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Abstract

In a Minkowski spacetime, one may transform the Dirac wave func-
tion under the spin group, as one transforms coordinates under the
Poincaré group. This is not an option in a curved spacetime. There-
fore, in the equation proposed independently by Fock and Weyl, the
four complex components of the Dirac wave function transform as
scalars under a general coordinate transformation. Recent work has
shown that a covariant complex four-vector representation is also pos-
sible. Using notions of vector bundle theory, we describe these two
representations in a unified framework. We prove theorems that re-
late together the different representations and the different choices
of connections within each representation. As a result, either of the
two representations can account for a variety of inequivalent, linear,
covariant Dirac equations in a curved spacetime that reduce to the
original Dirac equation in a Minkowski spacetime. In particular, we
show that the standard Dirac equation in a curved spacetime, with
any choice of the tetrad field, is equivalent to a particular realization
of the covariant Dirac equation for a complex four-vector wave func-
tion.
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1 Introduction

The original Dirac equation applies in the Minkowski spacetime of special rel-
ativity. As the coordinates are Lorentz-transformed, the Dirac wave function
transforms under the spin group. However, Weyl [1] and Fock [2] recognized
that, on changing the coordinates, transforming the Dirac wave function un-
der the spin group is not an option in a curved spacetime, or even in a flat
spacetime with affine coordinates. They proposed independently what has
become the standard version of the Dirac equation in a curved spacetime
[1, 2], hereafter the Dirac-Fock-Weyl (DFW) equation. As is well known for
the DFW equation [3, 4, 5], the four complex components of the wave func-
tion transform as a scalars under a general coordinate transformation. Re-
cently, two alternative extensions of the Dirac equation to a curved spacetime
have been proposed [6], based on the tensor representation of the Dirac field
(TRD) [6, 7]. In these alternative equations, the wave function is a complex
four-vector and the set of the components of the four Dirac matrices builds
a third-order affine tensor. Thus, there are only two possibilities in a curved
spacetime. Either the Dirac wave function transforms as a quadruplet of
four complex scalar fields under coordinate transformations as in DFW, or
it transforms as a complex four-vector field as in TRD. In a flat spacetime
with linear affine coordinates, and constant Dirac matrices, TRD and DFW
have been shown to be equivalent [8]. Thus there can be no question as to
the fermion content of TRD.

On the other hand, locally, in a curved spacetime or in a flat spacetime
with general coordinates, the set of four complex 4×4 Dirac matrices γµ(X)
depends on the point X in spacetime, thus it becomes a field X 7→ γµ(X),
for which there is a continuum of different possible choices—all satisfying the
same anticommutation relation in the given Lorentzian spacetime (V, gµν):

γµγν + γνγµ = 2gµν 14, µ, ν ∈ {0, ..., 3} (14 ≡ diag(1, 1, 1, 1)). (1)

At any point X in the spacetime, any two possible choices γµ(X) and γ̃µ(X)
are related together by a local similarity transformation S(X) ∈ GL(4,C),
which is unique up to a non-zero complex factor λ(X), such that we have
[8, 9]:

γ̃µ = S−1γµS, µ = 0, ..., 3. (2)

For the DFW equation, the Dirac matrices γµ are defined through an or-
thonormal tetrad field [3, 4, 5]. This implies, as is well known, that only
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the local similarity transformations which at any point belong to the spin
group are admissible. It is also well known that the DFW equation is
covariant [3, 5] under any such (differentiable) admissible local similarity,
X 7→ S(X) ∈ Spin(1, 3), when this is simultaneously applied to the gamma
field by Eq. (2), and to the wave function by

Ψ̃ = S−1Ψ. (3)

For TRD, the γµ field is not necessarily defined through an orthonormal
tetrad field. Accordingly, the similarity matrices S(X) can then be any ele-
ment of the linear group GL(4,C) [10]. In the literature, it is assumed that
the covariance of the DFW equation under the admissible similarities implies
a complete physical insensitivity to the different possible choices of the γµ

field. (This assumption was stated explicitly by Audretsch [11].) However, it
turns out that the Hamiltonian operator H in a given coordinate system does
depend on the γµ field for both TRD and DFW theories [10, 12, 13]. For
instance, the hermiticity of the Dirac Hamiltonian H is not preserved under
all local similarity transformations that are admissible for DFW, implying
that the validity of Leclerc’s hermiticity condition for H [14] is not general
[10]. (For more about the Hamiltonian theory see Ref. [10].)

Furthermore, unlike in DFW, the γµ ’s in TRD are not required to be
covariantly constant. Since the choice of the Dirac matrices γµ is less con-
strained in TRD theory than in DFW theory, it might be the case that each
of the TRD equations, say TRD–1 and TRD–2, be more general than the
standard DFW equation. The main aim of this paper is to prove that this
is indeed the case in a precise sense. We will prove that, in any given non-
compact, four-dimensional, Lorentzian spacetime (V, gµν) admitting a spinor
structure, any DFW equation, obtained by a particular choice of the tetrad
field in that spacetime, is equivalent to a particular case of the TRD–1 equa-
tion (and also to a particular case of the TRD–2 equation). We will also
prove that any DFW equation is equivalent to a particular case (amounting
to a specific choice of the Dirac matrices) of a very simple form (“QRD–0”)
of the Dirac equation in a curved spacetime, which is obtained by setting the
connection matrices equal to zero.

We shall begin in Section 2 with a unified discussion of the two possi-
ble representations (QRD and TRD) in a non-compact, four-dimensional,
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Lorentzian spacetime admitting a spinor structure. This discussion is based
on the introduction of spin-half fields, defined as sections of vector bundles.
We shall also provide the link with matrix notation which is more commonly
used in the physics literature. Then in Section 3, we shall introduce different
classes of Dirac equations, including the simple form QRD–0, and a telepar-
allel version (also new). Section 4 will discuss the notion of a local similarity,
which can be regarded as either a passive change of basis of the fibers of
the vector bundles, or an active transformation of the spin-half fields. The
Lagrangian common to all versions will be introduced in Section 5. Then in
Section 6, we will state and prove the theorems that establish equivalences
between classes of Dirac equations.

