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2 L. Bartholdi, P. V. Silva

Over the years, finite automata have been used effectivelyertheory of infinite
groups to represent rational subsets. This includes theritaupt particular case of finitely
generated subgroups (and the beautiful theory of Stalllngemata for the free group
case), but goes far beyond that: certain inductive pro@=dneed a more general set-
ting than mere subgroups, and rational subsets constitetedtural generalization. The
connections between automata theory and group theorydraund deep, and many are
portrayed in Sims’ booK [53].

This chapter is divided into three parts: in Secfidn 1 weoidtice basic concepts,
terminology and notation for finitely generated groups,afieny special attention to free
groups. These will also be used in Chaptdr 24.

Sectior 2 describes the use of finite inverse automata tg $initely generated sub-
groups of free groups. The automaton recognizes elemeatsubgroup, represented as
words in the ambient free group.

Sectior[ B considers, more generally, rational subsetsafpgy, when good closure
and decidability properties of these subsets are satisfied.

The authors are grateful to Stuart Margolis, Benjamin $igig and Pascal Weil for
their remarks on a preliminary version of this text.

1 Finitely generated groups

Let G be a group. Givem C G, let (A) = (A U A~1)* denote the subgroup &
generatedby A. We say thatd < G is finitely generatedand write H <;, G if
H = (A) for some finite subset of H.

GivenH < G, we denote byG : H] theindexof H in G, that is, the number of right
cosetsH g for all g € G; or, equivalently, the number of left cosets|[df : H] is finite, we
write H <;;. G. Itis well known that every finite index subgroup of a finitgignerated
group is finitely generated.

We denote byl the identity ofG. An elementy € G hasfinite orderif (g) is finite.
Elementsg, h € G areconjugateif h = gz for somez € G. We use the notation
g" = h~'gh and[g, h] = g~'g" to denote, respectively, conjugates and commutators.

Given an alphabedt, we denote byd~! a set offormal inversesf A, and writeA =
AU A~!. We say thatd is aninvolutive alphabetWe extend™ : 4 —+ A~! 1 a +— a™*
to an involution onA* through

(aH P =a, () t=vlu! (a€A, uove Z*)

If G = (A), we have a canonical epimorphigm A* — @, mappinga®! € Ato
a*! € G. We present next some classical decidability problems:

Definition 1.1. Let G = (A) be a finitely generated group.
word problem: is there an algorithm that, upon receiving as input a worl A*, deter-
mines whether or ngé(u) = 1?

conjugacy problem: is there an algorithm that, upon receiving as input wards € A,
determines whether or npfu) andp(v) are conjugate iiz?
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membership problem for I C 2¢: is there for everyX € K an algorithm that, upon
receiving as input a word € A*, determines whether or npfu) € X?

generalized word problem: is the membership problem for the class of finitely gener-
ated subgroups aF solvable? _

order problem: is there an algorithm that, upon receiving as input a werd A*,
determines whether(u) has finite or infinite order?

isomorphism problem for a classg of groups: is there an algorithm that, upon receiv-
ing as input a description of groups H € G, decides whether or nét = H?
Typically, G may be a subclass of finitely presented groups (given by pnesen-
tation), or automata groups (see Chapiér 24) given by automa

We can also require complexity bounds on the algorithms;enpoecisely, we may
ask with which complexity bound an answer to the problem maylutained, and also
with which complexity bound a witness (a normal form for therd/problem, an element
conjugatingo(u) to p(v) in case they are conjugate, an expression iof the generators
of X in the generalized word problem) may be constructed.

1.1 Free groups

We recall that an equivalence relatienon a semigrougs is a congruencef a ~ b
impliesac ~ bc andca ~ cb forall a,b,c € S.

Definition 1.2. Given an alphabe#i, let ~ denote the congruence ot generated by
the relation B
{(aa™,1) | a € A}. (1.2)

The quotientF, = A*/~ is thefree group ond. We denote by : A* — F, the
canonical morphism — [u]~..

Free groups admit the following universal property: forgwaap f : A — G, there
is a unique group morphisiy — G that extendy'.
_ Alternatively, we can view((1]1) as eonfluentiength-reducing rewriting system on
A*, where each word) € A* can be transformed into a uniqueducedword w with no
factor of the formua 1!, seel[9]. As a consequence, the equivalence

u~v &S uU=70 (u,v € A*)
solves the word problem far. L
We shall use the notatioRy = A*. It is well known thatF'4 is isomorphic toR 4
under the binary operation
U* v =Uv (u,v € Ra).
We recall that théength|g| of g € F4 is the length of the reduced form gfalso denoted
> qr.he letters ofA provide a naturabasisfor F'4: they generaté’y and satisfy no non-

trivial relations, that is, all reduced words on these gatwes represent distinct elements
of F4. A groupis free if and only if it has a basis.
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Throughoutthis chapter, we assum#o be a finite alphabet. Itis well known that free
groupsF'y and Fp are isomorphic if and only #£ A = #B. This leads to the concept of
rank of a free groupF': the cardinality of a basis off’, denoted byk F'. It is common to
use the notatiot#’, to denote a free group of ramk

We recall that a reduced word is cyclically reducedif uu is also reduced. Any
reduced word: € R4 admits a unique decomposition of the form= vwv—! with w
cyclically reduced. A solution for the conjugacy probleniidws easily from this: first
reduce the words cyclically; then two cyclically reduced#sin R 4 are conjugate if and
only if they are cyclic permutations of each other. On thesotiand, the order problem
admits a trivial solution: only the identity has finite ord€&inally, the generalized word
problem shall be discussed in the following section.

2 Inverse automata and Stallings’ construction

The study of finitely generated subgroups of free groupsredta new era in the early
eighties when Stallings made explicit and effective a aoresipn [54] that can be traced
back to the early part of the twentieth century in Schreie®et graphs (see [53] afigi4.1)
and to Serre’s work [46]. Stallings’ seminal paper was bonlérimmersions of finite
graphs but the alternative approach using finite inverse autorhatame much more
popular over the years; for more on their link, seel[26]. Ateasive survey has been
written by Kapovich and MiasnikoV [20].

Stallings’ construction fofd <y, F4 consists in taking a finite set of generators for
H inreduced form, building the so-callidwer automatomnd then proceeding to make
this automaton deterministic through the operation knos/8tallings foldings This is
clearly a terminating procedure, but the key fact is thatdbestruction is independent
from both the given finite generating set and the chosenrfgldequence. A short simple
automata-theoretic proof of this claim will be given. ThetBrinverse automato§(H)
thus obtained is usually called t&allings automatoonf H. Over the years, Stallings au-
tomata became the standard representation for finitelyrgitesubgroups of free groups
and are involved in many of the algorithmic results presesititained.

Several of these algorithms are implemented in computeraod, see e.g. CRAGI[2],
or the packages &roMATA and FGA in GAP[[14].

