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Abstract 
 

Two types of data mining tools, suitable for semi-automatic generation of knowledge in a form of logic rules, are presented in the 
paper: decision (classification) trees and rough sets theory algorithms. A comparative evaluation of rules obtained by these two methods, 
used for decision concerning application of feeders for grey iron castings, is performed. Data sets obtained as readouts form a semi-
empirical nomograph of Holzmüller and Wlodawer were used for the testing. It was found that both methods lead to similar rules, which 
are also in agreement with the foundry practice. However, the decision trees were unable to provide some important and reliable rules, 
which were generated by the rough sets theory algorithm and they can also generate rules which are not supported by the training data. 
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1. Introduction 
 
In majority of manufacturing companies large amounts of 

data related to production processes are collected and stored. 
Utilization of that data for improvement of product quality and 
lowering manufacturing costs requires extraction of a knowledge 
from the data, in the form of appropriate conclusions, rules and 
procedures. This can be facilitated by methods offered by the 
relatively new, interdisciplinary field called data mining (DM), 
rapidly growing in recent years. The most valuable DM tools are 
computational intelligence (CI) methods, making possible a semi-
automated extraction of useful information from the data sets. 
One of the most important types of tasks which can be performed 
with CI tools is generation of knowledge in a form of logic rules. 
This facilitates a formation of engineering knowledge on the basis 
of production experience, in a form of design and manufacturing 
recommendations and relationships.  

The aim of the present work was a comparative analysis of 
two different methods of knowledge extraction in the form of 
logic (decision) rules having the following general structure:  

IF attribute 1 = … AND attribute 2 = …, THEN output = … 

In this notation the sequence of expressions between ‘IF’ and 
‘THEN’ is a conditional part or the rule, while its decision part is 
that appearing after ‘THEN’. Input variables (e.g. process 
parameters) are often called attributes, which can be of continuous 
type, i.e. expressed by real numbers (e.g. temperature in 0C), or of 
a discrete (discontinuous) type. The latter includes ordinal values 
(e.g. temperature expressed verbally as ‘low’, ‘medium’, ‘high’ or 
by an ordered finite set of numerical values, e.g. 700.5, 820, 900) 
as well as nominal values (e.g. a casting can be ‘good’ or ‘bad’, 
employee’s telephone number can be 23, 11 or 87). If the 
attributes are of a real type, then the equality signs appearing in 
the conditional part of the rule are replaced by inequality signs 
(e.g. Temperature <= 300). The values of output (dependent) 
variables are always discrete, i.e. of nominal or ordinal types and 
they designate its decision class. In other words, a conditional rule 
assigns to a certain combination of attributes’ values one class of 
the decision variable. 

The most widespread tools for extracting logic rules from 
recorded data, i.e. classification learning systems, are presently 
decision trees, also known as classification trees, and the methods 
based on the rough sets theory, developed by Polish researcher 



Zdzisław Pawlak. The both approaches are widely treated in the 
world literature related to DM and CI, and will be only briefly 
characterized below. 

Decision trees are non-parametric classification models, 
constructed from data by successive splits of the data records 
(learning examples), starting from the whole set. The splits are 
made in such a way that in the resulting subsets the classes of the 
decision variable are possibly homogeneous (preferably 
identical). The best splitting point is based on one attribute, called 
splitting variable. This procedure is repeated for successive 
subsets, which leads to a model structure represented by an 
oriented graph, reminding a tree. The splitting points are knots of 
the graph, the first knot is called a core and the lines connecting 
the knots are called branches or edges. The subsets which are not 
further divided are called leaves, and they provide results of 
classification (the dominant class in a leave is decisive). A tree 
model usually requires a restriction of its size. It is done either in 
the course of constructing the tree (e.g. by stopping further splits 
when the assumed minimum number of examples in a knot is 
achieved) or in a special simplification procedure of an already 
induced, too complex tree, called pruning. In the latter some knots 
are replaced by leaves if it does not lead to a significant drop of 
the model classification accuracy. There are many tree induction 
algorithms, which differ in the criterion of the class homogeneity 
in splits and in the criterion of the tree complexity. It is worth 
noticing, that each route leading from a core to a leaf can be 
expressed by a logic rule of the previously described structure. 
Decision trees also allow for evaluation of relative significances 
of the attributes, based on the so called purity of the splits. The 
large increments of the class homogeneity resulting from a split 
based on a given variable indicate its significance.  

Rule extraction from the rough set theory requires that not 
only an output variable, but also all attributes, are of a discrete 
type. Each discernible learning example (data record) can be 
basically a rule. Thus obtained set of rules can be usually reduced 
and the rules can be simplified (i.e. their conditional part can be 
shortened). This can be done by striking out attributes which do 
not contribute to classification, i.e. after ignoring them the rule 
always points at the same class of the output variable, for all input 
values’ combinations in the training data. The rules are evaluated, 
first of all from the standpoint of uniqueness of the classification. 
This is expressed by confidence, defined as a ratio of the number 
of examples in which appears this same combination of attributes 
values and class variable as in the rule, to the number of examples 
in which appears that combination of attributes values only (i.e. 
regardless the output class). Another parameter used for rules 
evaluation is number (or fraction) of examples compatible with a 
rule, called rule’s support. If it is not possible to obtain from the 
data set rules of 100% confidence, then some not fully unique 
rules are utilized, often evaluated on the basis of various 
combinations of confidence and support values. The rough sets 
theory also makes possible an easy evaluation of relative 
significances of the attributes, based on reduction of uniqueness 
of classification resulting from deleting a given attribute in all 
rules.  