2 The two possible representations

2.1 A common geometrical framework

Let U be an open subset of the spacetime V where local coordinates are
defined and let X 7→ γµ(X) (µ = 0, ..., 3) be a set of Dirac matrix fields 1

defined on the complex tangent bundle TCU, satisfying the anticommutation
relation (1). Here C denotes the set of complex numbers; whereas, C4 will
be the standard complex vector space consisting of quadruplets of complex
numbers. Furthermore, TU denotes the tangent bundle of U and TCU de-
notes the complex tangent bundle of U.

Then, corresponding to each vector p ∈ TU there is a Dirac matrix of the
form: 6p ≡ pµγµ. Note that the dagger notation is due to Feynman [15].
That is, there is a vector bundle map TU → Hom (TCU,TCU), taking p ∈
TU to 6p ∈ Hom (TCU,TCU). Then, for all p, k ∈ TU, it follows from the
anticommutation relation (1) that [15]:

6p 6k + 6k 6p =< p, k >, (4)

where < , > is the spacetime metric. Note that both Feynman’s dagger no-
tation 6p as well as the anticommutation relation (4) are coordinate free.

1 In this subsection, we will use the terms “matrix” and “linear map” synonymously,
noting that a matrix acting on a fiber of a vector bundle E is a linear map described in
terms of some basis.
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We will say that a complex vector bundle E on the spacetime V is a
“spinor bundle” if there is a global field of such Dirac matrices acting irre-
ducibly on it. 2 More specifically, a smooth complex vector bundle E, whose
fiber is C4 and whose base space is a four-dimensional spacetime V, will be
called a spinor bundle if and only if there is a smooth vector bundle map
TV → Hom (E,E), which projects to the identity map on V, taking each
vector p ∈ TV to 6p ∈ Hom (E,E), satisfying the anticommutation relation
(4).

Hence, given any connection D defined on the complex vector bundle E,
the Dirac equation for a fermion particle of massm (setting Planck’s constant
~ = 1 and the speed of light c = 1) can be written for a smooth section ψ of
E as follows:

6Dψ = −imψ, (5)

where the global Dirac operator 6D is defined as [18]:

6D ≡
∑

α,β

ηαβ 6uβDuα
(6)

where ηαβ (α, β = 0, ..., 3) is the Minkowski metric, and (uα) is any orthonor-
mal basis of the tangent space TVX , at each spacetime point X . Note that
Eq. (6) does not depend on the choice of orthonormal basis (uα) chosen
arbitrarily at each spacetime point X .

In order to define a Lagrangian, it is commonly assumed in the definition
of “spinor bundle” the further property that there exists a nonsingular, not
necessarily positive, Hermitian metric, smoothly defined on each fiber of
the complex vector bundle E, with respect to which the Dirac matrices are
Hermitian [8, 18]. This Hermitian metric was first introduced by Pauli [9, 22]
and called a “hermitizing” metric or matrix for the Dirac matrices. Denoting
the hermitizing metric by ( , ), the Dirac Lagrangian is defined globally on

2 In this paper, all vector bundles will be smoothly defined over the spacetime V (or
an open subset thereof which will be clear from the context) as their common base space.
Sections of vector bundles will be smooth as well. A map between vector bundles will be
a morphism of vector bundles which is smooth and which projects to the identity map
on their common base space V (or open subset thereof) ([16], pp. 65–67; [17], paragraph
16.15.2).
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the spacetime V as follows:

L =
i

2
[(ψ, 6Dψ)− ( 6Dψ, ψ) + 2im(ψ, ψ)] . (7)

This Lagrangian depends on the choice of Dirac matrices and hermitizing
metric, as well as the choice of connection on the complex vector bundle E.
Note that similar to the spacetime metric < , > which induces a canonical
real linear isomorphism from the tangent bundle TV to its dual TV◦, the her-
mitizing metric ( , ) induces a canonical conjugate linear isomorphism from
E to its dual E◦. This conjugate linear isomorphism E → E◦ which takes
ψ → ψ is called the “spinor adjoint map”. Further study of the Lagrangian
(7) and the linear, covariant Dirac equations derived from it, for general
choices of the Dirac matrices and hermitizing metrics and connections on E,
is presented in Section 5.

If there exists a spinor bundle E on the spacetime V, then V will be said
to “admit a spinor structure”. If V is four-dimensional, noncompact, and
admits a spinor structure, then there exists a global tetrad field on V [19].
(According to Penrose and Rindler [20], these are the only spacetimes of
physical interest. Here and everywhere in this paper, the tetrad fields are
assumed to be smooth and nonsingular.) Such a spacetime V enjoys the fol-
lowing two properties: i) the trivial vector bundle V×C4 is a spinor bundle,
and ii) the complex tangent bundle TCV is a spinor bundle. (See Appendix
A for a straightforward constructive proof.)

Properties (i) and (ii) motivate defining two representations of wave func-
tions ψ. In the first representation of a wave function, used in the standard
DFW theory, which we will call the quadruplet representation of the Dirac
theory (QRD), ψ is defined to be a section of the trivial vector bundle V×C4.
In the second representation of a wave function, which we will call the tensor
representation of the Dirac theory (TRD), ψ is defined to be a section of the
complex tangent bundle TCV. Thus, ψ is either a quadruplet of four scalar
fields for QRD or a four-vector field for TRD. The connection D is a specific
connection on the relevant vector bundle E in which the wave function ψ is
living, which is defined either as the spinor connection for DFW, or e.g. as
the Levi-Civita connection extended to the complex tangent bundle TCV for
TRD [6]. We will see in Section 3 that many other choices for the connection
D are possible in both representations.
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Note that by the definition of a connection D on a vector bundle E, it as-
sociates to any section ψ of E, a section Dψ of the tensor product bundle
TV◦ ⊗ E, where we denote the vector bundles dual to TV and E as TV◦ and
E◦, respectively [21].

