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Abstract

We consider dimensional reduction of the Bagger-Lambert-Gustavsson theory to
a zero-dimensional 3-Lie algebra model and construct various stable solutions cor-
responding to quantized Nambu-Poisson manifolds. A recently proposed Higgs
mechanism reduces this model to the IKKT matrix model. We find that in the
strong coupling limit, our solutions correspond to ordinary noncommutative spaces
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arising as stable solutions in the IKKT model with D-brane backgrounds. In par-
ticular, this happens for S3, R? and five-dimensional Neveu-Schwarz Hpp-waves.
We expand our model around these backgrounds and find effective noncommuta-
tive field theories with complicated interactions involving higher-derivative terms.
We also describe the relation of our reduced model to a cubic supermatrix model
based on an o0sp(1]32) supersymmetry algebra.
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1. Introduction

Dimensional reductions of ten-dimensional maximally supersymmetric Yang-Mills theory lead
to interesting zero-dimensional and one-dimensional matrix models, called respectively the
IKKT [1] and BFSS [2] models. The IKKT matrix model is conjecturally a non-perturbative
completion of type IIB string theory, while the BFSS matrix quantum mechanics is dual to M-
theory in discrete light-cone quantization on flat space. Their classical solutions describe brane
configurations which have also found interpretations in terms of noncommutative geometry.
For example, expansion of the IKKT matrix model around a D-brane background preserving
part of the supersymmetry yields a supersymmetric gauge theory on Moyal space [3], while
toroidal compactification of the BFSS model in a constant C-field background gives Yang-
Mills theory on a noncommutative torus [4]. The appearance of flat noncommutative spaces
can be understood directly in string theory from the quantization of open strings ending on
D-branes in a constant B-field background [5]. Studying these equivalences between large N
reduced models and noncommutative gauge theories is expected to lead to new insights as to
what extent these matrix models are dual to gauge and gravitational theories.

In string theory, fuzzy spheres appear as classical solutions to D0-brane equations of motion
in the presence of an external Ramond-Ramond flux [6]. In the IKKT matrix model description
they arise as solutions to the classical equations of motion if one adds a Chern-Simons term
representing the coupling to the external field [7]; expanding the bosonic matrices around the
classical solution gives a noncommutative gauge theory on fuzzy spheres. The corresponding
modification of the BFSS model is a massive matrix model with Chern-Simons term, called
the BMN matrix model [8], which conjecturally describes the discrete light-cone quantization
of M-theory on a supersymmetric pp-wave background and lifts the flat directions of the
BFSS model. In this case both fuzzy spheres and fuzzy hyperboloids appear as half-BPS
solutions [9, [10], and describe static large M2-branes or static large longitudinal M5-branes.

In this paper we describe an analogous treatment of the Bagger-Lambert-Gustavsson
(BLG) theory of multiple M2-branes [11], 12]. We consider a dimensional reduction of this
theory to a zero-dimensional 3-Lie algebra model; similar reduced models have also been stud-
ied in [13], [14] 15, 16]. One would expect that the noncommutative geometries arising in
this context are based on 3-Lie algebras and that they are of the types discussed e.g. in [17].
We will study the BLG 3-Lie algebra reduced model in detail, and construct various sta-
ble classical solutions corresponding to noncommutative geometries. The Higgs mechanism
proposed recently by Mukhi and Papageorgakis [18] connecting the BLG theory to the maxi-
mally supersymmetric Yang-Mills theory in three dimensions connects here the 3-Lie algebra
model to the IKKT matrix model. Using this mechanism, one can regard the noncommu-
tative geometries corresponding to stable solutions in the matrix model as strong coupling
limits of noncommutative geometries arising in our 3-Lie algebra model. In particular, we
find that the fuzzy two-spheres, noncommutative R? and four-dimensional noncommutative
Neveu-Schwarz Hpp-waves arise in a strong coupling limit from the fuzzy three-sphere, fuzzy
]Ri;’\ and five-dimensional noncommutative Hpp-waves, respectively.

We also examine the effective noncommutative gauge theory arising from expanding the
action of the 3-Lie algebra model around a stable classical solution corresponding to a non-
commutative space. Here we are again confronted with the problem already observed in [17]:
The 3-Lie algebra structure appears only at linear level in the noncommutative geometries.



We therefore have to look at possible matrix algebra representations of 3-Lie algebras, which
turn the BLG 3-Lie algebra model into a conventional matrix model. The resulting theories
are complicated, and do not allow for a straightforward interpretation; it would be interesting
to understand their relation to the supersymmetric Yang-Mills matrix quantum mechanics of
the BFSS matrix theory which describes M2-branes in light-cone gauge. The one-loop effective
action obtained by integrating out linear fluctuations about noncommutative backgrounds in
a similar reduced model is considered in [16].

Finally, we compare our 3-Lie algebra model to the cubic supermatrix model of Smolin [19],
which has an additional 0sp(1]32) symmetry algebra. This symmetry algebra was conjectured
to be the appropriate one for M-theory. Using the Clifford algebra of R0, we are indeed
able to rewrite our 3-Lie algebra reduced model in an osp(1]32)-invariant fashion.

This paper is structured as follows: In section 2, we consider various deformations of the
BLG theory and its dimensional reduction down to zero dimensions. We also describe the
deformed IKKT model resulting from the recently proposed Higgs mechanism. Various stable
solutions to our 3-Lie algebra reduced model are presented in section 3 and interpreted in
terms of quantized Nambu-Poisson manifolds. In section 4, we attempt to make sense of
noncommutative field theories on these quantized spaces. We conclude in section 5 with a
comparison of our model to the cubic 0sp(1|32)-invariant supermatrix model of Smolin. An
appendix at the end of the paper contains some details concerning 3-Lie algebras which are
used in the main text.

2. The 3-Lie algebra reduced model

2.1. Supersymmetric deformations of the BLG theory

The BLG theory [I1, 12] is an A/ = 8 supersymmetric Chern-Simons-matter theory in three
dimensions with matter fields taking values in a metric 3-Lie algebr A and a connection one-
form taking values in the associated Lie algebra g4. The matter fields consist of eight scalar

fields X1, I =1,...,8 and their superpartners, which can be combined into a Majorana spinor
U of SO(1, 10) satisfying I'g1o¥ = —W; throughout we denote I' ps,...pz, := % Ciar, -+ Tagy)- The
Chern-Simons term is constructed using the alternative cyclic invariant form (—, —) available

on g4 which is induced by the inner product (—, —) on the 3-Lie algebra A. Altogether the
action reads

Sprc = /d% (— s (v X, vext) + L (0,1 v, 0) + 1 (0,1 [XT, X7, 0))

— L (X X X)X X XK]) 4 LA (A,,0,4, + L [A,,,Aﬂ))) :
(2.1)
where p1, v, A = 0, 1,2 are indices for Euclidean coordinates on R%2. The matrices I'*, together
with T, form the generators of the Clifford algebra C#(R>!?). The covariant derivatives act
according to

VX' =0, X"+ A, X1 =0, X" + A% D(7, ) X" 1= 0, X + A% [14, 7, XT],  (22)

where 7, are generators of the 3-Lie algebra A.

1See appendix A for the definitions and our notations related to 3-Lie algebras.



A well-known problem of this theory is that the only non-trivial 3-Lie algebra with positive
definite invariant form (—, —) i$9 A4. To circumvent this problem, Lorentzian 3-Lie algebras
were introduced, but even this case is highly restrictive [20]. Here, we will allow the matter
fields to take values in the generalized 3-Lie algebras introduced in [21]. As shown there, using
generalized 3-Lie algebras will preserve at least four of the 16 supersymmetries of the original
BLG theory. This brings us closer to the situation of U(N) Yang-Mills theory, since these 3-Lie
algebras allow for representations using matrices of arbitrary sizes as shown in [22]. (An alter-
native direction would have been to work with the ABJM theory [23], but this would involve
working with complex 3-Lie algebras [24], which we want to avoid in our considerations.)

