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1. Convergence at first sight,
and differences in a second time

From the early days of the minimalist program of Chomsky
(1993), a convergence with categorial grammars was noticedby Ep-
stein and Berwick (1995). The striking similarity lies in the merge
operation, which looks like the application rule of the AB gram-
mars. In both cases, word order is a consequence of the consump-
tion rules but in categorial grammars being the head of a compound
expression also derives from the categories while in a minimalist
setting it can be defined independently from the resource consump-
tion. The most striking difference is the absence of movement in
categorial grammar: how could this notion be captured? If itcan,
how could minimality conditions likeshortest movebe formulated?
In the other direction the main difference is the atomicity of mini-
malist features:mergeis not recursive, there cannot be a demand of
a category which itself demand another category.

Hence, after quite an optimistic wish of convergence, the task
seems so tough that one may wonder why we are willing to do so?
There are at least two reasons:

• Of course, the main reason is that categorial grammar easily
yield the logical form (or semantic representation) following
some of Montague’s idea.

• A secondary reason is the formalisation of converging learn-
ing algorithms from positive structured examples, which can
be defined for categorial grammars, but we shall not speak
about it, although one of us did something in this direction
Bonato and Retoré (2001).

Because the categorial tradition is anchored in a formal andlog-
ical apparatus, the convergence between generative grammar and
categorial grammars benefited from the development of resource
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logic and from the formalisation of the minimalist program by Sta-
bler (1997) into tree grammars known as minimalist grammarsas
a special issue of Language and Computation shows (Retoré and
Stabler (2004b)).

The kind of categorial grammar we are using relies on the out-
comes of linear logic (Girard, 1987), which extends the Lambek
calculus (Lambek, 1958) which itself is a logical completion of the
AB-grammars (Bar-Hillel, 1953)when the fraction rules areviewed
as modus ponens. Lambek calculus is quite a restricted logic: it
is an intuitionistic logic, where every hypothesis is used once and
exactly once, and where they cannot permute. Our representation
uses a mixed system with both commutative and non commutative
connectives (de Groote, 1996; Retoré, 2004; Amblard and Retoré,
2007). Still it is a linear subsystem of intutionistic logic, and this
enables to derive semantic interpretation from the syntactic analy-
sis.

There are several ways to represent rather faithfully Edward
Stabler’s minimalist grammars in categorial grammars and to en-
dow them with an integrated treatment of compositional semantics.
Some of them take place in the multimodal framework, like (Cor-
nell, 1999; Vermaat, 2004), but here we focus on the one we intro-
duced in the framework of linear logic Lecomte and Retoré (1999,
2001) that we call categorial minimalist grammars. We developed
them with others (in particular Anoun (2007)), but in this presen-
tation, we rather follow the one thoroughly presented in thePhD
thesis of the first author,Amblard (2007).

We first recall some basic notions on minimalist grammars and
on categorial grammars. Next we shortly introduce partially com-
mutative linear logic, and our representation of minimalist gram-
mars within this categorial system, the so-called categorial mini-
malist grammars. Next we briefly presentλµ-DRT (Discourse Rep-
resentation Theory) an extension ofλ-DRT (compositional DRT)
in the framework ofλµ calculus: it avoids type raising and derives
different readings from a single semantic representation, in a set-
ting which follows discourse structure. We run a complete example
which illustrates the various structures and rules that areneeded
to derive a semantic representation from the categorial view of a
transformational syntactic analysis.



Minimalist features
b = {C, v,V, d, t, ...} base syntactic categories
=b = {=x|x ∈ b} demand of a base category,

selectors
b⇐ = {x⇐|x ∈ b} demand of a base category,

with specific placing of the
head, i.e. head movement
selectors

−m = {−k,−wh, ...} movement triggers, li-
censees

+m = {+x|−x ∈ −m} movement target, licensors

Figure 1: Features and lexical entries in minimalist grammars

2. Minimalist grammars

There are actually several variants of minimalist grammars, due
to Edward Stabler, whose guidelines are similar. We focus onthe
initial formulation of Stabler (1997), an important alternative being
Stabler (1999) where operations that one may find unpleasantin a
categorial setting likehead-movement, are simulated by sequences
of elementary operations.

As usual in a lexicalised grammar, the lexicon maps each lex-
ical item fromΦ = {Peter, sleeps, loves, ...} to a formal encoding
of its syntactic behaviour. Here syntactic behaviour is depicted by
a sequence of features (category, demand of a category, movement
trigger, movement target, see figure 1) followed by the correspond-
ing phonological form. This sequence controls the generating pro-
cess, which makes use of independent generating functions,only
depending on the features of the heads.

(1) Minimalist lexical entries
The sequence of features preceding the phonological form
matches the following regular expression, whose ingredients
are depicted in figure 1:

Lex(word) ∈ L = (=b ∪ b⇐(=b ∪ b⇐ ∪ +m)∗)∗b(−m)∗



Such grammars operate on binary trees, the leaves of which are
labelled with sequences of features, and the nodes of which are la-
belled by either ”<” or ”>”. Theheadof a tree is defined recursively
as follows: the head of a tree reduced to a leaf is itself. The head of
T1 < T2 and ofT2 > T1 is the head ofT1. Given a leafℓ of a treeT,
there always exists a biggest subtreeT′ of T such thatl is the head
of T′: T′ is said to be the maximal projection ofℓ.

The initial rule says that a tree reduced to a leaf labelled by the
lexical entry is itself a derivation tree.

The mergerule, is defined for two treesT1 and T2, one hav-
ing a headτ1 = =xτ′1φ1 (the demand) and the other having a head
τ2 = xτ′2φ2, whereτ′1, τ

′
2 are sequences of features andφ1, φ2 are

sequences of phonological features. Let us callT′1 andT′2 the trees
obtained fromT1 andT2 by suppressing from their respective heads
the first features, that are respectivelyx and =x. If the demand
comes from a lexical item, then the result of the merge operation
is T′1 < T′2. Otherwise, the result isT′2 > T′1. In any case the head of
the result comes fromT1 and isτ′1φ1.

The head-movement with right adjunctionis actually a special
merge and not a kind of movement. It is defined for two treesT1

andT2, one having a headτ1 = x⇐τ′1φ1 (the demand) and the other
having a headτ2 = xτ′2φ2, whereτ′1, τ

′
2 are sequences of features

andφ1, φ2 are sequences of phonological features. Let us callT′1
the tree obtained fromT1 by turning its head intoτ1 = τ′1φ1φ2 i.e.
the demandx⇐ has been suppressed and the phonological features
are the ones ofT1’s head followed by the one of the head ofT2. Let
us callT′2 the tree obtained fromT2 by turning its head intoτ′2 i.e.
by suppressing both thex that has been consumed during the merge
and the phonological features of the head that have been moved into
T′1. If the demand comes from a lexical item, then the result of the
merge operation isT′1 < T′2. Otherwise, the result isT′2 > T′1. In
any case the head of the result comes fromT1 and isτ′1φ1. As far
as strings are concerned, head-movement is not required: grammars
with or without head-movement generate the same languages,the
simulation of head-movement requires many standard merge and
moves to be simulated, and yields different parse trees. For having
shorter derivations and standard parse trees, we prefer to use head
movement in this paper. There also exists head movement withleft
adjunction, which is defined symmetrically the phonological fea-
tures moving before the phonological features of the selector head.