2.1 Inverse automata

An automatonA over an involutive alphabei is involutiveif, whenever(p, a, q) is an
edge ofA, so is(q,a1,p). Therefore it suffices to depict just tip®sitively labelled
edges (having label id) in their graphical representation.

Definition 2.1. An involutive automaton isnverseif it is deterministic, trim and has a
single final state.

If the latter happens to be the initial state, it is calledlthsepoint It follows easily
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from the computation of the Nerode equivalence (gee2) that every inverse automaton
is a minimal automaton.

Finite inverse automata capture the idea of an action (ofi@ finverse monoigtheir
transition monoid on a finite set (the vertex set) through partial bijectiok¥e recall
that a monoid\/ is inverse if, for everyr € M, there exists a uniqug € M such that
xyx = x andy = yay; thenM acts by partial bijections on itself.

The next result is easily proven, but is quite useful.

uvv” tw

Proposition 2.1. Let A be an inverse automaton and let———¢ be a path inA.
Then there exists also a path~—¢ in A.

Another important property relates languages to morphigros us, anorphismbe-
tween deterministic automaté and.4’ is a mappingy between their respective vertex
sets which preserves initial vertices, final vertices argksdin the sense th@r(p), a, v(q))
is an edge ofd’ whenevel(p, a, q) is an edge ofA.

Proposition 2.2. Given inverse automata and A, thenL(A) € L(.A’) if and only if
there exists a morphism: A — A’. Moreover, such a morphism is unique.

Proof. (=): Given a vertex; of A, take a successful path
— qoi>qi>t —
in A, for someu, v € A*. SinceL(A) C L(A’), there exists a successful path
— qé#q’iﬁ/ —
in A’. We takep(q) = ¢'.
To show thatp is well defined, suppose that
— q0i>qi>ﬁ —

is an alternative successful pathn Sinceu’v € L(A) C L(A’), there exists a success-
ful path )
— qé%q"iﬁl —
in A’ and it follows thaty’ = ¢”” sinceA’ is inverse. Thusg is well defined.
It is now routine to check that is a morphism from4 to A’ and that it is unique.
(«<): Immediate from the definition of morphism. O

2.2 Stallings’ construction

Let X be a finite subset ok 4. We build an involutive automato# (X) by fixing a
basepointy, and gluing to it apetal labelled by every word inX as follows: ifz =
ai ...ar € X,with a; € A, the petal consists of a closed path of the form

ay a2 Qg
Qo=@ -+ —5qo

and the respective inverse edges. All such intermediatéicese are assumed to be
distinct in the automaton. For obvious reasaf$X ) is called theflower automatorof
X.
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The automatonF(X) is almost an inverse automaton — except that it need not be
deterministic. We can fix it by performing a sequence of déedaStallings foldings
Assume that4 is a trim involutive automaton with a basepoint, possessimmgdistinct
edges of the form

p——q, p—or (2.1)

fora € A. Thefolding is performed by identifying these two edges, as well as tle tw
respective inverse edges. In particular, the verticasdr are also identified (if they were
distinct).

The number of edges is certain to decrease through foldigeefore, if we perform
enough of them, we are sure to tuFi{ X ) into a finite inverse automaton.

Definition 2.2. The Stallings automatownf X is the finite inverse automata$(X) ob-
tained through foldingr (X).

We shall see thaf(X) depends only on the finitely generated subgrop of Fu
generated by, being in particular independent from the choice of folditegken to reach
it.

Since inverse automata are minimal, it suffices to charaeté{S(X)) in terms of
H to prove unigueness (up to isomorphism):

Proposition 2.3. Fix H <;, Fa andletX C R4 be afinite generating set fdi. Then

L(S(X)) = ﬂ{L C A* | Lis recognized by a finite inverse automaton
with a basepoint andl C L} .

Proof. (D): Clearly, S(X) is a finite inverse automaton with a basepoint. SiAtel
X1 C L(F(X)) C L(S(X)), it follows easily from Proposition 211 that

H C L(S(X)). (2.2)

(Q): LetL C A* be recognized by a finite inverse automatdmwith a basepoint,
with H C L. SinceX C H, we have an automaton morphism froffX ) to A, hence
L(F(X)) C L. To prove thatL(S(X)) C L, it suffices to show that inclusion if is
preserved through foldings.

Indeed, assume thdit(B) C L andB’ is obtained from53 by folding the two edges
in (Z0). Itis immediate that every successful path™t in B’ can be lifted to a success-
ful pathgy—-t in B by successively inserting the woud ' a into u. Nowv € L = L(A)
impliesu € L in view of Propositiol 2]1. O

Now, givenH < F4 finitely generated, we take a finite s€tof generators. Without
loss of generality, we may assume tii&tconsists of reduced words, and we may define
S(H) = S(X) to be theStallings automatoof H.

Example 2.1. Stallings’ construction foiX = {a~'ba, ba?}, where the next edges to be
identified are depicted by dotted lines, is
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Oan®

A simple, yet important example is given by applying the ¢ongion to F,, itself,
when we obtain the so-calldmuquebf » circles:

S(Fy) S(F) S(Fs)

In terms of complexity, the best known algorithm for the domstion of S(X) is due
to Touikan [56]. Its time complexity i©(n log™ n), wheren is the sum of the lengths of
the elements oX .

2.3 Basic applications

The most fundamental application of Stallings’ construttis an elegant and efficient
solution to the generalized word problem:

Theorem 2.4, The generalized word problem #, is solvable.

We will see many groups in Chapfer]24 that have solvable wootlpm; however,
few of them have solvable generalized word problem. Thefmb®heoreni 2.4 relies on

Proposition 2.5. ConsiderH <y, F4 andu € F4. Thenu € H if and only ifz €
L(S(H)).

Proof. (=): Follows from [2.2).
(«<): It follows easily from the last paragraph of the proof of position[2.3 that, if

B’ is obtained from3 by performing Stallings foldings, theh(3’) = L(B). Hence, if
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H = (X), we get

L(S(H)) = L(F(X)) = (XUX~1)=H
and the implication follows. O

It follows from our previous remark that the complexity oétheneralized word prob-
lem is O(nlog™ n + m), wheren is the sum of the lengths of the elementsX6fand
m is the length of the input word. In particular, once the solbigrX has been fixed,
complexity is linear inm.

Example 2.2. We may use the Stallings automaton constructed in ExamfileZheck
thatbaba=1v~! € H = (a~'ba, ba?) butab ¢ H.

Stallings automata also provide an effective construdtiobases of finitely generated
subgroups. Considel <y, Fa, and letm be the number of vertices &(H). A
spanning treel” for S(H) consists ofm — 1 edges and their inverses which, together,
connect all the vertices af(H). Given a vertexp of S(H), we denote by, theT-
geodesiaconnecting the basepoig to p, that is,qoip is the shortest path contained
in T connectingg to p.