Recall the following canonical isomorphisms of vector bundles ([17], Eq.
(16.18.3.4)):

Hom(E,F) ∼= F⊗ E◦ ∼= E◦ ⊗ F, (8)

where E and F are two vector bundles having in common the base space V.
Then, using the fact that smooth sections of the vector bundle Hom(E,F)
may be identified with smooth vector bundle maps E → F, which project
to the identity map on V ([16], p. 67), and finally, using the canonical
isomorphism TV ∼= TV◦ induced by the spacetime metric on the tangent
bundle TV, the Dirac matrices may be regarded as a smooth section γ of the
following vector bundle:

TV ⊗ E⊗ E◦ ∼= TV◦ ⊗ E⊗ E◦

∼= TV◦ ⊗Hom(E,E) ∼= Hom (TV, Hom(E,E)) (9)

Such a section will be called simply a “γ field”.

2.2 Local expressions

Locally, by restricting to a sufficiently small open subset W of the spacetime
V, we may select a frame field (or basis of vector fields) (ea) on the relevant
vector bundle E. 3 Restricting the wave function ψ to W, the wave function
may be expressed as:

ψ = Ψa ea. (10)

Then, choosing local coordinates X 7→ (xµ) in an open subset U ⊂ W, with
the corresponding basis of coordinate vector fields (∂µ) ≡

(

∂
∂xµ

)

, which is a
frame field on the tangent bundle TU, we have from Eq. (9):

γ = γµab ∂µ ⊗ ea ⊗ θb, (11)

3 A notation like (ea) will designate an ordered family of elements indexed by a set of
indices which is clear from the context. In this paper, the set of indices will always be
{0, ..., 3}.

7



where (γµab ) is the family of the complex coefficients of the tensor field γ, and
(θa) is the frame field (or basis of one-forms) dual to the selected frame field
(ea). From the field (11), the Dirac matrices are defined to be the matrices
with components:

(γµ)ab ≡ γµab . (12)

Thus, they are defined locally, and depend on the choice of local coordinates
and local frame field. These definitions give rise to the correct transformation
behaviors.

Consider any section ψ of the complex vector bundle E restricted to U.
In the local frame (dxµ) on TU◦, dual of the coordinate frame (∂µ), and in
the local frame field (ea) on E restricted to U, Dψ has the local expression:

Dψ = DµΨ
b dxµ ⊗ eb. (13)

Accordingly, we have

D∂µψ ≡ (Dψ)(∂µ) = DµΨ
b eb. (14)

In particular, we define the connection matrices Γµ, whose components (Γµ)
b

a

are determined from:
D∂µea = (Γµ)

b
a eb. (15)

The components DµΨ
b of Dψ in Eq. (13) can then be written by using Eqs.

(10) and (15):

DµΨ
b ≡ ∂Ψb

∂xµ
+ (Γµ)

b
a Ψ

a. (16)

In such local coordinates, the Dirac equation (5) reduces to the usual form:

γµDµΨ = −imΨ, (17)

where Ψ is the column vector (Ψa), and DµΨ for each µ = 0, ..., 3 is the
column vector (DµΨ

b).

For TRD, as in previous work [6, 8, 10, 12], the frame field (ea) on the
complex tangent bundle E = TCV can be taken to be the coordinate basis so
that ea ≡ δµa ∂µ. In that case, the components of the wave function: Ψµ ≡
Ψa δµa transform as the components of a four-vector field after a coordinate
change as follows: Setting Lµ

ν ≡ ∂x′µ

∂xν , we have for the TRD wave function:

Ψ′µ = Lµ
νΨ

ν . (18)
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Similarly, the components of the TRD Dirac matrices (11) are then given by
γµρν ≡ γµab δρa δ

b
ν and transform as an affine (2

1
) tensor [6, 10]:

γ′µρν = Lµ
σ L

ρ
τ

(

L−1
)χ

ν
γστχ . (19)

Whereas, the four scalar character of the wave function (10) for QRD means
that we have the canonical basis of C4, namely:

E0 = (1, 0, 0, 0), E1 = (0, 1, 0, 0), E2 = (0, 0, 1, 0), E3 = (0, 0, 0, 1)
(20)

as a fixed frame field (Ea) on the complex vector bundle E = V×C4. Hence,
the quadruplet of scalar fields (Ψa) remains invariant during a coordinate
change, and the Dirac matrices γµ in Eq. (12) transform as a matrix-valued
four-vector:

γ′µ = Lµ
ν γ

ν . (21)

The anticommutation relation (1) is covariant under a change of chart, for
either of the two transformation modes (21) and (19) [7].

In spinor theory (including DFW), tensor indices refer to three basic
vector bundles and their duals. The three basic vector bundles are the tan-
gent bundle TV, the spinor bundle E, and the complex conjugate spinor
bundle E∗. Thus, there are four types of tensor indices: middle and late
Greek letters µ, ν, ... will be used for coordinate indices; early Greek letters
α, β, ... will be used for tetrad (or frame) indices for TV; early Latin let-
ters a, b, ... will be used as frame indices for E; and a∗, b∗, ... will be used
as frame indices for E∗. Note that contractions can only be performed
for like indices. Finally, middle Latin letters j, k, ... will be used as in-
dices for spatial coordinates only (j, k = 1, 2, 3). Throughout this paper
(ηαβ) = (ηαβ) = (ηab) = (ηab) ≡ diag(1,−1,−1,−1) will be used to denote
Minkowski metrics.

3 Special classes of Dirac equations

We will first introduce special classes of QRD equations and then TRD equa-
tions. Within a given class, a continuum of different possibilities exist for
the γ field [10, 12, 13]. The connection is fixed by the choice of the γ field
for DFW, but is chosen independently of the latter for the other four classes
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that we will introduce. Whichever class is chosen, the Dirac equation has
either the normal form (17), or the modified (extended) form (41) that we
will introduce in Section 5.