One can also define affix-hopping which is rather similar except
that the selectee collects the phonological features of thehead of
the selector.

Themoverule applies to a single treeT whose head is+xτφ i.e.
starts with a movement target+x ∈ +m, such thatT has a subtreeT1

whose head starts with the corresponding movement trigger−x ∈
−m. Then the result isT′1 > T′◦ whereT′1 is T1 without the−x
feature andT′◦ is T minus theT1 subtree and minus the+x feature.
Observe that the head of the result is the same as the initial one,
except that its first feature+x has been erased.1

(2) Language generated by a minimalist grammar
A convergent derivation generating the sentenceφ1 · · ·φn ∈

Φ∗ ends up with a single non phonological featureC on the
head, while the leafs read from left to right yieldφ1 · · ·φn ∈

Φ∗.

An important requirement on minimalist grammars, both in the
principles of Chomsky and in Stabler’s formalisation, is the condi-
tion known as theshortest move. In Chomsky’s formulation it says
that whenever two subtrees have a−xτ head, the first one, that is
the closes to the target, moves. In Stabler’s view it says that when-
ever there are two candidates to movement, i.e. when there are two
leaves starting with−x, the derivation crashes. Unless otherwise
stated, with stick to Stabler’s definition.

Minimalist grammars have rather interesting formal properties,
some of which are worth quoting. Indeed, Harkema, Kobele,
Michaelis, Morawietz, Mönnich, Retoré, Salvati, Stabler studied
minimalist grammars from the viewpoint of formal language the-
ory, the main focus being their generative capacity as sets of strings
and as sets of trees, the complexity of parsing and learning strate-
gies. We recall here some of the results:

• The generative capacity of minimalist grammars (with short-
est move) is equivalent to that of context free linear rewriting
system. Michaelis (2001a,b)

1It is possible to also consider weak movement, which leaves the−xsubtree at is
pace, but suppress the semantic information, and makes a copy of the tree structure
with only the semantic features and moves it as we did. As we donot speak about
semantic features, we skipped this possible rule.



• In the absence of shortest move, it has been showed that the
membership problem is equivalent to the yet unknown de-
cidability of provability of Multiplicative Exponential Linear
Logic. Salvati (2007)

• As far as trees are concerned, we know that the minimalist de-
rived trees, that are the ones depicting syntactic structures can
be obtained from a regular tree grammar with a transduction
applied thereafter. Mönnichet al.(2000); Kobeleet al.(2007)

Although there are some semantic concerns in minimalist gram-
mars as rewriting systems e.g. in Kobele (2006) what is a logical
form and how it could be computed is not as clear as it is in the log-
ical approach to categorial grammars. This is likely to be the most
frustrating limit of minimalist grammars and the main reason for
studying them from a categorial perspective.

For us, the main advantage of minimalist grammars (or in a
broader perspective, generative grammar, transformational gram-
mars, etc.) is their linguistic richness and soundness, which is at-
tested by the relation they are able to draw between sentences (ques-
tions and related declarative sentences for instance) or between lan-
guages (the differences among features are a way to explain lan-
guage variation).

3. Categorial grammars

A categorial grammar consists in a lexicon which associates
with every lexical item a finite set of categories (propositional log-
ical formulae). In the case of AB grammars categories are finitely
generated by the connectives/ and\ from a set of base categories:
S (sentence),np (or dp for noun phrase or determiner phrase),n
(common noun) etc. A sequence of wordsw1 · · ·wn is in L(Lex)
whenever∀i∃ti ∈ Lex(wi) such thatt1, . . . , tn ⊢ S is derivable in a
logical calculus. For AB grammars the calculus simply consists in
the two famous residuation laws, which are elimination rules from
the logical viewpoint, i.e. when/ and\ are viewed as non commu-
tative linear implications.

Alternatively, one could also label the formulae in the proofs as
follows:



(w : word, with A ∈ Lex(w) )
axiom

⊢ w : A

⊢ w1 . . .wn : A ⊢ m1 · · ·mp : A \ B
\e

⊢ w1 · · ·wnm1 · · ·mp : B

⊢ t : B / A ⊢ u : A
/e

⊢ tu : B

This lead to a definition of the generated language as typable
strings:

(3) Language generated by an AB grammar
(*) w1 · · ·wn ∈ L(Lex) whenever⊢ w1 · · ·wn : S.

The logical calculus we are to use for categorial minimalist
grammars is close to the one above since we shall consider labels
and only elimination rules. But it also resembles the Lambekcal-
culus since we have more logical rules and one of them, namely
product elimination, requires axioms and variables.2

One can wonder why moving out the mathematical paradise
provided by usual categorial grammars, AB grammars or Lambek
grammars, which are very neat and elegant, especially the Lambek
calculus. The main reason is that the syntactic abilities ofcategorial
grammars are limited. A formal way to say so is that they only de-
scribe context-free languages, which are commonly assumedto be
insufficient to describe natural language syntax, but a more empir-
ical one is their difficulty to describe various syntactic phenomena,
like discontinuous constituent, or to relate declarative sentence and
questions.3 Therefore, one has to extend such systems, either by ex-
tending the logic by modalities and postulates, as Moortgat(1988)
did, thus sticking to the parsing as deduction paradigm, or to have a

2Can one extends this definition of the generated language to Lambek gram-
mars? Lambek calculus extends the above calculus with the introduction rules (or
abstraction), and this requires to have context and variables (introduced by the ax-
iom x : A ⊢ x : A). Since variables are abstracted only from leftmost or rightmost
positions, one has to carry over context with words to prohibit illicit abstractions,
hence the lightness of the above system without contexts is lost.

3Although Lambek grammars only describe context free languages, if the gram-
mar is not compiled into a context free grammar, parsing by proof search is NP
complete.



logical basis providing the deep structure and an extra mechanism
computing word order.

Despite their syntactic limitations, categorial formalisms never-
theless allow an appealing direct computation of (usual) logical for-
mulae from a syntactic analysis. The deep reason, already noticed
by the Ancients is that syntactic categories correspond to seman-
tic types, see e.g. Baratin and Desbordes (1981): a sentenceS is a
propositiont, a definitenp is an individuale, a common nounn or
an intransitive verbnp\S is a one place predicate, a transitive verb
is a two place predicate etc. Without providing the details,since
we are going to present a similar process for categorial minimalist
grammars, let us explain how it works.

