) for the wet season and lower re-
lations (below 0.63) for the dry season (see Fig. 2).

Observed daily precipitation, maximum and minimum
temperatures, and streamflow data are used for hydrologic
modeling and downscaling of GCM simulations. The cli-
mate data are obtained from the National Oceanic and At-
mospheric Administration Cooperative Observer Program
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(NOAA COOP, 2010) for 1958–2006, and streamflow data
are collected from the USGS National Water Information
System (USGS NWIS, 2010) for 2000–2006. To delineate
hydrologic response units (HRU) and estimate PRMS pa-
rameters related to geographic layers, 10 m Digital Elevation
Model (DEM) (ODGMI, 2010), soil map (NRCS, 1986), and
land cover (PNWERC, 2002) are used.

2.3 Climate simulations and downscaling methods

Generally, the coupled atmosphere-ocean general circulation
models (GCMs) are the best tools for projecting future cli-
mate in response to GHG emission forcing. GCMs have di-
verse horizontal and vertical grid resolutions, climate process
description and approximation, parameterization of subgrid-
scale phenomena, and initial condition (Randall et al., 2007).
These different structures among GCMs cause the wide vari-
ations and biases in regional climate reproduction and pro-
jection (e.g., Im et al., 2011). Some GCMs fail to simulate
regional inter-annual or decadal climate variability, which are
important drivers of specific regional climate.

To estimate GCM performance in the Pacific Northwest,
Mote and Salath́e (2010) rank the 20 GCMs, implemented in
IPCC AR4, based on 20th century bias, a global performance
index (Achuta Rao and Sperber, 2006), and North Pacific
variability of temperature, precipitation, and sea-level pres-
sures (Mote and Salathé, 2010). The North Pacific variability
represents the teleconnection effects of El Niño Southern Os-
cillation (ENSO) and Pacific Decadal Oscillation (PDO) and
other large-scale climate processes over the Pacific North-
west (Hamlet et al., 2010). Based on the study of Mote and
Salath́e (2010), this study selects the three best GCMs, which
are CNRM-CM3, ECHAM5/MPI-OM, and ECHO-G. Better
GCM performance at simulating historical climate does not
inevitably indicate a realistic projection under GHG forcing.
However, if a GCM has poor performance for current im-
portant climate variability in the region, the derived regional
changes for future should also be misleading (Prudhomme
et al., 2002). No downscaling method can completely cor-
rect for the GCM’s errors. Additionally, this approach pro-
vides some useful information such as weighted factor of
GCM simulations (e.g., Tebaldi et al., 2005), and reducing
ensemble numbers for future climate projection (e.g., Mote
and Salath́e, 2010).

This study uses two GHG emission scenarios, the A1B
and B1 emission scenarios. Most global climate modeling
groups generally employ A2, the A1B and B1 GHG emis-
sion scenarios (Randall et al., 2007) as high, medium and low
emission scenarios for the 21st century, respectively. We fo-
cus on mid-century change for 2040–2069, in which period
A2 and A1B show similar GHG emission forcing. There-
fore, A1B and B1 emission scenarios can cover high and
low GHG emission conditions. The climate simulation of
three GCMs with two GHG emission scenarios are obtained
from the World Climate Research Programme’s (WCRP’s)

Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset (WCRP CMIP3, 2010).

To downscale three GCM simulations with two emission
scenarios, we use a simple delta method, which has widely
been used in climate change impact studies (e.g., Lettenmaier
et al., 1999; Wilby and Harris, 2006; Loukas et al., 2007;
Graham et al., 2007; Kay et al., 2009; Choi et al., 2009).
This method first calculates monthly precipitation and tem-
perature differences between the reference and future GCM
simulations. Then, the obtained monthly differences between
the two periods are applied to historical daily data for the
reference period by adding monthly absolute differences for
temperature and by multiplying percent differences for pre-
cipitation. This method can preserve the spatial and temporal
variation of observation and remove the bias of GCM simula-
tions. However, the delta method does not capture changes in
precipitation and temperature variability from climate mod-
els and does not allow for more complex changes in daily ex-
treme of precipitation and temperature (Hamlet et al., 2010).
Therefore, changes in day-to-day variability of climate sim-
ulations are not taken into account in this study. This could
lead to an underestimation of future flood frequency change.