The second deformation we introduce consists of adding mass and Myers-like flux terms
given respectively by

8
Smass = /d3$ <_ % Z ,u%,[ (XI,XI) + %,u2 (\ijr3456\1’)> )
=1 (2.3)

Sﬂux — /d3x HIJKL ([XI,XJ,XK],XL) 7

where H!/KL ig totally antisymmetric and can be thought of as originating from a four-form
flux. A particularly interesting deformation is given by

gl JKL I,JK,L <4
pig=pe=p and HITEL = _% cI=OI-DE=DI=) [ TKL>5 . (24)
0 otherwise

This deformation was studied first in [25], see also [26] 27]. It is closely related to the defor-
mation giving rise to the BMN matrix model [§] and homogeneous gravitational wave back-
grounds, as we will discuss later on. It explicitly breaks the R-symmetry group SO(8) down to
SO(4) xSO(4), but preserves all 16 supersymmetries if the matter fields live in a 3-Lie algebra.
If the fields take values in a generalized 3-Lie algebra, then at least four supersymmetries will
be preserved.

The third deformation we admit is the addition of a Yang-Mills term

Syt = # / B (F F™) (2.5)

to the action. In three dimensions the Yang-Mills action is an irrelevant term in the quantum
field theory. In the infrared the renormalization group flow will cause this term to vanish,
and theories with different values of the Yang-Mills coupling v become indistinguishable. We
therefore decide to allow this term in our action.

2.2.  Dimensional reduction of the deformed BLG theory

The dimensional reduction of the theory defined by the action S = Srq 4+ Smass + SAux +SvM
is now straightforward. We reduce the covariant derivatives V,, to an action of the gauge

2See appendix A.



potential A,, which yields
S=-1 (A X1 ARXT) 4 5 (0,1 A4,0)

_% Z Iu ,[ XI XI + qu (\P F3456\P) +HIJKL ([XI XJ XK] XL)
=1 (2.6)

+ 1 (0, 1y X", X7, 0) —%([XI X7 XK xt X7 x5

AN,

+ 2 e (A, [Au, AN]) + 4 — ([Au, A, [AF, AM))

=

This model has the same amount of supersymmetry as the original unreduced field theory.
However, it is only invariant under the group SO(1,2) x SO(8) instead of the desired 11-
dimensional Lorentz group SO(1,10), which is due to the dichotomy of gauge and matter
fields in the original BLG theory. This is in marked contrast to the IKKT matrix model
which arises from dimensional reduction of maximally supersymmetric Yang-Mills theory to
zero dimensions, and therefore exhibits manifest SO(1,9) invariance.

Nevertheless, we still consider the model (2.6) to be interesting for the following reasons.
First of all, we will show below that in a certain limit we can reduce it to the IKKT matrix
model and therefore at least restore SO(1,9) invariance in this limit. Second, the alternative
model based on SO(1,10)-invariant constructions involving 3-Lie algebras breaks too many
of the supersymmetries [I4]. And third, almost all the solutions we will be interested in
will solely rely on the pure matter part of the action, in which our model agrees with the
SO(1, 10)-invariant model of [14] (see also [13]).

2.3. Reduction to the IKKT matriz model

If one assumes that the BLG theory describes M2-branes, then one should be able to reduce
the BLG theory to the effective description of D2-branes which is given by maximally super-
symmetric Yang-Mills theory in three dimensions. In the paper [18], Mukhi and Papageorgakis
proposed such a reduction procedure for the BLG theory with 3-Lie algebra A = A4, which re-
duces to N/ = 8 supersymmetric Yang-Mills theory with gauge group SU(2). Below we briefly
review this reduction by going through the corresponding procedure for the dimensionally
reduced model.

We start from our model (2.6) with 3-Lie algebra A4, whose generators are denoted e;,
i =1,2,3,4, and assume that one of the scalar fields, corresponding to the M-theory direction,
develops a vacuum expectation value (vev) which is proportional to the radius R of the M-
theory circle. Using the SO(4)-invariance of A4, we can align this vev in the e4 direction so
that

R
(X®) = _W e4 = —gymeé4 , (2.7)

where £, and gy are the 11-dimensional Planck length and the Yang-Mills coupling constant,
respectively. We now expand the action (2.6) around this vev by rewriting

X8 = —gyM €4 + Y8 s (2.8)

where Y® € A still has components along the e4 direction. The 3-brackets containing X®
reduce according to

[A,B, X% =gym|A,B,es] +[A,B,Y®], ABecA, (2.9)



and in the strong coupling limit, i.e. for large values of gyn, 3-brackets containing X® reduce
to the Lie bracket of so(3) due to [e;, e;, —e4] = €jjraep. It is easy to see that the potential
terms in (2.0) containing matter fields reduce to the corresponding terms of the IKKT matrix
model for v — oo and p = 0.

The reduction of the terms involving the gauge potential is slightly more involved. One
considers the splitting g4, = s50(4) = s0(3) @ s0(3) according to

AH = AL] D(ei, ej) = AL D(ei, 64) + BL % Eijk D(Ej, ek) . (210)

In the action (2.4]), the field BL appears in the strong coupling limit only algebraically, and
its equation of motion reads

. 1 o 1

B/Z = ZQY—MTIMV EVp)\ Ewk A‘; AI;:\ - ZQY—MEUk A‘L Xsk s (211)

where 7, denotes the Minkowski metric on R!?. The reduction (23) together with the
splitting (ZI0) and the equation of motion (ZII) reduce the action (2.6]) with v — oo and

i = 0 to the action of the IKKT matrix model with gauge group su(2) = so(3),
Sikkr = —1 ((Zm, Zn), (2 M, 2N) + 5 (0, T [ 20, 9]) . (2.12)

Here we combined the fields (AM,XI) with £ =0,1,2 and I = 1,...,7 into ZM with M =
0,1,...,9, and absorbed the coupling gyy into a rescaling of fields. The invariant bilinear
inner product in this instance coincides with the Cartan-Killing form on the Lie algebra su(2),
(Z,%) = tr (2 %). This matrix model possesses 32 supersymmetries.

In the strong coupling limit, the Myers-like term in (28] is reduced according to

HYEE (X, X7 XE], X)) — dgym HYRS (X, X)X (2.13)

and this is the Myers term appearing in the deformation of the BFSS model to the BMN
matrix model [8]. Including the mass terms, the deformation terms reduce to

7
Smass—l—ﬂux = % Z Ni[ (%1—1—27 %1—1—2) + %N2 (\i’, I‘3456\11)
I=1

7
+49YM Z HIJKS ([%14—27%(]—1-2]’%[(—1-2) )
I,J,K=1

(2.14)

If the 3-Lie algebra A is not A4, a vev for one of the fields will still reduce the bosonic part of
the potential to an ordinary Lie algebra expression in the strong coupling limit. The reduction
of the gauge part of the action, however, will break down in general.



3. Classical solutions

3.1.  Equations of motion

The classical equations of motion of our 3-Lie algebra model ([2.6]) with a metric 3-Lie algebra
A read

A AP XY — pd  XT 1[0, X7 Ty 0]
_'_% [XJ,XK,[XJ,XK,XIH _|_4HIJKL [XJ,XK,XL] =0 ’

3.1
TH ALY + o Taase® + 2 Ty (X, X7,0] =0, (3-1)

3N AL, AN] = 25 [A,,[AY, AM] = D(XT, APXT) + 5 D(B,TH0) =0 .