In order to compute the semantic formula associated with a sen-
tence, we have:

• A lexicon that provides each word with a syntactic category
c and a lambda term whose type is the semantic translation
t = c∗.

• A syntactic analysis that is a proof in the Lambek calculus
of S under the assumptiont1, . . . , tn, eachti being a possible
category for the wordwi .

The algorithm which computes the associated logical formula is
quite simple:

(i) Convert the syntactic categories into semantic types asfol-
lows:np∗ = e, S∗ = t, n∗ = e→ t, (A\B)∗ = (B/A)∗ = e→ t:
this yields a proof in intuitionistic logic ofS∗ = t under the
assumptionc∗1 = t1, . . . , c∗n = t∗n. This proof is a proof that the
lambda term hereby defined corresponds to a formulae (is of
typet), whose free variables are of typeti .

(ii) Replacing each variable with the corresponding term oftype
ti provided by the lexicon provide a close term of typet, that
is a logical formulae.



4. Categorial minimalist grammars

4.1. Labels encoding word order

Let us consider a set of variablesV (for expressing hypothesis
and encoding movement) and a (disjoint) set of phonologicalforms
Φ (words, lexical items) The labels we are to use are slightly more
complicated than sequences of words. A label~r is a triple each com-
ponent being a sequence of variables and phonological forms

~r = (rspec| rhead| rcomp) = (rs | rh | rc) ∈
[
(V ∪Φ)∗

]3

Intuitively, these three strings are the yields of the threesub-
trees respectively corresponding to the head (rh), the specifier (rs)
and the complement (rc). The following notations are convenient to
denote the suppression of one of the components:~r−h = (rs | ǫ | rc) ∈
[(V ∪ Φ)∗]3, ~r−s = (ǫ | rh | rc) ∈ [(V ∪ Φ)∗]3, ~r−c = (rs | rh | ǫ) ∈
[(V ∪ Φ)∗]3. With these notationsr−h = rs rc ∈ (V ∪Φ)∗

Given a label~r = (rs | rh | rc) we denote byr the concatenation
of its three components:

r = rs rh rc ∈ (V ∪ Φ)∗

4.2. A restricted fragment of partially commutative logic

To represent minimalist grammars we make use of a very re-
stricted fragment of partially commutative linear logic. This later
system introduced by de Groote in de Groote (1996) and extended
in Retoré (2004), is a superimposition of the Lambek calculus (in-
tuitionistic non commutative multiplicative linear logic) and intu-
itionistic commutative multiplicative linear logic. The connectives
are both the ones of the Lambek calculus (•, \, /) and the ones of
(commutative)multiplicative linear logic (⊗,⊸).

We only consider a particular formulation of a restricted frag-
ment of the calculus to encode minimalist grammars:

• We use natural deduction as in Amblard and Retoré (2007).

• We only use the commutative conjunction (⊗) and the two non
commutative implications (/, \).

• We only use elimination rules.



∆ ⊢ z : A⊗ B Γ[(x : A, y : B)] ⊢ t : C
[⊗e]

Γ[∆] ⊢ (let (x, y) = z in t) : C

Figure 2: Labels for product elimination rule.

• Contexts will simply be multisets of formulae. Usually, for
such calculi, contexts are partially ordered multisets of for-
mulae and a rule calledentropyallows to relax such order. In
the restricted calculus we use, we systematically use the full
strength ofentropyjust after the eliminations of/ and\ which
usually introduce order between the assumptions. Hence con-
texts are simply multisets of formulae.

The product elimination rule is especially important, because
it enables a coding of movement (or rathercopy theoryof Brody
(1994)) from one hypothesis to the other one. It is a free adaptation
of the product elimination rule to the proof expressions of Abram-
sky (1993) (see figure 2).

The formulae we use have a definition that follows rather pre-
cisely the sequences of features that are used in minimalistgram-
mars, i.e. in the setL defined in 1:

(4) Logical formulae in a categorial minimalist lexicon

F ::= x / b | x /⇐ b | c
x ::= b \ x | b ⇒\ x | m \ x | c
c ::= m ⊗ c | b

The rules which control the labelling are presented in figure4.2
— observe that labels do not control the deductive process but are
derived from deductive process.

The rules of figure 4.2 will be used as a group of rules which cor-
responds to the main operations of minimalist grammars, namely
mergeandmovegiven in (5) and (6).

We also need to distinguish different\, /-eliminations because
head-movement with right adjunction is as far as logical types are
concerned amergebut is has a different effect on word order. The
two rules corresponding to lexical merge/ head-movement with



〈s,A〉 ∈ Lex
[Lex]

⊢G (ǫ | s | ǫ) : A

x ∈ V
[axiome]

x : A ⊢G (ǫ | x | ǫ) : A

Γ ⊢G ~r1 : A / B ∆ ⊢G ~r2 : B
[/e]

〈Γ;∆〉 ⊢G (r1s | r1t | r1c r2) : A

∆ ⊢G ~r2 : B Γ ⊢G ~r1 : B \ A
[\e]

〈Γ;∆〉 ⊢G (r2 r1s | r1h | r1c) : A

Γ ⊢G ~r1 : A⊗ B ∆[x : A, y : B] ⊢G ~r2 : C
[⊗e]

∆[Γ] ⊢G ~r2[r1/x, ǫ/y] : C

Γ ⊢G ~r : A Γ′ ⊏ Γ
[⊏]

Γ′ ⊢G ~r : A

Figure 3: Labelled PCMLL deductions. As renaming allows, itis
assumed that no variable is common to two labels from different
premises:Var(~r1) ∩ Var(~r2) = ∅. In the ⊗e rule, A is usually a
movement feature.



right adjunction/⇐ or the non lexical variant are provided in fig-
ure 7 This is the reason why we use the symbols⇒\ and/⇐ corre-
sponding to head-movement with right adjunction. Clearly,this is
a weakness of the system, because as far as proofs are concerned it
is weird to have different connectives with the same rules. We can
answer to the possible protests that:

• As for minimalist grammars, head-movement is not really re-
quired since it can be simulated with regular movement, hence
mergeandmovewhich are completely directed by the formu-
lae

• Because the system does not contain the introduction rules,
the system is unable to proveA\B ≡ A⇒\B norA/B ≡ A/⇐B
which would be quite a problem.