3.1 The Dirac-Fock-Weyl (DFW) equation

This equation [1, 2], defined for sections of the trivial bundle E = V× C4, is
the standard form of the Dirac equation in a curved spacetime. It is a QRD
equation characterized by two facts [5]:

a) In any local coordinate domain U ⊂ V, the γ field is expressed as a
linear function of a fixed set of constant Dirac matrices, say (γ♮α), through
a set of real coefficients aµα(X) varying with the spacetime point X ∈ U:

γµ(X) = aµα(X) γ♮α. (22)

Here the set (γ♮α) of “flat” Dirac matrices is a constant solution of Eq. (1)
above with the Minkowski metric ηαβ instead of the spacetime metric gµν :

γ♮αγ♮β + γ♮βγ♮α = 2ηαβ 14, α, β ∈ {0, ..., 3}. (23)

The coefficients aµα are the components with respect to the local coordinate
basis on U of a real global orthonormal tetrad field (uα) on V ; i.e., a global
orthonormal frame field on the tangent bundle TV. That is, uα = aµα ∂µ.
Therefore, the components aµα of uα satisfy the orthonormality condition:

gµν a
µ
α a

ν
β = ηαβ , (24)

[here gµν ≡< ∂µ, ∂ν >], which ensures that the field of “curved” Dirac ma-
trices (γµ) in Eq. (22) satisfies the anticommutation relation (1).

Globally, the DFW γ field is given by:

γ = γαab uα ⊗ Ea ⊗Θb, (25)

where (Ea) is the canonical constant frame field (20), and (Θa) denotes its
dual frame field. Note that Ea ⊗Θb can be regarded as a matrix with one in
the ab position and zeros elsewhere.
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b) The gamma field is covariantly constant with respect to the relevant
connection, i.e., Dγ = 0.

The two conditions a) and b) lead to the form

Γµ = ωµαβ s
αβ (26)

for the matrices of the connection D, called “spin matrices”, with real co-
efficients ωµαβ and where sαβ ≡ [γ♮α, γ♮β], and to determining the precise
expression of the coefficients ωµαβ [5]. It is found that this expression, and
thus the corresponding “spin connection” D itself, depends on the field γ.

In the literature, the DFW equation has been usually used with the fol-
lowing additional restriction on the set (γ♮α) of constant “flat” Dirac matrices:

c) The constant matrix γ♮0 is a hermitizing matrix [9, 8] for the Dirac
matrices γµ(X) in Eq. (22).

This restriction, which usually is not explicitly stated (except for Refs. [3,
11]), is gotten by choosing a particular set (γ♮α), such that γ♮0 is in fact a
hermitizing matrix for the set of constant “flat” Dirac matrices (γ♮a) [10].

3.2 Other classes of Dirac equations

We will now introduce four other interesting classes of Dirac equations: one
is a QRD equation, the other three are TRD equations. For these four
classes, we do not restrict the γ field in any way beyond the necessity of
satisfying the anticommmutation relation (1). Thus, each of these four classes
is characterized by assuming a specific connection on the relevant vector
bundle. The TRD–1 and TRD–2 equations were proposed in Ref. [6]. The
QRD–0 and TRD–0 equations are new.

3.2.1 The QRD–0 equation

We may introduce a very simple form of QRD equation by taking the trivial
connection on the trivial bundle E = V × C4:

Γµ = 0 in the canonical frame field (Ea). (27)
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In view of (15), this connection can be characterized by the fact that

DEa = 0. (28)

3.2.2 The TRD–1 and TRD–2 equations

For the TRD–1 equation, the connection is simply the Levi-Civita connection
(extended to TCV). Thus, if the frame field (ea) on the complex tangent
bundle TCV is taken locally to be the coordinate basis (∂µ) associated with
a chosen chart on V, and if the components (Ψa) of the four-vector wave
function are taken locally as (Ψµ), that is, ea ≡ δµa∂µ and Ψµ ≡ δµaΨ

a (as
was implicitly assumed in previous work [6, 10, 12]), then the connection
coefficients are the Christoffel symbols of the second-kind associated with
the spacetime metric gµν :

(Γµ)
ν

ρ
≡

{

ν
ρµ

}

. (29)

For the other TRD equation (TRD–2), the connection is defined from
the spatial Levi-Civita connection in an assumed preferred reference frame
[6]. We will not need its explicit expression.

3.2.3 The TRD–0 equation

For the TRD–0 equation, the connection D is the so-called teleparallel con-
nection associated with a given orthonormal tetrad field (ua) and its dual
orthonormal tetrad field (ωa) defined, respectively, on the complex tangent
bundle TCV and its dual TCV

◦. That is, extending the spacetime metric
< , > to TCV and TCV

◦, the orthonormal tetrad fields (ua) and (ωa) satisfy:

< ua, ub >= ηab ; < ωa, ωb >= ηab, (30)

though here (ua) and (ωa) are generally complex. The teleparallel connection
is characterized by the fact that

Dua = 0 ; Dωa = 0. (31)

This connection depends on the tetrad field (ua), of course. Let us denote
by G the metric tensor induced on TCV by the spacetime metric as follows:

G = ηab ω
a ⊗ ωb. (32)
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As a consequence of Eqs. (31) and (32), the induced metric is covariantly
constant, DG = 0.

4 Local similarity transformations

The notion of a local similarity transformation (in short “a local similarity”)
has been recalled in the Introduction, as basically switching from one possible
field of Dirac matrices to another one by Eq. (2). Simultaneously, one
usually transforms also the wave function according to Eq. (3). Whereas the
latter equation occurs naturally in the case of a flat spacetime with affine
coordinates [8], in which the similarity transformation S does not depend on
the spacetime point X , it is less obvious in the general case. However, one
possible definition of a local similarity is a mere change of the frame field
(ea) on the vector bundle E, of which the wave function is a section:

ẽb = Sa
b ea. (33)

Under such a change, the column matrix Ψ ≡ (Ψa), made with the compo-
nents of the wave function (10) in the frame field, changes indeed according
to Eq. (3), while the Dirac matrices γµ ≡ (γµa b) associated with the γ field
(11) change indeed according to Eq. (2)—the matrix S in Eqs. (2)–(3) hav-
ing components S ≡ (Sa

b). Since the form (2) of the new matrices γ̃µ ensures
trivially that they satisfy the same anticommutation relation (1) as do the
starting ones γµ, the relation (1) is thus covariant under a change of the
frame field (ea) on E, as announced in Section 2.