2.4 Hydrologic model and parameter uncertainty

The PRMS model, Modular Modeling System (MMS) ver-
sion developed by US Geological Survey (Leavesley and
Stannard, 1996), is used in this study. This model simu-
lates a water balance for each day and an energy balance
for each half-day in each Hydrologic Response Unit (HRU),
which is assumed to be homogeneous in its hydrologic re-
sponse to given climate and land use conditions (Hay et
al., 2009). A detailed description of the PRMS model
structure is found in Leavesley et al. (2005). PRMS has
seven parameters which are directly associated with land
use change (see Table 1). Seasonal vegetation cover density
(covdensum, covdenwin) and cover type (covtype) affect
the amount of interception on HRUs. The seasonal vege-
tation cover density is determined by different leaf loss of
cover types, such as grass, shrub, deciduous and coniferous
trees (Viger and Leavesley, 2007, p. 99). Maximum values
of interception storage for each cover type are considered
by season and precipitation type (wrainintcp, srainintcp,
and snowintcp). Ratio of impervious surface area on HRU
(hru percentimperv) is a more important parameter in land
use change impact on flood analysis, because it is highly sen-
sitive to urbanization. High impervious surface area in this
model induces less infiltration to soil and more overland flow
to streams, potentially increasing peak flow volume.

PRMS is a physically-based hydrologic model, so some
parameters can be obtained from physiographic characteris-
tics and land surface features of the watershed using GIS lay-
ers, such as DEM, Land use, and Soil data (Chang and Jung,
2010). This study uses fixed parameters from GIS layers over
time, except parameters related to land use. Snow effects are
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Table 1. PRMS model parameters for calibration. D: Digital elevation map, LU: Land use map, S: Soil map, OPT: Optimized (modified
from Chang et al., 2010).

Parameter Description Range Calibrated Source
values

cov type Cover type (0 = bare, 1 = grasses, 2 = shrubs, 3 = Deciduous trees, 0∼ 4 LU
4 = Coniferous trees)

covdensum Summer vegetation cover density 0∼ 1 LU
covdenwin Winter vegetation cover density 0∼ 1 LU
wrain intcp Winter rain interception storage capacity, in inch 0∼ 5 LU
srain intcp Summer rain interception storage capacity, in inch 0∼ 5 LU
snow intcp Winter snow interception storage capacity, in inch 0∼ 5 LU
hru percentimperv HRU impervious surface area, in decimal percent 0∼ 1 LU
hru elev Mean elevation for each HRU, in feet −300∼ 30 000 D
hru slope HRU slope in decimal vertical feet/horizontal feet 0∼ 10 D
soil type HRU soil type (1 = sand, 2 = loam, 3 = clay) 1∼ 3 S
soil moist max Maximum available water holding capacity in soil profile, in inch 0∼ 20 S
soil rechrmax Maximum available water holding capacity for soil recharge zone, in inch 0∼ 10 S
soil2gw max Maximum rate of soil water excess moving to ground water 0.0–5.0 0.12–0.15 OPT
smidx coef Coefficient in nonlinear surface runoff contributing area algorithm 0.0001–1.0000 0.001 OPT
smidx exp Exponent in nonlinear surface runoff contribution area algorithm 0.2–0.8 0.20–0.21 OPT
ssrcoefsq Coefficient to route subsurface storage to streamflow 0.0–1.0 0.05–0.44 OPT
ssrcoeflin Coefficient to route subsurface storage to streamflow 0.0–1.0 0.0001 OPT
ssr2gwexp Coefficient to route water from subsurface to groundwater 0.0–3.0 0.5–3.0 OPT
ssr2gwrate Coefficient to route water from subsurface to groundwater 0.0–1.0 0.006–0.02 OPT
gwflow coef Ground-water routing coefficient 0.000–1.000 0.003–0.07 OPT

minor in both catchments, so this study uses values recom-
mended by Leavesley and Stannard (1996) for snow model-
ing in PRMS. We calibrate eight parameters that are associ-
ated with the timing and amount of runoff components (see
Table 1). As in previous studies, streamflow simulation is
most sensitive to these parameters (Bae et al., 2008b; Hay et
al., 2009; Im et al., 2010; Chang and Jung, 2010).

LHS (McKay et al., 1979) is employed to sample the pa-
rameters from plausible ranges. LHS is an efficient sampling
method that provides larger sample space with less compu-
tational effort comparable to those obtained from the con-
ventional Monte Carlo simulation (Tang et al., 2007; Davey,
2008). LHS divides the feasible parameter space into equal
intervals, so that at least one sample of each parameter set
is selected randomly from each interval (Yang et al., 2010).
To do an exhaustive search of behavioral parameters we de-
cide to sample 20 000 parameters using LHS. These param-
eter sets are used to determine the closeness between daily
simulated and observed streamflow for the period of 2000–
2006 in both catchments. The Nash-Sutcliffe (1970) non-
dimensional model efficiency criterion (NSE) is used as a
goodness of fit measure, with a value in excess of 0.6 indi-
cating satisfactory fit between observed and simulated hydro-
graphs (see Wilby, 2005; Choi and Beven, 2007). The NSE
is generally more sensitive to high flow than low flow. Thus,
an NSE score above 0.6 was considered appropriate for our
flood frequency-focused study, since it mainly considers high

flows. This approach can show the relative importance of
parameter uncertainty in climate impact studies, although it
cannot cover total equifinality of parameters (Beven, 2001).
Therefore, the whole range of parameter uncertainty on flood
frequency estimation is probably larger than what is pre-
sented in this study.