The classical equations of motion of the IKKT matrix model ([212), i.e. the strong coupling
limit of the 3-Lie algebra model (2.6]), read
(2w, (2N, 27M]] = ST WP 9o} + AM =0,

5 (32)
Y [(Zm, V] 4 poTagse =0,

where «, 3 are spinor indices of a Majorana-Weyl spinor of SO(1,9) and the deformation
contribution is

7
130y XM 129y S HITWIEDR (0142 9042 for 3< M <9
1,J=1
0 for M =0,1,2

AM = . (3.3)

In the following we will study solutions to these equations and examine their classical
stability. Recall that in the IKKT model, one usually starts with gauge group U(N) for N
“large enough” and then considers solutions which correspond to the branching of U(N) to
some other Lie group. For example, for the fuzzy sphere solutions arising in the IKKT model
deformed by a Chern-Simons term, one studies branchings U(N) — SU(2). There is no direct
analogue of the “universal gauge symmetry” U(N) for 3-Lie algebras; in particular there is
no family of 3-Lie algebras with positive definite metric except for direct sums of Ay [28 [29].
We can switch to generalized 3-Lie algebras (for which the existence of continuous families
follows from the representations found in [22]), and assume that the generalized 3-Lie algebra
we started from is “large enough” to contain all our solutions. Note that the equations of
motion for generalized 3-Lie algebras would be slightly different from (3.1I). However, we want
to find solutions which can be interpreted as quantized Nambu-Poisson manifolds in the sense
of [17], and we will restrict ourselves to solutions which form 3-Lie algebras and therefore

satisfy (B.1)).

3.2.  Fuzzy spheres

As it is the most prominent 3-Lie algebra, let us start with a solution involving A,4. For this,
we choose the supersymmetric deformation (24]) to obtain a natural SO(4) symmetry group,
which matches the associated Lie group of A4. We put A, = ¥ = 0. As scalar fields, we
choose

Xi=ae, Xt =0, with oz4+%,uoz2+%,u2:0, (3.4)



where e;, ¢+ = 1,2,3,4 are generators of A4. This solution corresponds to a fuzzy three-
sphere [30] in the sense of [17] with a radius proportional to ,/zz. The relation between A4 and
fuzzy S® has been pointed out many times starting with [3I]. The first derivation of fuzzy
three-spheres from the BLG theory by including flux deformations was given in [25].

We can now compute the Hessian of the action where 6X%¢ describes the vari-

, %’
ation of X* in the 3-Lie algebra direction e,. One finds a 16 x 16 matrix with eigenvalues
(0,2,6) u? occuring in multiplicities (6,9,1). The six flat directions correspond to variations
rotating the fuzzy sphere. (The other eigenvalues correspond to “squashing” the fuzzy sphere
in various ways.) We conclude that the solution (3.4) is indeed a stable stationary point of the
action (2.0). Moreover, like the ground states used in [25], our solutions are invariant under
the full set of 16 supersymmetries of the deformed action. This can be checked explicitly by

noting that the supersymmetry transformation for A, = 0 reads [25]
. X' =ieTlw 0.0 = — 4 (X1, X7 XF| D! Ke — a5 T X | (3.5)

where ¢ is a constant Majorana spinor of SO(1, 10) satisfying I'g12¢ = €, and hence our fuzzy
three-sphere background satisfies the supersymmetry condition 5, X! = 0 = 6, 0.

We can now apply the Higgs mechanism. We assume that one of the scalar fields acquires
a vev and perform a strong coupling expansion. Let us choose X4 = gy eq + Y2 and take a

double scaling limit gyn, g — oo with g = ﬁ fixed. The equations of motion reduce to

(X9, (X7, X)) — 20" (X7, X* =0, »

(X9, X%, (X9, X%, X)) + 20V (X7, xF x1 =0, (36)

for ¢ = 1,2,3. The first equation is the equation of motion of the IKKT model with a Myers

term and its solution is a fuzzy two-sphere, i.e. the matrices X' take values in su(2). The

second equation requires the Lie algebra su(2) to be consistently embedded in A4. Altogether,

we see that the fuzzy two-sphere originates as the strong coupling limit of the fuzzy three-

sphere. Geometrically, we reduced the fuzzy three-sphere to its equator with radius gy,

which corresponds to the fuzzy two-sphere solution. This is mot the projection of the Hopf
fibration S < §% — §2.

Note that our deformation is very similar to that of the BMN model, which can be consid-
ered as the BFSS model on a non-trivial Hpp-wave background. The fuzzy two-sphere solu-
tion is in that case interpreted as giant gravitons, i.e. M2-branes wrapping the fuzzy S? with
certain kinematical properties. The supersymmetric deformation (2.4 has been holographi-
cally linked in [25] to the matrix model description of the maximally supersymmetric type IIB
plane wave in discrete light-cone quantization; this Hpp-wave background is a ten-dimensional
Cahen-Wallach symmetric space which arises as a Penrose limit of the near horizon black hole
geometry AdSs x S% in type IIB supergravity [32]. It has metric

ds? = 2dzT da™ + Z (dx% — 1 p2a? (d$+)2> , (3.7)

I
and constant null self-dual Ramond-Ramond five-form flux Hrg = pdaz® A (dz'?3* + d2?678),
where the sum runs over I = 1,...,8 and da!/KL .= da! A dz’ A dz® A dzt. The fuzzy

three-sphere solution obtained here was identified in [25] with longitudinal D3-brane giant
gravitons in this background.



3.5. ]Ri;’\ and the moncommutative plane

In the (undeformed) IKKT matrix model, the simplest classical solution is given by operators
Z' = A\ and 2% = )y, where \; and )y are the generators of the Heisenberg algebra
[A1,A2] = 01, # € R. The D-brane interpretation of this solution involves D(—1)-branes
described by the scalar fields in a background B-field proportional to §~! which are smeared
out into a D1-brane, whose worldvolume is the noncommutative space ]R?). This solution can
be evidently extended to direct sums of Rz, by demanding that further pairs of scalar fields
satisfy the Heisenberg algebra. Note, however, that there is an issue with the normalizability
of the central element 1, as the Heisenberg algebra only has infinite-dimensional unitary
representations.

The classical vacuum state of the reduced model with action (ZI2) is given by commuting
matrices 2 ™. Noncommutative spacetime arises instead as a vacuum configuration of the
twisted reduced model with action

St = —% ((Zar, Zn) — Oun 1, [ 27, 2N — MV 1) + L (9, TM[25,,9]) ,  (3.8)

where the “twist” 0p;n is generically a 10 x 10 constant antisymmetric real matrix; in the
special case considered above only 615 = 6 is nonzero. The solutions with 2™ = A\,
[Aavrs An] = Opn 1 correspond to BPS-saturated backgrounds which preserve half the 32 su-
persymmetries. Upon introducing the covariant coordinates

%M:/\M—I—GMN%N, (3.9)

corresponding to expansion around the infinitely-extended D-branes in the original IKKT
model, one obtains the action for U(1) noncommutative supersymmetric Yang-Mills theory
with 16 supercharges [3] and trivial vacuum state &/ = 0; the gauge fields &7 are interpreted
as dynamical fluctuations about the noncommutative spacetime. To obtain the action for
noncommutative Yang-Mills theory with U(m) gauge group, corresponding to the background
of m coincident D-branes, one expands around the vacuum 2™ = Ay ® 1,,,. We will return
to these expansions later on.

