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Abstract 
 

The kinetics of phase transformations has been studied within the framework of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) 
theory. This theory accurately describes only the parallel growth of anisotropic products with identical convex shape. The identical growth 
velocity distribution at an interface is the indispensable condition for the above restriction. The proposed earlier extension of KJMA theory 
(statistical theory of the screened growth) enlarges the scope of its application and eliminates the above limitation. The results of the 
application of this extension were compared with the results obtained during modelling of the concurrent growth of the two types of 
circular particles on a plane, where the said particles were characterised by different growth rates and modelling was carried out by the 
method of cellular automata (CA). 
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1. Introduction 
 

The mechanism that drives numerous processes changing the 
state of matter is the nucleation and growth of single elementary 
objects of a new substance within the substance subject to 
transformations. The phenomena of this type are numerous and 
include crystal physics, metallurgy, polymer physics, ferroelectric 
domain switching, magnetization and metastability in statistical 
physics models, phase transitions in particle physics as well as 
ecological landscapes [1]. No matter how much these phenomena 
may differ, changes in the volume of the transformed fractions are 
described by the same statistical theory. The theoretical 
fundamentals of the mathematical formulae used nowadays were 
developed by Kolmogorov [2]. Comprehensive case studies of the 
transformations are described in publications written by Johnson 
and Mehl [3] and Avrami [4]. This article discusses the case 
disregarded by the classical statistical theory. This is the case of a 
concurrent growth of particles, when each of them has a different 
velocity of growth. 

2. Extended range of application of the 
statistical KJMA theory 

 
The general equation of the statistical theory of solidification, 

called the Kolmogorov equation, enables us to predict the real 
transformed fraction volume from the, so called, extended specific 
volume (Ω) 

( ) ( )( )ttV Ω−−= exp1  (1) 

where: t – the time. 
The value of Ω is calculated from some geometrical rules, 

allowing for the shape, size and quantity of particles in a unit 
volume but disregarding certain limitations resulting from their 
interaction [2]. One of the conditions indispensable to satisfy the 
above mentioned equation is to have equal velocities of growth of 
all the grains in a given direction and at a given time instant. In 
reality, this condition is not always satisfied, and actual kinetics of 
the process differs from that determined by equation (1). 



Numerous attempts are known that aim at an improvement of the 
statistical theory of phase transformations to describe in a correct 
way the kinetics of these transformations in situations when the 
above mentioned conditions are not satisfied. Yet, as reported by 
Koi [5], all these improvements are not of a general character, but 
refer to some specific cases only.  

It has been proven [6] that the most frequent cause of 
deviations is the effect of screening. The solution presented in 
further part of this study is based on the statistical theory of the 
screened growth [7-8]. This study discusses the example of a 
simultaneous, concurrent growth of the circular grains of two 
types on the plane when each of them has a different growth 
velocity.  

It has been assumed that we know the function S(u,t), 
determining the field of an external boundary of the extended 
grains, the growth of which at a given time instant t takes place at 
a velocity not greater than u. For the faceted and spherical grains, 
this function is continuous in intervals, while for other non-
faceted grains, it is of a continuous character. In its continuous 
intervals S(u,t), the function S´(u,t) is equal to its partial derivative 

( ) utuS ∂∂ , , and at the points of discontinuity, where S(u,t) 
has a jump equal to the length of the respective crystal facets 
ΔS(uF,t), this function assumes the value: 

( ) ( ) FFF utuStuS ,, Δ=′  (2) 

where: uF – the respective growth velocity on the surface. 
The velocity of the extended grain surface growth can be 

expressed with Stieltjes integral: 
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where the second term allows for the faceted or spherical growth 
velocity, while the first term allows for the non-faceted growth 
velocity. 

The extended volume is determined by the integration of 
equation (3) after the time: 
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where: um – the maximum migration velocity of the boundary. 
The screening rate in the case of one-, two-, and three-

dimensional growth is given in papers [7, 8] If, within the 
integration range, there are points of discontinuity of the function 
S(u), Stieltjes integral applies, and in 2D space the screening rate 
is: 
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where: u2 – the velocity of growth of the screened surface,  
u1 – the integration variable. 
 
