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Abstract
We provide a classification of entangled states that is based on the analysis of algebraic properties

of linear maps associated with the states. The kernels of the maps define algebraic invariants, which

are new discrete measures of entanglement. We prove a theorem on a correspondence between the

invariants and sets of equivalent classes of entangled states. The new method works for an arbitrary

finite number of finite-dimensional state subspaces. As an application of the method, we considered

a large selection of cases of three subspaces of various dimensions. We also obtain an entanglement

classification of four qubits, where we find 27 fundamental sets of classes.
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I. INTRODUCTION

Entanglement is one of the most fundamental and counterintuitive features of quantum
mechanics. Its fundamental role was emphasized by the formulation of the EPR paradox [1],
despite the original purpose of the latter to question physical reality of the wave function.
The counterintuitive nature of entanglement is a hallmark of quantum mechanics, and its
properties reveal deep distinctions between quantum and classical objects.

The phenomenon of entanglement is a consequence of the superposition principle and the
tensor product postulate in quantum mechanics. Indeed, the principle and postulate imply
that a state vector of a system consisting of several subsystems is a linear combination of
tensor products of state vectors of the subsystems. A state is disentangled if it can be
transformed into a factorizable state; any other state is entangled. Equivalently, a state is
disentangled if and only if each subsystem is in a definite state.

Despite the simplicity of the above qualitative features of entanglement, the complete list
of its quantitative characteristics is unknown. For example, it might appear that the smallest
number of linearly independent factorizable terms representing a state is an appropriate
characteristic of its entanglement. This is true for two subsystems, in which case this single
quantity completely classifies all entangled states. For more than two subsystems, however,
this quantity is inappropriate since it depends on a choice of bases. To choose appropriate
entanglement measures for the general case, we need to study invariant properties of states
of composite systems; these are the key properties shaping the following discussion.

For states of composite systems, entanglement quantifies ways in which states of sub-
systems contribute to linear combinations of tensor products. The larger the numbers of
contributing states of subsystems, the greater the variety of arrangements of terms in linear
combinations. Some of these arrangements are related by transformations of bases and thus
are equivalent. Exploring all resulting possibilities and partitioning states into corresponding
equivalence classes formed by related states is the goal of entanglement classification.

To classify entangled states, one usually employs entanglement measures, which are cer-
tain invariant quantities associated with the states. The nature of the problem requires the
measures to be invariant with respect to all transformations that can be reduced to changes
of bases. Consequently, measures take the same values for all states within each equivalence
class. The standard method of finding entanglement measures uses the classical theory of
invariants [2]. Variants of this method are used in most known cases of partial or complete
entanglement classification; see, for example, [3–20].

In the following sections, we develop the above general ideas in detail. We first introduce
various equivalence relations and corresponding equivalence classes on linear spaces of states.
We then show how these classes lead to various linear subspaces and their invariants, which
are the central objects in our method of algebraic classification of entangled states. Finally,
we proceed with numerous illustrative examples demonstrating the use of the method for
many entanglement classifications unsolved until now. The following discussion generalizes
and expands our introduction of the method and its simpler applications in [21].

II. PRELIMINARIES

We begin by introducing the main components of our construction. Let S be a quantum
system that consists of n subsystems {Si}i∈I , where I = {1, . . . , n}. For each i ∈ I, let
a finite-dimensional vector space Vi over a field F be the state space of Si. Extension
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to infinite-dimensional spaces is nontrivial and is not considered here. Although quantum
mechanics requires F = C, what follows is valid for any field F . In our examples we consider
F = R or F = C; for either choice, all our results are the same.

Our first task is to define V , the state space of S. The tensor product postulate in quan-
tum mechanics says that V is a subspace of the tensor product space ⊗i∈IVi. A specific
choice of V depends on the nature of S. For identical subsystems, for example, the per-
mutation symmetry acting on the subsystems determines V . In particular, for bosonic or
fermionic subsystems V is the symmetric or antisymmetric part of the product ⊗i∈IVi, re-
spectively. Also, if there is an equivalence relation among elements of V (as, for example, for
linearly dependent vectors in quantum mechanics), then V is the appropriate quotient set.
Modifications due to these and similar properties can be easily included into the following
development, which assumes the simplest case where V = ⊗i∈IVi.

We aim to study properties of S related to its composition in terms of {Si}i∈I ; these
are equivalent to properties of V related to its composition in terms of {Vi}i∈I . The latter
manifest themselves in their transformations under an appropriate group. Note that the
tensor structure of V implies that the transformation group relevant for studying properties
of V is not the general linear group of V , GL(V ), but rather its subgroup ×i∈IGL(Vi). In
addition to this general case, particular cases (where only certain subsets of V and subgroups
of G matter) are of interest as well. Accordingly, for each i ∈ I we choose a subgroup Gi

of GL(Vi) and define a subgroup G = ×i∈IGi of GL(V ). As a result, the group G is the
transformation group for V , and it defines properties of V related to its composition in terms
of {Vi}i∈I .

The group G is significant because it partitions the space V into a set of equivalence
classes, which are defined as follows. Let ∼V be the equivalence relation on V that is
induced by G; thus v′ ∼V v for each v, v′ ∈ V if and only if there exists g ∈ G such that
v′ = gv. The equivalence relation defines the equivalence class of v under ∼V ,

C(v) = {v′ ∈ V : v′ ∼V v}.

Since all elements of the class C(v) are equivalent, we replace it with its arbitrary single
element ṽ ∈ C(v), which we call a representative element of the class. Repeating this
procedure for each v ∈ V , we partition V into the set of equivalence classes

C = ∪v∈V {C(v)}

such that each vector in V belongs to one and only one class. Finally, replacing each class
in C by its representative element, we arrive at the set

Ṽ = {ṽ ∈ C(v) : C(v) ∈ C},

which can also be written as the quotient set Ṽ = V/ ∼V .
Understanding the structure of Ṽ is our ultimate goal. We begin with a general prop-

erty of Ṽ , its partition into three characteristic subsets of vectors: (1) the zero vector, (2)
decomposable vectors, (3) nondecomposable vectors. By definition, a decomposable vector
v ∈ V is a vector that can be written in the factorizable form v = ⊗i∈Ivi, where vi ∈ Vi is
a nonzero vector for each i ∈ I. A nondecomposable vector is a vector which is neither zero
nor decomposable. We will derive the general form of a nondecomposable vector after we
establish its invariant characteristics.
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The above partition is physically significant because it is in a one-to-one correspondence
with the partition of quantum states into three types: (1) the vacuum state, (2) disentangled
states, (3) entangled states. The zero vector (the vacuum state) and decomposable vectors
(disentangled states) are the simplest elements of V ; although they comprise only a small
part of V , they span all of it. By contrast, nondecomposable vectors (entangled states) are
more complex and difficult to categorize. The difficulty is combinatorial because decom-
posable vectors from V that enter the linear combination representing a nondecomposable
vector differ by ways in which linearly independent vectors from {Vi}i∈I enter the expression.
Finding all such possibilities of nonequivalent combinations (which is the same as finding
the quotient set Ṽ ) is the problem of entanglement classification.