2.5 Natural variability

The natural variability of climate is the inherent internal fluc-
tuation caused by combined effect of low-frequency (longer
than 10 years) and high-frequency (shorter than 10 years)
variability of nature (Wigley and Raper, 1990). The flood
frequency analysis could be sensitive to the finite sampling
within the natural climate variability (Kay et al., 2009).
Therefore, it is essential that we analyze this sensitivity as an
internal effect and anthropogenic climate change as external
forcing. This will reveal the main source of uncertainty and
indicate which source is a key controlling factor for future
flood frequency change.

To estimate the effect of natural variability, this study
applies simple replacement of climate time series using a
moving block bootstrap method. The moving block boot-
strap method (K̈unsch, 1989) is a resampling method with
replacement to obtain a large number of samples (pseudo
time series) for a time series, which have independent data
structures such as precipitation (Ebtehaj et al., 2010). This
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Table 2. Description of the three land cover scenarios used in this study to simulated land cover projections within the Fanno and Johnson
Creek catchments by 2050 (Source: Hulse et al., 2004; Franczyk and Chang, 2009).

Classification Land cover scenarios

Conservation Plan Trend Development

General High priority on ecosystem protection Recent trends continue, existing Relaxed land use policies, market-
& restoration land use plans are implemented driven approach to land development

& use

Urban Emphasizes high-density development, Growth contained within UGBs Emphasizes lower- density development,
development UGBs similar to Plan Trend & rural zones, small expansion greater expansion of UGBs

of UGBs

Agriculture Conversion of some cropland to natural Minimal change in agricultural Majority of development occurs on
vegetation land use agricultural land

Forest Gradual decrease in clear-cut areas, Older conifer forests mainly Increased clear-cutting & less stream
riparian zones on all streams confined to federally-owned lands protection

study used seasonally-based three month blocks, December–
February (winter), March–May (spring), June–August (sum-
mer), and September–November (fall), to demonstrate an-
tecedent conditions and wet or dry season effect (Kay et
al., 2009). For instance, the climate data of three months
(December–February) in 1960 are randomly selected from
any 3-month period between the water year 1960 and 1989.
The selection of climate data with the same months is re-
peated 30 times until the years of new series are the same
of original time series. This process allows the selection of
data for a specific water year which could be repeated or may
not be used at all. Flood frequency using 100 resampled cli-
mate series are compared to that obtained from original data.
Also, the 100 resampled climate series are adjusted by the
delta method described above to generate future climate con-
ditions by the aforementioned three GCMs with two emis-
sion scenarios.

2.6 Flood frequency analysis – PeakFQ

To estimate the impacts of climate and land use changes
on flood frequency, this study used typical statistical flood
frequency analysis of maximum annual flood series using
the PeakFQ program. PeakFQ provides estimates of in-
stantaneous maximum annual peak-flows having diverse re-
currence intervals such as 2, 5, 10, 25, 50, 100, 200, and
500 years as annual-exceedance probabilities of 0.50, 0.20,
0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively. Here,
a 100 year flood describes a flood that is believed to have
a probability of being equal or exceeding 0.01 in any one
year (Raff et al., 2009). This program was developed based
on the Bulletin 17B guidelines of the Interagency Advisory
Committee on Water Data (IACWD, 1982), which is recom-
mended for use by Federal agencies in the US. Bulletin 17B
assumes that flood frequency can be described by a log-
Pearson Type 3 (LP3) probability distribution (Griffis and

Stedinger, 2007). Here, the LP3 distribution defines the prob-
ability that any single annual peak flow will exceed a spec-
ified streamflow. LP3 has three parameters: mean, standard
deviation, and skew coefficient (Bobee and Ashkar, 1991).
The skew coefficient is highly sensitive to the collected sam-
ple data of annual maximum floods, so that PeakFQ pro-
vides guidance on estimating the skew coefficient, such as
the generalized skew from a digitized copy of the map in
Bulletin 17B, the approach applied in this study.