At the same time, it is easy to check that the connection matrices in Eq.
(16) change according to

Γ̃µ = S−1ΓµS + S−1(∂µS). (34)

Under a local similarity, seen as a change (33) of the frame field, the covari-
ance of the Dirac equation (17) is an obvious fact: it is merely rewriting a
tensor equation in another frame field. Thus, it applies to any version of
the Dirac equation, of course. This kind of local similarity may be termed a
“passive” one. Note that Eq. (34) is the one stated by Chapman & Leiter
[5] to ensure that the DFW equation remains covariant after what they call
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a “spin transformation”, which designates indeed a local similarity. Clearly,
Eq. (34) applies to any connection on a vector bundle after a change (33) of
the frame field.

On the other hand, one may also consider “active” local similarities.
Then, one leaves the frame field (ea) unchanged, and one defines a new
gamma field γ̃ and a new wave function ψ̃, whose local expressions in the
fixed frame field (ea) are related to the local expressions of γ and ψ by the
same Eqs. (2)–(3) as for a passive similarity. Thus, the relations between
the components of the wave functions, Ψ and Ψ̃, and between the matrices
γµ and γ̃µ, are the same Eqs. (2)–(3) as for a passive similarity. It follows
that, also for an active similarity, the Dirac equation (17) is covariant iff one
changes the connection matrices in Eq. (16) according to Eq. (34).

For the DFW equation, the local similarities are restricted to the spin
group, as mentioned in the Introduction: ∀X ∈ V, S(X) ∈ Spin(1, 3). This
is due to the fact that the γ field is defined from an orthonormal tetrad field,
Eq. (22). In Section 6, we will study some correspondences between differ-
ent classes of Dirac equations introduced in Section 3. Therefore, the local
similarity matrices S(X) can be any element of the linear group GL(4,C).

Note that, from the fact that it transforms a frame field on E into another
one, it follows that a local similarity, either passive or active, is (associated
with) a section of the vector bundle E⊗ E◦:

S ≡ Sa
b ea ⊗ θb. (35)

The matrix S is thus the matrix of the components of S in the local frame
field (ea), with dual frame field (θa). The connection induced on E ⊗ E◦ by
the connection D on E allows us to define the covariant derivatives of S:

DµS
a
b = ∂µS

a
b + (Γµ)

a
c S

c
b − (Γµ)

c
b S

a
c, (36)

or in matrix form:

DµS ≡ (DµS
a
b) = ∂µS + Γµ S − S Γµ. (37)
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5 The modified Dirac equation

The Lagrangian (7) extends the standard Dirac Lagrangian valid for the
DFW equation (e.g. [3, 14]), in that it is valid in general for QRD and
TRD theory, and it involves the hermitizing metric ( , ), introduced by Pauli
[9, 22]. The latter can be regarded as a tensor field A, more precisely as a
section of the vector bundle (E◦)∗ ⊗E◦. Its local expression in a given frame
field (ea), with dual frame field (θa), is:

A = Aa∗ b θ
∗ a∗ ⊗ θb, (38)

where we employ the canonical conjugate linear isomorphism E◦ → (E◦)∗,
which, at every spacetime point X ∈ V, maps each covector θ ∈ E◦

X to the
conjugate covector θ∗ ∈ (E◦

X)
∗ defined by θ∗(u) = θ(u)∗ for all u ∈ EX .

Here θ(u)∗ denotes the ordinary complex conjugate of the complex number
θ(u). We note that Eq. (38) ensures that the hermitizing matrix A ≡ (Aa∗b)
satisfies the correct transformation behaviour under a local similarity, i.e.,
under a change (33) of the frame field, namely [8]:

Ã = S†AS. (39)

Previous work [8, 10] has proved the existence and uniqueness, up to a real
factor λ(X) 6= 0, of the hermitizing matrix field A = A(X), in any spacetime.

The local expression of the Lagrangian density associated with the La-
grangian (7) is thus given, using Eqs. (16) and (17), by:

l =
√
−g i

2

[

Ψγµ(DµΨ)−
(

DµΨ
)

γµΨ+ 2imΨΨ
]

, (40)

where Ψ ≡ Ψ†A, with Ψ† denoting the complex conjugate transpose of Ψ, and
similarly DµΨ ≡ (DµΨ)†A. In the general case that we are considering, it is
straightforward to check that the Euler-Lagrange equation of this Lagrangian
density gives the following general Dirac equation:

γµDµΨ = −imΨ− 1

2
A−1(DµB

µ)Ψ, (41)

where Bµ ≡ Aγµ. Eq. (41) was found from a different route in Ref. [10],
and previously called a modified Dirac equation. Note that the general Dirac
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equation (41) derived from the Lagrangian density (40) coincides with the
normal Dirac equation (17), iff

DµB
µ = 0, (42)

which was shown to be a special condition that the coefficient fields (γ,A) of
any normal Dirac equation (17) must satisfy in order to conserve the proba-
bility current [10].

Eq. (42) is of course satisfied in DFW, since the coefficient fields (γ,A)
are covariantly constant. Thus, the Dirac equation in DFW is always normal.
For normal QRD and TRD equations, we do not require that the coefficient
fields (γ,A) be covariantly constant. As we will see in Section 6, normal Dirac
equations exist locally for any connection D on the complex vector bundle E.