Another general property of Ṽ concerns the number of its elements. Although the set Ṽ
is not a vector space, we use the notation dim Ṽ for the number of unconstrained elements
of F that a general element of Ṽ depends on. Using a similar notation for dimG, we find

dim Ṽ ≥ dimV − dimG.

The inequality sign appears here because, in general, the system of linear equations for
g ∈ G that follows from the equivalence condition v′ = gv is not linearly independent. We
have two distinct cases here: (1) if dimV − dimG ≤ 0, the above inequality does not tell us
if there are any unconstrained elements of F that a general element of V depends on; (2) if
dimV − dimG > 0, there are at least dimV − dimG such elements of F . Consequently, Ṽ
is an infinite set in the second case. Asymptotically for large n, dimV is exponential in n
and dimG is linear in n. It follows that n does not need to be very large for the set Ṽ to
be infinite; in other words, Ṽ is typically infinite.

The problem of finding Ṽ can be solved by direct or indirect methods. In a direct
method, one uses the definition of Ṽ to derive the general form of representative elements
of equivalence classes. Although there are no restrictions to such methods in theory, they
are usually inefficient in practice because of the need to solve complicated equations. By
contrast, in an indirect method, one seeks quantities characterizing elements of V which
are invariant under G. Equivalence classes are obtained by finding allowed values of these
invariants. Indirect methods are usually efficient if all invariants are known.

Continuing with indirect methods, let a(v) ∈ F be an invariant of v induced by the group
G. This is a quantity that satisfies a(v′) = a(v) for each v ∈ V , v′ ∈ C(v), which implies that
invariants depend only on classes. Let A(v) be a complete set of algebraically independent
invariants of v, so that v′ ∼V v if and only if A(v′) = A(v), for each v, v′ ∈ V . The standard
method of finding A(v) is to use the classical theory of invariants and covariants; for a
modern introduction, see, for example, [2]. Almost all known cases of partial or complete
entanglement classifications use this method to a certain extent; see, for example, [3–20].
The rapid increase of |A(v)| with n is the main reason why only the simplest cases of
entanglement classification have been fully carried out.

Let us now consider a typical case of infinite Ṽ . We find that the set of all possible values
of the invariants, ∪v∈V {A(v)}, is infinite. The resulting information about Ṽ in terms of
its elements and invariants is both overwhelming in its detail and impractical in its use. As
a key part of our method, we reduce the amount of information by grouping equivalence
classes into a finite number of sets. The grouping is determined by certain equivalence
relation between classes in each set, a natural choice for which is defined as follows.

We first introduce the rescaling equivalence of invariants. We note that since linearly
dependent vectors in quantum mechanics correspond to the same physical state, we require
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fv ∈ C(v) for each v ∈ V , f ∈ F , f 6= 0. It follows that algebraic invariants are homogeneous
polynomials; consequently, zero is the most important value of each invariant. This suggests
to extend the above rescaling equivalence of states to the rescaling equivalence of invariants.
Specifically, we define the equivalence relation ∼F on the field F by setting a′ ∼F a for
each a, a′ ∈ F if and only if there exists f ∈ F , f 6= 0 such that a′ = fa. (For F = R

or F = C, this simply means that any two nonzero elements are equivalent.) It is easy to
generalize this equivalence to ordered sets over F , so that for each pair of such sets (a′k)k∈K
and (ak)k∈K , we define (a′k)k∈K ∼F (ak)k∈K if and only if a′k ∼F ak for each k ∈ K.

Having established equivalence for invariants, we transfer it to vectors. Namely, we define
the equivalence relation ∼′

V on the set V by setting v′ ∼′
V v if and only if A(v′) ∼F A(v),

for each v, v′ ∈ V . Since invariants depend only on classes, v′ ∼V v implies v′ ∼′
V v. The

relation ∼′
V defines the quantities C ′(v), ṽ′, C ′, Ṽ ′ in the same manner as the relation ∼V

defines the quantities C(v), ṽ, C, Ṽ . Clearly, C ′ is a partition of C.
The sets C ′ and Ṽ ′ are the main objects of our study. We call the problem of finding

them the restricted entanglement classification problem to emphasize that we seek only sets
of classes, not the classes themselves. One way to solve the problem is to use the set of
invariants A(v) from the standard classification method. This approach requires studying
conditions under which elements of A(v) are zero. If A(v) is known, this method gives the
solution; however, we prefer a simpler approach that uses new algebraic invariants Ñ(v)
instead of A(v). The advantage of our approach is that each element of Ñ(v) describes
certain algebraic properties of v and takes a value from only a finite set of integers. The
construction of Ñ(v) uses only basic linear algebra [22] and proceeds as follows.

III. METHOD

The set of invariants Ñ(v) is uniquely determined by the following conditions. First,
Ñ(v) depends only on the equivalence class C ′(v) to which v belongs. As a result, both
C ′(v) and Ñ(v) are invariant under the action of the transformation group G. Second, the
rescaling property of A(v) implies that Ñ(v) depends only on properties of linear subspaces
of V ; let L(v) be the set of such subspaces. Third, L(v) depends linearly on v. Fourth, L(v)
describes properties of v associated with all partitions of the system S into subsystems build
from {Si}i∈I . Such partitions result from all choices of writing V as the tensor product of
spaces built from {Vi}i∈I .

The above conditions require that L(v) is defined in terms of linear maps that are given
as follows. We first partition the system S into subsystems T and T ′, so that S = T ∪ T ′.
Let W and W ′ be the state spaces for T and T ′, respectively, so that V = W ⊗W ′. Our
main tool for constructing L(v) is a linear map

f(v) : W → W ′, f(v)(w) = v ⊗ w∗,

where w∗ ∈ F is the dual of w ∈ V . All information about the map is included in its kernel
and image,

ker f(v) = {w ∈ W : f(v)(w) = 0} ⊆ W,

im f(v) = {w′ ∈ W ′ : w′ = f(v)(w), w ∈ W} ⊆ W ′.