Proposition 2.6. Let H <, F4 and letT be a spanning tree faf(H). LetE, be the
set of positively labelled edges®&fH ). ThenH is free with basis

Y = {gpag;" | (p,a,q) € E4 \T}.

Proof. It follows from Propositioh 215 thak(S(H)) C H, henceY C H. To show that
H = (Y), takeh = a; - - -a;, € H in reduced form(a; € A). By Propositioi 25, there
exists a successful path

(Iogﬂhg T &)Qk =4do

in S(H). Fori = 1,...,k, we have eitheg,,_,a;g;' € YUY ! or gy ,aigqt =1,
the latter occurring if¢;—1, a;,¢;) € T. In any case, we get

h=a1-ar = (9e 195" ) (90,0290, ) -+~ (9a._, ke ) € (V)

and soH = (Y).

It remains to show that the elementsioBatisfy no nontrivial relations. Leti, . . ., yx
eYUY~twithy; # y; ! fori =2,... k. Writey; = gp,a;g;.}, wherea; € A labels
the edge not ir{". It follows easily fromy; # y[_ll and the definition of spanning tree
that

_ —1 —1
Y- Y = gpl a19r, gp2a2 et afk*lg’l“;c,1gpka'kgT)C )

a nonempty reduced wordif > 1. ThereforeY is a basis of as claimed. O

In the process, we also obtain a proof of the Nielsen-Schildieorem, in the case of
finitely generated subgroups. A simple topological prooyrna found in[36]:

Theorem 2.7(Nielsen-Schreier)Every subgroup of a free group is itself free.
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Example 2.3. We use the Stallings automaton constructed in Example Z@ristruct a
basis ofH = (a~'ba, ba?).

If we take the spanning trég defined by the dotted lines in

then#E, \ T = 2 and the corresponding basis{is:?, baba~'b='}. Another choice of
spanning tree actually proves that the original generatigs also a basis.

We remark that Propositidn 2.6 can be extended to the casgioitély generated
subgroups, proving the general case of Thedrein 2.7. Howiewbis case there is no ef-
fective construction such as Stallings’, and the (infinitegrse automato§(H) remains
a theoretical object, using appropriate cosets as vertices

Another classical application of Stallings’ constructi@gards the identification of
finite index subgroups.

Proposition 2.8. Considerd <y, Fa.

(i) H is afinite index subgroup df, if and only if S(H) is a complete automaton.
(i) If H is a finite index subgroup df4, then its index is the number of vertices of
S(H).

Proof. (i) (=): Suppose thaf(H) is not complete. Then there exist some verend

somea € A such thay - a is undefined. Ley be a geodesic connecting the basepaint
to ¢ in S(H). We claim that

Hga™ # Hga" if m—n>]|g|. (2.3)

Indeed,Hga™ = Hga™ implies ga™ "g~! € H and soga™"g~! € L(S(H)) by
Propositio 2.b. Sincga is reduced due t6(H ) being inverse, it follows fromn — n >

lg| that gaam™—"-1g=1 = gam—mg=1 € L(S(H)): indeed,g~! is not long enough to
erase all ther's. SinceS(H) is deterministic,g - @ must be defined, a contradiction.
Therefore[(Z.8) holds and g6 has infinite index.

(«<): Let @ be the vertex set of(H) and fix a geodesiqog%?q for eachq € Q.
Takeu € F,4. SinceS(H) is complete, we have a paih——q for someg € Q. Hence
ug; " € Hand sou = ug; ‘g, € Hg,. ThereforeFy = J,c, Hgq and soH <y Fa.

(ii) Inview of Fiu = |, Hyy, it suffices to show that the cosdtsgy, are all distinct.
Indeed, assume thafg, = Hyg, for some verticep,q € Q. Theng,g;' € H and so

9p97 - € L(S(H)) by Propositioi 2J5. On the other hand, si@l) is complete, we
have a path

9p9q "
qo——T
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for somer € Q. In view of Propositiol 2J1, and by determinism, we get qo. Hence
we have paths o o
pP——q, q——qo.

SinceS(H) is inverse, we geb = ¢ as required. O

Example 2.4. Since the Stallings automaton constructed in Example hatisomplete,
it follows that(a~'ba, ba?) is not a finite index subgroup d,.

Corollary 2.9. If H < F4 has indexa, thentk H = 1 + n(#A — 1).

Proof. By Propositio 2.8, the automatdi{ H ) hasn vertices anch# A positive edges.
A spanning tree has — 1 positive edges, stk H =n#A — (n— 1) =1+ n(#A4-1)
by Proposition 26. O

Beautiful connections between finite index subgroups arntdiceclasses dfifix codes
— set of words none of which is a prefix or a suffix of another —enhescently been
unveiled by Berstel, De Felice, Perrin, Reutenauer anddriado].

2.4 Conjugacy

We start now a brief discussion of conjugacy. Recall thabiliteegreef a vertexg is the
number of edges starting @and thegeodesic distanda a connected graph is the length
of the shortest undirected path connecting two vertices.

Since the original generating set is always taken in redtarad, it follows easily that
there is at most one vertex in a Stallings automaton havitgeguee< 2: the basepoint
¢o- Assuming thatd is nontrivial,S(H) must always be of the form

O
OO
O

whereq; is the closest vertex tq, (in terms of geodesic distance) having outdegse2
(since there is at least one vertex having such outdegreafe tHatq; = ¢ if g9 has
outdegree> 2 itself. We callgo— thetail (which is empty ifg; = ¢o) and the remaining
subgraph theoreof S(H).

Note thatS(H), and its core, may be understood as follows. Consider thghgséth
vertex setFy /H = {gH | g € F4}, with an edge fronyH to agH for each generator
a € A. Then this graph, called th&chreier graph(see§24.1) of H\ F4, consists of
finitely many trees attached to the core{H ).

Theorem 2.10. There is an algorithm that decides whether or not two finiggperated
subgroups of'4 are conjugate.
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Proof. Finitely generated subgroups H are conjugate if and only if the cores 8{G)
andS(H) are equal (up to their basepoints). O

The Stallings automata of the conjugategbtan be obtained in the following ways:
(1) declaring a vertex in the cot@to be the basepoint; (2) gluing a tail to some vertex in
the coreC and taking its other endpoint to be the basepoint.

Note that the tail must be glued in some way that keeps thevaitm inverse, so
in particular this second type of operation can only be peréa if the automaton is
not complete, or equivalently, i has infinite index. An immediate consequence is the
following classical

Proposition 2.11. A finite rank normal subgroup of a free group is either trivealhas
finite index.

Moreover, a finite index subgroui is normal if and only if its Stallings automaton
is vertex-transitivethat is, if all choices of basepoint yield the same automato

Example 2.5. Stallings automata of some conjugatesbt= (a~'ba, ba?):

S(b—2HD?) = a

QbUb@

We can also use the previous discussion on the structurengéfftallings automata to
provide them with an abstract characterization.