2.7 Land use change scenarios

To consider possible future land use changes in both catch-
ments, this study used two land-cover datasets developed by
the Pacific Northwest Ecosystem Research Consortium (PN-
WERC, 2002). The PNW-ERC provides three different land
use scenarios for every 10 years of 2000–2050, namely, the
conservation, the plan trend, and the development scenarios
(see Table 2). These scenarios represent different future land-
scapes, based on projected human population growth pat-
terns and potential development characteristics throughout
the Willamette River basin (Hulse et al., 2004). As shown in
Table 2, the conservation scenario assumes that greater em-
phasis on ecosystem protection and restoration will be im-
plemented. The Plan Trend scenario assumes that current
land use trends continue. The development scenario depicts
greater expansion of urban growth boundaries (UGBs) with
free rein to market forces across all components of the land-
scape, resulting in sprawl urban development. More detailed
description of these scenarios is found in Hulse et al. (2004).
This study used the conservation and the development sce-
narios as two extreme cases. A similar approach has been
used in Franczyk and Chang (2009) and Praskievicz and
Chang (2011).
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2.8 Comparison of uncertainty sources

To identify the main source of uncertainty, we compare the
maximum range of flood frequency change according to each
uncertainty source (Jung et al., 2010). For instance, to deter-
mine the effect of GCM simulations (GCM structures), we
first calculate the differences in flood frequency changes that
are derived by different GCM simulations while holding the
other data such as land use changes, emission scenarios, hy-
drologic model parameters, and natural variability constant.
We then rank these differences and determine the maximum
value at the top 5%. The same methodology is repeated to
determine the maximum range for each uncertainty source.

3 Results and discussion

3.1 Hydrologic model calibration

To calibrate PRMS model parameters, HRUs for the two
catchments are delineated based on streamflow network,
slope, aspect, and soil type. The geophysical parameters
are extracted from DEM, land use, and soil GIS layers (see
Table 1). The rest of the parameters (eight process param-
eters) are calibrated using Rosenbrock’s (1960) automatic
optimization method. The ratio of impervious surface area
in HRU (hru percentimperv) is strongly related to land use
change, as mentioned in Sect. 2.4. However, the land use
layers of PNWERC do not provide the specific information
of impervious surface area. They only describe some urban-
related land use, such as residential, commercial, industrial,
railroads, and roads. These land use categories contain both
pervious and impervious surface areas. Therefore, if all ur-
ban land uses are assumed to be impervious surface areas,
flood frequency would be overestimated. To determine the
ratio of impervious surface area to urban land use, we de-
velop an empirical relation between urban land use (%) and
mean impervious surface area (%) (see Fig. 3) based on the
data set of Waite et al. (2008). Waite et al. (2008) used dif-
ferent land use types, including mean impervious surface
area, for 28 catchments in Oregon and Washington to es-
timate the effect of urbanization on steam ecosystems. As
shown in Fig. 3, the estimated regression equation shows a
good fit between urban land use and mean impervious sur-
face area (R2 = 0.99). The regression coefficients are used
to estimate percent impervious surface areas in each HRU
(hru percentimperv) in PRMS modeling for these two urban
catchments.

3.2 Projected future climate change and land use
change

Changes in monthly precipitation show different patterns by
GCMs and GHG emission scenarios, but the changes are
similar in the two catchments (see Fig. 4). The CNRM-
CM3 and the ECHAM5/MPI-OM simulations project slight
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Fig. 3. Relation between urban land use (%) and mean impervious surface (%). Data are 5 
obtained from USGS Report 2006-5101-D (Waite et al., 2008, Table 1) 6 
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Fig. 3. Relation between urban land use (%) and mean impervious
surface (%). Data are obtained from USGS Report 2006-5101-D
(Waite et al., 2008, Table 1).

increases in winter (December, January, and February) pre-
cipitation, while predicting drier summers (June, July, Au-
gust, and September) as indicated by previous studies (e.g.,
Mote et al., 2003; Graves and Chang, 2007; Chang and
Jung, 2010). In the study catchments, winter precipitation is
closely related to flood events. Therefore, rising water tables
resulting from an increase of winter precipitation and soil
moisture content are likely to lead to more frequent flooding
in this region. However, the ECHO-G projects a slight de-
crease in winter precipitation. These different precipitation
projections contribute to uncertainty in flood frequency anal-
ysis. Climate change projection for monthly temperatures
ranges from +0.3◦C increase in February (CNRM-CM3, B1)
to +6.1◦C in August (ECHO-G, A1B) for the 2050s (not
shown).