(5) The operationmergein a categorial setting

〈sem,A〉 ∈ Lex
[Lex]

⊢s em: A

⊢ g : A / B ∆ ⊢ u : B
[mg]

∆ ⊢ (g(u)) : A

∆ ⊢ u : B Γ ⊢ g : B \ A
[mg]

∆, Γ ⊢ (g(u)) : A

(6) The operationmovein categorial setting

Γ ⊢ ~s : A⊗ B ∆[u : A, v : B] ⊢ ~r : C
[mv]

∆[Γ] ⊢ ~r[u := s, v := ǫ] : C

(7) Head-movement with right adjunction in a categorial setting

Γ ⊢ (rs | rh | rc) : A /⇐ B ∆ ⊢ (ss | sh | sc) : B
[mghdr]

Γ,∆ ⊢ (rs | rh sh | rc ss sc) : A

∆ ⊢ (ss | sh | sc) : B Γ ⊢ (rs | rh | rc) : B⇒\ A
[mghdr]

∆, Γ ⊢ (ss sc rs | rh sh | rc) : A



4.3. Grammars

As earlier said, the definition of the generated language resem-
bles the one of categorial grammar given in 3, although here it en-
compasses a broader notion of label.

(8) Language generated by a categorial minimalist grammars
A grammar produces a sentenceφ1 . . . φn ∈ Φ

∗ whenever there
exists a derivation of⊢ ~r : C with r = φ1 . . . φn (remember
thatr is the concatenation of the three components of~r). This
definition entails among others that variables must disappear
with product elimination rules encoding movement during the
derivation process.

A natural question is whether minimalist grammars and cate-
gorial grammars generate the same strings and derived trees. The
answer is yes, and the proof may be found in Amblard (2007),4. It
relies on translations from one king of lexicon to the other:

(9) The translation( )α from a lexicon à la Stabler into a catego-
rial minimalist lexicon

(γ − f )α = ( f ⊗ (γ)δ)
(= f γ)α = (γ)β / f
( f⇐γ)α = (γ)β /⇐ f
( f )α = f
(= f γ)β = f \ (γ)β

( f⇐ γ)α = f ⇒\ (γ)β

(+ f γ)β = f \ (γ)β

(γ − f )β = ( f ⊗ (γ)δ)
( f )β = f
(γ − f )δ = ( f ⊗ (γ)δ)
( f )δ = f

(10) The translation( )α
′

from a categorial minimalist lexicon into
a lexicon à la Stabler

4Actually Amblard (2007) does not include the head movemen case, but espe-
cially for this construct, the two kind grammars work just the same,mutatis mu-
tandi.



(F / f )α
′

= = f (F)β
′

(F /⇐ f )α
′

= f⇐ (F)β
′

( f ⊗ F)α
′

= (F)δ
′

− f
( f )α

′

= f

( f \ F)β
′

=

{

= f (F)β
′

si f ∈p1

+ f (F)β
′

si f ∈p2

( f ⇒\ F)β
′

= f ⇐ (F)β
′

( f )β
′

= f
( f ⊗ F)β

′

= (F)δ
′

− f
( f ⊗ F)δ

′

= (F)δ
′

− f
( f )δ

′

= f

(11) Equivalence of categorial minimalist grammars and minimal-
ist grammars
If a minimalist grammar à la Stabler is turned into a catego-
rial minimalist lexicon according to the rules in figure 9, then
the generated sentences are the same and even parse trees are
almost the same (provided the subtree undergoing movement
is correctly placed). Conversely, if one turns a categorialmin-
imalist lexicon (only containing formulae inCMG defined in
figure 4) into a minimalist lexicon according to the rules in
10, then one also gets the same generated sentences and parse
trees.

A remaining question is how constraints on derivations, like
shortest move, could be formulated in a deductive setting. This is
a weakness of the system: the only way to formulate these restric-
tions is to impose constraints on derivations, and this is not so ap-
pealing from a logical viewpoint since rule are usually context free,
i.e. apply locally without referring to the history of the deduction
— unless one goes to dependent types, which are complicated and
not yet explored for linear calculi.

5. Syntax and semantics in categorial minimalist
grammars

The purpose of viewing minimalist grammars as a categorial
system is to have an automatic conversion of syntactic composi-
tions into semantic composition. We firstly present the semantic



types and their relation to syntactic categories, then a variant of
λ-DRT with µ constructs in order to obtain the different scope read-
ings from a single semantic representation, and finally sum up the
algorithm producing semantic analyses.

5.1. From syntactic categories to semantic types

The formulae that we infer as semantic representations are first
order, because we are going to use DRT which better matches the
discourse structure. Therefore we reify predicates, we usevariables
to express high order properties: we writerun(e,Rex) ∧ f ast(e) in-
stead off ast(run(Rex)). Consequently we have the following three
base types

t the standard Montague type, for truth values and propositions
(that will be used as⊥ from theµ-calculus viewpoint).

e the standard Montague type, for entities.

v the type for reifying events and predicates in order to remain
in first order logic.

The standard translationH of a syntactic categoryx into the cor-
responding semantic typeH(x) has to be slightly extended, because
in addition to the syntactic connectives/, \we have⊗, together with
an extra basic type for reifications.

(12) Converting syntactic categories into semantic types

H(C) = t
H(v) = v→ t
H(t) = v→ t

H(V) = e→ (v→ t)
H(d) = e
H(n) = e→ t

H(x ⊗ y) = H(y) ifa ∈ m
= H(x) if a < m

H(x \ y) = H(x)→ H(y)
H(y / x) = H(x)→ H(y)

H(x ⇒\ y) = H(x)→ H(y)
H(y /⇐ x) = H(x)→ H(y)



This translation can be illustrated on the syntactic categories we
are to use in the example of section 6.

H(k ⊗ d) = e
H(V / d) = (v→t)→e→v→t

H((k\(d\v)) /⇐ V) = (e→v→t)→e→e→v→t
H((k \ t) /⇐ v) = (v→ t)→ e→ v→ t

H(k ⊗ d / n) = (e→ t)→ e
H(C / t) = (v→ t)→ t

5.2. λµ-calculus

Semantics can be computed in standard Montagovian terms and
types, as did Amblardet al. (2003) or Lecomte and Retoré (2002)
We extend a bit this process, by moving fromλ-calculus toλµ cal-
culus, aλ calculus for depicting classical proofs (while standardλ-
calculus correspond to proofs in intuitionistic propositional logic).
The advantage is that quantifiers do not need to be type raisedand
that the different scopes are obtained from a single syntactic seman-
tic analysis, by differentλµ computations, as initiated by de Groote
(2001) and developed for categorial minimalist grammars inAm-
blard (2007) or Lecomte (2008).

Theµ calculus is strongly related to the formulation of classical
logic in natural deduction usingreductio as absurdum: instead of
concluding¬¬A = (A → ⊥) → ⊥ from ⊥ under the assumption
¬A one concludesA. Provided one does not use the⊥ rule (ex falso
quod libet sequitur), this can be done with any constant type for⊥.
Here, as in de Groote (2001), we shall use Montaguet type (truth
values, propositions) for the⊥ of the glue language that is theλµ-
calculus. As opposed to common intuitions, this is really harmless!