Proposition 2.12. A finite inverse automaton with a basepoint is a Stallingematon if
and only if it has at most one vertex of outdegree 1: the baegpo

Proof. Indeed, for any such automaton we can take a spanning tragsaritito construct
a basis for the subgroup as in the proof of Propositioh 2.6. O
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2.5 Further algebraic properties

The study of intersections of finitely generated subgrodigsoprovides further applica-
tions of Stallings automata. Howson'’s classical theoremitsda simple proof using the
direct productof two Stallings automata; it is also an immediate consegaeiehTheorem

[3.3 and Corollary 314(ii).
Theorem 2.13(Howson). If H, K <;4 Fa,thenalsoH N K <j4 Fa.

Stallings automata are also naturally related to the fanitarsma Neumann conjec-
ture: givenH, K <jg4 Fa,thentk(HNK)—-1< (tkH — 1)tk K — 1). The conjec-
ture arose in a paper of Hanna Neumann [34], where the ingguk(H N K) — 1 <
2(rk H — 1)(tk K — 1) was also proved. In one of the early applications of Stadling
approach, Gersten provided an alternative geometric mfdddnna Neumann’s inequal-
ity [L5].

A free factorof a free groupF’s can be defined as a subgrolpgenerated by a subset
of a basis oft’4. This is equivalent to saying that there existee® product decomposition
F4 = H x K forsomeK < Fy.

Since the rank of a free factor never exceeds the rank of theeatfree group, it is
easy to construct examples of subgroups which are not foterfa it follows easily from
Propositio 2.6 that any free group of rapk2 can have subgroups of arbitrary finite rank
(and even infinite countable).

The problem of identifying free factors has a simple soluti@sed on Stallings au-
tomatal[50]: one must check whether or not a prescribed nuoflvertex identifications
in the Stallings automaton can lead to a bouquet. Howevemitbst efficient solution, due
to Roig, Ventura and Weil [40], involves Whitehead autontisms and will therefore be
postponed t¢23[2.7.

Given a morphisnp : .4 — B of inverse automata, let thmorphic imagep(.A) be
the subautomaton @& induced by the image by of all the successful paths of.

The following classical result characterizes the extemsiof H <, F4 contained
in F4. We present the proof from [32]:

Theorem 2.14(Takahasil[55]).GivenH <y, F4, one can effectively compute finitely
many extension&’, . .., K,, <y, Fa of H such that the following conditions are equiv-
alent for everyK <y, Fa:

() H <K,

(i) K, is afree factor of for somei € {1,...,m}.

Proof. Let A4, ..., A,, denote all the morphic images 6f(H), up to isomorphism.
Since a morphic image cannot have more vertices than thamarigutomaton, there are
only finitely many isomorphism classes. Moreover, it folfofiom Propositiof 2.12 that,
fori =1,....,m, Ay = S(K;) for someK,; <;, Fa. SinceL(S(H)) C L(A;) =
L(S(Ky;)), it follows from Proposition 2]5 thall < K. Clearly, we can construct all;
and therefore alK;.

() = (ii). If H < K, it follows from Stallings’ construction that (S(H)) C
L(S(K)) and so there is a morphismn : S(H) — S(K) by Propositio 212. Le#;
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be, up to isomorphism, the morphic image&(fH) throughy. SinceA; = S(K;) is a
subautomaton of (K), it follows easily from Proposition 216 thdt; is a free factor of
K: it suffices to take a spanning tree {§¢K;), extend it to a spanning tree fo{( K),
and the induced basis &f; will be contained in the induced basis &f.

(i) = (i) is immediate. O

An interesting research line related to this result is kiltthe concept of algebraic
extension, introduced by Kapovich and Miasnikovi[20], am&pired by the homonymous
field-theoretical classical notion. Givdih < K < F4, we say thatK is analgebraic
extension ofH if no proper free factor ofX containsH. Miasnikov, Ventura and Weil
[32] proved that the set of algebraic extensiongiois finite and effectively computable,
and it constitutes the minimum set of extensiégns . . . , K, satisfying the conditions of
Theoreni Z.1K.

Consider a subgroufl of a groupGG. Thecommensuratoof H in G, is
Commeg(H) = {g € G| HN HY has finite index inf andHY}. (2.4)

For example, the commensurator®L,,(Z) in GL,(R) is GL, (Q).

The special case of finite-index extensiofs,<r; K < F4 is of special interest,
and can be interpreted in terms of commensurators. It camdeg (see[20, Lemma
8.7] and [52]) that every? <, F4 has a maximum finite-index extension insiflg,
denoted byH s;; andHy; = Commp, (H). Silva and Weil[[52] proved tha$(H ;) can
be constructed fron§(H) using a simple automata-theoretic algorithm:

(1) The standard minimization algorithm is applied to theecof S(H), taking all
vertices as final
(2) The original tail ofS(H) is subsequently reinstated in this new automaton, at the
appropriate vertex.
We present now an application of different type, involvimgnsition monoids. It
follows easily from the definitions that the transition mahof a finite inverse automaton
is always dfinite inverse monoidGiven a groups, we say that a subgroufi < G is
pureif the implication

"eH=gecH (2.5)

holds for allg € F4 andn > 1. If pis a prime, we say thall is p-pureif (2.5) holds
when(n,p) = 1.

The next result is due to Birget, Margolis, Meakin and Weildas the only natural
problem among applications of Stallings automata that @amso far to be PSPACE-
complete([8].

Proposition 2.15. For everyH <y, Fjy, the following conditions hold:

(i) H is pure if and only if the transition monoid ¥ H) is aperiodic.
(i) H is p-pure if and only if the transition monoid & H) has no subgroups of order
p-

Proof. Both conditions in (i) are easily proved to be equivalenttte honexistence in
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S(H) of a cycle of the form

uk

whereu can be assumed to be cyclically reduced. The proof of (iiy similarly. O

2.6 Topological properties

We require for this subsection some basic topological cotscevhich the reader can
recover from Chapter 17.

For allu,v € Fg4, written in reduced form as elements Bf;, let u A v denote the
longest common prefix af andv. Theprefix metricd on F4 is defined, for alki, v € Fju,
by

2 lurvl=1 - if 4 £ p

d@”>{o it u=wv

It follows easily from the definition that is an ultrametric o4, satisfying in particular
the axiom
d(u,v) < max{d(u,w),d(w,v)}.

The completionof this metric space is compact; its extra elementsigiaite reduced
wordsazasas . .., with all ¢; € A, and constitute thbyperbolic boundarg F4 of F4,
seef24.1.%. Extending the operatarto F4 U OF 4 in the obvious way, it follows easily
from the definitions that, for every infinite reduced wardnd every sequende., ),, in
Fy,
a= lim u, if and only if lim | Auy| =+o00. (2.6)
n—-+o0o n—-+oo

The next result shows that Stallings automata are given aolevin connection with

the prefix metric. We denote by H the closure off in the completion off4.

