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FUSION IN FRACTIONAL LEVEL ŝl(2)-THEORIES WITH k=− 1
2

DAVID RIDOUT

ABSTRACT. The fusion rules of conformal field theories admitting anŝl(2)-symmetry at levelk=− 1
2 are studied.

It is shown that the fusion closes on the set of irreducible highest weight modules and their images under spectral
flow, but not when “highest weight” is replaced with “relaxedhighest weight”. The fusion of the relaxed modules,
necessary for a well-defined̂u(1)-coset, gives two families of indecomposable modules on which the Virasoro zero-
mode acts non-diagonalisably. This confirms the logarithmic nature of the associated theories. The structures of the
indecomposable modules are completely determined as staggered modules and it is shown that there are no logarith-
mic couplings (beta-invariants). The relation to the fusion ring of thec=−2 triplet model and the implications for
theβγ ghost system are briefly discussed.

1. INTRODUCTION

This is a continuation of the study, initiated in [1] and developed in [2], of the fractional level Wess-Zumino-

Witten model based on̂sl(2) at levelk = − 1
2. Our aim in this series of papers is to put the fractional level

models on firm ground as logarithmic conformal field theories[3,4], starting with what is arguably the simplest,

and perhaps most important, example. What distinguishes this study from previous attempts, in particular that

of [5, 6], is the philosophy that one should use intrinsic methods wherever possible. The resulting picture is

far more complete than was previously available and we expect it to generalise in a straight-forward manner to

other fractional levels.

The aim of this note is to describe, in some detail, the fusionrules of theories witĥsl(2)−1/2-symmetry.

In view of our stated philosophy, we will rely upon the abstract fusion algorithm developed by Nahm [7]

and Gaberdiel and Kausch [8]. This is described very clearlyin the latter article, but see also [9–11] for

expositions. This algorithm is well-suited to the exploration of theories in which one suspects representations

more exotic than the irreducible highest weight ones that are familiar from rational conformal field theory. Its

chief virtue is that it does not presuppose that the fusion product of two representations belongs to any given

module category. It may therefore be used to demonstrate, for example, that the category generated by the

highest weight modules need not be closed under fusion (although one may have to think laterally in order to

expose this). It has so far been used to investigate module structure for the Virasoro algebra [8,11–16], itsN= 1

andN = 2 extensions [17],̂sl(2) at level− 4
3 [18], and certainW(p′, p) algebras [19,20].

Despite its advantages, the Nahm-Gaberdiel-Kausch fusionalgorithm has been criticised in the past as “too

formal” and its application “tedious”. Certainly, any moderately complicated fusion process does lead to a

significant amount of unpleasant algebra if done by hand, though no more so than the computation of four-

point correlation functions or the operator product expansion of normally-ordered products of fields. We refer

to [21–26] for some alternative methods to compute fusion products. The point is that to identify the structure

of exotic representations, it is usually necessary to analyse in detail the descendant fields rather than just the

primaries, and it is this that leads to the complexity. However, the algorithm of Nahm and Gaberdiel-Kausch is
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straight-forward to implement within a computer algebra package, relieving a significant amount of the burden.

Our own implementation uses MAPLE and is based on a similar implementation for the Virasoro algebra.

One significant difference between the Virasoro computations and those described here forŝl(2) is that

many of the fractional level representations have aninfinite number of linearly independent states of the same

conformal dimension. However, we note that there is a definite regularity to the structure of these states. We

may therefore use symbolic calculus to encode such an infinite set of states using (rational) functions. This is

the technical realisation that we exploit in the explicit computations that follow. We mention that the rational

functions can become extremely unwieldy and that memory issues are expected to become a problem eventually.

However, the results presented here were all derived ratherquickly on standard desktop workstations.

Let us briefly outline the rest of this article. First, Section 2 reviews our notations and conventions for the

Kac-Moody algebrâsl(2) and describes the results obtained in [1, 2] that will be needed in the sequel. In

particular, we discuss the irreducible representations that a theory witĥsl (2)−1/2-symmetry admits and collect

explicit formulae describing the singular vectors (in the appropriate Verma-like modules) which have been set

to zero in forming the irreducibles. These “vanishing singular vectors” are an essential input of the Nahm-

Gaberdiel-Kausch algorithm.

The algorithm itself, in its simplest form, is described in Section 3. Here, we detail the explicit computations

that yield the fusion rules of the irreducible highest weight modules with one another (Section 3.2) and with the

irreduciblerelaxedhighest weight modules (Section 3.3). Specifically, we compute what amounts to the zero-

grade subspace of the fusion product and deduce the result from there. One novel feature of this deduction is

that we use the (conjectured) good behaviour of fusion underspectral flow toprovethat in each case, the fusion

product involves no additional twisted modules whose presence would normally be hidden in the zero-grade

analysis. We then turn to the fusion of the relaxed highest weight modules with one another (Section 3.4), again

computing just the zero-grade subspace of the result. However, we are wary of making any deductions in this

case as the proof that twisted modules do not contribute breaks down.

In fact, our wariness is justified. In Section 4, we revisit the fusion of the relaxed highest weight modules with

one another, this time keeping track of slightly more than just the zero-grade subspace of the fusion product. We

find that the results of such fusion processes are reducible but indecomposable modules of the type referred to as

staggeredmodules in the Virasoro setting [15,27]. We deduce the structure of these indecomposables in terms

of exact sequences (composition series) and prove that the structure uniquely specifies the module — there are

no freelogarithmic couplingsin the language of [12]. This is followed by a brief account ofthe fusion of the

relaxed highest weight modules with these new staggered indecomposables, demonstrating that the fusion ring

thereby closes. Our results are summarised in Section 5, where we also briefly remark upon the relation between

the fusion rings of̂sl (2)−1/2 and thec= −2 triplet model, and upon the implications of our results fortheβ γ
ghost system. This summary may be read independently of the detailed fusion computations in Sections 3 and

4, although the reader will miss the explicit description ofthe structure of the indecomposable modules. For

this, the reader should consult Sections 4.3 and 4.4.

Throughout, we describe the fusion algorithm and its results in significant detail in order to explain clearly

how such computations are performed and to give the reader a sense of what evidence must be gathered before

a conclusion is reached. We hope that this exposition will beof use to others interested in Kac-Moody fusion

beyond the integrable category.
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2. BACKGROUND

We will first review theŝl(2)−1/2 fractional level theories as discussed in [1, 2]. We fix once and for all our

preferred basis{e,h, f} of sl(2) to be that for which the non-trivial commutation relations are
[
h,e
]
= 2e,

[
e, f
]
=−h and

[
h, f
]
=−2 f . (2.1)

This basis is tailored to thesl(2;R) adjoint,e† = f andh† = h, and we prefer it because it is this adjoint which

leads to theβ γ ghost system as an extended algebra ofŝl (2)−1/2. The Killing form is given in this basis by

κ
(
h,h
)
= 2 and κ

(
e, f
)
=−1, (2.2)

with all other combinations giving zero.

These conventions forsl(2) carry over toŝl(2) in the usual way. Replacing the central mode byk=− 1
2 for

convenience, the non-trivial commutation relations of theaffine algebra are

[
hm,en

]
= 2em+n,

[
hm,hn

]
=−mδm+n,0,

[
em, fn

]
=−hm+n+

1
2

mδm+n,0 and
[
hm, fn

]
=−2 fm+n. (2.3)

Equation (2.2) now determines the energy-momentum tensor of the theory as

T (z) =
1
3

(
1
2

: h(z)h(z) : − : e(z) f (z) : − : f (z)e(z) :

)
. (2.4)

This yields the central chargec= −1 and a conformal dimension of 1 for each of the primary fieldse(z), h(z)

and f (z).

It is important to note that the automorphisms ofŝl(2) which preserve our choice of Cartan subalgebra are

generated by the conjugation automorphismw and the spectral flow automorphismγ. These act on our basis

elements (withk=− 1
2) via

w (en) = fn, w (hn) =−hn, w ( fn) = en, w (L0) = L0, (2.5a)

γ (en) = en−1, γ (hn) = hn+
1
2

δn,0, γ ( fn) = fn+1, γ (L0) = L0−
1
2

h0−
1
8
. (2.5b)

Moreover, they induce mapsw∗ andγ∗ from anyŝl(2)-moduleM to new modulesw∗ (M) andγ∗ (M) (respec-

tively). The underlying vector spaces remain the same, but the new algebra action is given by

J ·w∗
(∣∣v
〉)

= w
∗
(
w
−1(J

)∣∣v
〉)

and J · γ∗
(∣∣v
〉)

= γ∗
(
γ−1(J

)∣∣v
〉)

(J∈ ŝl(2)). (2.6)

We will not usually bother with the superscripts which distinguish the algebra automorphisms from the maps

between modules. Which is meant should be clear from the context.

There are (at least) two candidate conformal field theories with ŝl (2)−1/2 symmetry, distinguished by their

chiral spectra.1 The first is built from two infinite sequences of irreducibleŝl(2)-modulesγℓ
(
L̂0
)

andγℓ
(
L̂1
)
,

whereℓ ∈ Z. Here,L̂0 andL̂1 denote the irreducible highest weight modules which are generated by highest

weight states ofsl(2)-weight and conformal dimension(λ ,hλ ) = (0,0) and
(
1, 1

2

)
, respectively. The former

state is the vacuum of the theory. We illustrate these families of irreducible modules schematically in Figure 1.

Note that for|ℓ|> 2, the conformal dimensions of the states of the modules are no longer bounded below.

We mention thatγ
(
L̂0
)

and γ
(
L̂1
)

are also irreducible highest weight modules with respective highest

weights− 1
2 and− 3

2. It is therefore appropriate to writêL−1/2 = γ
(
L̂0
)

and L̂−3/2 = γ
(
L̂1
)
. This brings

1In fact, there are most likely infinitely many, characterised as orbifolds of theβγ ghost system (with maximal spectrum).
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FIGURE 1. Depictions of the modules constituting the spectra of ourŝl(2)−1/2-theories, em-
phasising the induced action of the spectral flow automorphismγ. Each labelled state declares
its sl(2)-weight and conformal dimension (in that order). Conformaldimensions increase
from top to bottom andsl(2)-weights increase from right to left.

the number of highest weight modules in the theory to four. There are no others; in fact, these four constitute

the admissible modules (fork = − 1
2) of Kac and Wakimoto [28]. WhereaŝL0 andL̂1 are both self-conjugate

modules, the conjugates of̂L−1/2 andL̂−3/2 are the non-highest weight modulesγ−1
(
L̂0
)

andγ−1
(
L̂1
)
, re-

spectively. In general, the module conjugate toγℓ
(
L̂λ
)
, for λ = 0,1, isγ−ℓ

(
L̂λ
)
.

The second candidate theory extends that described above inthat it is constructed from four infinite families

of irreducible modules which are generated by spectral flow from the irreducibleŝL0, L̂1, Ê0 andÊ1. The new

modulesÊ0 and Ê1 are examples of so-calledrelaxedhighest weight modules and are generated byrelaxed

highest weight states [29, 30]. These are states that would be genuine highest weight states except for the fact

that they need not be annihilated bye0. It is not hard to see that every zero-grade state
∣∣vm
〉

of Ê0 andÊ1 is

a relaxed highest weight state. The common conformal dimension of these zero-grade states is− 1
8 and their

sl(2)-weightsm are either even (̂E0) or odd (̂E1). Moreover, there is a single
∣∣vm
〉

(up to scalar multiples) for

each weightm and they are related by thêsl(2)-action as follows:

e0
∣∣vm
〉
=
∣∣vm+2

〉
and f0

∣∣vm
〉
=

(2m−1)(2m−3)
16

∣∣vm−2
〉
. (2.7)
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TheÊλ and their images under spectral flow are also illustrated schematically in Figure 1. We note thatγℓ
(
Êλ
)

andγ−ℓ
(
Êλ
)

are conjugate modules and that the conformal dimensions of the states ofγℓ
(
Êλ
)

are not bounded

below when|ℓ|> 1.

The irreducible modulêL1 plays a special role in these theories because it fuses with itself to give the vacuum

moduleL̂0:

L̂1×f L̂1 = L̂0. (2.8)

This was argued to be true in [1] and we shall give a full proof in Section 3.2. This property makesL̂1 an order

2 simple current by which we may extend the chiral algebraŝl(2)−1/2 of our theories. The resulting extended

chiral algebra is the well knownβ γ ghost algebra. This is a free field algebra that is generated by two bosonic

fields,β andγ, of dimension1
2 whose modes satisfyβ †

n = γ−n,
[
βm,βn

]
=
[
γm,γn

]
= 0 and

[
γm,βn

]
= δm+n,0. (2.9)

Chirally, the moduleŝL0 andL̂1 combine to form a single irreducible module for theβ γ ghost algebra. As we

shall see in Section 3.3, so too doÊ0 andÊ1. Moreover, both conjugation and spectral flow lift to automorphisms

of the extended algebra, so we end up with two infinite families of irreducibleβ γ-modules, related by spectral

flow (anL̂-type and an̂E-type family).

The fusion rules of thêLλ are then derived from Equation (2.8) by using the following formulae, assumed

to be valid for all modulesM andN:

w (M)×f w (N) = w
(
M×f N

)
and γℓ1 (M)×f γℓ2 (N) = γℓ1+ℓ2

(
M×f N

)
. (2.10)

The first is in fact not difficult to prove, but we know of no proof for the second despite much evidence in its

favour. We mention however that the second formula does holdfor the integrable modules of the rational Wess-

Zumino-Witten models, though the standard proof is far fromelementary (it relies upon the Verlinde formula

— see for example [31, Sec. 16.1]).