Associated with the map f(v) is the transpose map

f ′(v) : W ′ → W, f ′(v)(w′) = v ⊗ w′∗.
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The kernels and images of f(v) and f ′(v) are related through orthogonal compliments,

im f(v) = (ker f ′(v))⊥, im f ′(v) = (ker f(v))⊥.

Thus, if both maps are used to construct L(v), then it suffices to consider only their kernels,
for example, which is the approach we adopt.

To describe properties of v related to partitioning the system into any two subsystems, we
need to consider all possible subsystems T and T ′ such that S = T∪T ′ and the corresponding
W and W ′ such that V = W ⊗W ′. These quantities are given by

T = SJ , T ′ = SI\J , W = VJ , W ′ = VI\J , J ∈ P (I),

SH = ∪h∈HSh, VH = ⊗h∈HVh, H ∈ P (I).

Here I \ J is the relative complement of J in I, and P (I) is the power set of I (the set of
all subsets of I). Now, for each J ∈ P (I), we define the corresponding map fJ(v), its kernel
KJ(v) = ker fJ(v), and its nullity nJ(v) = dimKJ(v).

To obtain the complete entanglement information about v, we need to describe its prop-
erties related to partitioning the system into any number of subsystems. For this purpose,
we construct the set of new maps {f̃J(v)}J∈P (I) from the set {fJ(v)}J∈P (I) using the opera-
tion of the tensor product. The new maps should be linear in v, and it should be possible
to compare them with each other, for example, by comparing their kernels. Linearity in v
requires that the only other maps allowed in the construction are the identity maps. Com-
parison of the new maps is possible only if their domains coincide, and a natural choice for
such a common domain is the space V . These requirements fix the form of the new maps,

f̃J(v) : V → VI\J ⊗ VI\J , f̃J(v) = fJ(v)⊗ idI\J ,

where idW ′ : W ′ → W ′ is the identity map. Let K̃J(v) = ker f̃J(v) and ñJ(v) = dim K̃J(v)

for each J ∈ P (I). Although the maps fJ(v) and f̃J(v) are simply related, there is no
simple relation between their kernels besides the general property KJ(v) ⊗ VI\J ⊆ K̃J(v).

The distinction between KJ(v)⊗VI\J and K̃J(v) leads to nontrivial algebraic invariants. The

set L(v) = {K̃J(v)}J∈P (I) is the desired set of subspaces of V that describes entanglement
properties of v.

By a theorem in linear algebra [22], the complete information about a set of linear sub-
spaces is given by the dimensions of the subspaces and of all their intersections. Each linear
space is identified by its dimension, and the intersections are needed to account for the
relative positions of the subspaces. We specify such intersections for each set of subsets of
I,

K̃Q(v) = ∩J∈QK̃J(v), ñQ(v) = dim K̃Q(v), Q ∈ P (P (I)).

Consequently, considering all such intersections, we find the set of new invariants describing
all entanglement properties of v,

Ñ(v) = {ñQ(v)}Q∈P (P (I)).

Finally, we define the equivalence relation ∼′′
V on the set V by setting v′ ∼′′

V v if and only

if Ñ(v′) = Ñ(v), for each v, v′ ∈ V . The relation ∼′′
V defines the quantities C ′′(v), ṽ′′, C ′′,

Ṽ ′′ in the same manner as the relations ∼V and ∼′
V define the quantities C(v), ṽ, C, Ṽ and

C ′(v), ṽ′, C ′, Ṽ ′, respectively.
The proceeding development shows that the equivalence relations∼′

V and∼′′
V are identical

and proves the following theorem.
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Theorem 1. There is a one-to-one correspondence between the quotient set C ′ and the set

of values of the algebraic invariants {Ñ(v)}v∈V .

In general, there are certain algebraic relations between elements of Ñ(v). It is convenient
to remove dependent elements from Ñ(v) by defining a subset of independent invariants
Ñ ′(v) ⊆ Ñ(v), which we call a generating set of invariants of v. All elements of Ñ ′(v) are
algebraically independent of each other, and all elements of Ñ(v)\Ñ ′(v) can be algebraically
expressed in terms of elements of Ñ ′(v). For each v, we choose Ñ ′(v) such that the number
|Ñ ′(v)| takes the smallest possible value; note that this choice is not unique.

For each generating set Ñ ′(v), there is a subset R ⊆ P (P (I)) such that

Ñ ′(v) = {ñQ(v)}Q∈R.

For consistency, we use the same R for each v ∈ V . We define R = limk→∞Rk, where
the sequence of sets (R1, R2, . . . ) is such that Rk ⊇ Rk+1 for each k ∈ N. We set R1 =
P (P (I)) and find the elements of the sequence iteratively by the following steps that remove
dependent invariants:

1. If there exist X, Y ∈ Rk such that Y = I \ X , then R′
k = Rk \ X for any such X ;

otherwise, R′
k = Rk.

2. If there existX ∈ R′
k andX1, X2 ∈ X such thatX1 ⊆ X2, then R′′

k = (R′
k\X)∪(X\X1)

for any such X,X1; otherwise, R
′′
k = R′

k.

3. If there exists X ∈ R′′
k such that X1 ∩X2 = ∅ for any X1, X2 ∈ X , then R′′′

k = R′′
k \X

for any such X ; otherwise, R′′′
k = R′′

k.

4. If there exist X, Y ∈ R′′′
k such that X1 ⊆ Y for any X1 ∈ X , then Rk+1 = R′′′

k \X for
any such X ; otherwise, Rk+1 = R′′′

k .

If there is more than one choice for X (and for X1 in step 2) that satisfies the conditions
in a given step, then any such choice can be made. The resulting sequence (R1, R2, . . . )
depends on these choices. For any such choice, however, the sequence is convergent and its
limit R = limk→∞Rk is reached after a finite number of iterations, i.e. there exists m ∈ N

such that Rk = R for each k ≥ m. The set R and the resulting generating set Ñ ′(v) depends
on the above choices. This completes the construction of each generating set of invariants
Ñ ′(v).

The above definitions imply

ñQ(v) = nQ(v) dimVI\∪J∈QJ , ∪J∈QJ ⊂ I, Q ∈ P (P (I)).