Figure 5 shows changes in land use categories of three dif-
ferent land use data sets – reference land use in 2001, the
conservation and the development land uses for the 2050s.
The two catchments are projected to have different paths of
future growth, as reflected in changes in each land use cat-
egory. In the Fanno creek catchment, absolute changes in
land use categories are small because it is already highly de-
veloped (85% in 2001). Hence, the Johnson creek catchment
shows considerable differences in each land use among the
three scenarios. Urban land use shows a 17% increase under
the development (sprawl development) scenario and an 11%
increase under the conservation (compact development) sce-
nario because of population growth, construction of building
and roads, and urban development in agricultural land use
(Hulse et al., 2004). Agricultural land use in both future sce-
narios decreases by approximately 17%. Grass-land and for-
est land uses are higher under the conservation scenario than
under the development scenario.
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Fig. 4. Changes in precipitation according to three GCMs and two emission scenarios in 3 
Fanno Creek and Johnson Creek catchments. 4 
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Fig. 4. Changes in precipitation according to three GCMs and two emission scenarios in Fanno Creek and Johnson Creek catchments.
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Fig. 5. Land use categories (%) for reference land use in 2001 and two future land use 3 
change scenarios for the 2050s 4 
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Fig. 5. Land use categories (%) for reference land use in 2001 and
two future land use change scenarios for the 2050s.

3.3 Projected flood frequency

Figure 6 shows the range of flood frequency at the refer-
ence and future climate change conditions, excluding land
use change effects. The reference period only considers
the natural variability impact. Hence, the two future peri-
ods represent impacts of climate change on flood frequency

caused by the combined conditions of climate change and
natural variability. The effect of climate change is much
more dominant in both catchments as compared with nat-
ural variability (taller box and whisker). Thet-test results
show that the flood frequency of all return periods signifi-
cantly changes due to climate change at the 95% confidence
level (see Table 3). The GHG emission scenarios are only
significantly different for 2-year flood frequency. The cli-
mate change impact on flood frequency between both catch-
ments is similar. This is attributed to the fact that the catch-
ments are located in same climate region in the Willamette
Valley and analyses are made using data derived from coarse
scale GCM simulations. In a contrasting case study, Kay
et al. (2009) show different responses between two distant
catchments in UK using regional climate model (RCM) sim-
ulations. They show that one catchment is highly dominated
by natural variability, while the other catchment is strongly
affected by climate change. Hulme et al. (1999) explain that
if a region is more dominated by natural variability than by
climate change, adaptation management that takes into ac-
count natural variability may be sufficient to withstand cli-
mate change. Our results show that future flood management
in the Fanno and Johnson creek catchments should consider
climate change impact as well as historical natural climate
variability.

As shown in Fig. 7, the natural variability impact is much
greater than future land use change impact. The variation in
flood frequency caused by land use change is similar to that
due to natural variability in both catchments. However, un-
der the development scenario, short-term floods (2 and 5 year
floods) in Johnson Creek show significant changes at the 95%
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Fig. 6. Variation of flood frequency by climate change scenarios, with recurrence 4 
intervals of 2, 5, 10, 25, 50, and 100 years for the 2050s with respect to the reference 5 
period of 1960-1989. The blue dot indicates flood frequency using observed climate 6 
data and symbol (x) indicates outliers.  7 
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Fig. 6. Variation of flood frequency by climate change scenarios,
with recurrence intervals of 2, 5, 10, 25, 50, and 100 years for the
2050s with respect to the reference period of 1960–1989. The blue
dot indicates flood frequency using observed climate data and sym-
bol (x) indicates outliers.

confidence level (see Table 3). This might indicate that no-
table land use change in less developed catchment could lead
to significantly more frequent bankfull flooding, although the
natural variability effect is more pronounced for larger flood
events. The median values of flood frequency under the de-
velopment condition are slightly higher than those of the con-
servation scenario. Also, shorter term floods increase more
than longer term floods.

For the combined impact of climate and land use changes,
flood frequency at the six different return periods increases
slightly, though each change had high variations (Fig. 8). The
range of flood frequency change gradually increases from
shorter term floods to longer term floods. The variations
under the A1B scenario are larger than those under the B1
scenario in both catchments. Since variation is high, an in-
terpretation of the flood frequency impact of each scenario
solely based on Fig. 8 is difficult. Accordingly, we calculated
ensemble mean value of flood frequency change for each sce-
nario.