It has long been known that the characters of the four admissible highest weight moduleŝL0, L̂1, L̂−1/2

andL̂−3/2 close under the usual action of the modular group. Because the latter two are spectral flow images

of the former two, we learn from (2.10) that the fusion rules do not close on these four modules. In fact, the

smallest set of modules containing these four which is closed under fusion and conjugation consists precisely of

the two infinite families which constitute the spectrum of the first ŝl (2)−1/2-theory discussed above. Moreover,

the characters of this spectrum still form a four-dimensional representation of the modular group due to certain

periodicities in the characters under spectral flow. For arational theory, this closure under fusion and modular

invariance would be taken as strong evidence that one can construct a consistent conformal field theory from

this spectrum. However, the theory is not rational because of the infinite number of distinct modules.

The second̂sl(2)−1/2-theory discussed above can be motivated by the observationthat the coset theory of the

first by theû(1)-subtheory generated by the fieldh is not modular invariant. Indeed, this coset gives only two

of the four irreducible modules which can be regarded as the building blocks of that archetype of logarithmic

conformal field theory, thec = −2 triplet model [19]. In order to obtain the remaining two irreducibles, the

spectrum of the first̂sl(2)−1/2-theory must be augmented bŷE0 and Ê1. Invariance under spectral flow and

conjugation then leads to the four families of irreduciblesthat generate our second̂sl(2)−1/2-theory. This

augmentation even preserves modular invariance, althoughin a somewhat weaker sense than one would like [2].
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In contrast to the first theory, we do not expect that the fusion rules of our second̂sl(2)−1/2-theory close on

the irreducibleŝL0, L̂1, Ê0 andÊ1 (and their images under spectral flow). Indeed, the two additional irreducible

triplet modules which necessitated the augmentation of ourspectrum are known to fuse into indecomposable

modules, giving the triplet model its logarithmic structure. We therefore expect that fusing theÊλ with one

another will also lead to indecomposables. Verifying this,and analysing the resulting logarithmic structure, is

in fact the main aim of what follows.

It remains to collect some explicit formulae which will be useful in achieving this aim. To compute the fusion

rules involvingL̂0, L̂1, Ê0 andÊ1, we will make use of explicit expressions for the (relaxed) singular vectors of

the (relaxed) Verma modules that have been set to zero upon forming the irreducible quotients. Such quotients

yield non-trivial relations which give rise to so-calledspurious stateswhen computing fusion products [7, 8].

Setting the non-trivial vacuum singular vector to zero inL̂0 gives
(
156e−3e−1−71e2

−2+44e−2h−1e−1−52h−2e
2
−1+16f−1e

3
−1−4h2

−1e
2
−1

) ∣∣0
〉
= 0 (2.11)

and repeating this for̂L1 yields

(7e−2−2h−1e−1)
∣∣u1
〉
+4e2

−1

∣∣u−1
〉
= 0. (2.12)

Here,
∣∣u1
〉

and
∣∣u−1

〉
= f0

∣∣u1
〉

denote the two zero-grade states ofL̂1. To obtainÊ0 andÊ1, one has to quotient

the corresponding relaxed Verma modules by submodules which are themselves relaxed Verma modules. In

this case we do not have a single generating singular vector,but rather two infinite families of relaxed singular

vectors (relaxed highest weight states). Happily, these have a regular explicit form for botĥE0 andÊ1. At grade

one, the relaxed singular vectors give the relations

(2m−1)(2m+3)
16

e−1
∣∣vm−2

〉
−

2m+3
4

h−1
∣∣vm
〉
+ f−1

∣∣vm+2
〉
= 0 (2.13)

and at grade two we obtain the independent relations

(2m−7)(2m−3)(2m+1)(2m+5)
256

e2
−1

∣∣vm−4
〉
−

(2m−3)(2m+1)(2m+5)
32

(h−1e−1−e−2)
∣∣vm−2

〉

+
(2m+1)(2m+5)

16

(
h2
−1+2 f−1e−1−h−2

) ∣∣vm
〉
−

2m+5
2

( f−1h−1− f−2)
∣∣vm+2

〉
+ f 2
−1

∣∣vm+4
〉
= 0. (2.14)

These relations appear somewhat asymmetric, but this is because we have chosen to relate the zero-grade states∣∣vm
〉

as in Equation (2.7). Substituting this back into the above relations leads to more symmetric forms. We

find the latter forms useful when applying spectral flow to theabove vanishing vectors.

Let us mention that the non-trivial vacuum relation (2.11) leads, in the usual way [32], to non-trivial con-

straints on the spectra of our̂sl(2)−1/2-theories. In particular, thesl(2)-weight of any highest weight state is

restricted to being 0, 1,− 1
2 or− 3

2. It follows that the only highest weight modules that can be admitted in the

theory are the four irreducibleŝL0, L̂1, L̂−1/2 andL̂−3/2. Similarly, relaxed highest weight states are restricted

to either being a zero-grade state ofL̂0 or L̂1, or having conformal dimension− 1
8. This covers all the zero-grade

states of̂L−1/2 andL̂−3/2, their conjugateŝL∗−1/2 = γ−1
(
L̂0
)

andL̂∗−3/2 = γ−1
(
L̂0
)
, as well as the zero-grade

states of̂E0 andÊ1.

However, it also allows more general modulesÊλ with λ /∈Z, provided that their zero-grade states
∣∣vm
〉

have

sl(2)-weightmand satisfy Equation (2.7). Of course, we have the identification Êλ = Êλ+2. If λ /∈ Z+ 1
2, then

Êλ is irreducible and the relations (2.13) and (2.14) still hold. The caseλ ∈ Z+ 1
2 is interesting as the relation

(2.11) admits four distinct indecomposable relaxed highest weight modules, two with lowest weight states of
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sl(2)-weights1
2 and 3

2, and two with highest weight states ofsl(2)-weights− 1
2 and− 3

2. We will denote these

indecomposables bŷE−1/2, Ê−3/2, Ê+
−1/2 andÊ+

−3/2, respectively, noting that conjugation gives

w

(
Ê
−
1/2

)
= Ê

+
−1/2 and w

(
Ê
−
3/2

)
= Ê

+
−3/2. (2.15)

The zero-grade states ofÊ−1/2 andÊ−3/2 still satisfy Equation (2.7), though those ofÊ
+
−1/2 andÊ+

−3/2 will not —

(2.7) manifestly assumes no highest weight states. Rather,the states of̂E+
−1/2 andÊ+

−3/2 may be taken to satisfy

the equations obtained by applyingw to (2.7).

3. FUSION TO GRADE 0

3.1. Preliminaries. We now turn to the fusion rules of the irreducible modulesL̂0, L̂1, Ê0 and Ê1. These

will be calculated with the help of the algorithm of Nahm and Gaberdiel-Kausch [7, 8] which abstracts, in

terms of coproduct formulae, the natural action(s) of the chiral symmetry algebra on the chiral operator product

expansions of the theory. The key assumption underlying this algorithm is that the vector space of the fusion

product of two modules may be realised as a quotient (subspace) of that of the (vector space) tensor product of

these modules. Given this, the master formulae defining the fusion coproduct for affine Kac-Moody algebras

are most usefully given in the forms [33]

∆(Jn) =
n

∑
m=0

(
n
m

)
Jm⊗ 1+ 1⊗ Jn (n> 0) (3.1a)

∆(J−n) =
∞

∑
m=0

(
n+m−1

m

)
(−1)mJm⊗ 1+ 1⊗ J−n (n> 1) (3.1b)

J−n⊗ 1 =
∞

∑
m=n

(
m−1
n−1

)
∆(J−m)− (−1)n

∞

∑
m=0

(
n+m−1

m

)
1⊗ Jm (n> 1). (3.1c)

Here,⊗ denotes the usual vector space tensor product (overC) andJ stands for eithere, h or f . The first

two formulae define the action of the affine modes on the fusionmodule, whereas the last may be viewed as a

necessary auxiliary formula for explicit computation (it actually amounts to imposing the equivalence of two

distinct fusion coproducts). We will also need the coproduct formula for the Virasoro zero-mode:

∆(L0) = L−1⊗ 1+L0⊗ 1+ 1⊗L0. (3.2)

Note that for these sums appearing in (3.1) to be finite, the modules to be fused should have their subspaces

of constantsl(2)-weight consist of states whose conformal dimensions are bounded below. This is the case

for all the modules that we shall consider as this property ispreserved by the induced action of the spectral

flow automorphismγ. Even so, the first sum in Equation (3.1c) will still be infinite. However, we will only be

interested in computing in certain quotients of the modules, and this will truncate the remaining infinite sum. In

this section, we will restrict ourselves to explicitly computing only the most readily available information about

the fusion rules. We refer to this as fusing to grade 0 becausefrom this we will only obtain information about

the zero-grade states of the fusion module.

To compute this grade 0 fusion of twôsl(2)-modules, one applies these formulae in the (vector space) tensor

product of the zero-grade subspaces of both modules. In general, vectors which vanish in either module, but

not in their Verma or Verma-like parents, will induce linearrelations in this tensor product space which must

be imposed to get the correct fusion space. Such linear relations are referred to as spurious states [7]. We
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mention that the vanishing vectors which give rise to the spurious states do not have to belong to the zero-grade

subspaces.

Before beginning the calculations, it will be useful to examine the basic premise of the fusion algorithm in

slightly more detail. This somewhat formal discussion makes the above description precise and makes contact

with the generalisations necessary for fusing beyond grade0 (Section 4). Let us defineA− to be the subalgebra

of the universal enveloping algebra ofŝl (2) which is generated by thee−n, h−n and f−n with n > 1. This

obviously acts on̂sl(2)-modules. A precise version of the above claim regarding thefusion of theŝl(2)-modules

M andN to grade 0 is then that
M×f N

∆(A−)
(
M×f N

) ⊆ M

A−M
⊗

N

A−N
(3.3)

as (complex) vector spaces. The point here is thatM/A−M reduces to the usual notion of zero-grade subspace

whenM is a (relaxed) highest weight module. Then, we can interpretthis relation as saying that the zero-

grade subspace of the fusion product may be found within the tensor product of the zero-grade subspaces of the

original modules. However, (3.3) is a generalisation of this which makes sense for all modulesM, in particular

for the images of (relaxed) highest weight modules under spectral flow.

Proving (3.3) amounts to demonstrating that the following procedure terminates. Consider a representative

state
∣∣v
〉
⊗
∣∣w
〉
∈M⊗N for an element of the left hand side of (3.3).

(1) If
∣∣v
〉
= J−n

∣∣v′
〉

for someJ−n ∈A−, then we apply Equation (3.1c) to obtain

∣∣v
〉
⊗
∣∣w
〉
=−(−1)n

∞

∑
m=0

(
n+m−1

m

)∣∣v′
〉
⊗ Jm

∣∣w
〉
, (3.4)

as form> 1, ∆(J−m) = 0 when acting upon the left hand side of (3.3).

(2) If
∣∣w
〉
= J−n

∣∣w′
〉

for someJ−n ∈ A−, then we apply Equation (3.1b) to∆(J−n)
(∣∣v
〉
⊗
∣∣w′
〉)

= 0, ob-

taining
∣∣v
〉
⊗
∣∣w
〉
=−

∞

∑
m=0

(
n+m−1

m

)
(−1)mJm

∣∣v
〉
⊗
∣∣w′
〉
. (3.5)

Repeating these steps as needed, any representative state for the left hand side of (3.3) should be reduced to a

linear combination of representative states for the right hand side.

However, the actual termination of this procedure is nota priori guaranteed. In step 1,
∣∣v′
〉

might have

the formJ−n′
∣∣v′′
〉

with J−n′ ∈ A−, so we would have to apply step 1 again. We thereby see that this part of

the procedure will terminate if every
∣∣v
〉

(from an appropriate basis) has the formJ−n1J−n2 · · ·J−nt

∣∣u
〉

for some∣∣u
〉
∈M/A−M. One can check that forM of the formL̂λ , Êλ or γ±1

(
L̂λ
)
, this is guaranteed, hence termination

is inevitable. The analysis is identical for step 2, so we conclude that when bothM andN are of the formL̂λ ,

Êλ or γ±1
(
L̂λ
)
, then the (grade 0) fusion algorithm terminates.

In the remaining cases, when eitherM or N is one of the twisted modulesγℓ
(
L̂λ
)

with |ℓ| > 1 or γℓ
(
Êλ
)

with ℓ 6= 0, one can check that the respective quotientM/A−M or N/A−N is in fact trivial. Termination is

therefore not clear, and in fact seems rather unlikely. Worse yet, applying step 2 might lead to new states to

which step 1 should be applied and vice-versa. We conclude that the termination of the fusion algorithm is a

subtle business in general, even when computing to grade 0.

Finally, we mention that a lack of termination does not necessarily mean that one cannot use the fusion

algorithm at all. Rather, it means that Equation (3.3) is notappropriate for the modules which one is trying

to fuse, and an alternative space must be sought for the righthand side. We shall see an example of this in
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Section 4.5. In what follows, we shall take some care to consider the termination of the fusion algorithm

wherever possible.