For n ≥ 3, this relation between the invariants means that such ñQ(v) describes properties
of v related to partitioning the system into at most |I\ ∪J∈Q J | subsystems. For such cases,
it is convenient to replace ñQ(v) with nQ(v) and define the set of invariants

Ñ ′′(v) = {nQ(v)}Q∈R,∪J∈QJ⊂I ∪ {ñQ(v)}Q∈R,∪J∈QJ=I .

We give our explicit solutions in terms of Ñ ′′(v).
As our main computational device, we use the general forms of elements of Ṽ ′′. We obtain

them from expressions for elements of ker f(v) for a map f(v) : W → W ′, to derivation of
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which we now turn. We choose arbitrary bases {ui}1≤i≤dimW and {u′
i}1≤i≤dimW ′ for the

spaces W and W ′, respectively, and represent a vector v ∈ V in terms of its coordinates,

v =
dimW∑

i=1

dimW ′∑

j=1

vi,jui ⊗ u′
j, {vi,j} ⊂ F.

It follows that v decomposes according to

v =

dimW∑

i=1

ui ⊗ ũ′
i, ũ′

i =

dimW ′∑

j=1

vi,ju
′
j, {ũ′

i} ⊂ W ′,

v =

dimW ′∑

j=1

ũj ⊗ u′
j, ũj =

dimW∑

i=1

vi,jui, {ũj} ⊂ W.

The defining relation v ⊗ w∗ = 0 for w ∈ ker f(v), which is a system of homogeneous linear
equations for the coordinates of w, now implies the general form of v,

v =

dimW−n(v)∑

i=1

wi ⊗ w′
i, {wi} ⊂ W, {w′

i} ⊂ W ′,

dim span ({wi}) = dim span ({w′
i}) = dimW − n(v),

where n(v) = dimker f(v) and the dimension of the span of a set of vectors is the number of
its linearly independent elements. This decomposition is unique up to linear transformations
wi 7→

∑
j Bi,jwj and w′

i 7→
∑

j B
′
i,jw

′
j, where B and B′ are nonsingular square matrices of

order dimW − n(v) that satisfy the condition BtB′ = 1.
When considering the above general forms of elements of V resulting from different choices

of W and W ′ such that V = W ⊗W ′, we need to choose {wi} and {w′
i} (using appropriate

B and B′) such that the corresponding decompositions are consistent for all such choices.
This results in restrictions on allowed values of the invariants in Ñ(v) and, consequently,
leads to the classification of all entangled states.

The described method solves the restricted classification problem for arbitrary {Vi}i∈I .
Obtaining explicit solutions, however, is entirely different matter. We did not obtain such
solutions for arbitrary {Vi}i∈I , but we found them for numerous examples given in the
following section.

Particularly interesting are cases where the spaces in {Vi}i∈I are of equal dimensions.
The resulting permutation symmetry among the spaces reduces the equivalence classes to
sets of classes related by the symmetry. As a result, representative elements for the sets of
classes take simple forms. We have explicit solutions for two such symmetric examples.

IV. EXAMPLES

The present classification method works for arbitrary finite n and D = (dimVi)i∈I . The
case n = 2 is easily solved [21] for arbitrary D. We now apply our method to the case n = 3
for a large selection of values of D and the case n = 4, D = (2, 2, 2, 2) (four qubits).
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A. n = 3

Independent invariants for n = 3 are given by the sets

Q1 = {{1}}, Q2 = {{2}}, Q3 = {{3}}, Q4 = {{1, 2}, {1, 3}, {2, 3}}.

The sets Q1, Q2, Q3 and Q4 lead to invariants related to partitioning the system into two
and three subsystems, respectively. For each of these invariants, there are corresponding
invariants generated by the transpose maps, which do not need to be considered. Since all
other partitions lead to dependent invariants, we choose the generating set of invariants

Ñ ′′(v) = (nQ1
(v), nQ2

(v), nQ3
(v), ñQ4

(v))

for each v ∈ V .
For the set of equivalent classes we find

C ′′ = {C0} ∪ {Ck1,k2,k3,j : k1 ∈ {1, . . . , d1}, k2 ∈ {1, . . . , d2}, k3 ∈ {1, . . . , d3}, j ∈ Mk1,k2,k3},

where D = (d1, d2, d3) and Mk1,k2,k3 is a certain set of natural numbers that is symmetric in

k1, k2, k3. The values of the invariants in Ñ ′′(v) for the classes C0 and Ck1,k2,k3,j are given in
Table I. Although we do not have a general formula for Mk1,k2,k3 for arbitrary (k1, k2, k3), we

TABLE I. The values of the invariants in Ñ ′′(v) for n = 3, D = (d1, d2, d3).

nQ1
(v) nQ2

(v) nQ3
(v) ñQ4

(v)

C0 d1 d2 d3 d1d2d3

Ck1,k2,k3,j d1 − k1 d2 − k2 d3 − k3 d1d2d3 − k1d1 − k2d2 − k3d3 + (Mk1,k2,k3
)j

give Mk1,k2,k3 for various particular values of (k1, k2, k3) in Table II, which is our main result
for the case n = 3. With analogous computations for additional values of (k1, k2, k3), the
table can be easily expanded. Such a table is directly used for explicit computations of C ′′

for various values of D. In particular, the values of Mk1,k2,k3 given in Table II suffice to find
the set of classes C ′′ for each value of D given in Table III; the latter table gives only the
number of classes |C ′′|. As illustrative examples and because of space limits, we present here
the full results only for D = (2, 2, d) and D = (2, 3, d), where d is arbitrary, in Tables IV
and V, respectively. For the symmetric case D = (2, 2, 2), there are 5 sets of classes related
by permutations of {V1, V2, V3}; Table VI lists the sets and their representative elements.

It is easy to obtain general expressions for Mk1,k2,k3 for various particular values of
(k1, k2, k3), and we give here just a few such results:

Mk1,k2,k1k2 = (k2
1 + k2

2),

Mk1,k2,k1k2−1 = (. . . , k2
1 + k2

2 − 2(k1 + k2) + 5, k2
1 + k2

2 − (k1 + k2) + 2).

These and similar readily available expressions for Mk1,k2,k3 suggest certain patterns, which
might eventually lead to the general result for arbitrary (k1, k2, k3).

The needed computations for the above cases are lengthy but elementary, and we do
not give their details here. Instead, we invite the reader to study graphical representation
of entanglement classes for the cases D = (2, 2, d) and D = (2, 3, d) in Figs. 1 and 2,
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TABLE II. The set Mk1,k2,k3 for various values of (k1, k2, k3). The notation (m, . . . ,m′) means all

integers between and including m and m′.