We will use a restricted calculus, whose typing rules are very
easy: basic types are the aforementionedt, e, v and, as said above,t
will be used as⊥. Types are defined as usual, with the arrow (intu-
itionistic implication) only.

For each typeZ, we have a denumerable set ofλ-variables of
typeZ.

We haveµ variables with typeX→ t for some typeX.
There are three kinds of terms, ValuesV, Unamed Termsv and

Named Termsc with V ⊂ v, which are defined as the smallest sets
closed under the following operations:



• aλ-variablex : X is a value and an unnamed term.

• if u : U is an unnamed term andx a λ variable thenλx. u :
X→ U is a value and an unnamed term

• if v1 : X → U andv2 : X are unnamed terms, (v1(v2)) : U is
an unnamed term

• if v : X is an unnamed term andα : X→ t aµ-variables, than
(α(v)) : X is a named term

• if v : X is a named term andα : X → t is aµ-variable then
(µα. v) : X is an unnamed term.

• Any term of typet is a named term (this follows from⊥ = t).

The reduction patterns forλµ-calculus include the usualβ con-
version as well as reductions concerningµ variables and theµ-
binder:

(13) λµ reductions

(β) ((λx. t)(u))  β t[u/x]
(µ) ((µα. T[(α Q)])P)  µ µα. T[(α(Q P))]
(µ′) (P(µα. T[(α Q)]))  µ′ µα. T[(α(P Q))]
(ς) ((µα. T[(α Q)])  ς T[Q] only for Q : t

Let us recall thatλµ calculus, with the given reductions, isnot
confluent. This will be useful to obtain the many readings of a given
sentence, as first observed by de Groote (2001).

5.3. λµ-DRS

Instead of standard Montague semantics, we prefer to produce
Discourse Representation Structures (DRS), whose dynamics better
matches the one of sentences and discourse. Of course, giventhe
wished correspondence with the categorial framework, we use a
compositional presentation of DRT, likeλ-DRT. But, because we
also wish to haveµ reductions for avoiding type raising and solving
scope questions, we use a generalisation ofλ-DRT that we callλµ-
DRT.



Basically, we consider DRS withλ andµ variables (allµ vari-
ables will be of typeX→ t), using freely bothλ andµ abstractions,
and we refer to these structures asλµ-DRS (Discourse Representa-
tion Structure) In addition to theλ andµ variables and the variables
used for movement which can be considered as freeλ variables we
need a set of discourse refrentsVD of typee (some could be of type
v) denoted byd1, · · · , dn.

The lexicon in addition to the syntactic categories maps each
lexical item to aλµ-DRS. Aλµ-DRS is typed term with three dif-
ferent kinds of variablesVλ (containing movement variable, which
have nothing special except that they are not bound by anyλ), Vµ
andVD and three corresponding kinds of binders the later one al-
lowing dynamic binding. Variables that areµ or λ bound can be
suppressed from the context, while discourse referents ofVD should
remain in the context until some simplifications are performed, as
their binding is sophisticated, see 14.

Types for these terms are defined as usual, from three base types
B = {e, v, t} (entities, events, truth-values) by the arrow:

T = B | T → T

We have constants, namely predicates of typeυ → (υ → (υ →
· · · t)) whereυ is eithere or v — there is no need to systematically
force that a predicate only involves one event, itself. As usual, an
intransitive verb has typev → e → t, a transitive verbev → e →
e → t, a ditransitive verbev → e → e → e → t, and a property
e→ t.

We also have logical constants:

• ∧ : t→ t→ t

• ∧ : t→ t→ t

• ⇒ : t→ t→ t

• =̇ : e→ e→ t

There is no constant for∃ ([d|F] is close to∃d F) nor for ∀
([|[d|F] ⇒ [|G]] is close to∀d (F ⇒ G)), since we thus obtain
better scope properties. The variant of∧ named∧ has a slightly
different behaviour with respect to discourse variables. The opera-
tion∧ concerns DRS as well as formulae, and is a kind of a fusion,
similar to the merge operations explored by Muskens (1996).



Variable Term Result

α : (X→ t) ∈ Vµ u : X µα. u : X
x : X ∈ Vλ u : U (λx.u) : X→ U
d : e ∈ Vd

d : v ∈ Vd

}

u : t [d|u] : t

We also have applications:

First Term Second Term Application Result

α : (X→ t) u : X (α(u)) : t
u : X→ Y v : X (u(v)) : Y

Given a formulaF : t we use the following shorthands:

• let F : t then [|F] = F in the very same context. In particular
F → G can be viewed as [|F] ⇒ [|G].

• let F : t then [d1|[d2[d3|[· · · [dn[|F]]]]]] = [d1 · · ·dn|F] the
context being unchanged.

A λµ-DRS is a typed term of this calculus. When it is of typet,
withoutµ-binder norµ-variable, it is an ordinaryλ DRS, and when,
furthermore, there is neitherλ binder norλ variables, it is an ordi-
nary DRS (provided formulae involved in implications are viewed
as short hands for DRS without discourse variables). In order to
formulate the reduction of∧ which encodes dynamic binding, we
need some standard notions on DRS and subDRSs.

A sub DRS is simply a subterm. A subDRSG of a DRSH is
said to be apositive(resp.negative) subDRS ofH written≺+ (resp.
≺−) whenever:

• G = H

• H = [d|K] andG ≺+ K (resp.G ≺− K)).

• H = K ∧ L or H = K ∧ L andG ≺+ K (resp.G ≺− K)

• H = K ⇒ L andG ≺+ K orG ≺− L (resp.G ≺+ L orG ≺− K)

The reference markers associated to a DRS [d1 · · ·dn|F] are the
discourse refrentsd1 · · ·dn. The accessibility relation is the closure
of (≺) ∪ (տ) whereF տ G wheneverF → G. The accessible



referent markers of a DRS are the referent markers of the accessible
DRS.

As said above,∧ operation is close to the DRS merge in the
literature, but here it will be calledfusionbecause we usemergeas
a term denoting a syntactic operation. Although it could be defined
on the run, the reduction of∧ is easier to define on a normalλµ-
DRS, that is a DRS withoutλ abstraction norµ abstractions. It can
be reduced when it applies to a DRSD and a single formulaF with
free discourse variablesfdv(F). To view this reduction as a fusion
(merge), firstly turnF into [ fdv(F)|F]: then the resemblance should
be clear.

(14) Internalisation
If there exist one largestK = [k1 · · · ks|G] positive subDRS of
D whose accessible referent markers includesfdv(F) thenD∧
F reduces to D with subDRS K replaced with
K = [k1 · · · ks|G ∧ F]. If there is no such positive subDRS,
or if there is no largest one, no internalisation is possible.