Exactly the same sort of configurations arise in our model. The configuration X* = 7;
for i =1,2,3 and X! =0 for I =4,5,6,7,8, where 71, 7,73, 1 are generators of the Nambu-
Heisenberg 3-Lie algebra Any,

[7—177—277—3] =01 5 []l)Tij] =0 ; (310)

forms evidently a solution to our equations of motion (B.]) in the absence of fluxes and for
A, =V = 0. This 3-Lie algebra was originally considered by Nambu [33] in the context
of generalizations of Hamiltonian dynamics and their quantizations. Recently it was derived
as a boundary condition on the geometry of an Mb5-brane in the M2-M5 brane system in a
constant background C-field [34]. Tt has associated Lie algebra g, = RS.

The solution X! = 7y, (71,77, TK] = Ok 1, with O©17K 4 constant real three-form flux,
describes the vacuum state of the “twisted” version of the scalar potential of the action (2.6)
based on the 3-Lie algebra A = Anp in the absence of masses and fluxes, which generically
reads
V(X)=-4 (X, x7, xK -eMr1 X!, X7 XK - e!K1) . (3.11)



In fact, this solution preserves 16 supersymmetries. This follows from the general fact that
the model (2.6]) based on a 3-Lie algebra A with central element 1 for the configuration (2.4))
possesses an additional 16 kinematical supersymmetries [25]

X =0, oW =¢1, (3.12)

where ¢ is a constant spinor of SO(1,10) satisfying I'g12é = —€. Setting X! = 77, u = 0
and £ = %@ 17k T'T7%¢ in the supersymmetry transformations (3.5) and (3.12)), one finds the
relations

(0. +0e)XT =0, (0 +)¥ =0, (3.13)

and hence half of the 32 supersymmetries are preserved in these backgrounds. This is con-
sistent with the calculation of [16] which shows that the one-loop vacuum energy of these
backgrounds vanishes.

An interpretation of the Nambu-Heisenberg algebra in terms of quantized Nambu-Poisson
manifolds is given by the noncommutative space R3 [17]. If we assume that X acquires a vev
proportional to a coupling constant, then in the strong coupling limit the Nambu-Heisenberg
algebra reduces to the ordinary Heisenberg algebra. In this sense, the noncommutative plane
]Rg can be regarded as the strong coupling limit of ]R?)’\. Again, we can extend our solution to
the direct sum ]R?)’\ ® ]R?)’\ by demanding that three more of the scalar fields form another copy
of the Nambu-Heisenberg 3-Lie algebra; this is the quantized geometry relevant to an M5-
brane in a constant C-field background [34], [I7]. As in the case of the IKKT matrix model,
there is a problem with the normalizability of the 3-central element 1; the compatibility
condition (cf. appendix A) forbids us to assign finite norm to 1. There is a natural extension
of the Heisenberg Lie algebra and the Nambu-Heisenberg 3-Lie algebra which avoids the
normalizability problem; we describe these extensions below.

3.4. Homogeneous plane wave backgrounds

The homogeneous plane wave with metric (3.7), and supported by a Neveu-Schwarz flux, can
be constructed as the group manifold of the twisted Heisenberg group whose Lie algebra is an
extension of the Heisenberg algebra by one additional generator .J defined by

A, AN] =0un 1, [J, Am] = O0mn AN (1, ] =1[1,J] =0. (3.14)

The simplest case is Oy n = eprn, M, N = 1,2 corresponding to the Nappi-Witten algebra [35],
which is a non-semisimple Lorentzian Lie algebra of dimension four. The Lie brackets (3.14])
are then those of the universal central extension of iso(2).

Let us now consider the mass and flux deformations of the IKKT model (2.14) given by

H1i6 = H1,7 = U, H5678 =h ) (315)
where all other mass terms and components of H vanish. We choose the ansatz
28=al, 27=pJ, 2%=9XN, 2%°=~X, (3.16)

with ZM =0 =W for M =0,1,2,3,4,5, for our solution. Then the equations of motion
B2) are satisfied if
p? = (24gym h)?  and B = —24gymh (3.17)



while the parameters o and « are arbitrary. These solutions are not supersymmetric.

This noncommutative background can be regarded as a linear Poisson structure on a
four-dimensional Hpp-wave. The invariant, non-degenerate symmetric bilinear forms on the
Nappi-Witten Lie algebra are parametrized by a real number b and are defined by

A Aj) =6, (L)=1, (JJ)=b (3.18)

for 4,5 = 1,2, with all other pairings vanishing. Then the group manifold possesses a homoge-
neous bi-invariant Lorentzian metric defined by the pairing of the left-invariant Cartan-Maurer
one-forms as

dsi = (g~ dg,g " dyg) . (3.19)

We can parametrize group elements g as
g = exp (eiﬁgﬁ/2 z %+ e_iﬁx+/2§g_) exp (a:_ 20+ zt ,%”7) , (3.20)

where 24 = 28 +£127°, 27 € R and z € C. Then the metric in these global coordinates
reads
dsi =2aBdatda™ +~%|dz|* — 1 82 (* [2)* — b) (d=)?, (3.21)

which is the standard form of the plane wave metric of a four-dimensional Cahen-Wallach
symmetric spacetime in Brinkman coordinates. This spacetime is further supported by a
constant null Neveu-Schwarz three-form flux

Hns = —% (g_1 dg,d(g! dg)) = 218~y dzT Adz AdZ (3.22)

which is proportional to the flux deformation h of the matrix model.

The Hessian for this solution is a 16 x 16 matrix with eigenvalues (0, 1,2, 3) 2 of multiplic-
ities (6,1,8,1). The six flat directions correspond to the following symmetries of the matrix
model defined by ([2.12) and (2.14)) with the appropriate inner product (3.I8). One direction
corresponds to the U(1) subgroup of the plane wave isometry group rotating the transverse
space z € C. Three directions correspond to translations of the Nappi-Witten generators by
multiples of the central element 1. Of these, only shifts of the generator J are inner automor-
phisms of the Lie algebra (8.I4]); in particular, the automorphism J — J — b1 can be used to
set the parameter b to 0 in ([B.18), which is equivalent to the redefinition £~ — 2~ — % ﬁ/iTB ba™
in the plane wave metric (8.2I]). The shifts in \; are isometries which translate the transverse
space along the null direction . Another direction corresponds to scale transformations
1 — ¢ 1, which becomes a Lie algebra automorphism after redefining A\; — €$/2 \;. The final
symmetry of the action corresponds to the simultaneous scale transformations J — 7€ .J,
)\i — ec )\z

This Hpp-wave background is thus a stable solution of the deformed IKKT matrix model.
It arises as a Penrose limit of the maximally supersymmetric black hole solution with near
horizon geometry AdSs x S? in four-dimensional toroidal compactification of string theory
and M-theory, or alternatively of the near horizon region of NS5-branes [32]. Extending
this solution by an additional noncommutative plane gives a Cahen-Wallach space which
is a Penrose limit of the near horizon geometry AdSs x S3 of the self-dual string in six
dimensions [32]. Field theory on this noncommutative background has been formulated and
described in [36]. Solutions of the IKKT model corresponding to gravitational plane waves
have also been found in [37].
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There is an analogous extension of the Nambu-Heisenberg 3-Lie algebra given by
71,707kl = Ok 1, [Ji7,75] =@k 7r,  [L7,75]=[1,71,J] =0. (3.23)

Again we focus on the simplest case O;jx = €5y, I,J,K = 1,2,3. This is the Nappi-
Witten 3-Lie algebra Anw which is the semisimple indecomposable Lorentzian 3-Lie algebra
obtained by double extension from the Lie algebra so(3) [20]. Its associated Lie algebra is
ANy = 150(3). In contrast to the Nambu-Heisenberg 3-Lie algebra, we can turn Anw into a
metric 3-Lie algebra by defining the symmetric bilinear form

(Ti,Tj) = (52']' 5 (]l,J) = —1 5 (J, J) = b (324)

for 4,5 = 1,2,3 and arbitrary b € R, with all other pairings equal to 0.
We can now find a similar solution to our 3-Lie algebra model, if we choose the background
[23) with mass and flux terms

pe = =pms=p, H®=h, (3.25)

and all other mass terms and components of H are zero. The obvious generalization of the
ansatz (3.16) to the 3-Lie algebra model reads

Xt=al, X°=8J, XS=~n, X' =91, Xl=~qm, (3.26)

with A, = 0 = V¥ and XTI =0 for I =1,2,3, and from the equations of motion we obtain
conditions on the parameters

8h
W= (8h?, B=——, (3.27)
Y
while the parameters « and ~ are again arbitrary. It is natural to associate this solution with

the extension of the pp-wave geometry (8.2I)) by an additional transverse direction y € R,
ds? = 2a Bdzt dz™ + 42 (|dz|* + dy®) — 3 8% (v* (|2* + ¥*) — b) (dzt)? . (3.28)

This five-dimensional Cahen-Wallach space arises as a Penrose limit of an AdS, x S® back-
ground, which corresponds to the near horizon geometry of black hole solutions for NV = 2
supergravity in five dimensions [32].