(k1, k2, k3) Mk1,k2,k3
(k1, k2, k3) Mk1,k2,k3

(1, 1, 1) (2) (2, 6, 6) (7, . . . , 23, 28, 29)

(1, 2, 2) (5) (2, 6, 7) (5, . . . , 22, 24, 25, 26, 34)

(1, 3, 3) (10) (2, 6, 8) (8, . . . , 25, 31)

(1, 4, 4) (17) (2, 6, 9) (13, 14, 16, . . . , 20, 22, . . . , 26, 29, 30)

(1, 5, 5) (26) (2, 6, 10) (20, 23, 24, 28, 29, 31)

(1, 6, 6) (37) (2, 6, 11) (29, 34)

(2, 2, 2) (4, 5) (2, 6, 12) (40)

(2, 2, 3) (5, 6) (3, 3, 3) (2, . . . , 8, 10)

(2, 2, 4) (8) (3, 3, 4) (2, . . . , 11)

(2, 3, 3) (4, . . . , 8) (3, 3, 5) (2, . . . , 11, 14)

(2, 3, 4) (5, . . . , 8, 10) (3, 3, 6) (2, . . . , 12)

(2, 3, 5) (8, 10) (3, 3, 7) (4, . . . , 11, 14)

(2, 3, 6) (13) (3, 3, 8) (10, 11, 14)

(2, 4, 4) (5, . . . , 13) (3, 3, 9) (18)

(2, 4, 5) (5, . . . , 13, 16) (3, 4, 4) (2, . . . , 12, 14)

(2, 4, 6) (8, 9, 10, 12, 13, 15) (3, 4, 5) (2, . . . , 16)

(2, 4, 7) (13, 16) (3, 4, 6) (2, . . . , 16, 20)

(2, 4, 8) (20) (3, 4, 7) (2, . . . , 17)

(2, 5, 5) (6, . . . , 16, 19, 20) (3, 4, 8) (2, . . . , 17, 19)

(2, 5, 6) (5, . . . , 18, 24) (3, 4, 9) (2, . . . , 17, 20)

(2, 5, 7) (8, 10, . . . , 18, 20, 22) (3, 4, 10) (5, . . . , 16, 19, 20)

(2, 5, 8) (13, 15, 16, 19, 20, 22) (3, 4, 11) (14, 16, 20)

(2, 5, 9) (20, 24) (3, 4, 12) (25)

(2, 5, 10) (29)

respectively, which can be easily generalized for arbitrary D. Although these and similar
figures cannot replace the actual computations, they are useful in understanding relations
between the classes, finding their general properties, and, perhaps, even in solving the general
case. In this regard, generalizations of Table VI seems to be particularly promising when
solving the symmetric case D = (d, d, d) for arbitrary d.

B. n = 4

Table VII lists sets that give independent invariants for n = 4, arranged according to
types of partitions of the system. The sets Q1, . . . , Q4 and Q5, . . . , Q8 lead to invariants
related to partitioning the system into two and three subsystems, respectively. Partitions
into four subsystems are of three different types and are given by the sets Q9, . . . , Q14,
and Q15, . . . Q18, and Q19. For each of these five types, there are corresponding invariants
generated by the transpose maps, which do not need to be considered. Since all other
partitions lead to dependent invariants, we choose the generating set of invariants

Ñ ′′(v) = (nQ1
(v), . . . , nQ8

(v), ñQ9
(v), . . . , ñQ19

(v))
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TABLE III. The numbers of equivalence classes |C ′′| for n = 3 and various values of D.

D |C′′| D |C′′| D |C′′|

(2, 2, 2) 7 (2, 5, 5) 77 (3, 3, 3) 39

(2, 2, 3) 9 (2, 5, 6) 99 (3, 3, 4) 60

(2, 2, d), d ≥ 4 10 (2, 5, 7) 113 (3, 3, 5) 75

(2, 3, 3) 17 (2, 5, 8) 120 (3, 3, 6) 88

(2, 3, 4) 23 (2, 5, 9) 122 (3, 3, 7) 97

(2, 3, 5) 25 (2, 5, d), d ≥ 10 123 (3, 3, 8) 100

(2, 3, d), d ≥ 6 26 (2, 6, 6) 141 (3, 3, d), d ≥ 9 101

(2, 4, 4) 39 (2, 6, 7) 177 (3, 4, 4) 103

(2, 4, 5) 51 (2, 6, 8) 203 (3, 4, 5) 143

(2, 4, 6) 58 (2, 6, 9) 219 (3, 4, 6) 178

(2, 4, 7) 60 (2, 6, 10) 226 (3, 4, 7) 205

(2, 4, d), d ≥ 8 61 (2, 6, 11) 228 (3, 4, 8) 226

(2, 6, d), d ≥ 12 229 (3, 4, 9) 244

(3, 4, 10) 258

(3, 4, 11) 261

(3, 4, d), d ≥ 12 262

TABLE IV. The entanglement classes, their algebraic invariants, and their representative elements

for n = 3, D = (2, 2, d). Classes for which any of the invariants in the set Ñ ′′(v) are negative

should be discarded. Classes within a horizontal block are added each time d increases by 1, so

that there are 7, 9, 10 classes for d = 2, d = 3, d ≥ 4, respectively. Each expression [j1, j2, j3]

stands for u1,j1 ⊗ u2,j2 ⊗ u3,j3 , where {ui,j} is a set of any linearly independent elements of Vi.

Ñ ′′(v) v

C0 (2, 2, d, 4d) 0

C1 (1, 1, d− 1, 3d− 2) [1, 1, 1]

C2 (0, 0, d− 1, 3d− 3) [1, 1, 1] + [2, 2, 1]

C3 (0, 1, d− 2, 2d− 1) [1, 1, 1] + [2, 1, 2]

C4 (1, 0, d− 2, 2d− 1) [1, 1, 1] + [1, 2, 2]

C5 (0, 0, d− 2, 2d− 3) [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 (0, 0, d− 2, 2d− 4) [1, 1, 1] + [2, 2, 2]

C7 (0, 0, d− 3, d− 2) [1, 1, 1] + [1, 2, 2] + [2, 2, 3]

C8 (0, 0, d− 3, d− 3) [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C9 (0, 0, d− 4, 0) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

for each v ∈ V .
As an illustrative example, we take D = (2, 2, 2, 2). It is convenient to partition C ′′ into

three sets,

C ′′ = C ′′
I,1 ∪ C ′′

I,2 ∪ C ′′
I,3,

according to possible forms of representing elements for classes in each set. The set C ′′
I,1

consists of classes that can be represented by elements with coefficients in linear combinations
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TABLE V. The entanglement classes, their algebraic invariants, and their representative elements

for n = 3, D = (2, 3, d). Classes for which any of the invariants in the set Ñ ′′(v) are negative

should be discarded. Classes within a horizontal block are added each time d increases by 1, so

that there are 9, 17, 23, 25, 26 classes for d = 2, d = 3, d = 4, d = 5, d ≥ 6, respectively. Each

expression [j1, j2, j3] stands for u1,j1 ⊗u2,j2 ⊗u3,j3, where {ui,j} is a set of any linearly independent

elements of Vi.