3.2. Fusing L̂1 and L̂1. We begin by investigating the fusion of the irreducibleŝl(2)-moduleL̂1 with itself.

We have already given the result in Section 2, but it serves the illustrate the fusion procedure in a very simple

setting, while paying close attention to the subtleties that one has to deal with in affine theories. Letting
∣∣u1
〉

and
∣∣u−1

〉
= f0

∣∣u1
〉

denote the zero-grade states ofL̂1, the fusion to grade 0 will be contained within the space

spanned by ∣∣u1
〉
⊗
∣∣u1
〉
,

∣∣u1
〉
⊗
∣∣u−1

〉
,

∣∣u−1
〉
⊗
∣∣u1
〉

and
∣∣u−1

〉
⊗
∣∣u−1

〉
. (3.6)

This follows from the above termination discussion: Both step 1 and step 2 are guaranteed to terminate, and it

is easily checked that we do not need to apply step 1 again after completing step 2.

Note that thesl(2)-weights of the spanning states are 2, 0, 0 and−2, so the weight spaces have dimension

1 or 2. This is well-defined because thesl(2)-weight is conserved by the fusion operation (as one expectsfrom

operator product expansions). This follows readily from taking n= 0 in Equation (3.1a) to get the usual tensor

coproduct2

∆(J0) = J0⊗ 1+ 1⊗ J0, (3.7)

with J = e, h or f .

Let us first remark that substituting the Sugawara form ofL−1 into Equation (3.2) and applying Equa-

tion (3.1c) gives

∆(L0) = L0⊗ 1+ 1⊗L0+
1
3

h0⊗h0−
2
3

e0⊗ f0−
2
3

f0⊗e0 (3.8)

on the zero-grade subspace ofL̂1×f L̂1. We therefore find thatL0 is represented on thesl(2)-weight spaces of

weights 2, 0 and−2 by

∆(L0) =
4
3
, ∆(L0) =

(
2
3

2
3

2
3

2
3

)
and ∆(L0) =

4
3
, (3.9)

respectively. The matrix in the middle is diagonalisable with eigenvalues 0 and43, so we have ansl(2) singlet

of dimension 0 and a dimension43 triplet. However, zero-grade states are forbidden from having the latter

conformal dimension (Section 2), so we conclude that only the eigenstate of dimension 0 is actually present in

the fusion. The rest must be set to zero (they must provide examples of spurious states).

This is very encouraging, but we will take some time to re-analyse the situation using the more rigorous

algorithmic approach. In part, this serves to illustrate the general procedure, which can become quite involved,

but it also serves to allay doubts that the above argument might have loopholes. In particular, one might imagine

that the “forbidden eigenstates” of dimension4
3 might belong to some peculiar indecomposable module for

which the dimension argument of Section 2 does not apply.

We therefore turn to the vanishing vectors of the second copyof L̂1 in order to deduce relations between the

states of the weight spaces. Such vectors are descended fromthe (vanishing) singular vector

(7e−2−2h−1e−1)
∣∣u1
〉
+4e2

−1

∣∣u−1
〉
= 0. (3.10)

2It also follows from this formula that fusing two modules on which h0 is diagonalisable, highest weight modules for instance, will result
in a module on whichh0 is diagonalisable. This means that the logarithmic conformal field theories that we are generating will have the
affine zero-mode acting semisimply. This argument does not apply to L0 as Equation (3.2) shows.
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As we are computing to grade 0,∆(J−n) must be identically zero for eachJ = e,h, f and alln > 1. Thus,

Equation (3.1b) gives

0= ∆(7e−2)
∣∣u
〉
⊗
∣∣u1
〉
= 7e0

∣∣u
〉
⊗
∣∣u1
〉
+7
∣∣u
〉
⊗e−2

∣∣u1
〉
, (3.11a)

0= ∆(−2h−1e−1)
∣∣u
〉
⊗
∣∣u1
〉

=−2h0e0
∣∣u
〉
⊗
∣∣u1
〉
−2e0

∣∣u
〉
⊗h−1

∣∣u1
〉
−2h0

∣∣u
〉
⊗e−1

∣∣u1
〉
−2
∣∣u
〉
⊗h−1e−1

∣∣u1
〉
, (3.11b)

0= ∆
(
4e2
−1

)∣∣u
〉
⊗
∣∣u−1

〉
= 4e2

0

∣∣u
〉
⊗
∣∣u−1

〉
+8e0

∣∣u
〉
⊗e−1

∣∣u−1
〉
+4
∣∣u
〉
⊗e2
−1

∣∣u−1
〉
, (3.11c)

where
∣∣u
〉

might be
∣∣u1
〉

or
∣∣u−1

〉
. For

∣∣u
〉
=
∣∣u1
〉
, we add these results and take into account the vanishing

singular vector (3.10) to get

−2
∣∣u1
〉
⊗e−1

∣∣u1
〉
= 0. (3.12)

We therefore apply step 2 of the fusion algorithm to rewrite the left hand side as

2e0
∣∣u1
〉
⊗
∣∣u1
〉
, (3.13)

which vanishes identically. This means that no spurious states are obtained. However, when
∣∣u
〉
=
∣∣u−1

〉
,

repeating this computation gives

−5
∣∣u1
〉
⊗
∣∣u1
〉
+2
∣∣u1
〉
⊗h−1

∣∣u1
〉
+2
∣∣u−1

〉
⊗e−1

∣∣u1
〉
−8
∣∣u1
〉
⊗e−1

∣∣u−1
〉
= 0, (3.14)

and applying step 2 to the left hand side now gives

−5
∣∣u1
〉
⊗
∣∣u1
〉
= 0. (3.15)

It follows that
∣∣u1
〉
⊗
∣∣u1
〉

is a spurious state, so the weight 2 space is in fact trivial.

We can deduce further spurious states from this one by applying∆(e0) and∆( f0). In this way, we obtain
∣∣u1
〉
⊗
∣∣u−1

〉
+
∣∣u−1

〉
⊗
∣∣u1
〉
= 0 and

∣∣u−1
〉
⊗
∣∣u−1

〉
= 0. (3.16)

We get no further spurious states by using descendants of thesingular vector (3.10), nor by using the vanishing

singular vector of the first copy of̂L1 (using Equation (3.1c) and step 1), so we conclude3 that the fusion to

grade 0 is one-dimensional. The surviving weight space has weight 0 and one can check from Equation (3.8)

that the corresponding conformal dimension is indeed 0.

The obvious conclusion to draw from this is that

L̂1×f L̂1 = L̂0 (3.17)

as L̂0 is the only admissible module with this zero-grade subspace. This is what was reported in [1] (and

Section 2). However, we should be careful and note that the computations we have carried out will not be

sensitive to modules whose zero-grade subspace is trivial.As we have already noted, these include those twisted

modules of our theory whose conformal dimensions are not bounded below. This means that it is possible that

modules such asγℓ
(
L̂λ
)

(|ℓ| > 1) andγℓ
(
Êλ
)

(ℓ 6= 0) could contribute to the decomposition of the fusion

process, and the above computations will not see them.

To investigate the possible appearance of twisted modules,we should try to repeat our computations beyond

the zeroth grade. More precisely, this entails replacing the algebraA− in the fusion algorithm of Section 3.1

3In fact, it is difficult to ever be sure that the relations derived are exhaustive. However, in practice the module structure one deduces from
an incomplete set of relations is almost always found to be inconsistent (especially when one computes beyond grade 0).
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by a subalgebra which will detect twisted modules. However,we are already assuming that fusion respects the

spectral flow as in Equation (2.10), so it turns out that thereis a second, easier, path which we can take.

Assume then that the fusion rule (3.17) is not correct, because there are states on the right hand side that are

associated to twisted modules. We may choose a candidate twisted module,γℓ
(
M
)

say, and test for its presence

in the fusion by considering instead the fusion

L̂1×f γ−ℓ
(
L̂1
)
. (3.18)

By Equation (2.10), if our chosen twisted module appears in (3.17), then itsuntwistedversionM will appear in

(3.18). The fusion algorithm of Section 3.1 will now detectM, provided of course that the algorithm terminates

when applied to (3.18).

We therefore examine the termination of the fusion algorithm applied to a state
∣∣v
〉
⊗
∣∣w
〉
∈ L̂1⊗ γ−ℓ

(
L̂1
)
.

Step 1 obviously still terminates, so we may assume that
∣∣v
〉

is
∣∣u1
〉

or
∣∣u−1

〉
. Iterating step 2 then allows us

to assume that
∣∣w
〉

is a state of minimal conformal dimension for itssl(2)-weight. If the twist parameterℓ has

|ℓ|= 1, then we have already shown that the algorithm terminates (Section 3.1) for (3.18). For|ℓ|> 1, we may

define an infinite sequence of states
∣∣wi
〉
∈ γ−ℓ

(
L̂1
)

by
∣∣w
〉
= J−n1

∣∣w1
〉
= J−n1J−n2

∣∣w2
〉
= J−n1J−n2J−n3

∣∣w3
〉
= · · · , (3.19)

in which each
∣∣wi
〉

also has the minimal conformal dimension for itssl(2)-weight. Here,J denotes eitherf

or e according as to whetherℓ is positive or negative. But we can only apply step 2 to
∣∣v
〉
⊗
∣∣w
〉

twice before∣∣v
〉

is annihilated (byJ2
0). As this application introduces no states to which step 1 must be applied, the fusion

algorithm thereby terminates.

However, for|ℓ| > 1, γ−ℓ
(
L̂1
)

has trivial zero-grade subspace, hence the fusion product must be trivial by

Equation (3.3). It follows thatM does not appear in the fusion (3.18), hence thatγℓ
(
M
)

cannot appear in (3.17).

For |ℓ|= 1,M must be of the form̂Eλ for γℓ
(
M
)

to be undetectable in (3.17). But, the weights of the zero-grade

subspace ofγ−ℓ
(
L̂1
)

are bounded either above or below, so those of the (vector space) tensor product of the

zero-grade subspaces ofL̂1 andγ−ℓ
(
L̂1
)

are similarly bounded. It is now clear thatÊλ cannot appear in the

fusion (3.18) because the weights of its zero-grade subspace are neither bounded above nor below — such an

appearance would contradict Equation (3.3). We therefore conclude that Equation (3.18) is indeed correct after

all. There are no contributions to the right hand side associated with unseen (to grade 0) twisted modules.

3.3. Fusing L̂1 and Êλ . We can now turn to the elucidation of new fusion rules, in particular to the fusion of

the irreduciblêsl(2)-modulesL̂1 andÊλ . Letting
∣∣u1
〉

and
∣∣u−1

〉
= f0

∣∣u1
〉

denote the zero-grade states ofL̂1

and
∣∣vm
〉
, m∈ 2Z+λ , denote those of̂Eλ (normalised as in Equation (2.7)), the result of this grade 0fusion

will be contained within the space spanned by
∣∣u1
〉
⊗
∣∣vm
〉

and
∣∣u−1

〉
⊗
∣∣vm+2

〉
(m∈ 2Z+λ ). (3.20)

In contrast to Section 3.2, this is an infinite-dimensional space. However, the weight spaces are only two-

dimensional, so we can still invoke linear algebra on these spaces separately.

Note first that applying Equation (3.8) to the spanning states of each weight space gives the matrix represen-

tation

∆(L0) =
1
3

(
λ + 9

8 −2
1
8 (2λ +1)(2λ +3) −λ − 7

8

)
. (3.21)
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This matrix has eigenvalues− 1
8 and 5

24 for all λ . Again, zero-grade states are forbidden from having the latter

conformal dimension (Section 2), so we suspect that only theeigenstates corresponding to eigenvalue− 1
8 are

actually present in the fusion. The other eigenstates should then be spurious states.

As in Section 3.2, we use the vanishing vectors (2.13) ofÊλ in the fusion algorithm of Section 3.1 to search

for spurious states in the weight spaces. Applying∆(e−1) = 0 to
∣∣u1
〉
⊗
∣∣vm−2

〉
, ∆(h−1) = 0 to

∣∣u1
〉
⊗
∣∣vm
〉

and

∆( f−1) = 0 to
∣∣u1
〉
⊗
∣∣vm+2

〉
, we find that (2.13) leads to the spurious states

∣∣u−1
〉
⊗
∣∣vm+2

〉
−

2m+3
4

∣∣u1
〉
⊗
∣∣vm
〉
= 0 (for all m∈ 2Z+λ ), (3.22)

which must be removed from each weight space. The weight spaces are therefore (at most) one-dimensional.

We can repeat the above exercise after replacing
∣∣u1
〉

by
∣∣u−1

〉
, but find no further spurious states. Similarly,

the vanishing vectors (2.14) of̂Eλ and the vanishing singular vector (3.10) ofL̂1 (using Equation (3.1c) for the

latter) yield nothing new, so we conclude that the relations(3.22) are exhaustive. The result of the fusion to grade

0 is therefore an infinite-dimensional space whosesl(2)-weights belong to 2Z+λ +1 and have multiplicity one.

There is only one admissiblêsl (2)-module with this zero-grade subspace,Êλ+1, so this strongly suggests that

the fusion rule is

L̂1×f Êλ = Êλ+1, (3.23)

where the addition is of course understood modulo 2. We have checked that the action of the zero-modes

(Equation (3.7)) is consistent with this conclusion.

As in Section 3.2, one is required to rule out the presence, inthis fusion decomposition, of twisted modules

which are not detected at grade 0. The argument presented there works just as well in this case, except now we

use the twisted fusion rule

L̂1×f γ−ℓ
(
Êλ
)

(|ℓ|> 1). (3.24)

Termination of step 1 follows becauseL̂1 is highest weight (even relaxed highest weight would suffice). Step 2

again terminates essentially because it reduces to the transfer ofsl(2)-weight from the infinitely many states of

γ−ℓ
(
Êλ
)

whose conformal dimension is minimal for their weight to thezero-grade states of̂L1. This can only

be done twice before the latter states are annihilated. The termination of the fusion algorithm then implies that

(3.24) is trivial to grade 0, ruling out undetected twisted modules in (3.23).

