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Abstract 
 

This paper presents the method of determination of the continuous casting cross-section, in which average temperature was equal to 
a prescribed value. The method proposed here does not require evaluation of temperature distribution. On the basis of input data, a linear 
or non-linear equation is created (depending on the heat flux form on the region boundaries), which solution enabled determination of the 
cross-section. 
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1. Introduction 
 
Let us consider a task consisting of determination of such 

place in a solidified part of a flat continuous casting, where the 
average temperature in the cross-section would equal a prescribed 
value, specified by technological requirements. The discussion 
below refers to a vertical device for continuous casting operating 
in an undisturbed cycle with an assumption that the variable 
cooling conditions, depending on the casting drawing direction, 
are identical throughout the casting circumference and its section 
dimensions fulfil the condition: ba << , where  means the 
casting thickness and , its width. Let us also assume that the 
heat flux takes place only in a direction perpendicular to the 
casting axis. This assumption results from the fact that the amount 
of heat conducted in the casting motion direction, compared to the 
amount of heat conducted in a direction perpendicular to the 
casting axis, is negligible [1,2]. 

a
b

 

There is a possibility of finding an analytical solution of the 
proposed problem only in specific cases of one-dimensional 
problem and most often, for one-phase problems [3,4]. In simple 
cases, we can also use the Adomian decomposition method or 
a variational iteration method to solve the Stefan problem [5-9]. 
Then a solution in the form of a continuous function defined as 
a linear combination of the prescribed base functions is obtained. 
The coefficients of this combination are so determined 
numerically, to minimize the functional description of solution 
deviation from boundary conditions. 

For other cases only approximated methods can be used (see 
for example [10-17]), which however, require a tremendous 
amount of effort and time for calculations. The temperature field 
must be determined in such cases for the entire region under 
consideration. It is only then possible to determine the cross-
section of a casting with a prescribed average temperature. The 
method proposed does not require determination of temperature 
distribution. Based on the input data a linear or non-linear 
equation is created (depending on the heat flux form on the 



boundary ), which solution enables determination of the cross-
section being the object of our interest. 

aΓ

 

 
Fig. 1. Modelled object 

 
 

2. Mathematical model 
 

With the assumptions made, as well as due to thermal 
symmetry, the  casting region can be treated as a two-
dimensional domain composed of two subdomains:  - liquid 
phase, and  - solid phase, where, with the space orientation as 
in fig. 2, the heat exchange process, including the quasi-steady 
thermal field, is described by a two-phase Stefan problem 
determined from the following system of equations and 
conditions: 
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where  is the temperature, kT x  and z  refer to spatial location, 

kλ ,  and kc kρ  are, respectively: the thermal conductivity, the 
specific heat and the mass density in liquid phase ( 1=k ) and in 
solid phase ( 2=k ),  is the constant casting velocity, v *T  is the 
temperature of the phase change,  is the pouring temperature, 0T
L  is the latent heat of fusion, ( )zξ  is the function describing the 

position of the phase change moving interface, *z  means the 
maximum depth of liquid metal deposition,  and  mean the 
average temperature of casting cross-section and the place where 
this value is reached (casting cutting place), respectively, whereas 

avT ez

( )zq  means the heat flux emitted. 

 
Fig. 2. Domain of the problem 

 
 

3. Solution to the problem 
 

By integrating equations (1) on appropriate domains  (kD 2,1=k ), 
we obtain: 
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Now, using the Green's formula for a double integral, the equations (10) 
can be presented in the form: 
 

( ) ( ) ,2,1,0,, ==
∂
∂

+∫
∂

kdzzx
x

T
dxzxTvc k

k
D

kkk

k

λρ                (11) 

 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  8 ,  I s s u e  4 / 2 0 0 8 ,  5 1 - 5 4  52



where , , denote the boundaries of domains . Since 
boundaries  of domains  can be presented in the following 
form (see Fig. 2): 
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it means that the curves in the integrals can be parameterized. By 
utilizing such parametrization and taking into account the conditions: 
(2)-(6), we can transform the right sides of equations (11), which will 
assume the form: 
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Having substituted dependencies (12) and (13), respectively, for 
formulas (11), and adding side-by-side the obtained dependencies, with 
concurrently taking into account condition (7), we obtain: 
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By using dependence (9) in the latter equation, we will obtain: 
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The value sought, , is present within the first integral limit of 

integration and, since function  as well as all other quantities 

present in the above equation are known, we obtain a confounded 
equation for . Whether or not we will be able to analytically 
determine the value of  from this equation, depends on whether we 
will be able to analytically integrate function , and on what 
equation the integration will yield. As regards a numerical solution 
(even if function 

ez
( )zq

ez

ez
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( )zq  is not analytically enterable) reduces to solving 
the equation: 
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where, to simplify the notation, the following designation was 
introduced: 
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where  (temperature of superheating). The method of a 
numerical solution of a non-linear equation (e.g. bisection method) can 
be applied directly to equation (16) or the integral can be first 
substituted with the sum (e.g. in accordance with Newton-Cotes 
quadrature formula) and next, an approximated solution method can be 
applied for the obtained non-linear equation. 
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4. Example 
 

Proposed solution method can be illustrated with following 
example of determination the cross-section of a copper casting with the 
following parameters [13]: [m],  [m/s], 1.0=a 002.0=v

3701 =λ  [W/(m K)], 3702 =λ  [W/(m K)],  [J/(kg K)], 4001 =c
4002 =c  [J/(kg K)], 89001 =ρ  [kg/m3], 89002 =ρ  [kg/m3], 

200000=L  [J/kg],  [K],  [K] and 1356* =T 13730 =T
800=avT  [K]. 

It is assumed for the calculations that the casting cooling area 
consists of five zones (fig. 1) of the following lengths: 0.2 [m], 0.4 [m], 
0.8 [m], 0.6 [m], 0.2−ez  [m], respectively, for which a constant flux 
value is assumed: 
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For the problem so posed, the calculation results show that the place for 
which the average cross-section temperature with value of 800 [K], 
should be as follows: 

].[5247.8 mze =  
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The paper presents the method of determination of continuous 
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