Ñ ′′(v) v

C0 (2, 3, d, 6d) 0

C1 (1, 2, d− 1, 5d− 3) [1, 1, 1]

C2 (0, 1, d− 1, 5d− 5) [1, 1, 1] + [2, 2, 1]

C3 (0, 2, d− 2, 4d− 2) [1, 1, 1] + [2, 1, 2]

C4 (1, 1, d− 2, 4d− 3) [1, 1, 1] + [1, 2, 2]

C5 (0, 1, d− 2, 4d− 5) [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 (0, 1, d− 2, 4d− 6) [1, 1, 1] + [2, 2, 2]

C7 (0, 0, d− 2, 4d− 7) [1, 1, 1] + [1, 2, 2] + [2, 3, 1]

C8 (0, 0, d− 2, 4d− 8) [1, 1, 1] + [1, 2, 2] + [2, 2, 1] + [2, 3, 2]

C9 (1, 0, d− 3, 3d− 1) [1, 1, 1] + [1, 2, 2] + [1, 3, 3]

C10 (0, 1, d− 3, 3d− 4) [1, 1, 1] + [1, 2, 2] + [2, 1, 3]

C11 (0, 1, d− 3, 3d− 5) [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C12 (0, 0, d− 3, 3d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2]

C13 (0, 0, d− 3, 3d− 6) [1, 1, 1] + [1, 2, 2] + [2, 3, 3]

C14 (0, 0, d− 3, 3d− 7) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3]

C15 (0, 0, d− 3, 3d− 8) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 3, 1]

C16 (0, 0, d− 3, 3d− 9) [1, 1, 1] + [1, 2, 2] + [2, 2, 2] + [2, 3, 3]

C17 (0, 1, d− 4, 2d− 2) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

C18 (0, 0, d− 4, 2d− 3) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 3, 4]

C19 (0, 0, d− 4, 2d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 4] + [2, 3, 1]

C20 (0, 0, d− 4, 2d− 6) [1, 1, 1] + [1, 2, 2] + [2, 2, 3] + [2, 3, 4]

C21 (0, 0, d− 4, 2d− 7) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 3] + [2, 3, 4]

C22 (0, 0, d− 4, 2d− 8) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3] + [2, 3, 4]

C23 (0, 0, d− 5, d− 3) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5]

C24 (0, 0, d− 5, d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 3] + [2, 2, 4] + [2, 3, 5]

C25 (0, 0, d− 6, 0) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5] + [2, 3, 6]

of bases vectors taken from {0, 1}. The set C ′′
I,2 consists of classes that do not belong to C ′′

I,1

and that can be represented by elements with coefficients in linear combinations of bases
vectors taken from {0, 1,−1}. The set C ′′

I,3 consists of classes that do not belong to either
C ′′

I,1 or C
′′
I,2. The classes in C ′′

I,1 are the simplest and the most typical, and the classes in C ′′
I,3

are the most complex and the least typical. It is clear that classes in C ′′
I,1 and C ′′

I,2 can be
represented by elements with coefficients in linear combinations of bases vectors taken from
other sets besides {0, 1} and other sets besides {0, 1}, {0, 1,−1}, respectively. Nevertheless,
our results show that the chosen partition of C ′′ is by no means arbitrary.

We find

C ′′
I,1 = {C0, . . . , C29, C34, . . . , C66, C68, . . . , C82}, C ′′

I,2 = {C30, C31, C32, C67}, C ′′
I,3 ⊇ {C33}.
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TABLE VI. Representative elements for the sets of equivalence classes for n = 3, D = (2, 2, 2)

induced by the permutation symmetry of the spaces in {V1, V2, V3}. A representative element v

is given by v = Av1, where A : V → V is a certain linear operator and v1 ∈ V is a fixed vector.

(Without loss of generality and for comparison with other tables, we choose v1 = [1, 1, 1].) The

operator ai is defined by ai[. . . , 1, . . . ] = [. . . , 2, . . . ] and ai[. . . , 2, . . . ] = [. . . , 1, . . . ], where only

the ith index changes. To obtain all classes in each group, all possible choices of the indices

{i, j, k} = {1, 2, 3} should be considered.

A

C0 0

C1 1

{C2, C3, C4} 1 + aiaj

C5 1 + ai(aj + ak)

C6 1 + aiajak

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

FIG. 1. Graphical representation of entanglement classes for n = 3, D = (2, 2, d). Each vertex

corresponds to a certain expression [j1, j2, j3] in a representative element v for each class, and v

is the sum of such expressions over all vertices of a given three-dimensional lattice; see Table IV.

The invariants nQ1
(v), nQ2

(v), nQ3
(v) equal the numbers of linearly independent two-dimensional

lattices. To obtain the corresponding representations for D = (2, 2, d), we remove 4 − d cubes

from tops of stacks for d < 4 or add d− 4 cubes on top of stacks without adding any new vertices

for d > 4. There are only 10 classes for any d ≥ 4 because the number of linearly independent

two-dimensional lattices along one of the directions is already maximal (four) for the class C9. The

construction for arbitrary D is analogous; see, for example, Fig. 2.

We used the Monte Carlo method to search for the set C ′′
I,3, and it is possible that it contains

additional classes besides C33. However, our results show that such additional classes are
very rare with respect to a measure that is uniform on the space of coefficients in linear
combinations of bases vectors. Tables VIII, IX, X list the classes, their independent invari-
ants and representative elements. In these tables, all 83 classes appear in 27 fundamental
sets of classes related by permutations of {V1, V2, V3, V4}. Table XI lists the sets of classes
and their representative elements.
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C0 C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16 C17

C18 C19 C20 C21 C22 C23 C24 C25

FIG. 2. Graphical representation of entanglement classes for n = 3, D = (2, 3, d). See Fig. 1 for

further details.

TABLE VII. Sets that give independent invariants for n = 4.