Equation (3.23) is therefore correct, proving our earlier claim (Section 2) that̂L1 remains a simple current

when we augment the theory by theÊλ and their spectral flow images. Note that it follows now from associativ-

ity [33] that the vacuum modulêL0 continues to act as the fusion identity in this augmented theory. Of course

one can explicitly check this too using the grade 0 fusion algorithm.

3.4. Fusing Êλ and Êµ . We now turn to the fusion of̂Eλ with Êµ (for λ ,µ ∈ {0,1}) to grade 0. This time, the

result is found within the vector space spanned by the states
∣∣vn
〉
⊗
∣∣vm
〉

(n∈ 2Z+λ , m∈ 2Z+ µ). (3.25)

We mention that this is infinite-dimensional and that, in contrast to the case studied in Section 3.3, thesl(2)-

weight spaces are also infinite-dimensional. We will therefore not be able to (immediately) use the action (3.8)

of L0 to analyse (heuristically) whether these states are admissible. This also serves as a hint that perhaps the

structure of this fusion product is more subtle than those wehave analysed thus far.
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Let us therefore repeat the analysis of Section 3.3, starting with the vanishing vectors (2.13) of̂Eµ . Since

∆(J−1) = 0 identically, we can use Equation (3.1b) to derive the relations

(2m−1)(2m+3)
16

∣∣vn+2
〉
⊗
∣∣vm−2

〉
−

(2m+3)n
4

∣∣vn
〉
⊗
∣∣vm
〉
+

(2n−1)(2n−3)
16

∣∣vn−2
〉
⊗
∣∣vm+2

〉
= 0. (3.26)

We interpret these spurious states as second-order recurrence relations for the states ofsl(2)-weightm+n. It

follows that for each weightm+n, these relations reduce the number of linearly independentstates from infinity

to just two! We will fix these two states in each weight space bychoosingm (and thereforen) arbitrarily. The

“basis” states then have the form
∣∣vn
〉
⊗
∣∣vm
〉

and
∣∣vn+2

〉
⊗
∣∣vm−2

〉
. (3.27)

Since the weight spaces are now finite-dimensional, Equation (3.8) can be applied to determine the action ofL0.

With respect to the basis ordering above, we find the matrix representation

∆(L0) =
1
12

(
−(2n+1) 2m−1

−(2n+1)(2n+3)/(2m−1) 2n+3

)
(3.28)

which has eigenvalues 0 and1
2. This suggests that the result of fusingÊλ with Êµ will involve the moduleL̂0

or L̂1.4 Note however that the result is (thus far) independent of thetotal sl(2) weightm+n, which compares

poorly with the situation for̂L0 andL̂1.

To analyse the fusion space in more detail, we note that the relations (3.26) are not symmetric inm andn.

Indeed, if we start with the vanishing vectors (2.13) ofÊλ and use Equation (3.1c), we derive instead the slightly

different relations

(2m−1)(2m−3)
16

∣∣vn+2
〉
⊗
∣∣vm−2

〉
−

m(2n+3)
4

∣∣vn
〉
⊗
∣∣vm
〉
+

(2n−1)(2n+3)
16

∣∣vn−2
〉
⊗
∣∣vm+2

〉
= 0. (3.29)

Substituting (3.26) into (3.29), we obtain

(m+n)
[
(2m−1)

∣∣vn+2
〉
⊗
∣∣vm−2

〉
− (2n+3)

∣∣vn
〉
⊗
∣∣vm
〉]

= 0. (3.30)

The resulting spurious states therefore reduce the dimension of the weight spaces to 1 except when the weight

is m+n= 0. In the latter case, Equation (3.30) is vacuous so the dimension remains at 2.

It remains to study the vanishing vectors (2.14) ofÊλ andÊµ . These by themselves yield rather unappealing

third-order recurrence relations. However, whenm+ n = 0, applying (3.26) reduces both these recurrence

relations to the simple form
∣∣vn+2

〉
⊗
∣∣vm−2

〉
+
∣∣vn
〉
⊗
∣∣vm
〉
= 0 (m+n= 0). (3.31)

We conclude that the weight space of weightm+n= 0 is therefore one-dimensional. Whenm+n 6= 0, we can

apply instead Equation (3.30) to derive that

(m+n−1)(m+n+1)
∣∣vn
〉
⊗
∣∣vm
〉
= 0 (m+n 6= 0). (3.32)

We conclude from this that the weight spaces of weightm+n= ±1 are also one-dimensional, whereas those

with weight not equal to±1 (or 0) are trivial! Moreover, computing the action of∆(L0) on the remaining states

with m+n= 0 and±1 gives conformal dimensions 0 and1
2 respectively. As we have been unable to find any

4Of course, it cannot involve both. Thesl(2)-weights ofÊλ are either all even or all odd, depending on the parity ofλ . The weights of the
fusion module will therefore accord with the parity ofλ +µ .
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further relations, this suggests the following fusion rules:

Êλ ×f Êµ = L̂λ+µ , (3.33)

where the addition is once again taken modulo 2. We remark that these fusion rules are consistent with associa-

tivity.

However, we recall from Section 2 thatÊ0 andÊ1 decompose in thêu (1)-coset theory into the highest weight

modules of the triplet algebra whose highest weight states have conformal dimensions− 1
8 and 3

8, respectively.

These triplet algebra modules are well known to fuse with oneanother to give indecomposable modules on

whichL0 cannot be diagonalised [19]. This is responsible for the logarithmic structure of the triplet model and

we would expect that this logarithmic structure is mirroredin the fusion rules of thêsl (2)−1/2 theory studied

here. Thus far, we have not uncovered any trace of indecomposability — all ŝl(2)-modules considered to date

are in fact irreducible. This leads us to suspect that the fusion of Êλ andÊµ is not as simple as the above grade 0

calculation would have us believe. We will therefore check carefully whether it is possible that this calculation

might have missed contributions coming from twisted modules.

Suppose then, as in Sections 3.2 and 3.3, that there are states associated to twisted modules appearing in the

fusion ofÊλ andÊµ (unlike what was proposed in (3.33)). Then, we can try to detect them by studying instead

the grade 0 fusion

Êλ ×f γ−ℓ
(
Êµ
)

(3.34)

with ℓ 6= 0. Since the twisted module above has a trivial zero-grade subspace, we may conclude, as before,

that Equation (3.33) has no twisted module corrections as long as the fusion algorithm of Section 3.1 actually

terminates for (3.34).

Now, step 1 still terminates, aŝEλ is a relaxed highest weight module, but the situation for step 2 is not so

happy. We can still reduce a state
∣∣v
〉
⊗
∣∣w
〉

so that we may assume
∣∣v
〉

to be a zero-grade state ofÊλ and that∣∣w
〉
∈ γ−ℓ

(
Êµ
)

has the minimal conformal dimension possible for its weight. But, using step 2 repeatedly to

reduce
∣∣w
〉

to certain states
∣∣wi
〉

with i ∈ Z+, as in Equation (3.19), we encounter an infinite regression.Each

iteration moves some weight from the
∣∣wi
〉

onto
∣∣v
〉
∈ Êλ via the action ofJ0 (J = e or f ), but

∣∣v
〉

is never

annihilated this way, so the algorithm does not terminate. It follows that we cannot exclude the presence of

unseen twisted module corrections to Equation (3.33) by computing to grade 0. To study this question further,

we will therefore have to bite the bullet and study fusion to higher grades, or in the more precise language of

Section 3.1, exchange the algebraA− for a carefully chosen subalgebra.

4. FUSION BEYOND GRADE 0

4.1. More General Fusion Algorithms. We consider the generalisation of the fusion algorithm of Section 3.1

to higher grades. IfM andN are the modules to be fused, this means choosing a subalgebraA of A− and

determining the (vector space) quotient of the fusion module on whichA acts as zero. The general formalism

of Nahm and Gaberdiel-Kausch [7,8] suggests that this quotient should satisfy

M×f N

∆(A)
(
M×f N

) ⊆ M

A−M
⊗

N

AN
. (4.1)

Note thatA− still appears on the right hand side. As before, demonstrating this inclusion amounts to showing

that a certain algorithm terminates.
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2 15

This fusion algorithm forA is in fact only a slight generalisation of that of Section 3.1. We have now three

steps which we may apply iteratively to a state
∣∣v
〉
⊗
∣∣w
〉
∈ M⊗N, though the third is little more than an

afterthought:

(1) If
∣∣v
〉
= J−n

∣∣v′
〉

for someJ−n ∈A−, then we apply Equation (3.1c).

(2) If
∣∣w
〉
= J−n1 · · ·J−nℓ

∣∣w′
〉

for someJ−n1 · · ·J−nℓ ∈ A, then we apply Equation (3.1b) to expand

∆
(
J−n1 · · ·J−nℓ

)(∣∣v
〉
⊗
∣∣w′
〉)

= 0 (4.2)

and substitute for
∣∣v
〉
⊗
∣∣w
〉
.

(3) It may happen that
∣∣w
〉
= J−n1 · · ·J−nℓ

∣∣w′
〉
∈ AN (formally), butJ−n1 · · ·J−nℓ /∈ A. This occurs when

J−n1 · · ·J−nℓ

∣∣w′
〉

is one term of a vanishing state ofN, the other terms of which belong toAN. Then,

we simply use this vanishing to substitute forJ−n1 · · ·J−nℓ

∣∣w′
〉
.

We will see an example in the next subsection of step 3 being used. As in Section 3.1, it is not hard to verify

that this algorithm is guaranteed to terminate whenM andN are (relaxed) highest weight modules. In general

however, termination is a very subtle affair as we saw in Section 3.4.

4.2. Êλ ×f Êµ Revisited. Our first task, and it is a very important one, is to choose the algebraA that appears

in the fusion algorithm. One might expect, especially if oneis familiar with similar fusion computations for

the Virasoro algebra, that a natural choice would be the subalgebra generated by all products of negative modes

whose indices sum to−2 or less (this would be a good candidate for fusion to grade 1). However, computations

with thisA tell us little more than the grade 0 computations of Section 3, and the reason is because thisA is

likewise blind to the appearance of non-trivial twisted modules in the fusion results.

We will therefore first consider taking the algebraA to be that generated bye−n−1, h−n and f−n with n> 1.

We will refer to the corresponding fusion algorithm as fusing to grade(1,0,0). Sinceej
−1 /∈ A for any j, we

expect that fusing in this way will expose twisted modules ofthe form γ2
(
L̂µ
)

and γ
(
Êµ
)
. Other twisted

modules might not, however, be visible with this approach.

Having chosenA, we now compute. As in Sections 3.3 and 3.4,Êλ/
(
A−Êλ

)
consists of just the zero-

grade states
∣∣vn
〉

of Êλ . The quotient̂Eµ/
(
AÊµ

)
should consist of the zero-grade states

∣∣vm
〉

of Êµ and their

e−1-descendants. However, Equation (2.13) lets us write

e−1
∣∣vm−2

〉
=

4
2m−1

h−1
∣∣vm
〉
−

16
(2m−1)(2m+3)

f−1
∣∣vm+2

〉
∈AÊµ , (4.3)

for all m. It follows thatÊµ/
(
AÊµ

)
likewise consists of just the zero-grade states

∣∣vm
〉

of Êµ .

Equation (4.1) now tells us that the fusion quotient is contained within the vector space spanned by the
∣∣vn
〉
⊗
∣∣vm
〉

(n∈ 2Z+λ , m∈ 2Z+ µ). (4.4)

Before beginning the computations, we pause to consider what the result will be if the suggested fusion rules

(3.33) are correct. We therefore illustrate the quotientsL̂λ+µ/
(
AL̂λ+µ

)
for λ +µ = 0,1 in Figure 2, along with

the actions ofe−1, e0, f0 and f1. There are several comments in order here. First, Equation (3.10) gives

4e2
−1

∣∣u−1
〉
= (2h−1e−1−7e−2)

∣∣u1
〉
∈ AL̂1, (4.5)

explaining why the picture for̂L1 has only one infinite string of states,ej
−1

∣∣u1
〉
, rather than two. Second,e0

and f1 do not preserveA (under the adjoint action), hence they are not truly well-defined on the quotients under
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L̂0/
(
AL̂0

)
L̂1/

(
AL̂1

)

FIGURE 2. Schematic illustrations of the states of the (vector space) quotientŝL0/
(
AL̂0

)

and L̂1/
(
AL̂1

)
. As usual, the conformal dimension increases from top to bottom and the

sl(2)-weight increases from right to left. Each dot represents a state for the corresponding
weight space (the multiplicity of which is always one). The lines represent the actions ofe−1

(south-west),e0 (west), f0 (east) andf1 (north-east).

consideration. In particular, in any quotient of the formN/
(
AN
)
, we may write

e0
∣∣v
〉
= e0

(∣∣v
〉
+h−1

∣∣w
〉)

= e0
∣∣v
〉
+h−1e0

∣∣w
〉
−2e−1

∣∣w
〉
= e0

∣∣v
〉
−2e−1

∣∣w
〉

(4.6)

for any
∣∣w
〉
. Assuming (without any loss of generality) that

∣∣v
〉

has a definitesl(2)-weight and conformal

dimension, it follows that we can only definee0
∣∣v
〉

unambiguously if thêsl(2)-weight space ofe0
∣∣v
〉

has trivial

intersection with the image ofe−1. Similarly, f1 is only defined on states
∣∣v
〉

for which theŝl(2)-weight space

of f1
∣∣v
〉

has trivial intersection with the image off0. It follows that bothe0 and f1 can be defined on all of

L̂0/
(
AL̂0

)
andL̂1/

(
AL̂1

)
except for the state which corresponds to the south-east corner of the parallelogram

in Figure 2. Note however thate−1, h0, f0 andL0 are perfectly well-defined.