The Hessian of this solution is a 25 x 25 matrix with eigenvalues (0,1,2,3,4,5) u? of
multiplicity (8,3,3,5,3,3). Again the eight flat directions correspond to the SO(3) subgroup
of the plane wave isometry group generating rotations of the transverse space (z,y) € C xR =
R3, to null translations of the transverse space, to automorphisms J — J — b1 of the Nappi-
Witten 3-Lie algebra, and to conformal rescalings of the 3-central element 1. This background
is thus a stable solution of the 3-Lie algebra reduced model (2.6).

3.5.  Fuzzy hyperboloids

As a side remark, we note that for finite v the pure gauge part of the action (2.6]) corresponds
to the IKKT model deformed by a Myers term. Turning off the matter fields X! = ¥ = 0,
the equations of motion read

3 M AL A - 25 (A, [A7, AM] =0 . (3.29)
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A solution to these equations is given by A, = —g o,, where o, generate the so(2,1) Lie

algebra [0,,0,] = €ux 7" ox. This background can be regarded as coordinates on a fuzzy
hyperboloid

If we had performed a Wick rotation of the action (2.6), then we would have obtained
solutions A, = —772 o, where o, now are generators of the Lie algebra so(3) = su(2). These

solutions correspond to fuzzy two-spheres; they form stable solutions of the IKKT matrix
model deformed by a Myers term if the coupling ~ is sufficiently large [38]. This is consistent
with the stability we find in our model; the Hessian M(;;iqug’ a,b=1,2,3 is a 9 x9 matrix with
eigenvalues (0,1)~? of respective multiplicities (3,6). The three flat directions correspond to
rotations of the fuzzy S2.

4. Interpretation as noncommutative field theories

4.1.  General considerations

Consider a solution to the classical equations of motion of the IKKT matrix model corre-
sponding to a noncommutative space. It is well-known that the expansion of those scalar
fields in this background which acquire non-trivial values in this solution yields the action of
(supersymmetric) Yang-Mills theory on that noncommutative space. This expansion is of the

general form X! = z! + Y, where 2!

corresponds to the classical solution and take values
in a certain Lie algebra g. The fluctuations around the noncommutative background Y7 are
then taken to be valued in the tensor product of the universal enveloping algebra U(g) and
the gauge algebra.

It is tempting to apply the same reasoning to the quantum Nambu-Poisson geometries
arising in our model. As observed in [I7], however, the 3-Lie algebra structure cannot be
extended to a 3-Lie algebra structure on the whole universal enveloping algebra. In [I7], we
concluded that the 3-Lie algebra structure appears only at linear level. This makes a direct
expansion as above impossible. Instead, we have to choose an explicit form of the 3-bracket
on the universal enveloping algebra of the 3-Lie algebra, which then turns into the 3-bracket
at linear level.

To extend the 3-bracket of a 3-Lie algebra to its universal enveloping algebra, one can
either give up the fundamental identity or total antisymmetry of the 3-Lie bracket beyond
linear order. In the latter case, one arrives either at the generalized 3-Lie algebras of [21] or
the Hermitian 3-Lie algebras of [24] giving a matrix model of the ABJM theory. As stated
before, we are interested in descriptions of quantized Nambu-Poisson manifolds as described
in [I7]. For that reason, we will choose to work with a totally antisymmetric operator product
and give up the fundamental identity.

4.2.  Structures on the universal enveloping algebra

Consider a 3-Lie algebra A. We define its universal enveloping algebra U(A) [17] as the
quotient of the tensor algebra of the underlying vector space of A by the two-sided ideal

3In fact, it corresponds to the one-point compactification of this hyperboloid; see the discussion in [I7].
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generated by the relations

3

[TaluTa27Ta3] - Z Eijk Ta; (= Taj ® Tak =0 s (41)
i7j7k:1

where 7, are generators of A. In practice, we will represent the universal enveloping algebra in
terms of finite-dimensional matrices which will lead to the factoring by further ideals, as e.g.
Yo 72 = R? in the case of the fuzzy three-sphere. We call the resulting algebras the factored
universal enveloping algebras.

On U(.A), we can in principle define two distinct totally antisymmetric operator products.
(Note that we have to make sure in each concrete case that this definition is really invariant
on the equivalence classes defined by (4.1).) The first one is defined by demanding that the
bracket is totally antisymmetric and that it satisfies the generalized Leibniz rule

[A,B,Ta®0]:Ta®[A,B,C]+[A,B,Ta]®C, (4'2)

where 7, € A and A, B,C € U(A). This definition ensures that the action of the associated
Lie algebra g4 extends nicely to the universal enveloping algebra U(.A), i.e. we have

l
[TaaTbaTcl K- ®Tcl] - Z Teq K- ®Tci,1 X [Ta7TbaTci] ®7—ci+1 X "'®7—cl . (43)
=1

As this 3-bracket is defined recursively, it is rather difficult to handle.
The second option is the simpler definition of

[A1, A, Az] =gy A ® Aj @ Ay, (4.4)

which evidently reduces to the 3-Lie algebra bracket for elements A; of U(.A) which are also
elements of A. By using this product, we essentially ignore the associative action of the Lie
algebra g 4. However, we found in [I7] that it is this operator product that is most suitable
for e.g. the description of ]R?)’\.

Consider now a solution #! € A to the equations of motion (BI). We take z! as a
background and expand around it as

X =2l 4 vYT, (4.5)

where Y7 is valued in ¢ (A). To plug this expansion into the action (2.6), we need an extension
of the metric on the 3-Lie algebra to the universal enveloping algebra. In the concrete examples
we will study in the following, such a metric will always appear naturally. We will now interpret
the result of substituting the expansion ([AH]) into the action (2:6) extended to the universal
enveloping algebra U(.A) as a field theory on the noncommutative space described by U(A).