Practical application of the rule induction methods is often 
difficult because of a lack of satisfactory knowledge about their 
characteristics and differences in performance. In the literature 
only a few analyses of that kind can be found (e.g. [1]). In the 

present work a comparative assessment of rules induced by the 
above discussed two methods is presented, using the example of 
decision concerning application of risers for grey iron castings.  

 
 

2. Methodology 
 
2.1. Data sets 
 

Similarly like in the previous work [2], the data records were 
obtained as readouts from a nomograph published in the 
professional literature related to foundry technology [3]. This 
nomograph encompasses a semi-empirical knowledge and is 
widely used for calculation of the feeding shrinkage of grey cast 
iron castings and determination of appropriate dimensions of 
risers. The fundamental decision which should be made in 
designing of rigging systems for that kind of castings is whether 
the application of a riser is necessary. The riserless design can be 
appropriate when the iron expansion, which occurs during the 
solidification period, is capable of compensation its shrinkage, 
which takes place during cooling of the liquid phase, i.e. when the 
overall volume change (called inaccurately shrinkage) will be 
positive. The volume changes appearing during cooling and 
solidification of grey cast iron castings depend on: 
− pouring temperature (superheating of the alloy), affecting 

mainly the liquid contraction, 
− cooling rate of the casting dependent mainly on its 

massiveness and defined by solidification modulus, 
− chemical composition of cast iron (defined by the fractions 

of two groups of elements: carbon and total fraction of 
silicon and phosphorus),  

 
The relationships between shrinkage and the above quantities are 
not independent on each other, e.g. only massive castings can be 
poured from lower temperatures. In general, the complexity of the 
problem results in the situation that analytical methods of 
calculation of shrinkage and risers are not available.  

Number of readouts of the nomograph made for various 
combinations of all input variables (attributes) was 191. However, 
unlike in the previous work [2], now they are treated as ordinal 
ones, which permitted utilization of identical learning sets for the 
both rule extraction methods. All values of attributes appearing in 
the data set are given in Table 1. It is worth noticing that the 
number of possible combinations of the attributes’ values is larger 
than the number of the training examples, as some combinations 
the readouts were impossible; such cases correspond to the 
situations which do not occur in practice. 

 
Table 1.  
Values of attributes (input variables values of ordinal type) 
appearing in the training data set 

Content of 
C, %, 

Content of 
Si+Pi, % 

Casting 
modulus, cm 

Pouring 
temperature, 0C 

3.0 1 0.75 1200 
3.2 2 1.5 1300 
3.4 3 3 1400 
3.6 4 6 1500 
3.8    
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Similarly like in the previous work [2], the continuous output 
variable (shrinkage S) has been converted to nominal (discrete) 
ones, expressed by classes. Two versions of the output variable 
classifications were assumed: 

Version 1: two values: „riser not required” (if S≥0) and „riser 
required” (if S<0).  

Version 2: three values defining the necessity of use and type 
of the riser: „ not required” (if S≥0), „small” (if -1%<S<0) and 
„large” (if S<-1%). When the riser volume is relatively small, it is 
usually cost ineffective to apply the exothermic sleeves, while for 
large riser volumes the sleeves are commonly used. That type of 
classification would be therefore helpful in making decision 
concerning both the necessity of a riser application and its type. 

Finally, two test data sets were obtained, each of four ordinal 
type inputs and one output, in the form of the above defined 
two kinds of nominal values. That type of data sets can be 
considered, in a certain extent, as examples of real, noisy data sets 
obtained in industrial conditions. On the other hand, they express 
the hidden relationships about which there is much known, thus 
permitting better interpretation of the results of testing the trees 
and rules induction. 
 
 

2.2. Software 
 
For induction of classification trees a commercial software 

package  MineSetTM was used. The ‘mutual info’ splitting 
criterion (default) was assumed in all tests. Two different pruning 
criteria were tried: the default ‘pessimistic pruning’ (confidence 
level 0,7) and ‘cost-complexity pruning’ criterion (cost = 0).  

For rule extraction based on the rough sets theory the authors’ 
own software was used; it runs in MS Excel environment and 
utilizes VBA as programming language. 
 
 

3. Results 
 

For the data in Version 1 both methods brought relatively 
small number of rules, all of 100% confidence, in which only two 
attributes appear: casting modulus and pouring temperature (the 
other two attributes defining the chemical composition of the 
alloy were recognized as not important by the both algorithms). 
All rules for this data version are given in Table 2. 