We now begin the computations. As in Section 3.4, the weight spaces are infinite-dimensional. One differ-

ence is that we cannot start by using the vanishing states (2.13) of Êµ . These vectors have already been used

to reduce the states of̂Eµ/
(
AÊµ

)
to the zero-grade states ofÊµ . One can check that trying to use them further

takes us around in circles. Instead, we must start with the corresponding vanishing states ofÊλ . Applying

Equation (3.1c) to the tensor product of such a state with
∣∣vm
〉

and using the fusion algorithm of Section 4.1,

we arrive at a third-order recurrence relation for each weight space. The weight spaces are thereby reduced to

having dimension 3.

We continue our search for spurious states, now using the vanishing states (2.14) of̂Eµ . These turn out to

yield an independent set of spurious states which reduce thedimension of each weight space by one. Further-

more, applying∆( f0) (which is well-defined) to these spurious states yields new ones except when the weight

is m+n=±1. We have found no further spurious states using these vanishing states, nor by exploiting those of

Êλ , so we conclude that the weight spaces of the fusion product are one-dimensional unless the weight is±1,

in which case they have dimension 2.

We can now determine the action ofL0 on the weight spaces using Equation (3.2). Applying the Sugawara

form of L−1 and Equation (3.1c) again, we find that

∆(L0) = L0⊗ 1+ 1⊗L0+
1
3
(h−1h0−2e−1 f0−2 f−1e0)⊗ 1

= L0⊗ 1+ 1⊗L0+
1
3
(h0⊗h0−2e0⊗ f0−2 f0⊗e0−2e0 f0⊗ 1−2 f0⊗e−1) . (4.7)
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λ + µ = 0 λ + µ = 1

FIGURE 3. Schematic illustrations of the states of the (vector space) quotients of the fusion
moduleÊλ ×f Êµ to grade(1,0,0) for λ +µ = 0 andλ +µ = 1 (modulo 2). The conventions
are as in Figure 2 and the north-east arrow signifies thate−1 is acting trivially whereasf1 is
not. The dashed lines serve to delineate the point below which the result resembles that of
Figure 2.

We should be concerned thate0 may not be well-defined in the second factor where it acts uponÊµ/
(
AÊµ

)
.

As remarked above however, this is only a problem when the result of applyinge0 has the same weight and

conformal dimension as a non-trivial element of the image ofe−1. It is not hard to check that Equation (4.3)

implies that this image has already been set to zero, soe0 is in fact well-defined on̂Eµ/
(
AÊµ

)
. It follows that

the above action ofL0 makes sense.

Computing the action ofL0 on a generic weight space now gives a conformal dimension of1
2 (m+n), where

m+n 6=±1 is the corresponding (generic) weight. Form+n= 1, ∆(L0) is a matrix with eigenvalues12 and 3
2,

and form+n= −1 the eigenvalues are12 and−1
2 . The fact that these states have conformal dimensions which

are unbounded above and below proves that Equation (3.33) isincorrect — twisted modules do contribute to

the fusion. We illustrate the weight spaces of the fusion module to grade(1,0,0) in Figure 3. There, as in

Figure 2, we indicate the action ofe−1, e0, f0 and f1. Note thate0 and f1 are well-defined except on the state of

sl(2)-weight 1 and conformal dimension32 (the south-east “corner” of the parallelogram of states appearing in

Figure 3).

Now, if we twist these results by the spectral flow automorphism γ−1, we end up with two weight space

configurations whose conformal dimensions are uniformly bounded below (by− 1
8) and whosesl(2)-weights are

half-integers. Indeed, whenλ +µ = 0, the configuration suggests that the twisted result is indecomposable with

a submodule isomorphic toγ
(
L̂1
)
= L̂−3/2 and whose quotient by this submodule is isomorphic toγ−1

(
L̂0
)
=

L̂∗−1/2 (the “∗” indicates the conjugate representation). This indecomposable module therefore has a zero-grade

subspace with non-trivial weight spaces of arbitrarily large weights, both positive and negative. In this, it

resembles the moduleŝEλ , except that its zero-grade subspace contains ansl(2)-highest weight state of weight

− 3
2. From Section 2, we therefore identify this indecomposableasÊ+

−3/2 (recall that the “+” indicates that there

is a highest weight state of the given weight− 3
2). Whenλ + µ = 1, the corresponding twisted result is obtained

by swappinĝL0 andL̂1. This results in the indecomposable moduleÊ
+
−1/2 whose zero-grade subspace has an

sl(2)-highest weight state of weight− 1
2.
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Undoing the spectral flow, we see that the grade(1,0,0) result suggests that the true fusion rules take the

form

Êλ ×f Êµ =





γ
(
Ê
+
−3/2

)
if λ + µ = 0 (mod 2),

γ
(
Ê
+
−1/2

)
if λ + µ = 1 (mod 2).

(4.8)

This result strongly confirms our suspicion that the result of fusing Êλ with Êµ involves a reducible yet in-

decomposable module. However, the above identification of the fusion cannot be correct either! Applying

Equation (2.10) to the left hand side of Equation (4.8), we discover that the right hand side should be self-

conjugate. What we have concluded above is not. This is because we have based our conclusion on the result of

fusing to grade(1,0,0), corresponding to an algebraA which is not invariant under the conjugation automor-

phismw. Indeed, if we had fused to grade(0,0,1) instead, corresponding toA being generated bye−n, h−n and

f−n−1 with n> 1, then we would be drawing mirror images of the weight space configurations of Figures 2 and

3. We conclude that we are yet to unravel the full structure ofthe fusion module.

We therefore generalise the above fusion computations to grade(1,0,1), that is we redefineA to be generated

by the (conjugation-invariant set)e−n−1, h−n and f−n−1 with n> 1. It follows that the fusion quotient that we

will uncover will be contained within the vector space spanned by the states
∣∣vn
〉
⊗
∣∣vm
〉
, and

∣∣vn
〉
⊗e−1

∣∣vm−2
〉

(n∈ 2Z+λ , m∈ 2Z+ µ). (4.9)

Here, we have used the vanishing states (2.13) and (2.14) ofÊµ to eliminate states of the formf−1
∣∣vm
〉

and

e2
−1

∣∣vm
〉

respectively. We will therefore not be able to use these vanishing states to construct spurious states.

We instead apply Equation (3.1c) to the tensor product of a vanishing state (2.13) of̂Eλ and the state
∣∣vm
〉
∈

Êµ . As before, this yields non-trivial spurious states in eachweight space. Repeating this, with
∣∣vm
〉

replaced by

e−1
∣∣vm−2

〉
, yields independent spurious states which, together with the first set, define recurrences that reduce

the dimension of each weight space to six. Now, the actions ofe0 and f0 are not well-defined on the fusion

quotient, but those ofe−1 and f−1 are. This turns out to be very useful — applying∆(e−1) repeatedly to

the spurious states which have already been determined yields a complete set of spurious states. No further

constraints have been found, not even if we use the vanishingstates (2.14) of̂Eλ .

The resulting weight spaces are found to be generically two-dimensional, whereas those of weight 0,±1 or

±2 have dimension 3. ComputingL0 with the appropriate generalisation of Equation (4.7), we find that the

generic weight space corresponding tosl(2)-weightm+n is spanned byL0-eigenstates of conformal dimen-

sions± 1
2 (m+n). The spaces of weight±2 yield eigenstates of dimension−1, 1 and 3, and weights±1 give

dimensions− 1
2, 1

2 and 3
2. The most interesting weight space is, however, that of weight 0. Here, the computa-

tions reveal twoL0-eigenstates of dimensions 0 and 2 and one generalised eigenstate of dimension 0. Thus,L0

is not diagonalisable on this weight space, possessing instead a Jordan cell of rank 2. We illustrate the fusion

module modulo the action ofA in Figure 4, along with the observed (well-defined) actions of e−1 and f−1.

4.3. Analysis when λ +µ = 0. Let us restrict ourselves to the analysis of the above fusioncomputation in the

case whenλ + µ = 0 modulo 2. We will come back to the caseλ + µ = 1 later, as the observed lack of Jordan

cells for this fusion quotient suggests that we still have further structure to uncover. Consider therefore the state∣∣x+0
〉

appearing at grade(1,0,1) whosesl(2)-weight is 2 and whose conformal dimension is−1. We suppose

that this state has norm 1. Applyingf−1, the observed result is the weight 0, dimension 0 eigenstate
∣∣ω0
〉

of L0.

We normalise this eigenstate by defining ∣∣ω0
〉
= f−1

∣∣x+0
〉
. (4.10)
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λ + µ = 0 λ + µ = 1

∣∣ω0
〉

∣∣y0
〉

∣∣x+0
〉 ∣∣x−0

〉

FIGURE 4. Schematic illustrations of the states of the (vector space) quotients of the fusion
moduleÊλ ×f Êµ to grade(1,0,1) for λ +µ = 0 andλ +µ = 1 (modulo 2). The conventions
are as in Figures 2 and 3, except that we only indicate the actions ofe−1 and f−1 (hence the
arrows). The dashed lines serve to delineate the point belowwhich we can identifŷLλ+µ . We
also indicate for convenience the splitting of the weight-zero, dimension-zero space into the
L0-eigenvector

∣∣ω0
〉

and its Jordan partner
∣∣y0
〉

(in white), as well as the states
∣∣x±0
〉
.

The above fusion computations indicate thatf−1
∣∣ω0
〉
= 0 (to grade(1,0,1)). Similarly, we introduce the state∣∣x−0

〉
of weight−2 and dimension−1 by requiring that

∣∣ω0
〉
= e−1

∣∣x−0
〉
. As we know that the corresponding

weight space is one-dimensional, this defines
∣∣x−0
〉

uniquely. We mention thate−1
∣∣ω0
〉
= 0 (to grade(1,0,1))

as well. Finally, we denote the Jordan partner of
∣∣ω0
〉

by
∣∣y0
〉
. It satisfies

L0
∣∣y0
〉
=
∣∣ω0
〉
, (4.11)

which serves as a normalisation, though this relation does not define
∣∣y0
〉

uniquely. Within this (generalised)

weight space of weight 0 and dimension 0, we are free to add arbitrary multiples of
∣∣ω0
〉

to
∣∣y0
〉

without

affecting the latter’s defining property.

We first consider the (induced) action of the conjugation automorphismw defined in Equation (2.5a). As

the fusion module we are studying is self-conjugate, we mustchoose how to identify the module with its image

underw. This will be achieved by setting

w
(∣∣y0

〉)
=
∣∣y0
〉
. (4.12)

The other states defined above will therefore satisfy

w
(∣∣ω0

〉)
=
∣∣ω0
〉

and w
(∣∣x±0

〉)
=
∣∣x∓0
〉
. (4.13)

Indeed,
∣∣y0
〉

will turn out to generate the fusion module, so Equation (4.12) completely defines the action ofw.5

Consider now the effect of applying the spectral flow automorphismγ to these states. In particular,γ
(∣∣x+0

〉)

has weight32 and dimension− 1
8 whereasγ

(∣∣ω0
〉)

has weight− 1
2 and dimension− 1

8. They are related by the

action of f0. It now follows from the classification of admissible relaxed highest weight modules (Section 2) that

5We mention that one could have tried to instead define the action ofw by w

(∣∣y0
〉)

=
∣∣ω0
〉
. This is not correct, as the self-conjugacy ofL0

now implies thatw
(∣∣ω0

〉)
= 0, contradictingw2 being the identity. However, such an action is intimately related to thecontragredientdual

of the fusion module. This highlights nicely the fact that conjugate and contragredient need not coincide in a conformalfield theory.



20 D RIDOUT

γ
(∣∣ω0

〉)
must be a highest weight state generating an irreducible module isomorphic tôL−1/2 = γ

(
L̂0
)
. Quoti-

enting by the submodule generated byγ
(∣∣ω0

〉)
, we find that the equivalence class ofγ

(∣∣x+0
〉)

must generate an

irreducible module isomorphic tôL∗−3/2 = γ−1
(
L̂1
)

(refer to Figure 1). Summarising, the stateγ
(∣∣x+0

〉)
gener-

ates an indecomposable submodule isomorphic toÊ
+
−1/2 of theγ-twisted fusion module. This indecomposable

is described by the short exact sequence

0−→ γ
(
L̂0
)
−→ Ê

+
−1/2−→ γ−1(

L̂1
)
−→ 0. (4.14)

Undoing the spectral flow, we have therefore deduced from thefusion results to grade(1,0,1) that
∣∣ω0
〉

generates a submodule isomorphic toL̂0 and
∣∣x+0
〉

generates an indecomposable submoduleγ−1
(
Ê
+
−1/2

)
which

is described by the short exact sequence

0−→ L̂0−→ γ−1(
Ê
+
−1/2

)
−→ γ−2(

L̂1
)
−→ 0. (4.15)

We should therefore identify
∣∣ω0
〉

with the vacuum
∣∣0
〉

(since the vacuum is supposed to be unique). A similar

argument demonstrates that
∣∣x−0
〉

likewise generates an indecomposable submodule which is isomorphic to

γ
(
Ê
−
1/2

)
. The corresponding short exact sequence is

0−→ L̂0−→ γ
(
Ê
−
1/2

)
−→ γ2(

L̂1
)
−→ 0. (4.16)

Note that the two indecomposablesγ−1
(
Ê
+
−1/2

)
andγ

(
Ê
−
1/2

)
are manifestly conjugate to one another.