5.4. The process of syntactic and semantic derivation

Assume we have a lexicon which maps a word to its syntactic
categoryx (that can be inferred from a minimalist grammar) to-
gether with the correspondingλµ-DRS with the semantic typeH(x)
defined in 5. Firstly, we should provide the semantic counterpart
of the syntactic rules. Merge does, as usual, correspond toλ ap-
plication: the head is the semantic function which is applied to the
semantics of the argument. Head movement with right adjunction,
is just a merge from the semantic viewpoint — indeed the resource
consumption is just the same, only word order is different from stan-
dard merge.

(15) Semantic counterpart ofmergeand of head-movement
In themergeandhdr rules of figures 5 and 7 letH(s) : H(B)
be the semantic term corresponding to~s : B i and letH(r) :
H(A) → H(B) be the one corresponding to~r : A / B (or
A /⇐ B or B \ A or B ⇒\ A) (all the possible syntactic cate-
gories for~r translated into the semantic typeH(A) → H(B)).
Then the semantic term associated with the resulting category
A is H(r)(H(s)) : H(A) — the functional application of the



semantic term associated with the function-category to these-
mantic term associated with the argument.

The semantic counterpart of themoverule of figure 6 is more
complex. As may be observed in the syntactic rule,moveconnects
two places of respective categoriesA andB, in an elimination rule
with main premiseA ⊗ B. These two places corresponds to two
λ-variablesu andv that by construction also appear in the seman-
tic term. Items that can undergo movement, typically determiner
phrases missing a case, orwh constituents, have a semantic term
s associated with a particular discourse variabled(s) introduced in
the lexicon within the semantic term of the determiner.Movecon-
sists in replacing the first variableu with the semantic terms, and
the second,v with the corresponding discourse variabled(s). The
internalisation process described above in 14 is preciselymade to
connect the formula in whichd(s) appears and the DRS that derives
from s and which is meant to bound the discourse referentd(s).

(16) The semantic counterpart ofmove

In the rule belowd(s) is the distinguished discourse variable
associated with the movable semantic terms.

Γ ⊢ H(s):A⊗ B ∆[u:H(A), v:H(B)] ⊢ H(r)[u, v]:H(C)
[mv]

∆[Γ] ⊢ H(r)[u:=H(s), v:=d(s)]:H(C)

To sum up, how do we proceed to compute both the syntactic
and the semantic structure associated to a sentenceφ1 · · ·φn ∈ Φ

∗?

(17) Computing the parse structure and the logical forms in a cat-
egorial minimalist grammar

(i) Firstly, we construct a proof with the rulesmv, mgandhdr
of ~r : C with r = φ1 · · ·φn.

(ii) Afterwards or in parallel steps, this provides aλµ-DRS of
type t without freeλ variables, nor with freeµ variables,
that is nearly what we were looking for: we only have to
internalise the formulae concerning some discourse vari-
abled that lie outside the corresponding box which bounds



d. This may seem problematic because it turns some free
variables into bounded ones but as we proceed just after the
derivation, before any renaming takes place, this is harm-
less. Also by construction, there cannot be conflict about
in which box the formula must be moved.

[d, f |P(d, f )] ∧ Q( f )  [d, f |P(d, f ) ∧ Q( f )]

Hence we end up with aλµ DRSD of type t without free
variables of any kind, and we may callD the semantic rep-
resentation of the sentence [[φ]].

(iii) Nevertheless [[φ]] still contains µ variables and abstrac-
tions, which prevents us from interpreting directly [[φ]] as
a formulae. Performingβ andµ reductions (µ, µ′, ς) yields
ordinary DRS that are usual the semantic representations
of the sentence. The different scope readings result from
the non confluence ofµ reductions, as in de Groote (2001).

The next section provides detail on all these steps by running a
complete example.



6. A complete example of a syntactic and semantic
analysis

Here is a samble lexicon from which we will derive the two
reading of the ambiguous sentence:the children ate a pizza.

lexical λµ-DRS & semantic type syntactic
item category
the λQ.µδ.[|[d|(Q d)] ⇒ [(δ d)]]

(e→ t)→ e k ⊗ d / n
specific discourse variable:d

a λQ.µγ.[p|(Q p) ∧ (γ p)]
(e→ t)→ e (k ⊗ d) / n
specific discourse variable:p

children λz.(child z)
e→ t n

pizza λz.(piz z)
e→ t n

ate λxλyλe.eat(e, x, y)
e→ e→ v→ t V / d

modif λRλx2λyλe.
R(y, e) ∧ Pa(e, u)
(e→ v→ t)→ e→ e→ v→ t (k\(d\v)) /⇐ V

infl λQλy2λe.Q(e)
∧P(e) ∧ Ag(e, y2)
(v→ t)→ e→ v→ t (k \ t) /⇐ v

comp λQ.[e|(Q(e))]
(v→ t)→ t C / t

In order to complete both the syntactic and the semantic process,
described in the previous section on this example, we are to use the
following structure:

declaration of
the syntactic
variables

declaration of the
corresponding
semantic variables

⊢






label, triple of phonological forms
syntactic category
semantic type
DRS



⊢






(ε | a | ε)
(k ⊗ d) / n
(e→ t)→ e
λQ.µγ.[p |Q(p)∧ γ(p)]

⊢






(ε | pizza| ε)
n
e→ t
λz.piz(z)

mg

⊢






(ε | a | pizza)
k ⊗ d
e
µγ.

[p | piz(p)∧γ(p)]

⊢






(ε | the| ε)
(k ⊗ d) / n
(e→ t)→ e
λQµδ.[ | [d |Q(d)]⇒[δ(d)]]

⊢






(ε | children| ε)
n
e→ t
λz.child(z)

mg

⊢






(ε | the| children)
k ⊗ d
e
µδ.[ | [d | child(d)]
⇒[ | δ(d)]]

Figure 4: Constructing the twodp’s: Two steps of the derivation
may be performed independently. They both consist in construct-
ing a determiner phrase by a merge rule and semantically the deter-
miner (some or all) applies to the predicate. Notice that thesemantic
of quantifiers include aµ-abstraction.



The first step is a lexical merge with a variable that will be used
later on for movement. On the semantic side merge corresponds to
the application of the verbal lambda term to the variable.