4.3.  Field theory on fuzzy S°

Recall that the construction of fuzzy S makes use of a subalgebra of endomorphisms on the

Hilbert space of fuzzy S*. The latter space is obtained by embedding S* into CP3. The
3+k)!
(3—!1—14!)
and £ € N. From this construction it is clear that there is an embedding of a reduced

algebra of quantized functions on CP? is given by N x N Hermitian matrices with N =
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universal enveloping algebra of the Clifford algebra C¢(IR%) in u(NN), and the same is then true
for the correspondingly reduced universal enveloping algebra of C/(R?). As discussed in [I7],
one possible totally antisymmetric operator product is here a totally antisymmetric matrix
product combined with an external matrix as

[A17A27A3] = [A17A27A37’Y5] (4 6)
= ciji (Ai Aj A vs — Ai Aj s A + Aiys Aj Ap — 5 Ai Aj Ay)

Nevertheless, here we prefer to use a bracket constructed recursively as in (£.2). As a scalar
product on u(N), we will use the standard Hilbert-Schmidt norm. The noncommutative field
theory then contains the term

tr ([mi,azj,Yk] [xi,xj,Yk]) . (4.7)

As our recursively defined 3-bracket (£.2) allows us to lift the action of the associated Lie
algebra g4, to the universal enveloping algebra, this term reproduces the desired kinetic term
in our matrix model. More explicitly, the generators z' are mapped to the generators of
C¢(R*) embedded into u(NN) by a homomorphism p, and this term reads

tr ([o,27, V¥ [o,27, Y¥)) = tr ([o(7), TOH)] [p(y), T(VH)]) . (4.8)

where T(Y*) is the polynomial Y* in 2% with the replacements x' <+ 2* and 22 < 23
Besides the kinetic term (4.7), there is a mass and potential terms,

tr (YY), eym tr (VLYY YY ) oo (VLY YR Y Y9 Y] (4.9)
and the constant terms (with dimensionful prefactors)

tr(z'2’) = R*,  eym tr ([:Ei,:nj,xk] :El) =4'RY,  tr ([:Ei,xj,xk] (2%, 27, 2%]) = 41 R .
(4.10)
There are also momentum-dependent terms

eiji tr (20,20, YF YY) ot ([0, 20, YR [0, Y9, 2") e ([2f, 27, YR Y, Y9, YR]) L (410)

There are further terms appearing in the action, but they do not allow for an immediate
interpretation.

The momentum-dependent terms are reminiscent of those which occur in recent proposals
for renormalizable noncommutative gauge theories, which are modifications of the standard
noncommutative Yang-Mills theory that eliminate the usual problems associated with UV/IR
mixing; see [39] for a recent review. It would be interesting to investigate the behaviour of
our induced quantum gauge theories in more detail along these lines. In the strong coupling
limit, it is clear that the potential terms reduce appropriately to the potential terms of the
usual gauge theory on fuzzy S2. The inner derivations of ga, = s0(4) in the representation
u(N), p(y¥), are reduced to representations of su(2) given by p(y**) with

[p("). p(P )] = 7% p(r*) s - (4.12)
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4.4. Field theory on ]Ri;’\

The space ]Ri;’\ arising from the Nambu-Heisenberg 3-Lie algebra Anpg can be considered as a
discrete foliation of R? by fuzzy two-spheres. Recall that the algebra of endomorphisms of R‘;’\
is given by & := @), u(k), where each integer £k corresponds to a fuzzy sphere. Thus we are
looking for a representation of the universal enveloping algebra of the Nambu-Heisenberg 3-Lie
algebra Anxyg on €. As shown in [I7], we can use the totally antisymmetric matrix product for
this purpose, i.e.

[A,B,C] =L (A[B,C]+ B[C,A]+C[A,B]), AB,CEcE, (4.13)

and at linear level, where the generators 7; of Axg correspond to the endomorphisms in £
describing linear coordinate functions on all the fuzzy spheres, this product reproduces the
Nambu-Heisenberg 3-Lie algebra. It is clear that a central element of the Lie algebra will not
be central in the 3-Lie algebra. In particular, one has

[1,A,B] =a[A,B], acCx. (4.14)

This issue was already discussed in [17].
The expansion of the action around the background solution z° satisfying the relations of
the Nambu-Heisenberg 3-Lie algebra Ay is given in terms of

o
X' =o' +Y' =P (or(o") + Vi) , (4.15)
k=1

with the generators o' given in the k-dimensional irreducible representation pj of su(2) and
Yki are elements of u(k) on which these representations act. It follows, in particular, that
the action will split into a sum of separate actions on each fuzzy sphere. While the expected
kinetic terms on each sphere corresponding to the second Casimir operator of su(2) in the
representation formed by u(k) is contained in the actions, the terms corresponding to the
radial derivative (which would have to be discrete, cf. [40]) is absent. The expanded field
theory will therefore not yield the expected noncommutative gauge theory.

4.5.  Field theory on more general backgrounds

We saw above that one of the major problems in obtaining noncommutative field theories from
the 3-Lie algebra model is arriving at the appropriate kinetic terms in the action. Another
approach to this problem would be to consider solutions with non-trivial gauge potential A,
from which the appropriate kinetic terms are constructed or at least complemented. This
strategy would certainly work for ]R?)’\. For spaces of dimension larger than three, this is
however much less clear. Moreover, this approach further deviates from the original philoso-
phy of constructing noncommutative gauge theories from zero-dimensional field theories. We
therefore refrain from going into any further details.

5. osp(1]32)-invariance

Some time ago, the superalgebra osp(1]|32) was suggested to be the symmetry algebra under-
lying M-theory. This led Smolin to study cubic matrix models with matrices taking values in

15



g ® osp(1]32), where g is a gauge algebra [19]. In the following, we will point out the close
relationship between our 3-Lie algebra reduced model and these cubic supermatrix models.

We start from the observation that the BLG theory can be rewritten using fields taking
values in the Clifford algebra of R"!9 as partly done e.g. in [22]. Let I' = (T, I'y) denote the
generators of this Clifford algebra, satisfying

{F;uru} =MNuv > {FM,F[} =0 N {F[,PJ} = (5]] . (51)

We combine the components of the gauge potential A, into the Clifford algebra valued object
A :=T#A, and similarly, instead of the scalar fields X I we work with X = T'; X!, We also
introduce the derivative operator 0 := I'* 9,,, such that the Dirac operator is ¥ :=I'*V, =
0+ A.

The BLG Lagrangian associated to a metric 3-Lie algebra A with associated Lie algebra
g4 can now be written as

Lo = 3 T((VX, VX)) +3 (T, Y9 + 1 (¥, [X, X, 9])

5.2
+ & 6T(([X,X,X], [X,X,X])> — 3 T(Toiz (A, 04+ § (4, 4])) . &2

Here T'(—) = % tre(—) is the properly normalized trace over the Clifford algebra C =
C{(RY19). The supersymmetry transformations are given by

6.X = ily (eT'W) , 6.0 = VXe—L[X, X, X]e, 8.4 = il (eT(XAD)). (5.3)

It is evident that the same rewriting of the action works in our dimensionally reduced model
(Z6). We note that a subset of the Clifford algebra C¢(IR1?) coincides with the bosonic part
of the superalgebra osp(1|32), cf. [19]. Recall that osp(1|32) is defined in terms of 33 x 33
supermatrices

A B |9
c —-AT|¢ |, (5.4)
o' —¢T |0

where A, B, C are 16 x 16 bosonic matrices and v, ¢ are 16-component Majorana spinors. In
particular, when using the conventions

0 —-110 0 1]0 Y™ 0 |0
=1 of|of|, =100, =] 0 —™|0 ]|, (55)
0 0 |0 0 0]0 0 0 |0
where /™, m = 1,...,9 are 16 x 16 symmetric real generators of C/(R?), the matrices
', I“Toa, TV (5.6)
are elements of 0sp(1]32). Moreover, because of the chirality condition T'g1o¥ = —¥, we can

write the action of the 3-Lie algebra reduced model in the form
Sstam = sT(AX,AX)) — 3 (T, A0) + 1 (9, [X, X, ¥]) -
. 5.7

+ 5 (16X, X0, 1%, X, X)) ) + 47 ((4 14, 4]))
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where A = AT(15. The action (57) can thus be interpreted in terms products of supermatrices
in 0sp(1/32) and the trace operation T' can be incorporated as a supertrace. The reduced
model has therefore manifest osp(1|32)-invariance. Instead of developing this symmetry in
more detail, let us examine how closely related the action Ssp,anm is to the cubic matrix model
of [19].