One can ask how we were able to conclude that
∣∣ω0
〉

generates a submodule isomorphic toL̂0 when the

above fusion calculations show thate−1
∣∣ω0
〉
= f−1

∣∣ω0
〉
= 0. The resolution is that the statese−1

∣∣ω0
〉

and

f−1
∣∣ω0
〉
, and in fact all other states descended from

∣∣ω0
〉
, are in the image of the grade-(1,0,1) algebraA,

hence are set to zero in the fusion quotient that we have computed above. This can be demonstrated explicitly:

Since f 2
−2

∣∣x+0
〉
= 0 in γ−2

(
L̂1
)
, it follows thate2

1 f 2
−2

∣∣x+0
〉
= 0 in γ−2

(
L̂1
)

and so

e2
1 f 2
−2

∣∣x+0
〉
= αe−1

∣∣ω0
〉

in γ−1(
Ê
+
−1/2

)
, for someα, (4.17)

by weight space considerations. In fact, applyingf1 to both sides yieldsα = 8. Commuting thee1 modes to the

right now gives

8e−1
∣∣ω0
〉
= e2

1 f 2
−2

∣∣x+0
〉
=
(

f−2e2
1 f−2−2h−1e1 f−2+2 f−2e0−2h−2

)∣∣x+0
〉
, (4.18)

which clearly vanishes to grade(1,0,1). The corresponding conclusion forf−1
∣∣ω0
〉

follows similarly.

It remains to consider the Jordan partner state
∣∣y0
〉
. From Figure 4, this weight 0, dimension 0 state appears

to generate a highest weight module much likeL̂0. More precisely, if we quotient the fusion module by the

submodule generated by
∣∣x+0
〉

and
∣∣x−0
〉
, then what remains should be isomorphic toL̂0. That the grade 4

singular vector does indeed vanish in this quotient is deducible from its explicit form (2.11) and Figure 4 — if

this singular vector did not vanish then we would observe dimension 4 states of weights 0,±2 and±4 when

computing to grade(1,0,1).

We therefore finally identify the result of fusing the modules Êλ andÊµ whenλ + µ = 0. We will write the

result in the form

Êλ ×f Êµ = Ŝ0 if λ + µ = 0 (mod 2), (4.19)

whereŜ0 is an indecomposable module with two composition series,

0⊂ L̂0 ⊂ γ−1(
Ê
+
−1/2

)
⊂ γ−1(

Ê
+
−1/2

)
+ γ
(
Ê
−
1/2

)
⊂ Ŝ0 (4.20a)



FUSION IN FRACTIONAL LEVEL ŝl(2)-THEORIES WITHk=− 1
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L̂0

L̂0

Ŝ0

γ−2
(
L̂1
)

γ2
(
L̂1
)

(1,0,0) (0,0,1)

(2,0,0) (1,0,0) (0,0,1) (0,0,2)

(5,0,0) (2,0,0) (0,2,0) (0,0,2) (0,0,5)

(10,0,0) (4,2,0) (1,2,1) (0,2,4) (0,0,10)

(19,2,0) (8,4,0) (2,6,2) (0,4,8) (0,2,19)

FIGURE 5. A schematic illustration of the states of the staggered module Ŝ0. We indicate
the composition factorsγ−2

(
L̂1
)
, L̂0 andγ2

(
L̂1
)

with dashed boundary lines (left) and the
multiplicities of a few of the weight spaces (right). The latter are separated into those for each
composition factor (the order is as above) with the multiplicities forL̂0 doubled (as it appears
twice as a factor). At left, we split the weight spaces to distinguish the twôL0 factors (as in
Figure 4, theL0-eigenstates appear above their Jordan partners). We also indicate with arrows
a few fundamental actions which define the indecomposable structure.

and 0⊂ L̂0 ⊂ γ
(
Ê
−
1/2

)
⊂ γ−1(

Ê
+
−1/2

)
+ γ
(
Ê
−
1/2

)
⊂ Ŝ0, (4.20b)

which are related by conjugation. The composition factors —these are the quotients of the successive submod-

ules of a composition series — are the (in order) irreduciblemodules

L̂0, γ−2(
L̂1
)
, γ2(

L̂1
)
, L̂0 and L̂0, γ2(

L̂1
)
, γ−2(

L̂1
)
, L̂0, (4.21)

respectively. Alternatively, we can describeŜ0 in terms of a short exact sequence involving two (twisted,

relaxed) highest weight modules. Specifically, there are two such short exact sequences,

0−→ γ−1(
Ê
+
−1/2

)
−→ Ŝ0 −→ γ

(
Ê
+
−3/2

)
−→ 0 (4.22a)

and 0−→ γ
(
Ê
−
1/2

)
−→ Ŝ0 −→ γ−1(

Ê
−
3/2

)
−→ 0, (4.22b)

again related by conjugation. By analogy with similar indecomposable modules for the Virasoro algebra [15,27],

we will therefore refer to the modulêS0 as astaggered module. We illustratêS0 with some of its multiplicities

in Figure 5.

It is well known that staggered modules for the Virasoro algebra need not be completely determined by their

exact sequences [8, 15, 27]. Indeed, one must in general compute (up to two) additional numerical invariants,

called beta-invariants or logarithmic couplings, which completely specify the module given an exact sequence

[12,15]. We should therefore analyse the corresponding situation for our staggered̂sl(2)-moduleŜ0. Referring

to Figure 5, we see that thêsl(2) action on
∣∣y0
〉

(and hence thêsl(2) action on̂S0) will be determined once we

have specifiede0
∣∣y0
〉
, e1
∣∣y0
〉
, f0
∣∣y0
〉

and f1
∣∣y0
〉
.

Let us recall our state definitions:

• First, choose
∣∣x+0
〉

to be a state ofsl(2)-weight 2 and conformal dimension−1. Declaring it to have

norm 1 defines the scalar product on the submoduleŝl (2)
∣∣x+0
〉
∼= γ−1

(
Ê
+
−1/2

)
generated by

∣∣x+0
〉
.
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• Define
∣∣ω0
〉
= f−1

∣∣x+0
〉

and note thate1
∣∣ω0
〉
= 0 implies that

〈
ω0
∣∣ω0
〉
=
〈
ω0
∣∣ f−1

∣∣x+0
〉
= 0. TheL̂0-

submodule of̂S0 generated by
∣∣ω0
〉

is therefore null.

• Define
∣∣x−0
〉

by imposinge−1
∣∣x−0
〉
=
∣∣ω0
〉
. Since

∣∣x−0
〉
/∈ ŝl(2)

∣∣x+0
〉
, we may suppose that

∣∣x−0
〉

is also

normalised. This then defines the scalar product on the submodule ŝl(2)
∣∣x−0
〉
∼= γ−1

(
Ê
−
1/2

)
. Note that

both of these scalar products agree (indeed, they both vanish) on the intersection of the submodules

ŝl(2)
∣∣x+0
〉
∩ ŝl(2)

∣∣x−0
〉
= ŝl(2)

∣∣ω0
〉
∼= L̂0.

• Finally, let
∣∣y0
〉

be a state ofsl (2)-weight 0 and (generalised) conformal dimension 0 satisfyingL0
∣∣y0
〉
=∣∣ω0

〉
. This only defines

∣∣y0
〉

up to adding arbitrary multiples of
∣∣ω0
〉
. We cannot normalise

∣∣y0
〉
.

From the multiplicities of Figure 5, we can write

e1
∣∣y0
〉
= β0

∣∣x+0
〉

and e0
∣∣y0
〉
=
(
β ′0h−1+β ′′0 f−2e1

)∣∣x+0
〉
, (4.23)

whereβ0, β ′0 andβ ′′0 are unknown constants. Note that a redefinition of
∣∣y0
〉

through adding some multiple of∣∣ω0
〉

would not affect the values of these constants. There are, inprinciple, three similar constants defining the

action of f1 and f0:

f1
∣∣y0
〉
= β̃0

∣∣x−0
〉

and f0
∣∣y0
〉
=
(

β̃ ′0h−1+ β̃ ′′0 e−2 f1
)∣∣x−0

〉
. (4.24)

However,β̃0 =
〈
x−0
∣∣ f1
∣∣y0
〉
=
〈
ω0
∣∣y0
〉
=
〈
x+0
∣∣e1
∣∣y0
〉
= β0 and one can similarly use the scalar product to show

that

2β0− β̃ ′0+3β̃ ′′0 = 0 and −2β̃ ′0+3β̃ ′′0 = 0. (4.25)

The ŝl(2)-action is therefore defined by the three numbersβ0, β ′0 andβ ′′0 .

However, these three unknown constants are themselves not independent, because

h1e0
∣∣y0
〉
= 2e1

∣∣y0
〉

⇒ 2β0+β ′0+3β ′′0 = 0 (4.26a)

and e2e0
∣∣y0
〉
= 0 ⇒ 2β ′0+3β ′′0 = 0. (4.26b)

It now follows thatβ̃ ′0 = −β ′0 andβ̃ ′′0 = β ′′0 , exactly as one would expect from applying the conjugation auto-

morphismw to Equation (4.23). Moreover, one may check thate1e0
∣∣y0
〉
= e0e1

∣∣y0
〉

leads to two constraints

which are not independent of those given in (4.26). Note thatthese constraints are all homogeneous. In contrast,

the normalisation that we chose above for the Jordan partnergives an additional inhomogeneous constraint:

L0
∣∣y0
〉
=
∣∣ω0
〉

⇒ 4β0+4β ′0 =−3. (4.26c)

We can therefore solve the three independent constraints (4.26) to obtain

β0 =−
1
4
, β ′0 =−

1
2

and β ′′0 =
1
3
. (4.27)

These numbers uniquely determine theŝl(2)-action on̂S0.

4.4. Analysis when λ + µ = 1. Combining the associativity of the fusion rules with Equations (3.23) and

(4.19), we obtain

Êλ ×f Êµ = L̂1×f Ŝ0≡ Ŝ1 if λ + µ = 1 (mod 2), (4.28)

which defines thêsl(2)-moduleŜ1. As we have exhibited̂S0 as an indecomposable combination ofγ2
(
L̂1
)
,

γ−2
(
L̂1
)

and two copies of̂L0, it is very natural to presume thatŜ1 may be likewise exhibited as an indecom-

posable combination ofγ2
(
L̂0
)
, γ−2

(
L̂0
)

and two copies of̂L1. Indeed, comparing Figure 1 with the fusion
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2 23

results pictured in Figure 4 (right), we see that this presumption is supported except in that we only see one

copy ofL̂1.

The explanation for the missing copy ofL̂1 is much the same as for the missing descendants of
∣∣ω0
〉

in

the previous section. First, our presumption above for the structure ofŜ1 lets us choose a state
∣∣x+1
〉

of sl(2)-

weight 1 and conformal dimension− 1
2. This generates the copy ofγ−2

(
L̂0
)
, or more accurately, it generates

an indecomposable moduleγ−1
(
Ê
+
−3/2

)
defined by the exact sequence

0−→ L̂1−→ γ−1(
Ê
+
−3/2

)
−→ γ−2(

L̂0
)
−→ 0. (4.29)

The highest weight state of thêL1-submodule is then
∣∣ω+

1

〉
=−e0 f−1

∣∣x+1
〉
. (4.30)

Substitutingm= 1
2 into the vanishinĝE-type singular vector (2.13) and applyingγ−1 now gives

∣∣ω+
1

〉
=

1
2
(h−1− f−2e1)

∣∣x+1
〉
, (4.31)

which shows that this copy of̂L1 would not be uncovered in a fusion computation to grade(1,0,1) in accord

with what we have observed in Section 4.2.

Of course, this is currently pure supposition, if rather well-founded. We have not yet managed to observe a

non-diagonalisable action ofL0 on Ŝ1. However, Equation (4.31) indicates how this can be achieved: We can

simply excludeh−1 from the algebraA controlling the fusion algorithm. With such an algebra, both
∣∣ω+

1

〉
and

its Jordan partner
∣∣y+1
〉

should be visible. We therefore expect that this slight change toA will enable us to

detect a Jordan structure forL0.

We have therefore repeated the fusion computation forÊλ ×f Êµ one last time, taking the algebraA to be

generated by thee−n, h−n and f−n with n > 2 and the h j
−1 with j > 2. This may seem like a small change,

but the corresponding increase in algorithmic complexity is significant. The part of the fusion module that this

uncovers may be found within the space spanned by the states
∣∣vn
〉
⊗
∣∣vm
〉
,

∣∣vn
〉
⊗h−1

∣∣vm
〉
,

∣∣vn
〉
⊗e−1

∣∣vm−2
〉

and
∣∣vn
〉
⊗h−1e−1

∣∣vm−2
〉
. (4.32)

Using the vanishing vectors (2.13) and (2.14) ofÊλ , we derive four recursion relations which together bound

the dimension of thesl(2)-weight spaces by 12. Further analysis reduces this to 6 whenthe weight is±1 and 4

in general. The explicit construction ofL0 confirms that it indeed has a non-trivial Jordan cell corresponding to

eigenvalue1
2 when thesl (2)-weight is±1. For completeness, we illustrate the results of this fusion computation

in Figure 6. It is not hard to check that these results completely support the structure of̂S1 proposed above.