Proposition 2.16.1f H <;, Fa, thencl H is the union off with the set of allx € 0F 4
that label paths inS(H) out of the basepoint.

Proof. Since the topology of4 is discrete, we havd H N Fy = H.

(Q): If « € OF4 does not label a path i§(H) out of the basepoint, thefja A h] :
h € H} is finite and so no sequence Hf can converge te by (2.8).

(D): Let o = ajasas--- € OF4, with a; € A, label a path inS(H) out of the
basepoint. Letn be the number of vertices &f(H ). For everyn > 1, there exists some
word w,, of length< m such thata; - - - a,w,, € H. NoWa = lim, o0 a1 -+ - Gpwy,
by (2.6) and sex € cl H. O

Theprofinite topologyn F 4 is defined in Chapter 17: for evetye F4, the collection
{Ku | K <y, Fa} constitutes a basis of clopen neighbourhoods.ofn his seminal
1983 paper [54], Stallings gave an alternative proof of MaliHall's Theorem:
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Theorem 2.17(M. Hall). Every finitely generated subgroup Bf, is closed for the profi-
nite topology.

Proof. Fix H <y, Fa and letu € F4 \ H be written in reduced form as an element
of R4. In view of Proposition[ 215y does not label a loop at the basepainof S(H).

If there is no pathyy— - - - in S(H), we add new edges t§(H) to get a finite inverse
automatonA having a pathjy——q # qo. Otherwise just taked = S(H). Next add
new edges toA to get a finite complete inverse automaténin view of Propositiong 218
and[2.1P, we havB = S(K) for someK <;; F4. HenceKu is open and contains.
SinceH N Ku # () yieldsu € K~'H = K, contradicting Propositidn 2.5, it follows that
H N Ku =0 and soH is closed as claimed. O

Example 2.6. We consider the above construction fér= (a~1ba, ba?) andu = b?:

KR

If we take the spanning tree defined by the dotted lineB,iit follows from Proposi-
tion[2.8 that
K = (ba™*, b3, b%ab™2, ba?, baba~ b 1)

is a finite index subgroup df, such thatd N Kbv? = (.

We recall that a grou is residually finiteif its finite index subgroups have trivial
intersection. Considering the trivial subgroup in TheoEefdi, we deduce

Corollary 2.18. F4 is residually finite.

We remark that Ribes and Zalessky extended Thebdrem 2.17othugts of finitely
many finitely generated subgroupsiof, see([38]. This result is deeply connected to the
solution of Rhodes’ Type Il conjecture, séel[37, Chapter 4].

If V denotes a pseudovariety of finite groups (see Chapter )roRV topologyon
F4 is defined by considering that eacke F'4 has

{KU | Kﬂfl Fy, FA/K S V}
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as a basis of clopen neighbourhoods. The closure for th&/gopology of H <y, Fa
can be related to an extension propertySti#7 ), and Margolis, Sapir and Weil used
automata to prove that efficient computation can be achiéwethe pseudovarieties of
finite p-groups and finite nilpotent grougs [28]. The original cortgility proof for the
p-group case is due to Ribes and Zalessky [39].

2.7 Dynamical properties

We shall mention briefly some examples of applications dfiSts automata to the study
of endomorphism dynamics, starting with Gersten’s sofutibthe subgroup orbit prob-
lem [16].

The subgroup orbit problem consists in finding an algoritbmecide, for giver, K
<t.g. Fa, whether or nof = ¢(H) for some automorphism of F4. Equivalently, this
can be described as deciding whether or not the automorphitood a finitely generated
subgroup is recursive.

Gersten’s solution adapts to the context of Stallings aatanwWhitehead'’s idea to
solve the orbit problem for words [69]. Whitehead'’s prodfe® on a suitable decom-
position of automorphisms as products of elementary fadwhich became known as
Whitehead automorphism&nd on using these as a tool to compute the elements of min-
imum length in the automorphic orbit of the word. In the sudgr case, word length is
replaced by the number of vertices of the Stallings automato

The most efficient solution to the problem of identifyingdractors([40], mentioned
in §23[2.5, also relies on this approacH: <;, Fj is a free factor if and only if the
Stallings automaton of some automorphic imagéioias a single vertex (that is, a bou-
quet).

Another very nice application is given by the following them of Goldstein and
Turner [17]:

Theorem 2.19.The fixed point subgroup of an endomorphismi'gfis finitely generated.

Proof. Let ¢ be an endomorphism df,. For everyu € Fa, defineQ(u) = p(u)u=!.
We define a potentially infinite automataehby taking

{Qu) |u € Fa} CFa

as the vertex set, all edges of the foftu)—>Q(au) With u € F4, a € A, and fixingl
as the basepoint. Thetis a well-defined inverse automaton.

Next we takel3 to be the subautomaton gf obtained by retaining only those vertices
and edges that lie in successful paths labelled by reducedswcClearly, is still an
inverse automaton, and it is easy to check that it must bettiéngs automaton of the
fixed point subgroup op.

It remains to be proved thétis finite. We define a subautomat6rof 5 by removing
exactly one edge among each inverse pair

Q(u)-%Q(au), Q(au)a—71>Q(u)

with a € A as follows: ifa~ is the last letter of)(au), we removeQ(u)——Q(au);
otherwise, we remov@ (au)-~—Q(u).
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Let M denote the maximum length of the image of a letteroyWe claim that,
whenevetQ(v)| > 2M, the vertex)(v) has outdegree at most 1.

Indeed, ifQ(v)-~—Q(a~'v) is an edge irC for a € A, thena~" is the last letter of
Q(v). On the other hand, i@(v)ﬁ@(bv) is an edge ir€ for b € A, thenb~! is not the
last letter ofQ(bv). SinceQ(bv) = ¢(b)Q(v)b~t and|Q(v)| > 2|¢(b)|, thenb must be
the last letter of)(v) in this case. Sinc€)(v) has at most one last letter, it follows that
its outdegree is at most 1.

Let D be a finite subautomaton 6fcontaining all verticeg)(v) such thafQ(v)| <
2M. Suppose thgi—¢ is an edge irf not belonging td>. Sincep—¢, being an edge
of B, must lie in some reduced path, and by the outdegree propettyit is easy to see
that there exists some pathd@rof the form

p—p—rq—sr<—7’

wherep’, v’ are vertices irD. Since there are only finitely many directed paths oubpf
it follows thatC is finite and so ig3. Therefore the fixed point subgroup gfis finitely
generated. 0

Note that this proof is not by any means constructive. Indéeel only known al-
gorithm for computing the fixed point subgroup of a free graupomorphism is due to
Maslakoval[31] and relies on the sophisticateain track theory of Bestvina and Han-
del [7] and other algebraic geometry tools. The general ermdphism case remains
open.