Let us compute explicitly the following expressions involving covariant
derivatives, as function of the connection matrices (15). First, we may rewrite
Eq. (16) as

DµΨ = ∂µΨ+ ΓµΨ. (43)

We have (Eqs. (33) and (35) of Ref. [10]):

Dµγ
ν ≡ ∂µγ

ν +
{

ν
ρµ

}

γρ + [Γµ, γ
ν ] , (44)

(where [M,N ] ≡MN −NM), and

DµA ≡ ∂µA− AΓµ − Γ†
µA. (45)

From this, it follows by Leibniz’ rule [and since Bµ = Aγµ ]:

DµB
ν = ∂µB

ν +
{

ν
ρµ

}

Bρ − BνΓµ − Γ†
µB

ν . (46)

6 Relations between different classes of Dirac

equations

In this section, we will prove that local similarity transformations transform
the standard DFW equation into a particular linear TRD–1 equation which
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lives on the complex tangent bundle TCV, which inherits the Levi-Civita con-
nection. We achieve this by combining two maps: QRD → TRD → TRD–1.
We will need the following theorem of linear hyperbolic partial differential
equations:

Theorem 0 (Lax [23]). Let M1, M2,...,Mn and F be real d×d matrix func-
tions that depend smoothly on n+1 independent real variables t, x1, x2, ..., xn
in a slab −T ≤ t ≤ T, x ∈ Rn, denoted as I × Rn. Furthermore, suppose
that M1, M2,...,Mn are symmetric matrices. Then the real linear hyperbolic
system:

∂v

∂t
+

n
∑

j=1

Mj

∂v

∂xj
= Fv (47)

has a smooth real vector valued solution v : I×Rn → Rd satisfying prescribed
smooth initial data at t = 0.

Theorem 0 extends to several corollaries. First, a more symmetric form of
Theorem 0 is given by:

Corollary 1. Theorem 0 extends to the real linear hyperbolic system:

M0

∂v

∂t
+

n
∑

j=1

Mj

∂v

∂xj
= Fv, (48)

where M0 is a smooth positive definite real d× d matrix function.

Proof ([24]). Since M0 is smooth and positive definite, it has a smooth
Cholesky factorization M0 = CT C, where CT denotes the transpose of the
non-singular real matrix function C. Then, substituting v = C−1w into Eq.
(48) reduces it to the same form as in Eq. (47). Q.E.D.

Next, Theorem 0 can be extended to complex equations as follows, by con-
sidering their real and imaginary parts:
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Corollary 2. Let M0, M1,...,Mn and F be complex d× d matrix functions
that depend smoothly on n+ 1 independent real variables t, x1, x2, ..., xn in a
slab −T ≤ t ≤ T, x ∈ Rn, denoted as I × Rn. Furthermore, suppose that
M0, M1,...,Mn are Hermitian matrices and M0 is positive definite. Then,
the complex linear hyperbolic system:

M0

∂v

∂t
+

n
∑

j=1

Mj

∂v

∂xj
= Fv (49)

has a smooth complex vector valued solution v : I × Rn → Cd satisfying pre-
scribed smooth initial data at t = 0..

Finally, in Section 6.2 we will need the following matrix form of Theorem 0:

Corollary 3. Let M0, M1,...,Mn and F be as in Corollary 2, except that
F is now a homogeneous linear function of d× d matrices, as well as having
explicit dependence on t, x1, x2, ..., xn. Then the complex linear hyperbolic
system:

M0

∂S

∂t
+

n
∑

j=1

Mj

∂S

∂xj
= F (S) (50)

has a smooth complex matrix valued solution S : I × Rn → M(C, d) which
equals the identity matrix at t = 0, as its prescribed smooth initial data.

Proof. Define a column vector v : I × Rn → Cd2 made from the successive
columns of the matrix solution S:

u =
(

S1

1
, S2

1
, ..., Sd

1
, ....., S1

d, S
2

d, ..., S
d
d

)T
. (51)

Then, M0, M1,...,Mn acting on the d2 components of v are embedded into
d2×d2 block diagonal matrices, which have the same Hermitian and positive
definite properties that M0, M1,...,Mn have in Corollary 2. Also, note that
F acts linearly on the d2 components of v in Eq. (51), as in Eq. (49) of
Corollary 2. It is straightforward then to show that Eq. (50), expressed in
terms of the vector valued solution v : I× Rn → Cd2 , reduces to the form of
Eq. (49). Q.E.D.
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6.1 Correspondence between the QRD and TRD equa-
tions

Theorem 1. In a non-compact, four-dimensional spacetime that admits a
spinor structure, any form of the QRD equation defined on the trivial bundle
V×C4 is equivalent to a TRD equation defined on the complex tangent bundle
TCV. Moreover, any normal QRD equation is equivalent to a normal TRD
equation.

Proof. Consider the general Dirac equation (41) in the QRD version, with
an arbitrary connection D on V × C4, and with an arbitrary γ field. The
latter is such that the Dirac matrices (γµ) associated with it by Eq. (12)
on the domain U ⊂ V of each coordinate chart satisfy the anticommutation
relation (1). As recalled in Section 2, in a non-compact, four-dimensional
spacetime V that admits a spinor structure, there exists a global tetrad field
(uα). Thus, (uα) is a global frame field on the tangent bundle TV. Also,
there is a constant canonical frame field (Ea) on the trivial bundle V × C4,
with the corresponding dual frame field (Θa). Hence, the γ field has a unique
global expression:

γ = γαab uα ⊗ Ea ⊗Θb. (52)

The global frame field (uα) on the tangent bundle TV induces a global frame
field on the complex tangent bundle TCV. We denote this induced frame
field on TCV as (ea), where ea ≡ δαauα. Therefore, we may associate with γ
a gamma field γ′ relevant to TRD, by setting

γ′ = γαab uα ⊗ ea ⊗ θb, (53)

where (θa) is the dual frame field of (ea). That is, the field γ′ has the same
components as γ. It follows easily from Eqs. (11) and (12) that the matri-
ces γ′µ associated with γ′ on each coordinate domain U ⊂ V have the same
components as the matrices γµ associated with γ. Hence, both γµ and γ′µ

satisfy the anticommutation relation (1).

In the same way, we associate to the Hermitian metric A that is hermi-
tizing for the γ matrices, a Hermitian metric A′ that is hermitizing for the
γ′ matrices:

Aa∗ bΘ
∗ a∗ ⊗Θb = A 7→ A′ = Aa∗ b θ

∗ a∗ ⊗ θb. (54)
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Indeed, the map (Ea) 7→ (ea) between the two frame fields induces a vector
bundle isomorphism V × C4 → TCV, so that we associate to any section ψ
of V × C4, a section ψ′ of TCV (and conversely), as follows:

ΨaEa = ψ 7→ ψ′ = Ψaea. (55)

The isomorphism (55) associates with any connection D on V × C4, a con-
nection D′ on TCV (and conversely). Specifically, the coefficients of the con-
nections D and D′, with respect to the corresponding frame fields (uα, Ea)
and (uα, ea), are set equal to each other in this association. Moreover, as
discussed above, the anticommutation relation of the γ field and the hermi-
tizing property of the Hermitian metric A are preserved by the isomorphism.
It follows then that the global expression of the general Dirac equation (41)
is identical for the components of a QRD equation and its associated TRD
equation with respect to the corresponding global frame fields (uα, Ea) and
(uα, ea). In the same way, the global expression of the normal condition (42)
is identical for the components of a QRD equation and its associated TRD
equation with respect to the corresponding global frame fields (uα, Ea) and
(uα, ea). Therefore, the normal condition (42) is also preserved. Q.E.D.