Figure 9 shows the ensemble mean of relative changes of
flood frequency under two GHG emission, two land cover
change, and the combined scenarios (four) that are calcu-
lated from the reference flood frequency. The A1B scenario
shows the biggest change among the separate emission and
land cover scenarios in both catchments. In the Fanno creek
catchment, ensemble results of all 8 scenarios show higher
changes than those caused by natural variability. However, in
Johnson creek, the natural variability impact becomes more
significant than the B1 and land cover change scenarios for
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Fig. 7. Variation of flood frequency by land use change scenarios, with recurrence 3 
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Fig. 7. Variation of flood frequency by land use change scenarios,
with recurrence intervals of 2, 5, 10, 25, 50, and 100 years for the
2050s with respect to the reference period of 1960–1989. The blue
dot indicates flood frequency using observed climate data, and sym-
bol (x) indicates outliers.

short-term flood frequency of less than 25 year floods. In all
cases, the combined impacts on flood frequency are higher
than those of natural variability in both catchments. Of the
combined land use and climate scenarios, the A1B with de-
velopment scenario induces the highest increase in flood fre-
quency, and the B1 with conservation scenario induces the
lowest increase in flood frequency. The shorter term flood
frequencies are more sensitive to the combined scenarios
than longer term ones (see Table 4). Further, the difference
between A1B with development scenario and B1 with con-
servation scenario is greater in Johnson than in Fanno (see
% difference between the two scenarios in Fig. 9). For the
long term extremes, the Johnson creek shows significant dif-
ference between the A1B with development scenario (6.6%
difference) and the B1 with conservation scenario (3.4% dif-
ference) (see Table 4).

This result indicates that, under expected climate change
conditions, an adaptive urban planning based on the conser-
vation scenario could be more effective in less developed
Johnson catchment than in the already developed Fanno.
Also, this result demonstrates that the combined effect does
not linearly increase catchment flood frequency. For exam-
ple, 2 years floods in Fanno are increased by 12.4% by the
A1B scenario alone, and by 9.7% by the development sce-
nario alone; however, they are increased by 14.8% by the
combination of the A1B and development scenarios. This
could be attributed to nonlinear hydrologic responses un-
der different climate and land use conditions. Additionally,
it implies that if we want to obtain more realistic future

www.hydrol-earth-syst-sci.net/15/617/2011/ Hydrol. Earth Syst. Sci., 15, 617–633, 2011



626 I.-W. Jung et al.: Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection

 40

0

20

40

60

80

P
ea

k 
flo

w
 d

ep
th

 (m
m

/d
ay

)

2 5 10 25 50 100

Fanno Creek - A1B
Reference (2001)
Conservation scenario
Development scenario

0

20

40

60

80

P
ea

k 
flo

w
 d

ep
th

 (m
m

/d
ay

)

2 5 10 25 50 100
Return period (years)

Johnson Creek - A1B
Reference (2001)
Conservation scenario
Development scenario

0

20

40

60

80

2 5 10 25 50 100

Fanno Creek - B1
Reference (2001)
Conservation scenario
Development scenario

0

20

40

60

80

2 5 10 25 50 100
Return period (years)

Johnson Creek - B1
Reference (2001)
Conservation scenario
Development scenario

 1 
 2 

Fig. 8. Variation of flood frequency flows by combination of land use change and 3 
climate change scenarios with recurrence intervals of 2, 5, 10, 25, 50, and 100 years for 4 
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Fig. 8. Variation of flood frequency flows by combination ofland use change and climate change scenarioswith recurrence intervals of 2,
5, 10, 25, 50, and 100 years for the 2050s with respect to the reference period of 1960–1989. The blue dot indicates flood frequency using
observed climate data, and symbol (x) indicates outliers.
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Fig. 9. Ensemble mean of changes (%) in flood frequency under different scenarios for the 2050s with respect to the reference period of
1960–1989.
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Table 3. t-test result of comparison between flood frequency change by GHG emission scenarios and land use change scenarios. Shaded
value indicates significantp-value at the 95% confidence level.

Climate change Land use change

Fanno Johnson Fanno Johnson
Emission Ref A1B Ref A1B Land use Ref Con. Ref Con.

2 A1B 0.00 – 0.00 – Con. 0.25 – 0.06 –
B1 0.00 0.01 0.00 0.00 Dev. 0.15 0.77 0.00 0.22

5 A1B 0.00 – 0.00 – Con. 0.46 – 0.21 –
B1 0.00 0.06 0.00 0.01 Dev. 0.37 0.86 0.04 0.39

10 A1B 0.00 – 0.00 – Con. 0.57 – 0.33 –
B1 0.00 0.11 0.00 0.03 Dev. 0.46 0.86 0.11 0.54

25 A1B 0.00 – 0.00 – Con. 0.65 – 0.48 –
B1 0.00 0.16 0.00 0.07 Dev. 0.58 0.92 0.25 0.65

50 A1B 0.00 – 0.00 – Con. 0.69 – 0.58 –
B1 0.00 0.21 0.00 0.11 Dev. 0.64 0.94 0.35 0.70

100 A1B 0.00 – 0.00 – Con. 0.73 – 0.66 –
B1 0.00 0.24 0.00 0.15 Dev. 0.68 0.94 0.46 0.77

projections of urban flood risk, we need to develop possible
climate change scenarios as well as land use change scenar-
ios.