Q1 = {{1}} Q9 = {{1, 2}, {1, 3, 4}, {2, 3, 4}}

Q2 = {{2}} Q10 = {{1, 3}, {1, 2, 4}, {2, 3, 4}}

Q3 = {{3}} Q11 = {{1, 4}, {1, 2, 3}, {2, 3, 4}}

Q4 = {{4}} Q12 = {{2, 3}, {1, 2, 4}, {1, 3, 4}}

Q5 = {{1, 2}, {1, 3}, {2, 3}} Q13 = {{2, 4}, {1, 2, 3}, {1, 3, 4}}

Q6 = {{1, 2}, {1, 4}, {2, 4}} Q14 = {{3, 4}, {1, 2, 3}, {1, 2, 4}}

Q7 = {{1, 3}, {1, 4}, {3, 4}} Q15 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}

Q8 = {{2, 3}, {2, 4}, {3, 4}} Q16 = {{1, 2}, {2, 3}, {2, 4}, {1, 3, 4}}

Q17 = {{1, 3}, {2, 3}, {3, 4}, {1, 2, 4}}

Q18 = {{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}}

Q19 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

V. CONCLUSIONS

Mathematical structure of entangled states gives rise to new measures of entanglement,
which lead to a new method of entanglement classification. The measures are algebraic
invariants of linear maps associated with the states. For finite-dimensional spaces, each
invariant takes a value from a finite set of integers, and the resulting set of entanglement
classes is finite. The relation to the standard continuous invariants is such that different
values of the discrete invariants correspond to certain continuous invariants being zero or
nonzero. We believe that our classification is the most refined restricted classification pos-

14



TABLE VIII. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C0 (2, 2, 2, 2, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16) 0

C1 (1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 10, 10, 8, 8, 8, 8, 11) [1, 1, 1, 1]

C2 (0, 0, 1, 1, 3, 3, 2, 2, 9, 7, 7, 7, 7, 10, 3, 3, 7, 7, 10) [1, 1, 1, 1] + [2, 2, 1, 1]

C3 (0, 1, 0, 1, 3, 2, 3, 2, 7, 9, 7, 7, 10, 7, 3, 7, 3, 7, 10) [1, 1, 1, 1] + [2, 1, 2, 1]

C4 (0, 1, 1, 0, 2, 3, 3, 2, 7, 7, 9, 10, 7, 7, 3, 7, 7, 3, 10) [1, 1, 1, 1] + [2, 1, 1, 2]

C5 (1, 0, 0, 1, 3, 2, 2, 3, 7, 7, 10, 9, 7, 7, 7, 3, 3, 7, 10) [1, 1, 1, 1] + [1, 2, 2, 1]

C6 (1, 0, 1, 0, 2, 3, 2, 3, 7, 10, 7, 7, 9, 7, 7, 3, 7, 3, 10) [1, 1, 1, 1] + [1, 2, 1, 2]

C7 (1, 1, 0, 0, 2, 2, 3, 3, 10, 7, 7, 7, 7, 9, 7, 7, 3, 3, 10) [1, 1, 1, 1] + [1, 1, 2, 2]

C8 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 2, 2, 2]

C9 (0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 9, 0, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 2, 2]

C10 (0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 2, 2]

C11 (0, 0, 0, 1, 1, 2, 2, 2, 5, 5, 7, 5, 7, 7, 2, 2, 2, 7, 8) [1, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 1]

C12 (0, 0, 1, 0, 2, 1, 2, 2, 5, 7, 5, 7, 5, 7, 2, 2, 7, 2, 8) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 2, 1, 1]

C13 (0, 1, 0, 0, 2, 2, 1, 2, 7, 5, 5, 7, 7, 5, 2, 7, 2, 2, 8) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1]

C14 (1, 0, 0, 0, 2, 2, 2, 1, 7, 7, 7, 5, 5, 5, 7, 2, 2, 2, 8) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2]

C15 (0, 0, 0, 1, 0, 2, 2, 2, 4, 4, 7, 4, 7, 7, 2, 2, 2, 7, 7) [1, 1, 1, 1] + [2, 2, 2, 1]

C16 (0, 0, 1, 0, 2, 0, 2, 2, 4, 7, 4, 7, 4, 7, 2, 2, 7, 2, 7) [1, 1, 1, 1] + [2, 2, 1, 2]

C17 (0, 1, 0, 0, 2, 2, 0, 2, 7, 4, 4, 7, 7, 4, 2, 7, 2, 2, 7) [1, 1, 1, 1] + [2, 1, 2, 2]

C18 (1, 0, 0, 0, 2, 2, 2, 0, 7, 7, 7, 4, 4, 4, 7, 2, 2, 2, 7) [1, 1, 1, 1] + [1, 2, 2, 2]

C19 (0, 0, 0, 0, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 2, 2, 2, 2, 7) [1, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C20 (0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 4, 5, 2, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 2, 1, 2]

C21 (0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 5, 4, 2, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 1, 2] + [2, 2, 2, 1]

C22 (0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 2, 2, 5, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 2, 2, 1]

C23 (0, 0, 0, 0, 1, 0, 1, 0, 2, 5, 2, 2, 4, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2]

C24 (0, 0, 0, 0, 0, 0, 1, 1, 4, 2, 2, 2, 2, 5, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 2, 1]

C25 (0, 0, 0, 0, 1, 1, 0, 0, 5, 2, 2, 2, 2, 4, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1]

C26 (0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [2, 2, 2, 2]

sible. Although this result is formulated as a theorem in the text, its proof is not a usual
mathematical proof, but rather a proof by exhaustion of possibilities.

The new method works for an arbitrary finite number of spaces of finite dimensions. As
its application, we obtained entanglement classifications for a wide selection of individual
cases of three subsystems and the case of four qubits.