⊢






(ε | eat| ε)
V / d
e→ e→ v→ t
λxλyλe.eat(e, x, y)

u:d
u:e ⊢






(ε | u | ε)
d
e
u

mg

u:d
u:e

⊢






(ε | eat| u)
V
e→ v→ t
λyλe.
eat(e, u, y)

Next step is a head-movement with right adjunction triggered
by modif. Semantically it is also an application, which introduces
thePa thematic role:

⊢






(ε | ε | ε)
(k\(d\v)) /⇐ V
(e→v→t)→e→e→v→t
λRλx2λyλe.
R(y, e) ∧ Pa(e, x2)

u:d
u:e ⊢






(ε | eat| u)
V
e→ v→ t
λyλe.
eat(e, u, y)

hdr

u:d
u:e

⊢






(ε | eat| u)
k\(d\v)
e→ e→ v→ t
λx2λyλe.eat(e, u, y)
∧Pa(e, x2)

Next step introduces in a merge rule a variable for case that will
be used for movement. On the semantic side, the variable getsthe
patient role.



v:k
v:e
⊢






(ε | v | ε)
k
e
v

u:d
u:e

⊢






(ε | eat| u)
k\(d\v)
e→ e→ v→ t
λx2λyλe.eat(e, u, y)
∧Pa(e, x2)

mg

v:k, u:d
v:e, u:e

⊢






(v | eat| u)
d\v
e→ v→ t
λyλe.
eat(e, u, y)
∧Pa(e, v)

A move inserts thedp a pizza (computed in figure 6) into the
main derivation. Syntactically, the movement checks the case, and
the phonological string replaces the variable. Semantically the λµ-
DRS replaces the variableu, and the specific discourse referentp
replacesv.

⊢






(ε | a | pizza)
k ⊗ d
e
µγ.

[p | piz(p)∧γ(p)]

v:k, u:d
v:e, u:e

⊢






(v | eat| u)
d\v
e→ v→ t
λyλe.
eat(e, u, y)
∧Pa(e, v)

mv

⊢






(a pizza| eat| ε)
d\v
e→ v→ t
λyλe.
eat(e, µγ.[p | piz(p)∧γ(p)], y)
∧Pa(e, p)

Next a variable corresponding to the subject (anotherdp) is in-
troduced in a non-lexical merge-rule. Semantically, we just apply a
λ-expression to the variable:



w:d
w:e

⊢






(ε |w | ε)
d
e
w

⊢






(a pizza| eat| ε)
d\v
e→ v→ t
λyλe.
eat(e, µγ.[p | piz(p)∧γ(p)], y)
∧Pa(e, p)

mg

w:d
w:e

⊢






(w a pizza| eat| ε)
v
v→ t
λe.
eat(e, µγ.[p | piz(p)∧γ(p)],
w)∧Pa(e, p)

The verb is now ready to receive its inflection. Syntactically it
is a head movement with right-adjunction that glues the inflection
mark to the right of the verb (eat in f l should be understood asate).
Semantically, theλ-term associated with the inflection is applied to
the term we derived so far.

⊢






(ε | infl | ε)
(k \ t) /⇐ v
(v→t)→e→v→t
λQλy2λe.
Q(e)∧P(e)
∧agent(e, y2)

w:d
w:e ⊢






(w a pizza| eat| ε)
v
v→ t
λe.
eat(e, µγ.[p | piz(p)∧γ(p)],
w)∧Pa(e, p)

hdr

w:d
w:e

⊢






(ε | ate|w a pizza)
k \ t
e→ v→ t
λy2λe.
eat(e, µγ.[p | piz(p)∧γ(p)],w)
∧Pa(e, p)∧P(e)
∧Ag(e, y2)

A variable is introduced to enable the subsequent movement of
the subject. Semantically, the application assigns the agent role to
the subject.



y:k
y:e ⊢






(ε | y | ε)
k
e
y

w:d
w:e ⊢






(ε | ate|w a pizza)
k \ t
e→ v→ t
λy2λe.
eat(e, µγ.[p | piz(p)∧γ(p)],w)
∧Pa(e, p)∧P(e)
∧Ag(e, y2)

mg

w:d, y:k
w:e, y:e ⊢






(y | ate|w a pizza)
t
v→ t
λe.
eat(e, µγ.
[p | piz(p)∧γ(p)],
w)
∧Pa(e, p)∧P(e)
∧Ag(e, y)

The subject that is thedp we derived in figure 6, is inserted in
the main derivation by a move. Replacing the variables attracts the
subject to the left most position, and on the semantic side, theλµ-
DRS associated with thedp replaces the variablew, while the other
semantic variabley is replaced with the specific discourse referent
d.

⊢






(ε | the| children)
k ⊗ d
e
µδ.[ | [d | child(d)]
⇒[ | δ(d)]]

w:d, y:k
w:e, y:e ⊢






(y | ate|w a pizza)
t
v→ t
λe.
eat(e, µγ.
[p | piz(p)∧γ(p)],
w)
∧Pa(e, p)∧P(e)
∧Ag(e, y)

mv

⊢






(the children| ate| a pizza)
t
v→ t
λe.eat(e, µγ.[p | piz(p) ∧ γ(p)],
µδ.[ | [d | child(d)]⇒[ | δ(d)]])
∧Pa(e, p)∧P(e)∧Ag(e, d)



Finally, the complementiser turns the whole sentence into a
complement by a merge, and semantically reifies the whole for-
mula.

⊢






(ε | ε | ε)
C / t
(v→ t)→ t
λQ.[e | (Q(e))]

⊢






(the children| ate| a pizza)
t
v→ t
λe.eat(e, µγ.[p | piz(p) ∧ γ(p)],
µδ.[ | [d | child(d)]⇒[ | δ(d)]])
∧Pa(e, p)∧P(e)∧Ag(e, d)

mg

⊢






(ε | ε | the children ate a pizza)
C
t
[e | eat(e, µγ.[p | piz(p) ∧ γ(p)],
µδ.[ | [d | child(d)]⇒[ | δ(d)]])

∧Pa(e, p)∧P(e)∧Ag(e, d)]

Thus the syntactic derivation yields the followingλµ-DRS:
[e|eat(e, µγ.[p|piz(p) ∧ γ(p)], µδ.[|[d|child(d)]⇒[|(δ d)]])

∧Pa(e, p)∧P(e)∧Ag(e, d)]
Yet we need to internalise the predicates, as explained in 14, i.e.

to move inside the scope of quantifiers the formulae involving these
variables (notice that this is harmless, because we just performed
the derivation, and the variables do not have the same name byco-
incidence nor by renaming) and this leads to the followingλµ-DRS:

[e|eat(e,
µγ.[p|piz(p) ∧ γ(p)∧Pa(e, p)],
µδ.[|[d|child(d)]⇒[|δ(d)∧Ag(e, d)]])
∧P(e)]

For computing this term, we can drop the final∧P(e) and thee
box, since it is not going to interfere with theµ reductions. But we
must be slightly cautious and write theλµ-DRS in theλ applicative
style (((eate)p)d) rather than predicate logic, to makeµ reduction
more visible.