3.4 Comparison of five uncertainty sources

Figure 10 shows the relative variation (uncertainty) in flood
frequency change projections under the combined impact of
climate and land use change. Uncertainty due to land use
change is the smallest in this study, except for the occurrence
of 2 year floods at Johnson creek, although the Johnson’s
range is larger than the Fanno’s. This could indicate that
longer term floods could be less affected by land use change
than climate change. However, this result also suggests that
if land use at a catchment scale changes abruptly, the land
use change will become a more significant uncertainty source
than climate change for short term floods. Emission scenario
uncertainty also shows a relatively smaller range than those
of the other sources. The uncertainty from hydrologic pa-
rameters is more significant at Fanno than Johnson, but it is
smaller than uncertainty due to GCM and natural variability.
GCM uncertainty strongly affects shorter term 2 and 5 year
floods, while longer term 25, 50, and 100 year floods are
more controlled by natural variability. This demonstrates that
both uncertainty sources, GCMs and natural variability, are
significant factors in urban flood frequency analysis.

3.5 Caveats of this study

This research deals with uncertainty in future flood frequency
analysis in two distinct urban areas. We consider three un-
certainty sources; climate projection (GCM structure, future
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Fig. 10. Comparison of variation in flood frequency change by each uncertainty source. 3 
The vertical ranges show the 95% confidence interval. 4 

Fig. 10.Comparison of variation in flood frequency change by each
uncertainty source. The vertical ranges show the 95% confidence
interval.

GHG emission scenario, and natural variability), urban de-
velopment (different future land use planning scenarios), and
hydrologic modeling (hydrologic model parameters). Our re-
sults contribute to an understanding of the combined effects
of hydro-climatic modeling and urban development effects
on urban flood analysis. While we identify the relative mag-
nitude of uncertainties arising from the sources mentioned
above, there are remaining uncertainty sources, such as GCM
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Table 4. t-test result of comparison between flood frequency change by combination of GHG emission scenarios and land use change
scenarios. Shaded value indicates significant difference at the 95% confidence level.

Fanno Johnson

Ref A1B A1B B1 Ref A1B A1B B1
+ Con + Dev + Con + Con + Dev + Con

2 A1B + Con 0.19 – – – 0.11 – – –
A1B + Dev 0.11 0.75 – – 0.01 0.27 – –
B1 + Con 0.19 0.01 0.01 – 0.09 0.00 0.00 –
B1 + Dev 0.10 0.03 0.01 0.74 0.00 0.04 0.00 0.25

5 A1B + Con 0.34 – – – 0.21 – – –
A1B + Dev 0.24 0.82 – – 0.03 0.38 – –
B1 + Con 0.32 0.06 0.03 – 0.16 0.01 0.00 –
B1 + Dev 0.22 0.09 0.06 0.82 0.02 0.10 0.01 0.35

10 A1B + Con 0.42 – – – 0.29 – – –
A1B + Dev 0.32 0.85 – – 0.08 0.48 – –
B1 + Con 0.41 0.10 0.07 – 0.23 0.03 0.00 –
B1 + Dev 0.31 0.14 0.10 0.85 0.05 0.14 0.03 0.42

25 A1B + Con 0.53 – – – 0.41 – – –
A1B + Dev 0.45 0.90 – – 0.16 0.57 – –
B1 + Con 0.50 0.15 0.12 – 0.33 0.07 0.01 –
B1 + Dev 0.41 0.20 0.16 0.88 0.11 0.20 0.06 0.53

50 A1B + Con 0.60 – – – 0.47 – – –
A1B + Dev 0.51 0.90 – – 0.25 0.66 – –
B1 + Con 0.57 0.20 0.15 – 0.40 0.10 0.03 –
B1 + Dev 0.49 0.25 0.19 0.89 0.17 0.23 0.09 0.60

100 A1B+Con 0.64 – – – 0.55 – – –
A1B + Dev 0.57 0.91 – – 0.33 0.70 – –
B1 + Con 0.62 0.23 0.19 – 0.47 0.13 0.05 –
B1 + Dev 0.55 0.27 0.22 0.92 0.24 0.26 0.12 0.66

initial condition, downscaling method, and hydrologic model
structure, which are not investigated in the current study.
Therefore, our results should be cautiously interpreted along
with other potential sources of uncertainties.