Table 2.  
Rules of 100% confidence for data in Version 1 obtained from decision trees (DT) and rough sets theory (RST)  

Attribute (input variable) Rule 
No. Method 

Modulus, cm Pouring temperature, 0C 

Output class variable 
“Riser” 

Rule 
support 

1 DT&RST 1.5 1200 No 15 
2 DT&RST 3 1200 No 13 
3 DT&RST 6 1200 No 13 
4 DT&RST  1300 Yes 48 
5 DT&RST  1400 Yes 48 
6 DT&RST  1500 Yes 48 
7 DT 0.75 1200 Yes 6 
8 RST 0.75  Yes 6 

 
A closer examination of the training data revealed that the 

sign of shrinkage, deciding about the need of riser application, is a 
result of the pouring temperature and casting modulus only. The 
shrinkage variability resulting from the chemical composition was 
small enough that has not changed the sign of shrinkage, even in a 
single case. In other words, there was no pair of records in which 
the pouring temperature and casting modulus would be the same 
and only one or both of the two ignored variables would be 
different, leading to different classes of the output variable. For 
that kind of data, the tree structure and the rough sets theory rules 
could not be different from the presented ones. 

Most of the rules obtained from the two methods coincide, 
despite the fundamental differences in functioning of the both 
algorithms. The exceptions are rules 7 and 8, which in fact are 
related to the situation, when the modulus has the lowest value 
(equal to 0.75 cm). It can be seen that the rough set theory 
indicated that this value is satisfactory for the need of the riser 
use, while the decision tree has added a pouring temperature 
condition. The fact that the rule 8, including less attributes, has 
also 100% confidence, means that this condition is redundant. 
This case is typical for decision trees, in which a splitting variable 

appearing in the core must also appear in all rules. Similar notice, 
illustrated by a different example, was made in [1]. 

For the data set in  Version 2 the both methods have induced 
remarkably larger number of 100% confidence rules, including 
also the other two attributes (defining the chemical composition 
of the cast iron), which made their analysis and practical 
application more difficult. For decision trees, a significant 
reduction of amount of rules was obtained automatically by 
changing the pruning criterion for ‘cost – complexity’, which is in 
agreement with a general tendency of these pruning methods [4]. 
For the rough sets theory based method the significance analysis 
of the input variables (attributes) was made, in order to check if 
some of them could be omitted in the training data. In Fig. 1 the 
results of that analysis made by three different methods, are 
presented. It can be seen that the first two attributes are 
remarkably less important and, as such, they have been deleted 
from the data set. All the rules obtained in the above way for 
Version 2, finally including only two most important attributes, 
are presented in Table 3. 

Similarly like previously, also for data in Version 2 most of 
the rules obtained by the two methods appeared to be identical 
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despite the fundamental differences not only in the extraction 
algorithms but also in the ways in which the number of attributes 
appearing in the rules was limited. The differences in rules 4 and 
5 should be commented similarly like the differences between 
rules 7 and 8 in Version 1, discussed above. However, worth 
noticing is rule 8 in Version 2 (see Table 3), obtained from the 
rough sets theory, which was not induced by the decision tree 
algorithm. This rule has a 100% confidence and also a relatively 
high support.  
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Fig. 1. Relative significances of attributes for the output variable 

in Version 2 

It should be added, that the software used for tree induction 
usually does not calculate the confidence, which is a fundamental 
parameter in the rough sets theory. In the present case (Version 2) 
the decision tree also included the route corresponding to the rule: 
„IF Pouring temperature = 1300, THEN Riser = Large”, the 
confidence of which is equal to 62.5%. Furthermore, the tree 
induction algorithms can generate rules for which no compatible 
learning example exists; the confidence of such a rule is indefinite 
and its support equal to zero.  

It should be emphasized, that in all cases presented in Tables 
2 and 3, the rules are in agreement with tentative expectations, 
based on industrial experience concerning design of feeding 
systems for grey cast iron castings. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.  
Rules of 100% confidence for data in Version 2 obtained from decision trees (DT) and rough sets theory (RST) after reduction of input 
variables 

Attribute (input variable) Rule 
No. Method 

Modulus, cm Pouring temperature, 0C 

Output class variable 
“Riser” Rule support 

1 DT&RST 1.5 1200 Not required 15 
2 DT&RST 3 1200 Not required 13 
3 DT&RST 6 1200 Not required 13 
4 DT 0.75 1200 Small 6 
5 RST 0.75  Small 6 
6 DT&RST  1400 Large 48 
7 DT&RST  1500 Large 48 
8 RST 1.5 1300 Large 16 

 

4. Summary and conclusions 
 

The analysis presented in the paper confirmed usefulness of 
the both considered methods used for engineering knowledge 
extraction from industrial data. However, the tests shown some 
advantages of the algorithms based on rough sets theory over 
decision trees. They were unable to provide some important and 
reliable rules, which were generated by the rough sets theory 
algorithm and they can also generate rules which are not 
supported by the training data 

Further works should be aimed at systematic research on 
performance of those methods, including artificially generated 
training data, in which assumed, different relationships would be 
hidden. 
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