It is now appropriate to ask if thêsl (2)-action onŜ1 is uniquely determined by its structure, or if there are

additional logarithmic couplings to compute. We define states inŜ1 as follows:

• Choose
∣∣x+1
〉

to be a state ofsl(2)-weight 1 and conformal dimension− 1
2. We define the scalar product

on the submodulêsl(2)
∣∣x+1
〉
∼= γ−1

(
Ê
+
−3/2

)
by declaring that

∣∣x+1
〉

has norm 1.

• Define
∣∣ω−1

〉
= f−1

∣∣x+1
〉

and
∣∣ω+

1

〉
= −e0

∣∣ω−1
〉
. Then, f0

∣∣ω+
1

〉
=
∣∣ω−1

〉
and theL̂1-submodule gener-

ated by
∣∣ω+

1

〉
consists entirely of zero-norm states.

• Define
∣∣x−1
〉

by settinge−1
∣∣x−1
〉
=
∣∣ω+

1

〉
. The scalar product on̂sl(2)

∣∣x−1
〉
∼= γ
(
Ê
−
3/2

)
is then determined

by defining the norm of
∣∣x−1
〉

to be 1. Again, these scalar products agree (they both vanish) on the

intersection̂sl(2)
∣∣x+1
〉
∩ ŝl(2)

∣∣x−1
〉
∼= L̂1.
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∣∣y+1
〉 ∣∣y−1

〉
∣∣ω+

1

〉 ∣∣ω−1
〉

∣∣x+1
〉 ∣∣x−1

〉

FIGURE 6. A schematic illustration of the states of the quotient of the fusion modulêE0×f Ê1

when the algebraA is generated by thee−n, h−n and f−n with n> 2 and theh j
−1 with j > 2.

Again, we only indicate the actions ofe−1, h−1 and f−1. Weight spaces carrying a non-
diagonalisable action are indicated by arranging the states vertically (the white states are the
Jordan partners). Also noted are the states

∣∣y±1
〉
,
∣∣ω±1

〉
and

∣∣x±1
〉
.

• Choose
∣∣y+1
〉

to be a state ofsl(2)-weight 1 and conformal dimension12 that satisfies
(
L0−

1
2

)∣∣y+1
〉
=∣∣ω+

1

〉
. Then, define

∣∣y−1
〉
= f0

∣∣y+1
〉

so that
(
L0−

1
2

)∣∣y−1
〉
=
∣∣ω−1

〉
. The

∣∣y±1
〉

are not normalisable. Note

that
∣∣y+1
〉

is only defined up to adding arbitrary multiples of
∣∣ω+

1

〉
and h−1

∣∣x+1
〉
.

We illustrate the structure of̂S1 and the multiplicity of some of its weight spaces in Figure 7.The latter

multiplicities make it clear that there aretenunknown constants which define the action ofŝl(2) on Ŝ1.6 We let

h1
∣∣y+1
〉
= β

∣∣x+1
〉
, f1

∣∣y+1
〉
= β1

∣∣x−1
〉
, e2

∣∣y+1
〉
= β2e1

∣∣x+1
〉
, e1

∣∣y+1
〉
= (γ1e0+ γ2h−1e1)

∣∣x+1
〉
, (4.33a)

and e0
∣∣y+1
〉
=
(
α1e−1+α2h−1e0+α3h−2e1+α4h2

−1e1+α5 f−3e2
1

)∣∣x+1
〉
. (4.33b)

As in Section 4.3, these constants are not all independent.

We proceed by considering the effect of combining these definitions with the commutation relations. For

example, we can evaluatee1e2
∣∣y+1
〉

in two ways, leading to

β2e2
1

∣∣x+1
〉
= e1e2

∣∣y+1
〉
= e2e1

∣∣y+1
〉
= γ1e2e0

∣∣x+1
〉
+ γ2e2h−1e1

∣∣x+1
〉
=−2γ2e2

1

∣∣x+1
〉
, (4.34a)

henceβ2+ 2γ2 = 0. Similarly, considering the action ofe1h1, e0h1, e0 f1, h2e0 ande3e0 on
∣∣y+1
〉

leads to six

more independent homogeneous constraints:

β +2β2−2γ1+ γ2 = 0, γ2−α2+α4+2α5 = 0, β +2γ1−2α1+α2−4α5 = 0, (4.34b)

6Actually, it is clear from the outset that knowing the actionof e0 and f1 is sufficient in this case. We shall, however, ignore this slight
simplification for pedagogical reasons.
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L̂1

L̂1

Ŝ1

γ−2
(
L̂0
)

γ2
(
L̂0
)

(1,0,0) (0,0,1)

(2,0,0) (1,0,0) (0,0,1) (0,0,2)

(5,0,0) (1,2,0) (0,2,1) (0,0,5)

(9,2,0) (3,4,0) (0,4,3) (0,2,9)

(18,4,0) (6,8,1) (1,8,6) (0,4,18)

FIGURE 7. Schematic illustrations of the states and multiplicities of the staggered module
Ŝ1, following the conventions established for Figure 5. The multiplicities are for the compo-
sition modulesγ−2

(
L̂0
)
, L̂1 (doubled) andγ2

(
L̂0
)
. As before, we indicate with arrows a few

fundamental actions which result from the indecomposable structure.

β2−α1+α3+3α5 = 0, 4α3−8α4+7α5 = 0, 2β −3α1−4α2−2α3−4α4 = 0. (4.34c)

Again, the Jordan structure leads to inhomogeneous constraints. ExpandingL0
∣∣y+1
〉
= 1

2

∣∣y+1
〉
+
∣∣ω+

1

〉
, for exam-

ple, leads to

−2β1+4β2+2γ1+8γ2+4α2+8α3+16α4 = 3. (4.34d)

Repeating this for
∣∣y−1
〉

and
∣∣ω−1

〉
leads to another independent inhomogeneous constraint:

2β +6β1−2γ1−2γ2−2α1−4α2−4α3 = 3. (4.34e)

However, its derivation requires a significant digression.As
∣∣y−1
〉

has been defined to bef0
∣∣y+1
〉
, it is straight-

forward to obtain

h1
∣∣y−1
〉
=−2β1

∣∣x−1
〉
, e1

∣∣y−1
〉
= (γ1+ γ2−β )

∣∣x+1
〉
, f2

∣∣y−1
〉
= 0 and f1

∣∣y−1
〉
= β1 f0

∣∣x−1
〉
. (4.35a)

Determiningf0
∣∣y−1
〉
, however, requires more of the games that led to the constraints (4.34). We omit the details

and give only the result:

f0
∣∣y−1
〉
=

4β1

15

(
3 f−1−7h−1 f0+9h−2 f1−h2

−1 f1+4e−3 f 2
1

) ∣∣x−1
〉
. (4.35b)

With this, (4.34e) is easily derived.

We therefore have nine constraint equations in ten unknownsand these are all the constraints that one can

find. This does not mean that there is a one-parameter family of modules that form candidates forŜ1. Rather, it

reflects the fact that we can only choose
∣∣y+1
〉

up to multiples of
∣∣ω+

1

〉
andh−1

∣∣x+1
〉
. As

∣∣ω+
1

〉
is annihilated by

h1, f1, e2, e1 ande0, a redefinition of the form
∣∣y+1
〉
7−→

∣∣y+1
〉
+α

∣∣ω+
1

〉
(4.36)
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does not change the constantsβ , βi, γi andαi which we defined in Equation (4.33). A redefinition of the form
∣∣y+1
〉
7−→

∣∣y+1
〉
+αh−1

∣∣x+1
〉
, (4.37)

however, will change some of these constants, specificallyβ , β2, γ1, γ2, α1 andα2. This is reflected in the

general solution to the constraints (4.34):

β =−
29
30
−α, β1 =

1
4
, β2 =−

14
15
−2α, γ1 =−

71
60
−2α, γ2 =

7
15

+α, (4.38a)

α1 =−
17
15
−2α, α2 = α, α3 =

3
5
, α4 =

1
15

, α5 =−
4
15

. (4.38b)

In the language of [12], the constantsβ , β2, γ1, γ2, α1 andα2 are notgauge-invariant.

We conclude this analysis by remarking that a quick comparison of Equations (4.33) and (4.35) shows that,

unlike that of Section 4.3, our analysis has not been invariant under the conjugation automorphismw. The

reason can be traced back to the definition
∣∣y−1
〉
= f0

∣∣y+1
〉
. This breaks conjugation-invariance rather badly

because

e0
∣∣y−1
〉
=−

∣∣y+1
〉
+ f0e0

∣∣y+1
〉
=−

∣∣y+1
〉
+
( 7

15
+α

)
h−1
∣∣x+1
〉
−
(44

15
+2α

)∣∣ω+
1

〉
, (4.39)

rather than juste0
∣∣y−1
〉
=−

∣∣y+1
〉
. It would be nice to correct this, but we feel that the complexity that this would

add is rather unjustified at present.

4.5. Fusing Êλ and Ŝµ . It remains to compute the fusion rules involving these new staggered moduleŝS0 and

Ŝ1. Associativity and Equation (4.28) show that

L̂λ ×f Ŝµ = Ŝλ+µ , (4.40)

so our next task is to determine the fusion ofÊλ and Ŝµ . Performing the fusion algorithm with staggered

modules is not an easy task, especially in view of the rather involved structure of̂S1. Luckily, associativity again

reduces the burden somewhat — the fusions withŜ1 will follow once we know those witĥS0. We therefore turn

to the computation of̂Eλ ×f Ŝ0 to grade 0.

We first need to decide on an appropriate tensor product spacein which to find the grade 0 fusion product.

The general theory suggests that we should consider the space spanned by the zero-grade states ofÊλ tensored

with the zero-grade states ofŜ0. The latter are those states which are not inA−Ŝ0 (recall that we defined the

algebraA− in Section 3.1), hence cannot be written asJ−n
∣∣w
〉

for someJ = e,h, f , n> 0 and
∣∣w
〉
∈ Ŝ0. A little

reflection shows that only
∣∣y0
〉

has this property, hence we should consider the space spanned by the
∣∣vm
〉
⊗
∣∣y0
〉

(m∈ 2Z+λ ). (4.41)

However, it seems that this cannot be the right space as it is not clear how to use Equations (3.4) and (3.5) to

reduce
∣∣vm−2

〉
⊗
∣∣x+0
〉
, say, to something proportional to

∣∣vm
〉
⊗
∣∣y0
〉
.

Instead, we can try the space spanned by
∣∣vm−2n

〉
⊗en−1

1

∣∣x+0
〉
,

∣∣vm
〉
⊗
∣∣y0
〉

and
∣∣vm+2n

〉
⊗ f n−1

1

∣∣x−0
〉

(m∈ 2Z+λ , n∈ Z+). (4.42)

Applying spectral flow to the vanishing singular vectors (2.13), we obtain a relation expressinge0en−1
1

∣∣x+0
〉

as

a linear combination ofh−1en
1

∣∣x+0
〉

and f−2en+1
1

∣∣x+0
〉
. There is a similar relation forf0 f n−1

1

∣∣x−0
〉
, hence we see

that the states complementary to the span of (4.42) can all beexpressed as (linear combinations of the)J−n
∣∣w
〉

with J = e,h, f andn> 0. It is now easy to see that the procedure of Section 3.1 terminates, hence that the span

of (4.42) contains the grade 0 fusion product.
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Note however that∆(e−1) = 0 implies that

n(2n+1)
2

∣∣vm
〉
⊗ f n−1

1

∣∣x−0
〉
=
∣∣vm
〉
⊗e−1 f n

1

∣∣x−0
〉
=−e0

∣∣vm
〉
⊗ f n

1

∣∣x−0
〉
=−

∣∣vm+2
〉
⊗ f n

1

∣∣x−0
〉
, (4.43)

hence that every
∣∣vm
〉
⊗ f n

1

∣∣x−0
〉

is proportional to
∣∣vm−2n

〉
⊗
∣∣x−0
〉
. Similarly,

n(2n+1)
2

∣∣vm
〉
⊗en−1

1

∣∣x+0
〉
=−

(2m−1)(2m−3)
16

∣∣vm−2
〉
⊗en

1

∣∣x+0
〉
, (4.44)

so
∣∣vm
〉
⊗en

1

∣∣x+0
〉

is seen to be proportional to
∣∣vm+2n

〉
⊗
∣∣x+0
〉
. Moreover, the same manipulations give

−
∣∣vm+2

〉
⊗
∣∣x−0
〉
=
∣∣vm
〉
⊗
∣∣ω0
〉
=

(2m−1)(2m−3)
16

∣∣vm−2
〉
⊗
∣∣x+0
〉
. (4.45)

The upshot is that the rather large space spanned by the vectors of (4.42) may be replaced by the span of
∣∣vm
〉
⊗
∣∣y0
〉

and
∣∣vm
〉
⊗
∣∣ω0
〉
. (4.46)

We have not yet used the vanishing singular vectors to searchfor spurious states. We have therefore coupled

the vanishing vectors (2.13) and (2.14) ofÊλ to
∣∣ω0
〉

and
∣∣y0
〉
, but find nothing. We have also checked that

the vanishing vector (2.11) of̂L0 ⊂ Ŝ0 yields no spurious states.7 The space spanned by the vectors of (4.46)

therefore seems to give the correct grade 0 fusion product. Thesl(2)-action may be checked to be that of the

zero-grade subspace of two copies ofÊλ and we compute that

∆(L0) =

(
− 1

8 0

0 − 1
8

)
(4.47)

with respect to the ordered basis (4.46). This suggests that

Êλ ×f Ŝ0 = 2Êλ . (4.48)

To confirm this, we have repeated the fusion computation to grade(0,0,1), meaning that we take the algebra

A of Section 4.1 to be that generated by thee−n, h−n and f−n−1 with n> 1. This time, we consider the span of

the
∣∣vm−2n

〉
⊗en−1

1

∣∣x+0
〉
,

∣∣vm+2n
〉
⊗ f n
−1

∣∣y0
〉

and
∣∣vm+2n

〉
⊗ f n−1

1

∣∣x−0
〉

(m∈ 2Z+λ ). (4.49)

Applying spectral flow to the vanishing singular vectors (2.13) and (2.14) allows us to deal withe0en−1
1

∣∣x+0
〉
,

f0 f n−1
1

∣∣x−0
〉

and f−1 f n−1
1

∣∣x−0
〉

as before. Again, Equation (4.43) and the first equality of Equation (4.45) allow

us to replace this space by the span of the
∣∣vm−2n

〉
⊗en−1

1

∣∣x+0
〉
,

∣∣vm+2n
〉
⊗ f n
−1

∣∣y0
〉

and
∣∣vm
〉
⊗
∣∣ω0
〉

(m∈ 2Z+λ ). (4.50)

A little computation now shows that the singular vectors ofÊλ then reduce the grade(0,0,1) fusion to the span

of the vectors of (4.46), confirming Equation (4.48). More precisely, this (and the fact that the fusion product

must be self-conjugate) rules out the twisted modulesγ±2
(
L̂µ
)

and γ±1
(
Êµ
)

as composition factors of the

result.