 

3. Concurrent growth of the circular 
grains on plane 
 
Let us consider the growth of the circular particles of two 

types, i.e. A and B, proceeding at different velocities in 2D. It is 
assumed that the nuclei of these particles are formed at the same 
time instant t=0 in a number nA and nB. Let particles grow at 
constant velocities u

B

A and uBB, and let uA > uB. In the case under 
consideration and according to definition , for the slow growth 
(B) screening does not occur. The rate of screening the surface of 
grains A is: 
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where: SB(t) – the total field of the surfaces of all the extended B 
type grains in time t.  

B

A more rapid growth of grains A may be screened on the 
extended boundary of grains B, with the size of the boundary 
assuming a value equal to: 

( ) ( )tuntS BBB π⋅= 2  (7) 

The boundary SA(t) of the extended grains A is growing with 
the growing radius of these grains, and from geometrical relations 
for the partially screened grains follows:  

( ) ( ) tutSRtS AAAA =∂∂  (8) 

Since in the examined case the velocities are time-
independent, equation (4) for circular particles in 2D is reduced to 
the following form: 

( ) ( ) ( )2
0

2 d, tunuSut BB

t

AA π+ττ′=Ω ∫  (9) 
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Differentiating function S´ for grains of type A along their 
radius, we obtain: 

( ) ( ) tutuSRtuS AAAA ,, ′=∂′∂  (10) 

The rate of changes in S´(uA,t) depends on the two competitive 
processes, i.e. an increase of the grain dimensions and screening 
of the surface: 
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On substituting to this equation the derivatives (6) and (10) 
we obtain: 
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where from allowing for (2) and (7): 
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An integral of this equation enables calculation of the non-
screened boundary of grains A: 
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Since at the instant of nucleation, due to a small size of the 
grain boundaries, screening can be neglected, we have: 

( ) tuntS AAAt
π=

→
2lim

0
 (15) 

and it is possible to determine the integration constant C:  

( AAunC π= 2ln )  (16) 

Finally, the non-screened boundary of grains A will be 
calculated from the equation:  
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The total extended volume of the products of growth, 
calculated according to (9), is: 

( ) ( ) ( )ttt BA Ω+Ω=Ω  (18) 

where the first term refers to grains of type A, and the second to 
grains of type B: 
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( ) ( )2tunt BBB π=Ω  (20) 

Differentiating equation (1) in the case of the growth of two 
phases, we obtain: 

( )BAAAV Ω−Ω−=Ω∂∂ exp  (21) 

The numerical integration of equation (21) using (19) and (20) 
enables us to analyse the kinetics of transformations in the case 
under consideration. The computed changes in volume fraction of 
the grains of types A and B in the function of ΩB are shown in 
Fig. 1. Analysis was made for the ratio of growth velocities 
differing from 1:1 to 1:16. It has been assumed that the growth 
velocity and the number of grains of type B (blocking) is the 
same. The growth velocity and the number of grains of type A 
(screened) was in each individual case calculated from the 
relation:  

B

22
BBAA unun =  (22) 

 

 

Fig. 1. History of volume fraction for two types of the 
transformation products A and B with equal extended volumes. 
Lines – proposed analytical solution; points – the cellular 
automata modelling; numbers – uA/uB 
 

The above results were compared with the data obtained by 
CA modelling. Final structures obtained for the individual growth 
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rate relations are shown in Fig. 2. Modelling was carried out on a 
grid of 1024 x 1024 cells with periodic boundary conditions. The 
technique of determination of the transformation rate in cells for 
the imposed growth velocity vector is described earlier [9]. 

The history of changes in the volume fraction of the grains of 
both phases as a function of ΩB, as obtained by the CA method, is 
marked with points in Fig. 1. A good conformity between the 
results of integration of equation  and the results of CA 
modelling has been obtained. 

B

(21)

 

 
a) b) c) 

Fig. 2. Structure with different relations of the growth rate. Black – A-grains, grey – B-grains, uA/uB: a) 1; b) 4, c) 16 B

 
 
 

4. Conclusions 
 
An example of the application of the statistical theory of the 

screened growth in description of the concurrent growth of the 
grains of two phases on a plane (2D) has been presented. The 
comparison of the results obtained by this method with the results 
of modelling by the CA method proves the correctness of the 
statistical theory of the screened growth in this case. 

The statistical theory of the screened growth eliminates some 
limitations of the KJMA theory of phase transformation and ex-
tends the field of KJMA theory application. 
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