W = (((eat e)(µγ.[p|(piz p) ∧ (γ p)∧((Pa e)p)))(µδ.Y))
with
Y = [|[d|(child d)]⇒[|(δ d)∧((Ag e)d)]]
We now have to reduce acording to the reduction rules in 13 this

λµ-term and this will lead to the two readings. The first one is that



the children shared a pizza, while the second one says that for every
child there is a pizza that he ate.

(i) µ′ reduction withα = γ (µ-variable),V = (eat e) and (α T) =
(γ p) replaced by (V(α′ T)) = (γ′ ((eat e)p)) yields:

W (µγ′.[p|(piz p) ∧ (γ′ ((eat e)p))∧((Pa e)p))(µδ.Y)

(ii) A µ reduction withα = γ′ (µ-variables),V = (µδ.Y) and
(α T) = (γ′ ((eat e)p)) replaced by
((α′ T)V) = ((γ′′ ((eat e)p))(µδ.Y)) yields:

W (µγ′′.[p|(piz p)∧((γ′′ (((eat e)p)(µδ.Y)))∧((Pa e)p))])

(iii) Next we apply aς-rule onγ′′, yielding:

W [p|(piz p) ∧ (((eat e)p)(µδ.Y))
︸                 ︷︷                 ︸

X

∧((Pa e)p)]

(iv) The underbraced subterm:

X = (((eat e)p)(µδ.Y)) is actually:

(((eat e)p)(µδ.[|[d|(child d)]⇒[|(δ d)∧((Ag e)d)]])) and it
can undergo aµ′-reduction withα = δ (µ-variable) andV =
((eat e)p) in which (α T) = (δ d) is replaced with
(α′ (V T)) = (δ′ ′(((eat e)p)d)), thus yielding:

X (µδ′.[|[d|(child d)]⇒[|(δ′ (((eat e)p)d))∧((Ag e)d)]])

(v) finally a simplification by theς-rule yields:

X [|[d|(child d)]⇒[|(((eat e)p)d)∧((Ag e)d)]]

If we insert the result ofX into the result ofW and add the final
P(e) we obtain: [e|[p|(piz p) ∧ [|[d|(child d)]⇒

[|(((eat e)p)d)∧((Ag e)d)]]∧((Pa e)p)] ∧ P(e)]
that is∃e.P(e) ∧

∃p (piz(p)∧Pa(e, p)∧ ∀d (child(d)⇒ (eat(e, p, d)∧ Ag(e, d))))
As λµ-reduction is not convergent, other readings may be ob-

tained by applying different reductions when possible. For instance,
after step 1 for which there is no choice, yielding

W (µγ′.Z)(µδ.[|[d|(child d)]⇒[|(δ d)∧((Ag e)d)]])
with Z = [p|(piz p) ∧ (γ′ ((eat e)p))∧((Pa e)p)]
instead of theµ reduction used in the first derivation, we can

apply aµ′ rule.



(ii) A µ′-rule withα = δ, andV = (µγ′.Z) (α T) = (δ d) replaced
with (α′ (V T)) = (δ′ ((µγ′.Z)d)) yields:

W µδ′.[|[d|(child d)]⇒[|(δ′ ((µγ′. Z)d))∧((Ag e)d)]]

(iii) next we can apply a simplificationς rule forµδ′ yielding:

W [|[d|(child d)]⇒[| ((µγ′.Z)d)
︸      ︷︷      ︸

S

∧((Ag e)d)]]

• the underbraced subtermS = ((µγ′.Z)d) that is

S = ((µγ′.[p|(piz p) ∧ (γ′ ((eat e)p))∧((Pa e)p)])d)

can undergo aµ-reduction withα = γ′, β = γ′′ (µ-variables)
andV = d in which (αT) = (γ′ ((eat e)p)) replaced with
(α(TV)) = (γ′ (((eat e)p)d)) yielding:

S (µγ′′.[p|(piz p) ∧ ((γ′′ ((eat e)p))d)∧((Pa e)p)])

(iv) next we can apply toS aµγ′′ simplification, yielding:

S [p|(piz p) ∧ (((eat e)p)d)∧((Pa e)p)]

If we insert the reduct ofS into what we reducedW to, we get:
W 
[|[d|(childd)]
⇒[|[p|(piz p) ∧ (((eate)p)d)∧((Pae)p)]∧((Ag e)d)]]

If we add the [e|P(e) ∧ · · · that has been left out, we obtain:
∃e P(e) ∧ ∀dchild(d) ⇒ Ag(e, d) ∧ ∃p(piz(p) ∧ eat(e, p, d) ∧
Pa(e, p))

7. Perspectives

The purpose of this paper was to describe a state of our work
on categorial representation of generative grammars, which enables
the automated computation of semantic representation, here viewed
as DRSs. Nevertheless, some intriguing questions remain.

On the syntactic side, what would be a proof theoretical version
of shortest move? As such conditions involve the history of proofs,
that are proof terms, dependant types should provide a way tofor-
mulate such condition, but for linear logic they have not yetbeen
much studied. Still on the syntactic side, representation of mini-
malist grammars with remnant movement (which leaves out head-
movement) for which the correspondence is tighter by our work



should be developed on particular phenomena, like VP rolls from
Hungarian: as derivation intends to be quite lengthy, possibly some
predetermined sequences or rules should be used, if they areproof-
theoretically meaningful.

On the semantic side, some aspects deserve further study and
improvement. The internalisation process, although harmless be-
cause it is performed just after parsing, is not to be recommended.
Indeed, it depends on the name of the variable and modifies variable
binding. Correlated to this issue, rules that depend on the name of
a bound variable, the one associated with a movable constituent,
should be avoided.

We nevertheless hope that this movement inside the categorial
community will make colleagues happy, and especially Jim Lam-
bek.
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An automata-theoretic approach to minimalism. InModel The-
oretic Syntax at 10 -ESSLLI 2007 Workshop, edited by Foun-
dation of Logic Language and Information.

18. Lambek, Joachim. 1958. The mathematics of sentence struc-
ture.American mathematical monthly154–170.

19. Lecomte, Alain. 2008. Semantics in Minimalist Categorial
Grammar. InFormal Grammar 2008. CSLI Publications.

20. Lecomte, Alain and Christian Retoré. 1999. Towards a Mini-
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by Christian Retoré,LNCS/LNAI, vol. 1328, 68–95. Springer-
Verlag.

33. —. 1999. Remnant movement and structural complexity. In
Constraints and Resources in Natural Language Syntax and
Sema ntics, edited by Gosse Bouma, Erhard Hinrichs, Geert-
Jan M. Kruijff, and Richard Oehrle, 299–326. CSLI. Dis-
tributed by Cambridge University Press.

34. Vermaat, Willemijn. 2004. The Minimalist Move Operation in
a Deductive Perspective. In Retoré and Stabler (2004a), 69–85.