The dichotomy of the matter and gauge fields in our 3-Lie algebra model forces us to
introduce a more complicated gauge structure than usual. We will work with a matrix M
taking values in o0sp(1]32) ® V, where V := A @ g4. Moreover, we define a triple bracket
T3: VRV ®V — C as the cyclic product

%((A, [B,C])) for A,B,C € gy
%(A,BC) for ACe A, Begy
T3(A,B,C) =< L(C,AB) for BBLC€ A, Acgy . (5.8)
%(B,CA) for ABeA, Cecgy
0 otherwise

With this definition, the cubic supermatrix model
Scsm = str (E(M, M, M)) , (5.9)

with str (—) the supertrace and the matrix

[ A-LiDX,X)| v
M—< 2@ ‘O)’ (5.10)

reproduces the Chern-Simons part and the fermionic part of (5.7)). Similarly to [41], one could
therefore argue that after introducing a mass-like term, nonperturbative effects would induce
the bosonic part, thus completing the action.

Here we will follow a different approach. We introduce the cyclic quadruple bracket Ty :
VRVVeV — C with

1(AB,CD) for A,Cega, BDEA
Ti(A,B,C,D) =4 +(BC,DA) for B[Dega, A,C€ A (5.11)
0 otherwise
and consider the action
Scsm = str ('Tg(M,M, M)) + str (H(M,M, M,M)) (5.12)
with
A_ 1
Mo [AZEDEX) X | ) (5.13)
7 IE

The additional term reproduces the kinetic terms for the bosonic matter fields as well as
the bosonic matter potential. The potential appears with the right sign but with a different
prefactor from the one appearing in (5.7). It would be interesting to study the relation between
our 3-Lie algebra reduced models and the cubic matrix models of Smolin in more detail. This,
however, is beyond the scope of the present paper.
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Appendix

A. Generalized 3-Lie algebras

Recall that a 3-Lie algebra [42] is a vector space A endowed with a totally antisymmetric,
trilinear map [—, —, —] : AN AA A — A which satisfies the fundamental identity

[a, b, [z,y, z]] = [[a, b, x],y,z] + [m, [a, b, y],z] + [m,y, [a, b, z]] (A1)

for all a,b,z,y,z € A. We can endow A with an invariant symmetric bilinear form, i.e. a map
(—,—): A® A — C satistying the compatibility condition

([a, b,:n],y) + (x, [a, b, y]) =0 (A.2)

for all a,b,z,y € A. If this form is non-degenerate, then it defines a metric 3-Lie algebra.
A 3-Lie algebra A comes with an associated Lie algebra g of inner derivations, which
consists of the span of the linear maps D(a,b) : A — A, a,b € A, defined via

D(a,b)x = [a,b,x], xz€A. (A.3)

The invariant symmetric bilinear form on A induces an invariant symmetric bilinear form on
g4 defined through

((D(a, b), D(c, d))) = ([a, b, c],d) , a,bc,deA. (A.4)

This inner product is different from the Cartan-Killing form.
The most important example of a metric 3-Lie algebra is A = A4. It is given by the vector
space R* with standard basis (e1, es, 3, e4), endowed with the 3-bracket and invariant form

leisej,ex] =c€ijmer  and (e, e5) = 65 - (A.5)

Its associated Lie algebra is ga, = s0(4) = su(2) @ su(2), and the alternative invariant form
(=,—) on ga, is of split signature.

A generalized 3-Lie algebra [21] is a vector space A endowed with a trilinear map which is
antisymmetric only in its first two slots but still satisfies the fundamental identity. Contrary
to [21], we allow for invariant bilinear forms on A which are not positive definite. Just as in the
case of 3-Lie algebras, these generalized 3-Lie algebras come with an associated Lie algebra
g4 possessing an alternative invariant symmetric bilinear form. Generalized 3-Lie algebras
contain 3-Lie algebras as special cases and provide a natural extension of them [43]. They
also contain families which can be parameterized by an integer N [22], similarly e.g. to the
families o(/V) and u(NN) of Lie algebras.

18



References

[1]

2]

[9]

[10]

[11]

[12]

N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, A large N reduced model as
superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115].

T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, M-theory as a matriz model: A
conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].

H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa, and T. Tada, Noncommutative
Yang-Mills in IIB matriz model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141].

A. Connes, M. R. Douglas, and A. Schwarz, Noncommutative geometry and matrixz theory:
Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162].

N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999)
032 [hep-th/9908142].

R. C. Myers, Dielectric-branes, JHEP 12 (1999) 022/ [hep-th/9910053).

S. Iso, Y. Kimura, K. Tanaka, and K. Wakatsuki, Noncommutative gauge theory on fuzzy
sphere from matriz model, Nucl. Phys. B 604 (2001) 121/ [hep-th/0101102].

D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, Strings in flat space and pp-waves
from N' = 4 super Yang-Mills, JHEP 04 (2002) 013 |[hep-th/0202021].

D.-s. Bak, Supersymmetric branes in pp-wave background, Phys. Rev. D 67 (2003) 045017
[hep-th/0204033].

J.-H. Park, Supersymmetric objects in the M-theory on a pp-wave, JHEP 0210 (2002)
032 [hep-th/0208161].

J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes,
Phys. Rev. D 77 (2008) 065008 [0711.0955 [hep-th]].

A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66
[0709.1260 [hep-th]].

M. Sato, Covariant formulation of M-theory I, Int. J. Mod. Phys. A 24 (2009) 5019
[0902.1333 [hep-th]].

K. Furuuchi and D. Tomino, A supersymmetric reduced model with a symmetry based on
Filippov algebra, JHEP 05 (2009) 070 [0902.2041 [hep-th]].

M. Sato, Model of M-theory with eleven matrices, JHEP 1007 (2010) 026 [1003.4694
[hep-th]].

D. Tomino, Quantum corrections of (fuzzy) spacetimes from a supersymmetric reduced
model with Filippov 3-algebra, Nucl. Phys. B 844 (2011) 164 [1007.3090 [hep-th]].

19


http://dx.doi.org/10.1016/S0550-3213(97)00290-3
http://www.arxiv.org/abs/hep-th/9612115
http://dx.doi.org/10.1103/PhysRevD.55.5112
http://www.arxiv.org/abs/hep-th/9610043
http://dx.doi.org/10.1016/S0550-3213(99)00633-1
http://www.arxiv.org/abs/hep-th/9908141
http://www.arxiv.org/abs/hep-th/9711162
http://www.arxiv.org/abs/hep-th/9908142
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://www.arxiv.org/abs/hep-th/9910053
http://dx.doi.org/10.1016/S0550-3213(01)00173-0
http://www.arxiv.org/abs/hep-th/0101102
http://www.arxiv.org/abs/hep-th/0202021
http://dx.doi.org/10.1103/PhysRevD.67.045017
http://www.arxiv.org/abs/hep-th/0204033
http://www.arxiv.org/abs/hep-th/0208161
http://dx.doi.org/10.1103/PhysRevD.77.065008
http://www.arxiv.org/abs/0711.0955
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.014
http://www.arxiv.org/abs/0709.1260
http://dx.doi.org/10.1142/S0217751X09047661
http://www.arxiv.org/abs/0902.1333
http://dx.doi.org/10.1088/1126-6708/2009/05/070
http://www.arxiv.org/abs/0902.2041
http://dx.doi.org/10.1007/JHEP07(2010)026
http://www.arxiv.org/abs/1003.4694
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.025
http://www.arxiv.org/abs/1007.3090

[17]

[21]

22]

J. DeBellis, C. Saemann, and R. J. Szabo, Quantized Nambu-Poisson manifolds and n-Lie
algebras, J. Math. Phys. 51 (2010) 122303 [1001.3275 [hep-th]].