Stallings automata were also used by Ventura in the studyanbws properties of
fixed subgroups, considering in particular arbitrary féesilof endomorphisms [57, B30]
(see also[58]).

Automata also play a part in the studyiofinite fixed pointstaken over the continuous
extension of a monomorphism to the hyperbolic boundaryf@eexample[[49]).

3 Rational and recognizable subsets

Rational subsets generalize the notion of finitely gendr&tem subgroups to arbitrary
subsets of a group, and can be quite useful in establishéhgetive procedures that need
to go beyond the territory of subgroups. Similarly, recaghie subsets extend the notion
of finite index subgroups. Basic properties and results edfiotond in [5] or [43].
We consider a finitely generated groip= (A), with the canonicalmap : 4 — G.
A subset ofG is rational if it is the image byp = 76 of a rational subset aofi*, and is
recognizablef its full preimage undep is rational inA*.
For every groug7, the classeRat G andRec G satisfy the following closure proper-
ties:
e Rat G is (effectively) closed under union, product, star, mosphs, inversion, sub-
group generating.
e RecG is (effectively) closed under boolean operations, tramsia product, star,
inverse morphisms, inversion, subgroup generating.
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Kleene's Theorem is not valid for groupRat G = Rec G if and only if G is finite.
However, if the class of rational subsetgdpossesses some extra algorithmic properties,
then many decidability/constructibility results can beldeed forG. Two properties are
particularly coveted foRat G-

o (effective) closure under complement (yielding closurdemall the boolean oper-

ations);

e decidable membership problem for arbitrary rational stghse
In these cases, one may often solve problems (e.g. equatipegstems of equations)
whose statement lies far out of the rational universe, byipgpthat the solution is a
rational set.

3.1 Rational and recognizable subgroups

We start by some basic, general facts. The following res@$sential to connectlanguage
theory to group theory.

Theorem 3.1(Anisimov and Seifert). A subgroupH of a groupG is rational if and only
if H is finitely generated.

Proof. (=): Let H be a rational subgroup ¢f and letr : F'4 — G denote a morphism.
Then there exists a finitd-automatonA such thatd = p(L(.A)). Assume thatd hasm
vertices and lefX consist of all the words ip~!(H) of length< 2m. SinceA is finite,
so isX. We claim thatd = (p(X)). To prove it, it suffices to show that

u € L(A) = p(u) € (p(X)) (3.1)

holds for everyu € A*. We use induction ofu|. By definition of X, (3.1) holds for
words of length< 2m. Assume now thatu| > 2m and [3.1) holds for shorter words.
Write w = vw with |w| = m. Then there exists a path

v z
— go—>q—t —

in A with |z| < m. Thusvz € L(A) and by the induction hypothesigvz) € (p(X)).
On the other hand; ~*w| < 2m andp(z~'w) = p(z~*v~Hp(vw) € H, hencez 1w €
X and sop(u) = p(vz)p(z~tw) € (p(X)), proving [3.1) as required.

(«=) is trivial. O

Itis an easier task to characterize recognizable subgroups

Proposition 3.2. A subgroupH of a groupG is recognizable if and only if it has finite
index.

Proof. (=): In general, a recognizable subsetbfs of the form/N X, whereN <;; G
andX C Gisfinite. If H = NX is a subgroup of7, thenN C H and soH has finite
index as well.

(«): This follows from the well-known fact that every finite iexi subgroupd of G
contains a finite index normal subgronpof G, namelyN = (1 .. gHg™'. SinceN
has finite indexd must be of the formiVX for some finiteX C G. O
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3.2 Benois’ Theorem

The central result in this subsection is Benois’ Theorem,dbrnerstone of the whole
theory of rational subsets of free groups:

Theorem 3.3(Benois).
(i If L C A* is rational, thenL is also rational, and can be effectively constructed
from L. _
(i) A subset of? 4 is a rational language as a subset 4f if and only if it is rational
as a subset of 4.

We illustrate this in the case of finitely generated subgsouemporarily calling
“Benois automata” those automata recognizing rationasstsofR 4, we may convert
them to Stallings automata by “folding” them, at the sameetimaking sure they are in-
verse automata. Given a Stallings automaton, one intargewith R 4 to obtain a Benois
automaton.

Proof. (i) Let A = (Q,Z,E,I,T) be a finite automaton recognizing We define a
sequencéA, ), of finite automata withe-transitions as follows. Letly = .4. Assuming
thatA, = (Q, A E,, I, T) is defined, we consider all instances of ordered pairg) €
Q@ x @ such that

there exists a pathﬂq in A, for somea € A4, but no patrp—1>q. P)

Clearly, there are only finitely many instances of (P)4n. We defineF,,; to be the
union of E,, with all the new edgeép, 1, ¢), where(p, ¢) € Q x @ is an instance of (P).
Finally, we defined, 1 = (Q, A, E,41,1,T). In particular, note thatt,, = A, for
everyk > 1 if there are no instances of (P) i,.
Sinceq is finite, the sequencgA,,),, is ultimately constant, say after reachisdg,.
We claim that
L=LAn)NRA. (3.2)

Indeed, take: € L. There exists a sequence of words= ug, uy,...,ux_1,ux = U
where each term is obtained from the preceding one by eradfiacfor of the formua !
for somea € A. A straightforward induction shows that € L(.A;) for z‘lz 0,...,k,
since the existence of a pgii~—¢ in A; implies the existence of a paph—q in A; ;1.
Hencew = uy, € L(Ay) € L(A,,) and it follows thatl, C L(A,,) N Ra.

For the opposite inclusion, we start by noting that any pathsq in A,,; can be
lifted to a pathp——¢ in A;, wherev is obtained fromu by inserting finitely many factors
of the formaa~!. It follows that

L(Am) = L(Amfl) == L(AO) =L

and soL(A,,) N R4 C L(A,,) = L. Thus [3.2) holds.
Since

Ra = A* \ U A*aa~ L A*
aeg

is obviously rational, and the class of rational languagedased under intersection, it
follows thatL is rational. Moreover, we can effectively compute the awttim.A4,,, and
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a finite automaton recognizing 4, hence the direct product construction can be used to
construct a finite automaton recognizing the intersectiea L(A,,) N R4.
(i) ConsiderX C Ry4. If X € Rat A*, thend(X) € Rat F4 and soX is rational as
a subset of . B
Conversely, ifX is rational as a subset &f4, thenX = 0(L) for someL € Rat A*.

SinceX C R4, we getX = L. Now part (i) yieldsL € Rat A* and soX € Rat A* as
required. O

Example 3.1. Let A = A be depicted by

1@@
TE -

and we can then proceed to compiite= L(As) N Ry.

We get

The following result summarizes some of the most direct eqnences of Benois’
Theorem:

Corollary 3.4.