6.2 Transforming a Dirac equation to a QRD–0 or a
TRD–1 equation

Theorem 2. Consider any form of the QRD (or TRD) equation with con-
nection D defined on the complex vector bundle E (E = V × C4 for QRD,
E = TCV for TRD). Let D′ be any other connection on E. Let χ : V ⊃
U → R4 be any chart of the space time V such that χ(U) ⊃ I× R3. Suppose
that the spacetime metric gµν in U satisfies g00 > 0 and the 3 × 3 matrix
(gjk) is negative definite. Then, there exists a local similarity transformation
S, defined in an open domain W ⊂ U satisfying χ(W) ⊃ {0} × R3, which
transforms the QRD (or TRD) equation, restricted to the domain W, into a
QRD (or TRD) equation with connection D′. Furthermore, the local similar-
ity transformation S transforms any normal QRD (or TRD) equation into a
normal QRD (or TRD) equation on the domain W.

Proof. In the domain of each chart: U ⊂ V, with coordinates (xµ), the Dirac
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operator entering the general Dirac equation (41) is given by:

D ≡ γµDµ +
1

2
A−1(DµB

µ). (56)

Since the Christoffel symbols in Eq. (46) satisfy
{

µ
ρµ

}

= [∂ρ(
√−g)]/√−g, we

have on contracting the index µ:

DµB
µ =

1√−g∂µ
(√

−gAγµ
)

−AΓ− Γ†A, (57)

where Γ is the matrix
Γ ≡ γµΓµ. (58)

Let Γ′
µ denote the connection matrices Γµ for the connection D′. Of course,

Eqs. (56) and (57) apply also to the Dirac operator D′ based on the connec-
tion D′, by using the connection matrices Γ′

µ and the corresponding covariant
derivatives D′

µ. Substituting Γµ = Γ′
µ +Kµ, we get from Eq. (57):

DµB
µ = D′

µB
µ − AK −K†A, (59)

where
K ≡ γµKµ. (60)

It follows from (56) and (59) that

D = D′ +
1

2
A−1

(

AK −K†A
)

. (61)

It is hence clear that if K = 0 in Eq. (61), then the Dirac equation (41)
based on the connection D is equivalent to the one based on the connection
D and on the same coefficient fields. Thus, it suffices to find a local similarity
transformation that maps K to K̃ = 0. If this happens, it results from (59)
that, if the starting Dirac equation verifies condition (42), then so also does
the Dirac equation after the similarity. Therefore, the normal form (17) of
the Dirac equation, when it occurs, is preserved.

It remains to show that we can obtain an equivalent Dirac equation to
the starting one via a local similarity transformation S. Thus we ask that
the Dirac equation be covariant under the sought-for local similarity (2),
(39) of the coefficient fields, if one simultaneously changes the wave function
according to (3). The necessary and sufficient condition for this is that the
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connection D and its matrices Γµ change according to (34). Substituting
Γµ = Γ′

µ +Kµ and Γ̃µ = Γ′
µ + K̃µ into Eq. (34), we have:

Γ′
µ + K̃µ = S−1(Γ′

µ +Kµ)S + S−1∂µS, (62)

from which, using Eq. (37), we obtain:

K̃µ = S−1KµS + S−1
(

∂µS + Γ′
µS − SΓ′

µ

)

= S−1KµS + S−1D′
µS. (63)

Thus from Eqs. (2) and (60):

K̃ ≡ γ̃µK̃µ = S−1γµKµS + S−1γµD′
µS

= S−1KS + S−1γµD′
µS. (64)

As we noted from Eq. (61), a sufficient condition for the local similarity
transformation S to take a Dirac equation based on the connection D into
one based on the connection D′, is that K̃ = 0 in Eq. (64). Multiplying the
resulting equation by AS, and since Bµ ≡ Aγµ, we get:

BµD′
µS = −AKS. (65)

Now, the matrix valued functions Bµ are Hermitian andB0 is positive definite
[10]. Thus, Eq. (65) is of the form of Eq. (50). The existence of a smooth so-
lution S to Eq. (65) in the open domain U′ ≡ χ−1(]−T,+T [×R3) ⊂ U, with
S(X) being equal to the identity matrix 14 when t ≡ Proj1(χ(X)) = 0, hence
follows from the hypothesis χ(U) ⊃ [−T,+T ]×R3 and from Corollary 3. De-
note by W the open subset of U′, hence of V, in which det(S) 6= 0. Thus
both S and S−1 are smooth matrix valued functions defined on the open
domain W. Since S(X) = 14 when t ≡ Proj

1
(χ(X)) = 0, it follows that

χ(W) ⊃ {0} × R3. Q.E.D.

Theorem 3. Consider any DFW equation defined on the spacetime V, and
let χ : V ⊃ U → R4 be any chart of the space time V, such that χ(U) ⊃ I×R3,
for which the spacetime metric gµν in U satisfies g00 > 0 and the 3×3 matrix
(gjk) is negative definite. Then, there is an open domain W ⊂ U satisfying
χ(W) ⊃ {0} × R3, such that the DFW equation is equivalent to a normal
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TRD–1 equation on the domain W.

Proof. By Theorem 1, any DFW equation, being a normal QRD equation,
is equivalent to some normal TRD equation, on the whole of the spacetime.
The assumptions of Theorem 3 then allow us to apply Theorem 2 to state
that the latter normal TRD equation is equivalent to a normal TRD–1 equa-
tion on some open domain W ⊂ U satisfying χ(W) ⊃ {0} × R3. Therefore,
the starting DFW equation is equivalent to a normal TRD–1 equation on
the domain W. Q.E.D.