S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [0803.3218 [hep-th]].

L. Smolin, M-theory as a matriz extension of Chern-Simons theory, Nucl. Phys. B 591
(2000) 227 [hep-th/0002009)].

P. De Medeiros, J. M. Figueroa-O’Farrill, and E. Mendez-Escobar, Lorentzian Lie
3-algebras and their Bagger-Lambert moduli space, JHEP 07 (2008) 111 [0805.4363
[hep-th]].

S. Cherkis and C. Saemann, Multiple M2-branes and generalized 3-Lie algebras, Phys.
Rev. D 78 (2008) 066019 [0807.0808 [hep-th]].

S. Cherkis, V. Dotsenko, and C. Saemann, On superspace actions for multiple M2-branes,
metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [0812.3127
[hep-th]].

O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N' = 6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091
[0806.1218 [hep-th]].

J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories,
Phys. Rev. D 79 (2009) 025002 [0807.0163 [hep-th]].

J. Gomis, A. J. Salim, and F. Passerini, Matriz theory of type IIB plane wave from
membranes, JHEP 08 (2008) 002 [0804.2186 [hep-th]].

M. M. Sheikh-Jabbari, Tiny graviton matrixz theory: DLCQ of IIB plane-wave string
theory, a conjecture, JHEP 09 (2004) 017 [hep-th/0406214].

K. Hosomichi, K.-M. Lee, and S. Lee, Mass-deformed Bagger-Lambert theory and its BPS
objects, Phys. Rev. D 78 (2008) 066015/ [0804.2519 [hep-th]].

P.-A. Nagy, Prolongations of Lie algebras and applications, |0712.1398 [math.DG].

J. M. Figueroa-O’Farrill and G. Papadopoulos, Plicker-type relations for orthogonal
planes, J. Geom. Phys. 49 (2004) 294 [math.AG/0211170].

Z. Guralnik and S. Ramgoolam, On the polarization of unstable D0-branes into non-
commutative odd spheres, JHEP 02 (2001) 032 [hep-th/0101001].

J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020
lhep-th/0611108].

M. Blau, J. M. Figueroa-O’Farrill, and G. Papadopoulos, Penrose limits, supergravity
and brane dynamics, Class. Quant. Grav. 19 (2002) 4753 [hep-th/0202111].

20


http://dx.doi.org/10.1063/1.3503773
http://www.arxiv.org/abs/1001.3275
http://dx.doi.org/10.1088/1126-6708/2008/05/085
http://www.arxiv.org/abs/0803.3218
http://dx.doi.org/10.1016/S0550-3213(00)00564-2
http://www.arxiv.org/abs/hep-th/0002009
http://dx.doi.org/10.1088/1126-6708/2008/07/111
http://www.arxiv.org/abs/0805.4363
http://dx.doi.org/10.1103/PhysRevD.78.066019
http://www.arxiv.org/abs/0807.0808
http://dx.doi.org/10.1103/PhysRevD.79.086002
http://www.arxiv.org/abs/0812.3127
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://www.arxiv.org/abs/0806.1218
http://dx.doi.org/10.1103/PhysRevD.79.025002
http://www.arxiv.org/abs/0807.0163
http://dx.doi.org/10.1088/1126-6708/2008/08/002
http://www.arxiv.org/abs/0804.2186
http://dx.doi.org/10.1088/1126-6708/2004/09/017
http://www.arxiv.org/abs/hep-th/0406214
http://dx.doi.org/10.1103/PhysRevD.78.066015
http://www.arxiv.org/abs/0804.2519
http://www.arxiv.org/abs/0712.1398
http://www.arxiv.org/abs/math.AG/0211170
http://dx.doi.org/10.1088/1126-6708/2001/02/032
http://www.arxiv.org/abs/hep-th/0101001
http://dx.doi.org/10.1103/PhysRevD.75.045020
http://www.arxiv.org/abs/hep-th/0611108
http://dx.doi.org/10.1088/0264-9381/19/18/310
http://www.arxiv.org/abs/hep-th/0202111

33]

[34]

[35]

[41]

[42]

[43]

Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405.

C.-S. Chu and D. J. Smith, Towards the quantum geometry of the M5-brane in a constant
C-field from multiple membranes, JHEP 04 (2009) 097 [0901.1847 [hep-thl].

C. R. Nappi and E. Witten, A WZW model based on a nonsemisimple group, Phys. Rev.
Lett. 71 (1993) 3751 [hep-th/9310112].

S. Halliday and R. J. Szabo, Noncommutative field theory on homogeneous gravitational
waves, J. Phys. A 39 (2006) 5189 [hep-th/0602036].

V. O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191
[hep-th/0212262).

T. Azuma, S. Bal, K. Nagao, and J. Nishimura, Nonperturbative studies of fuzzy spheres in
a matriz model with the Chern-Simons term, JHEP 0405 (2004) 005 [hep-th/0401038].

D. N. Blaschke, E. Kronberger, R. I. Sedmik, and M. Wohlgenannt, Gauge theories on
deformed spaces, SIGMA 6 (2010) 062 [1004.2127 [hep-th]].

A. B. Hammou, M. Lagraa, and M. M. Sheikh-Jabbari, Coherent state induced star-
product on RS and the fuzzy sphere, Phys. Rev. D 66 (2002) 025025/ [hep-th/0110291].

T. Azuma, S. Iso, H. Kawai, and Y. Ohwashi, Supermatriz models, Nucl. Phys. B 610
(2001) 251 [hep-th/0102168].

V. T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126.

P. de Medeiros, J. M. Figueroa-O’Farrill, E. Mendez-Escobar, and P. Ritter, On the Lie-
algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [0809.1086
[hep-th]].

21


http://dx.doi.org/10.1103/PhysRevD.7.2405
http://dx.doi.org/10.1088/1126-6708/2009/04/097
http://www.arxiv.org/abs/0901.1847
http://dx.doi.org/10.1103/PhysRevLett.71.3751
http://www.arxiv.org/abs/hep-th/9310112
http://dx.doi.org/10.1088/0305-4470/39/18/030
http://www.arxiv.org/abs/hep-th/0602036
http://dx.doi.org/10.1016/S0370-2693(03)00271-5
http://www.arxiv.org/abs/hep-th/0212262
http://dx.doi.org/10.1088/1126-6708/2004/05/005
http://www.arxiv.org/abs/hep-th/0401038
http://www.arxiv.org/abs/1004.2127
http://dx.doi.org/10.1103/PhysRevD.66.025025
http://www.arxiv.org/abs/hep-th/0110291
http://dx.doi.org/10.1016/S0550-3213(01)00324-8
http://www.arxiv.org/abs/hep-th/0102168
http://dx.doi.org/10.1007/BF00969110
http://dx.doi.org/10.1007/s00220-009-0760-1
http://www.arxiv.org/abs/0809.1086

	1. Introduction
	2. The 3-Lie algebra reduced model
	2.1. Supersymmetric deformations of the BLG theory
	2.2. Dimensional reduction of the deformed BLG theory
	2.3. Reduction to the IKKT matrix model

	3. Classical solutions
	3.1. Equations of motion
	3.2. Fuzzy spheres
	3.3. R**3-lambda and the noncommutative plane
	3.4. Homogeneous plane wave backgrounds
	3.5. Fuzzy hyperboloids

	4. Interpretation as noncommutative field theories
	4.1. General considerations
	4.2. Structures on the universal enveloping algebra
	4.3. Field theory on fuzzy S**3
	4.4. Field theory on R**3-lambda
	4.5. Field theory on more general backgrounds

	5. osp(1|32)-invariance
	Acknowledgements
	Appendix
	A. Generalized 3-Lie algebras

	References