(i) Fa has decidable rational subset membership problem.
(i) Rat F4 is closed under the boolean operations.

Proof. (i) Given X € Rat F4 andu € Fy, write X = 0(L) for someL e Rat A*.
Thenu € X if and only ifu € X = L. By Theoreni:313(i), we may construct a finite
automaton recognizingy and therefore decide whether or not L.

(i) Given X € Rat Fa, we haveF4 \ X = R4 \ X and soF4 \ X € Rat F4 by
Theorent 3.B. Therefoiat F4 is closed under complement.

SinceRat Fy is trivially closed under union, it follows from De Morgari@ws that it
is closed under intersection as well. O

Note that we can associate algorithms to these boolearrelpsoperties oRat F4 in
a constructive way. We remark also that the proof of The@r&a&n be clearly adapted to
more general classes of rewriting systems (skee [9]). Thel@t8 and Corollari3]4 have
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been generalized several times by Benois herself [4] andéoyz8rgues, who obtained
the most general versions. Sénizergues’ results [44] fwldational length-reducing
left basic confluentewriting systems and remain valid for the more generalomotf
controlledrewriting system.

3.3 Rational versus recognizable

Since F4 is a finitely generated monoid, it follows that every recagiie subset of
F4 is rational [%, Proposition 111.2.4]. We turn to the problesh deciding which ra-
tional subsets of’y are recognizable. The first proof, using rewriting systeimigiue
to Sénizergues [45] but we follow the shorter alternatixeop from [48], where a third
alternative proof, of a more combinatorial nature, was glgen.

Given a subseX of a group, we define theight stabilizerof X to be the submonoid
of G defined by

R(X)={g€G|XgC X}.

Next let
K(X)=R(X)N(R(X)) ' ={geCG|Xg=X}

be the largest subgroup 6f contained inR(X) and let

N(X)= () gK(X)g™"
geG

be the largest normal subgroup@fcontained ik (X'), and therefore iR (X).

Lemma 3.5. A subsefX of a groupG is recognizable if and only K (X) is a finite index
subgroup of5.

In fact, the Schreier graph (s€€4.1) of K(X)\G is the underlying graph of an
automaton recognizing’, andG /N (X) is the syntactic monoid oX .

Proof. (=): If X C G is recognizable, the = NF for someN <;; GandF C G
finite. HenceN C R(X) and soN C K(X) sinceN < G. SinceN has finite index in
G, so doesK (X).

(<) If K(X) is a finite index subgroup off, so isN = N(X). Indeed, a finite
index subgroup has only finitely many conjugates (having éitste index) and a finite
intersection of finite index subgroups is easily checkedatgetinite index itself.

Therefore it suffices to show thaf = F' N for some finite subsef’ of G. Since N
has finite index, the claim follows fro’f N = X, in turn an immediate consequence of
N C R(X). O

Proposition 3.6. It is decidable whether or not a rational subset/of is recognizable.

Proof. TakeX € Rat F4. In view of Lemmd3.b and Propositién 2.8, it suffices to show
that K (X)) is finitely generated and effectively computable.
Givenu € Fy, we have

ug RX)e XuZ X e Xun(Fa\X)#0sue X 1 (Fa\X),
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hence
R(X)=Fa\ (X '(Fa\ X)).

It follows easily from the fact that the class of rationalgamages is closed under reversal
and morphisms, combined with Theoreml 3.3(ii), that! ¢ Rat F4. SinceRat F4 is
trivially closed under product, it follows from Corollafy®that R(X) is rational and
effectively computable, and so &(X) = R(X) N (R(X))~!. By Theoreni 31, the
subgroupK (X) is finitely generated and the proof is complete. O

These results are related to the Sakarovitch conjedtuile j#fich states that every
rational subset of’4y must be either recognizable disjunctive a subsefX of a monoid
M is disjunctive if it has trivial syntactic congruence, owuaglently, if any morphism
¢ : M — M’ recognizingX is necessarily injective.

In the group case, it follows easily from the proof of the dirienplication of Lemma
[3.3 that the projectioy — G//N recognizes¥ C G ifand only if N C N(X). ThusX
is disjunctive if and only itV (X) is the trivial subgroup.

The Sakarovitch conjecture was first proved[in|[45], but oagain we follow the
shorter alternative proof from [48]:

Theorem 3.7(Sénizergues)A rational subset of'4 is either recognizable or disjunctive.

Proof. Since the only subgroups @fare the trivial subgroup and finite index subgroups,
we may assume thatA > 1.

Take X € Rat F4. By the proof of Proposition 316, the subgro&fy X) is finitely
generated. In view of Lemnia3.5, we may assume fH@X) is not a finite index sub-
group. ThusS(K (X)) is not complete by Propositién 2.8. Lgt denote the basepoint of
S(K(X)). SinceS(K (X)) is not completeg - u is undefined for some reduced ward

Let w be an arbitrary nonempty reduced word. We must show that N(X).
Suppose otherwise. Sinegw are reduced angtA > 1, there exist enough letters to
make sure that there is some warde R, such thatuvwv~—'u~! is reduced. Now
w € N(X), hencewvwv=tu~! € N(X) C K(X) by normality. Sincewwwv=tu=1is
reduced, it follows from Propositidn 2.5 thatwv 14~ labels a loop afo in S(K (X)),
contradictingg, - w being undefined. Thus ¢ N(X) and soN(X) = 1. ThereforeX
is disjunctive as required. O

3.4 Beyond free groups

Letw : F4 — G be a morphism onto a grou@. We consider thevord problem sub-
monoidof a groupG, defined as

Wr(G) = (n0)7'(1). (3.3)
Proposition 3.8. The languagéV. (G) is rational if and only ifG is finite.
Proof. If G is finite, it is easy to check thaV,;(G) is rational by viewing the Cayley

graph ofG (seef24.1) as an automaton. Conversehiit. (G) is rational, thenr—1(1)
is a finitely generated normal subgroupiof, either finite index or trivial by the proof
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of Theoreni3J7. Itis well known that th@yck languageD 4 = 6~1(1) is not rational
if #A > 0, thus it follows easily that—1(1) has finite index and therefor@ must be
finite. O

How about groups with context-freéd’.(G)? A celebrated result by Muller and
Schuppl[33], with a contribution by Dunwoody [13], relathein tovirtually free groups
these are groups with a free subgroup of finite index.

As usual, we focus on the case@fbeing finitely generated. We claim th@thas a
normalfree subgrougF’, of finite index, with A finite. Indeed, letting™ be a finite-index
free subgroup of7, it suffices to takeF” = ﬂgeG gFg~!. SinceF has finite index, so
doesF”, see the proof of Lemnia3.5. Taking a morphismFp — G with B finite, we
get from Corollary 2B that —'(F’) <;.. Fp is finitely generated, sé” is itself finitely
generated. Finallyf" is a subgroup of”, so F’ is still free by Theorerh 217, and we can
write F' = Fu.