Note that the metric conditions in Theorems 2 and 3, namely, g00 > 0
and the 3 × 3 matrix (gjk) is negative definite, are satisfied by almost all
spacetime metrics gµν of interest. As shown in previous work, these metric
conditions guarantee the existence of a Hilbert space with a positive definite
scalar product for every Dirac equation [10]. A notable exception is the Gödel
spacetime, for which there exist no complete three-dimensional submanifolds
which are space-like, and for which a positive definite Hilbert space scalar
product cannot be defined [26].

7 Conclusion

In a curved spacetime, there are only two ways for defining the Dirac wave
function ψ describing spin-half particles: First, it can be defined as a quadru-
plet of complex scalar fields. This is the quadruplet representation of the
Dirac field (QRD), to which the standard Dirac equation (DFW) in a curved
spacetime belongs [1]-[5]. Or, ψ can be defined as a complex four-vector field.
This is the tensor representation of the Dirac field (TRD), to which belong
two alternative versions of the Dirac equation in a curved spacetime called
TRD–1 and TRD–2, which were proposed recently [6, 10].

We first presented these two different representations (QRD and TRD) in
a common geometrical framework that includes common intrinsic definitions
for the wave functions ψ, the coefficient fields (γ,A), the connections D, as
well as the Lagrangians from which the equations are derived. In this frame-
work, we introduced two simple forms of the Dirac equation, namely, the
QRD–0 and TRD–0 versions, in which the connection matrices are zero in a
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chosen frame field. We then proved that the two representations (QRD and
TRD) are equivalent for corresponding wave functions ψ, coefficient fields
(γ,A), and connections D (Theorem 1).

As a consequence of Theorem 2, any form of the QRD equation is equiva-
lent to a QRD–0 equation, and any form of the TRD equation is equivalent to
a TRD–1 equation, in the same spacetime. From Theorem 1 and Theorem 2,
we may conclude more generally the following: The Dirac equation, either in
the QRD or the TRD representation, can be written with any connection on
the corresponding vector bundle, but any specific choice of the connection
within either of the two representations can account for a variety of linear,
covariant Dirac equations in a curved spacetime, that reduce to the original
Dirac equation in a Minkowski spacetime. This does not mean that any two
Dirac equations on a given curved spacetime are equivalent, which indeed is
not the case: e.g., two different choices of the coefficient fields (γ,A) lead in
general to two inequivalent TRD–1 equations. (See Section 3.4 in Ref. [10].)
The cause of this variety is the variety of different choices for the coefficient
fields (γ,A), not the existence of two different representations (QRD and
TRD) nor the variety of the possible connections. However, any two DFW
equations on a given curved spacetime are equivalent for simple topologies
of the spacetime [25]. This is due to the fact that DFW restricts the choice
of the coefficient fields (γ,A) by expressing them from a tetrad field. 4

As a consequence of Theorem 1 and Theorem 2, the DFW equation with
any choice of the tetrad field is equivalent to some normal TRD–1 equation
(Theorem 3). [Here, “normal” refers to the usual Dirac equation (17), in
contrast with the modified one (41).] That is, any DFW equation is equiv-
alent to a particular case of the normal TRD–1 equation, that particular
case being obtained by choosing the coefficient fields inside a special class
of all possible coefficient fields for the normal TRD–1 equation. In short:
the linear normal TRD–1 equation generalizes the DFW equation. It follows
that TRD–1 can describe spin-half particles in a curved spacetime as well as
DFW can.

4 In fact, the equivalence classes of DFW equations are in one-to-one correspondence
with the homotopy classes of the tetrad fields [25]. A unique equivalence class exists if the
spacetime is simply connected.
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A Appendix: Construction of Dirac matrices

from a global tetrad field

Theorem A. Assume that there exists an orthonormal tetrad field (uα) that
is defined globally in the spacetime (V, < , >). Then, there is an induced
frame field (ua) on the complex tangent bundle TCV, with ua ≡ δαauα. Also,
there is a constant canonical frame field (Ea) on the trivial bundle V×C4. De-
fine a global frame field (ea) on the complex vector bundle E, where E = V×C4

or E = TCV, for QRD or TRD, respectively, as follows: Set (ea) equal to the
canonical frame field (Ea) or equal to the induced frame field (ua), for QRD
or TRD, respectively. Let (θa) be the dual frame field of (ea), which is a
global frame field on E◦. Let (Cα) be a quadruplet of constant Dirac matrices
satisfying the following anticommutation relation with the Minkowski metric
ηαβ:

CαCβ + CβCα = 2ηαβ 14. (66)

Define a global section of TV ⊗ E⊗ E◦ by

γ = (Cα)a b uα ⊗ ea ⊗ θb, (67)

where (Cα)a b are the components of the matrix Cα.

Then, in any local chart χ : V ⊃ U → R4, the associated Dirac matrices
γµ, as in Eq. (12), satisfy the anticommutation relation (1) in the curved
spacetime (U, < , >).

Proof. Consider general local frame fields (uα) on TV, (ea) on E, and the dual
frame (θb) of the latter, on E◦. In those three frame fields, γ has components
γαab . Thus, we may associate matrices γα with γ, as in Eq. (12), by setting

(γα)a b ≡ γαab . (68)

With the present frame fields (uα) and (ea), which are global, we have from
(67): γαab = (Cα)a b, hence from (68): γα = Cα. Thus, in the orthonomal
frame field (uα), in which the curved metric is gαβ = ηαβ , the Dirac anticom-
mutation relation is satisfied, Eq. (23). Similar to the case of a “holonomic”
frame field (∂µ), associated with a coordinate system (xµ) [7], it is easy to
check that the Dirac anticommutation relation is covariant under the change
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of a general local frame field on TV. Hence, being satisfied in the “anholo-
nomic” frame field (uα) it is still verified in the “holonomic” frame field (∂µ),
which is Eq. (1). Q.E.D.
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