We carefully select the three best GCMs, but these GCMs
do not necessarily project future climate accurately. Further-
more, three GCMs are insufficient to cover the full range of
GCM structure uncertainty. However, our results show the
uncertainty caused by GCMs is higher than that due to other
sources. This is consistent with the findings of previous stud-
ies (e.g., Wilby and Harris, 2006; Kay et al., 2009). There-
fore, the end-to-end effect of GCM uncertainty on flood fre-
quency projection could be larger than that presented in this
study, however, the relative magnitudes of the GCM struc-
tural uncertainty might not vary. The uncertainties due to
future GHG emissions are not fully considered as proposed
in the IPCC storyline (IPCC, 2000).

Our results are also affected by the simple delta method for
downscaling GCMs because this approach cannot consider
changes in interannual or day-to-day variability of climate
simulations (Im et al., 2010; Prudhomme and Davies, 2009).

Additionally, using a different NSE threshold value could
have resulted in a wider or narrower parameter uncertainty
range, although it would still not be significant compared
to other uncertainty sources. However, more sophisticated
methods and approaches in quantifying the parameter uncer-
tainty relying on Sequential Monte Carlo (SMC) using en-
semble filtering (Moradkhani et al., 2005a,b; Moradkhani
and Sorooshian, 2008; Leisenring and Moradkhani, 2010;
DeChant and Moradkhani, 2011; Montzka et al., 2011),
Markov Chain Monte Carlo (MCMC) (e.g., Smith and Mar-
shall, 2008; Vrugt et al., 2009) and Moving Block Boot-
strap Sampling (MBBS) (Ebtehaj et al., 2010) can be em-
ployed. Furthermore, we did not include uncertainties asso-
ciated with climate data downscaling (Fowler et al., 2007;
Im et al., 2010; Najafi et al., 2010a), and hydrologic model
structure (Clark et al., 2008; Jiang et al., 2007; Bae et al.,
2011; Najafi et al., 2010b). Recently, Najafi et al. (2010b)
used Bayesian Model Averaging to quantify and minimize
the uncertainty associated with hydrologic model structure
and selection in the context of hydrologic climate change im-
pact studies.
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Urban climate is controlled not only by global and regional
natural climate systems, but also by local urbanization ef-
fects, such as the urban heat island, the urban canopy layer,
and varying aerosol composition (Ntelekos et al., 2010). Ur-
banization could significantly affect the precipitation clima-
tology relating to flood events (Shepherd, 2005). Ntelekos et
al. (2008) demonstrates that rainfall accumulations of 30%
of the total extreme events are attributed to urbanization im-
pacts in the Baltimore metropolitan area, Washington DC.
Therefore, the interaction between global climate change and
urban climatology is another important uncertainty source in
urban climate impact studies.

In changing climate conditions, an assumption of station-
arity in flood frequency analysis may not be valid (Milly et
al., 2008; Smith et al., 2005). This study uses the PeakFQ
based on the Bulletin 17B that assumes the constant distri-
bution of flood events regardless of climate change. Some
previous studies illustrate that a traditional approach to flood
frequency estimation could not rely on stationarity assump-
tions (Raff et al., 2009; Sivapalan and Samuel, 2009). Now,
a robust methodology for incorporating projected climate in-
formation into flood frequency analysis is needed.

4 Conclusions

This study examines the potential changes of flood frequency
and the associated uncertainties in the two catchments ex-
hibiting different levels of urbanization. Here, the important
conclusions are summarized.

1. For the combined scenarios, GCM uncertainty highly
affects shorter term extremes, while longer term ex-
tremes are more controlled by natural variability.
Hence, the uncertainties due to future GHG emission
scenarios and land use change scenarios are less im-
portant than natural variability. Also, hydrologic model
parameter has less impact than natural variability and
GCM structure in our uncertainty analysis.

2. The combined impacts of land use change and cli-
mate change scenarios induce significant changes in the
shorter term extremes in both catchments. Flood fre-
quency change demonstrates the highest increase under
the A1B with development scenario and the lowest in-
crease under the B1 with conservation scenario.

3. In the 2050s period, flood frequency is projected to
slightly increase in both catchments, although there are
substantial uncertainties. Changes in flood frequency
are more sensitive to climate change (A1B scenario)
than land use change. Land use change impact is only
significant in the less developed Johnson catchment,
which is projected to be more urbanized in the 2050s.
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