We may therefore decompoékas a finite disjoint union of the form

G:FAb()UFAblLJUFAbm, Wlthb():l (34)

Theorem 3.9(Muller & Schupp). The languagéV,.(G) is context-free if and only i/
is virtually free.

Sketch of prooflf G is virtually free, the rewriting system implicit ifi_(3.4) grides a
rational transduction betweéii. (G) andD 4.

The converse implication can be proved by arguing geonapioperties of the Cay-
ley graph ofG such as in ChaptérP4; briefly said, one deduces from the xsinez=ness
of W, (G) that the Cayley graph off is close (more precisely, quasi-isometric) to a
tree. |

It follows that virtually free groups have decidable wordiplem. In Chaptdr 24, we
shall discuss the word problem for more general classesoofgrusing other techniques.

Grunschlag proved that every rational (respectively raczable) subset of a virtually
free groupG decomposed as i (3.4) admits a decomposition as a finiten Ui, U
- -UX,mbm, Where theX; are rational (respectively recognizable) subsefs gfsee([18].
Thus basic results such as Corollaryl 3.4 or Propositioh 8m6be extended to virtually
free groups (se€ 18, 47]). Similar generalizations canldtained for free abelian groups
of finite rank [47].

The fact that the strong properties of Corollaryl 3.4 do holddoth free groups and
free abelian groups suggests considering the case of grappg(also known as free par-
tially abelian groups or right angled Artin groups), where admit partial commutation
between letters.

An independence graph a finite undirected grapf, I) with no loops, thatis/ is a
symmetric anti-reflexive relation aA. Thegraph groupG(A4, I) is the quotient’y / ~,
where~ denotes the congruence generated by the relation

{(ab,ba) | (a,b) € I}.

On both extremes, we havey = G(4,0) and the free abelian group oty which cor-
responds to the complete graph.dn These turn out to be particular casedrahsitive
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forests We can say that4, I) is a transitive forest if it has no induced subgraph of either
of the following forms:

C4 P4

We recall that an induced subgraph(ef, I) is formed by a subset of verticeE C A
and all the edges i connecting vertices from’.

The following difficult theorem, a group-theoretic versioira result on trace monoids
by Aalbersberg and Hoogebooni [1], was proved.in [23]:

Theorem 3.10(Lohrey & Steinberg)Let(A, I') be anindependence graph. Th&fA, I)
has decidable rational subset membership problem if andibH, I) is a transitive for-
est.

They also proved that these conditions are equivalent tmdbeitity of the member-
ship problem for finitely generated submonoids. Such a ‘B&d, I) gives an example
of a finitely presented group with a decidable generalizeddwwoblem that does not
have a decidable membership problem for finitely generatbthenoids.

It follows from Theoreni_3.710 that any group containing a dingroduct of two free
monoids has undecidable rational subset membership pnobléact that can be directly
deduced from the undecidability of the Post correspondpraigem.

Other positive results on rational subsets have been autdor graphs of groups,
HNN extensions and amalgamated free products by Kambities, &d Steinberg [19],
or Lohrey and Sénizergues [22]. Lohrey and Steinberg progeently that the rational
subset membership problem is recursively equivalent tdiniitely generated submonoid
membership problem for groups with two or more ends [24].

With respect to closure under complement, Lohrey and Segies[[2R] proved that
the class of groups for which the rational subsets form admohlgebra is closed under
HNN extension and amalgamated products over finite groups.

On the negative side, Bazhenova proved that rational ssildefinitely generated
nilpotent groups do not form a boolean algebra, unless thepgis virtually abelian[[3].
Moreover, Romafikov proved in[41], via a reduction from Hilbert's 10th prebh, that
the rational subset membership problem is undecidableréer rfiilpotent groups of any
class> 2 of sufficiently large rank.

Last but not least, we should mention that Stallings’ cartdion was successfully
generalized to prove results on both graph groups (by KaboWwliasnikov and Weid-
mann [21]) and amalgamated free products of finite groupdfaskus-Epstein [29]).

3.5 Rational solution sets and rational constraints

In this final subsection we make a brief incursion in the brages world of rational
constraints. Rational subsets provide group theorists twib main assets:
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e A concept which generalizes finite generation for subgramsis much more fit
to stand most induction procedures.

e A systematic way of looking for solutions of thight typein the context of equa-
tions of many sorts.

This second feature leads us to the notiomadibnal constraint when we restrict the set
of potential solutions to some rational subset. And ther fgrticular combination of
circumstances that can ensure the success of this stréitdtyt G is closed under inter-
section and we can prove that the solution set of problem R &ffactively computable
rational subset of7, then we can solve problem P with any rational constraint.

An early example is the adaptation by Margolis and MeakinalpiR’'s language and
Rabin’s tree theorem to free groups, where first-order fdamprovide rational solution
sets[[27]. The logic language considered here is meant tppked to words, seen as
models, and consists basically of unary predicates thatcags letters to positions in
each word, as well as a binary predicate for position ordetitargolis and Meakin used
this construction to solve problems in combinatorial imeesemigroup theory [27].

Diekert, Gutierrez and Hagenah proved that the existethigairy of systems of equa-
tions with rational constraints is solvable over a free gr{ild]. Working basically on
a free monoid with involution, and adapting Plandowski'piagach [35] in the process,
they extended the classical result of Makanin [25] to ineludtional constraints, with
much lower complexity as well.

The proof of this deep result is well out of scope here, bupdtential applications
are immense. Group theorists are only starting to discasduli strength.

The results in[[22] can be used to extend the existentialrthebequations with ra-
tional constraints to virtually free groups, a result thatdws also from Dahmani and
Guirardel's recent paper on equations over hyperbolic gsauith quasi-convex rational
constraints[10]. Equations over graph groups with a retsiliclass of rational constraints
were also successfully considered by Diekert and Lofre}y [12

A somewhat exotic example of computation of a rational sofuset arises in the
problem of determining which automorphismsgf (if any) carry a given word into a
given finitely generated subgroup. The full solution seeisognized by a finite automa-
ton; its vertices are themselves structures named “finitecated automatal” [51].
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Abstract. This chapter is devoted to the study of rational subsets afigs, with particular em-
phasis on the automata-theoretic approach to finitely géegisubgroups of free groups. Indeed,
Stallings’ construction, associating a finite inverse edton with every such subgroup, inaugu-
rated a complete rewriting of free group algorithmics, wittnnections to other fields such as
topology or dynamics.

Another important vector in the chapter is the fundamenthds’ Theorem, characterizing
rational subsets of free groups. The theorem and its corsegs really explain why language
theory can be successfully applied to the study of free ggoR@tional subsets of (free) groups can
play a major role in proving statementsriori unrelated to the notion of rationality) by induction.
The chapter also includes related results for more genkrsées of groups, such as virtually free
groups or graph groups.
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