For three subsystems, in addition to finding classifications for individual values of D =
(d1, d2, d), it is rather easy to obtain results for infinite sequences of values of d. An inter-
esting general feature of these results (which is easy to prove) is that increasing d beyond
d1d2 does not introduce any new entanglement classes. As examples, we have found such
classifications for the values (d1, d2) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4)} and ar-
bitrary d. Only one of these sequences, D = (2, 2, d), had been conjectured in the literature,
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TABLE IX. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C27 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C28 (0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 5, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 2, 1, 1]

C29 (0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 1, 2, 1]

C30 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 2, 1]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C31 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 1, 2]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 2, 1] + [2, 1, 2, 2] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C32 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1] + [1, 1, 2, 2]− [1, 2, 1, 1]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C33 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + c[1, 1, 2, 2]− (1 + c)[1, 2, 1, 2]− (1 + c)[2, 1, 2, 1]

+c[2, 2, 1, 1] + [2, 2, 2, 2], c ∈ F , c 6∈ {−2,−1, 0, 1}

C34 (0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 5) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

C35 (0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 5) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 2, 2, 1]

C36 (0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 2, 2] + [2, 1, 1, 2]

C37 (0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C38 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 4, 2, 2, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 2]

C39 (0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1]

C40 (0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 2, 2, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 1, 1]

C41 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 2]

C42 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 2, 2, 1]

C43 (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 1, 1] + [2, 1, 2, 2] + [2, 2, 2, 1]

C44 (0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 4, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 2, 1, 2]

C45 (0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [2, 2, 1, 2] + [2, 2, 2, 1]

C46 (0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 1, 2, 2]

C47 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 2] + [2, 2, 2, 1]

C48 (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 2]

C49 (0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C50 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 0, 0, 0, 1, 4) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C51 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C52 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 0, 1, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 2]

C53 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 2, 2, 1]

C54 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C55 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C56 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 1, 2] + [2, 2, 1, 1]

C57 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 2, 1, 1]

C58 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 2, 1, 1]

C59 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 2, 1]
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TABLE X. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C60 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 1, 2, 1]

+[2, 2, 2, 2]

C61 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 1, 2, 1]

+[2, 2, 1, 2]

C62 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 1, 1]

C63 (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 1, 1, 2]

+[2, 2, 2, 1]

C64 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 2, 1] + [2, 2, 2, 2]

C65 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 2] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2] + [2, 2, 2, 1] + [2, 2, 2, 2]

C66 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 1, 2] + [2, 2, 2, 2]

C67 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 1, 2]

−[2, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 1] + [2, 2, 2, 2]

C68 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C69 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C70 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C71 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 2, 2, 2]

C72 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C73 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2]

C74 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 2, 2, 1]

C75 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 2] + [2, 2, 2, 1]

C76 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

C77 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 2] + [2, 2, 2, 1]

C78 (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

C79 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 1, 2]

C80 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 2, 1]

C81 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

+[2, 2, 2, 1]

C82 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [1, 2, 1, 2] + [2, 1, 1, 1]

+[2, 1, 2, 1] + [2, 2, 2, 2]

17



TABLE XI. Representative elements for the sets of equivalence classes for n = 4, D = (2, 2, 2, 2)

induced by the permutation symmetry of the spaces in {V1, . . . , V4}. A representative element v

is given by v = Av1, where A : V → V is a certain linear operator and v1 ∈ V is a fixed vector.

(Without loss of generality and for comparison with other tables, we choose v1 = [1, 1, 1, 1].) The

operator ai is defined by ai[. . . , 1, . . . ] = [. . . , 2, . . . ] and ai[. . . , 2, . . . ] = [. . . , 1, . . . ], where only

the ith index changes. To obtain all classes in each group, all possible choices of the indices

{i, j, k, l} = {1, 2, 3, 4} should be considered. This results in 27 fundamental sets of 83 classes.

A

C0 0

C1 1

{C2, . . . , C7} 1 + aiaj

{C8, C9, C10} (1 + aiaj)(1 + akal)

{C11, . . . , C14} 1 + ai(aj + ak)

{C15, . . . , C18} 1 + aiajak

C19 1 + ai(aj + ak + al)

{C20, . . . , C25} 1 + ai(aj + akal)

C26 1 + aiajakal

{C27, C28, C29} 1 + (ai + aj)(ak + al)

{C30, C31, C32} 1− (ai + aj + ak + al) + ajakal + aiakal + aiajal + aiajak + aiaj + akal + aiajakal

C33 1 + c(aiaj + akal)− (1 + c)(aiak + ajal) + aiajakal, c ∈ F , c 6∈ {−2,−1, 0, 1}

{C34, . . . , C37} 1 + ai + ajak + aiakal

{C38, C39, C40} 1 + aiaj + akal

{C41, . . . , C46} 1 + (ai + aj)(1 + akal)

{C47, C48, C49} 1 + aiaj + (ai + aj)akal

{C50, . . . , C53} 1 + ai(aj + ak) + ajakal

{C54, . . . , C59} 1 + aiaj + akal + aiak

C60 1 + (ai + aj)(ak + al) + aiajakal

{C61, C62, C63} 1 + ai + aj + akal + aiak + aiajal

{C64, C65, C66} 1 + ai + aj + akal + aial + ajak + ajal + aiakal + aiajak + aiajakal

C67 1− ai − aj + ak + al + aiaj + aiak + ajal + aiajakal

{C68, . . . , C71} 1 + ai + aj + ak + aiajakal

C72 1 + ai(aj + ak + al) + ajakal

{C73, . . . , C78} 1 + ai(1 + akal) + aj(ak + al)

{C79, C80, C81} 1 + ai + aj + akal + aiaj(ak + al)

C82 1 + ai + aj + akal + aiak + ajal + aiajakal

for which our method gives the same number of classes as the classifications in [3], [4], [7],
[9] and the conjectured classification in [7], [9].

Entanglement classes and representative elements could be easily generated for other
infinite sequences. The classification problem for the general case of three subsystems,
however, is challenging and currently under study. Note that the entanglement of a set of
three large spin subsystems is in some practical sense complementary to a system of many
low spin (e.g., many qubit) subsystems. Both have potential for the construction of practical
devices.
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The classification of entanglement of four qubits has been considered by several groups
of authors [5, 13–18, 20]. All previous works found 9 or fewer fundamental sets of classes
after permutations have been removed. In our work we found 27 fundamental sets of classes.
Our refined classification could be useful to experimenters who consider detailed properties
of four qubit systems. For example, Barreiro et al. [23] find a rich dynamics when they
arrange four Ca+ ions as qubits and study entanglement via decoherence and dissipation.
See also [24] for earlier 4 qubit work.

To deepen our knowledge about other quantum systems, their entanglement should be
thoroughly studied as well. Our method provides a simple, general, practical approach to
such studies.

Our new invariants are topological since they are the dimensions of linear spaces. Al-
though the invariants are rather simple from the point of view of topology, they may have
a different interpretation when viewed from other perspective. For an example of a possibly
related interpretation, see [25]. Finally, it is also worth pointing out that while we find pure
representative states for each class, it is straightforward to combine them into mixed states
via a density matrix approach.
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