However, we have reason to suspect that Equation (4.48) is incorrect, though we shall not elaborate on why

until the next section. Suffice to say that we have also computed the fusion to grade(0,0,2), so thatA is

generated by thee−n, h−n and f−n−2 with n > 1. A careful analysis along the lines of the previous analyses

7There is also the vanishing singular vector obtained from (2.11) by replacing
∣∣0
〉

by
∣∣y0
〉

and adding certain terms from̂sl(2)
∣∣x+0
〉
+

ŝl(2)
∣∣x−0
〉
. We did not check this singular vector as determining these extra terms did not seem worth the trouble.
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shows that the fusion product lies within the span of the vectors
∣∣vm−2n

〉
⊗en−1

1

∣∣x+0
〉
,

∣∣vm−2n
〉
⊗ f−2en

1

∣∣x+0
〉
, (4.51a)

∣∣vm+2n
〉
⊗ f n
−1

∣∣y0
〉
,

∣∣vm+2n
〉
⊗ f−2 f n−1

−1

∣∣y0
〉
, and

∣∣vm
〉
⊗
∣∣ω0
〉
. (4.51b)

This time, the singular vectors of̂Eλ reduce the grade(0,0,2) fusion to the span of the vectors
∣∣vm−2

〉
⊗
∣∣x+0
〉
,

∣∣vm
〉
⊗
∣∣y0
〉

and
∣∣vm
〉
⊗
∣∣ω0
〉

(m∈ 2Z+λ ). (4.52)

Explicitly computing the eigenvalues of∆(L0) gives− 1
8,− 1

8 and−m+ 3
8, confirming our suspicion that Equa-

tion (4.53) is not quite right. Rather, coupling this resultwith the requirement that the result be invariant under

conjugation leads to

Êλ ×f Ŝ0 = γ−2(
Êλ+1

)
⊕2Êλ ⊕ γ2(

Êλ+1
)
. (4.53)

This rule is of course conjectural, though we will discuss inthe next section why we are confident that it is

indeed correct. The fact that there is no indecomposable structure involvinĝEλ and the twisted modules follows

from the difference between the fractional parts of the conformal dimensions of the states of these irreducibles.

However, we have not ruled out the presence of further twisted modules in the above decomposition, nor the

possibility that thêEλ or the twistedÊλ+1 are composition factors of an indecomposable. We view this as

unlikely, but settling this completely would require further computations along the lines of those presented

above, or some abstract mathematical results generalisingthose of [15] toŝl(2)-modules.

5. SUMMARY OF RESULTS AND DISCUSSION

The results derived in Sections 3 and 4 give, when coupled with associativity, the fusion rings of thêsl(2)−1/2

theories considered in Section 2. The spectrum consists of four irreducible untwisted̂sl (2)-modulesL̂0, L̂1,

Ê0 and Ê1, two indecomposable untwisted modulesŜ0 and Ŝ1, and their twisted versions under the spectral

flow automorphismγ. The fusion rules themselves can be put in a compact form by using their (conjectured)

covariant behaviour underγ (Equation (2.10)). This allows us to restrict to the untwisted sector in which the

fusion rules are

L̂λ ×f L̂µ = L̂λ+µ ,

L̂λ ×f Êµ = Êλ+µ ,

L̂λ ×f Ŝµ = Ŝλ+µ ,

Êλ ×f Êµ = Ŝλ+µ ,

Êλ ×f Ŝµ = γ−2(
Êλ+µ+1

)
⊕2Êλ+µ⊕ γ2(

Êλ+µ+1
)
,

Ŝλ ×f Ŝµ = γ−2(
Ŝλ+µ+1

)
⊕2Ŝλ+µ⊕ γ2(

Ŝλ+µ+1
)
,

(5.1)

where, as throughout, the addition of the indices is understood to bemodulo2. These rules confirm the claim

made in [6] that fusion generates no further indecomposables. However, no fusion rules were given there, so

our results go well beyond what was previously known.

The fusion rules (5.1) report that which was deduced from theexplicit computation of the fusion product to

certain grades, as described in Sections 3 and 4. As such, we cannot always rule out the possibility that the true

fusion product involves highly twisted composition factors which our analysis has missed. However, we have

been able toprovethat such factors are absent in the fusion rules involvingL̂λ . It would be very useful to refine

the argument of these proofs to rule out highly twisted modules for more general fusions.
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In fact, the above results describe somewhat more. The uniform description of thêEλ for λ /∈ Z+ 1
2 means

that the results described in Sections 3 and 4 are not only valid for λ andµ integral.8 In particular, we can

deduce that the rules (5.1) hold more generally, except for the replacement

Êλ ×f Êµ =




Ŝλ+µ if λ + µ ∈ Z,

γ
(
Êλ+µ+1/2

)
⊕ γ−1

(
Êλ+µ−1/2

)
otherwise.

(5.2)

That the sum is direct in this fusion rule follows from the fact that the fractional parts of the conformal dimen-

sions of the states in the two factors do not agree (equivalently, the eigenvalues of the “central” elemente2πiL0

are different). This fusion rule should be relevant to more general models witĥsl(2)−1/2-symmetry, such as the

various compactifications/orbifolds of theβ γ ghost theories.

We have also completely determined the structure of the indecomposable moduleŝS0 andŜ1. In brief, Ŝλ is

composed of four irreducibles, its composition factors

L̂λ , γ−2(
L̂λ+1

)
, γ2(

L̂λ+1
)

and L̂λ , (5.3)

which are “glued” together into an indecomposable as follows:

L̂0

γ−2
(
L̂1
)

γ2
(
L̂1
)

L̂0

L̂1

γ−2
(
L̂0
)

γ2
(
L̂0
)

L̂1

Ŝ0 Ŝ1

.

The arrows in these diagrams indicate the “direction” of theŝl(2)-action. For example, the composition factors

appearing in the bottom row describe the unique irreduciblesubmodules (thesocles) of the Ŝλ . We also see

that eacĥSλ covers the corresponding irreducibleL̂λ in that the latter is the unique irreducible quotient of the

former. We have also shown that the affine modeh0 is diagonalisable on botĥS0 andŜ1, butL0 is not. Indeed,

the non-diagonalisable action ofL0 links the states of the socles with their Jordan partners, the latter being

associated with the composition factors in the top row of theabove diagram.

Because of this structure, thêSλ may also be described asstaggeredmodules in the spirit of [15,27]. Com-

bining the composition factors in the diagrams above along the south-east arrows, we obtain exact sequences

0−→ γ−1(
Ê
+
−1/2

)
−→ Ŝ0−→ γ

(
Ê
+
−3/2

)
−→ 0 (5.4a)

and 0−→ γ−1(
Ê
+
−3/2

)
−→ Ŝ1−→ γ

(
Ê
+
−1/2

)
−→ 0. (5.4b)

One can obtain similar exact sequences involving theÊ−µ by combining the composition factors along the south-

west arrows. We have also demonstrated that the structures described here completely determine theŝl(2)-

action on thêSλ (see Sections 4.3 and 4.4 for the explicit formulae). This isof some interest because it was

claimed in [18] that this was not the case for at least one of the indecomposables encountered in thek = − 4
3

fractional level model. More precisely, the statement there is that the structure of this module was fixed up

8Recall that whenλ ∈ Z+ 1
2 , theÊ-type modules are no longer irreducible, so one might have toexclude them from this remark, or modify

it appropriately.
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to an unknown constant, with different constants parametrising non-isomorphic modules. It would be very

interesting to understand if there is a structural reason behind this difference between thek = − 1
2 andk = − 4

3

cases, similar to that observed in [13,15] for the Virasoro algebra. In any case, it is germane to ask if there is a

theory of staggered modules forŝl(2) analogous to the Virasoro story.

For completeness, it is worth mentioning that we have illustrated the structure of the indecomposablesŜ0 and

Ŝ1 in Figures 5 and 7. These pictures may be directly compared tothe “extremal diagrams” of the indecompos-

ables constructed in [6] from a free field construction. It appears that we have found agreement, although their

version ofŜ1 is only half complete and their diagrams seem to attach an undue importance to the states of con-

formal dimension 0 and12 (most of which are in no way extremal). One may therefore viewthe results reported

here as a clarification and confirmation of their results. In particular, our description of the indecomposable

structure refines the character formulae given in [6].

We mention some further observations that may be of interest. First, thêEλ , theŜλ and their twisted versions

form an ideal of the fusion ring, suggesting that they may beprojectivein the category of admissiblek = − 1
2

ŝl(2)-modules. If true, this would give a simple proof that the decomposition of the fusion rule (4.53) is direct.

We note that quotienting the fusion ring by this ideal results in the fusion ring of the non-logarithmic theory

discussed in [1,5].

Second, one has come to expect that the fusion of staggered modules may be computed by temporarily

forgetting some of the indecomposable structure, computing some more simple fusions, and then reconstituting

appropriate indecomposable structures in the results.9 In particular, the exact sequence (5.4a) forŜ0 suggests

that

Êλ ×f Ŝ0 = Êλ ×f γ−1(
Ê
+
−1/2

)
+ Êλ ×f γ

(
Ê
+
−3/2

)
, (5.5)

where the “+” indicates that we may be forgetting some indecomposable structure. Assuming that Equa-

tion (5.2) extends toµ ∈ Z+ 1
2 (perhaps with some additional indecomposable structure),this suggests that

Êλ ×f Ŝ0 should decompose into thefour irreducibleŝEλ , γ−2
(
Êλ−1

)
, γ2
(
Êλ−1

)
andÊλ (at least at the level

of composition factors), rather than just two as Equation (4.48) originally concluded. In fact, this expectation

predicts the fusion result (4.53). Indeed, it was this whichoriginally prompted the additional computation to

grade(0,0,2) in Section 4.5.

Third, the fusion ring (5.1) shows significant similaritiesto the fusion ring of thec = −2 triplet model as

given in [19]. For completeness, we note that this ring is generated by four irreducibles denoted byV0, V1,

V−1/8 andV3/8. There are, in addition, two indecomposables which are denoted byR0 andR1. The fusion rules

are as follows:V0 is the fusion identity and

V1×f V1 = V0,

V1×f V−1/8 = V3/8,

V1×f V3/8 = V−1/8,

V1×f R0 = R1,

V1×f R1 = R0,

V−1/8×f V−1/8 = R0,

V−1/8×f V3/8 = R1,

V3/8×f V3/8 = R0,

Vh×f Rλ = 2V−1/8⊕2V3/8 (h=− 1
8,

3
8; λ = 0,1),

Rλ ×f Rµ = 2R0⊕2R1 (λ = 0,1).

(5.6)

The relation between the fusion rules (5.1) and (5.6) amounts to merely neglecting the spectral flow. More

precisely, if we let[M] denote the equivalence class of all spectral flow images of the ŝl(2)-moduleM, then the

9This expectation arises in the consideration of whether thefusion product descends to the Grothendieck ring of characters. However, it is
more fundamental than the character product when the kernelof the map from modules to characters is large.
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L E S

(0,0)
(0,0)

(
0,− 1

8

)

(
1,12

)
(

1,12

) (
−1,12

)
(
−1,12

)

(
1,− 1

8

) (
−1,− 1

8

)
(

1,− 1
2

) (
−1,− 1

2

)

FIGURE 8. Depictions of the untwistedβ γ-modules obtained from the spectra of our
ŝl(2)−1/2-theories. Each labelled state declares itssl (2)-weight and conformal dimension

(in that order). The ghosts themselves are the dimension1
2 fields appearing inL⊂ S.

relation becomes a ring isomorphism given by
[
L̂0
]
←→ V0,

[
Ê0
]
←→ V−1/8,

[
Ŝ0
]
←→ R0, (5.7a)

[
L̂1
]
←→ V1,

[
Ê1
]
←→ V3/8,

[
Ŝ1
]
←→ R1. (5.7b)

This isomorphism gives us confidence that theŝl(2)−1/2 fusion rules reported here (and thec = −2 triplet

model fusion rules reported in [19]) are correct. Of course,we should expect such a relation to hold, given

the realisation of the triplet model as theû(1)-coset of the (logarithmic)̂sl(2)−1/2 theory [2]. However, the

familiar argument from rational conformal field theory which would guarantee the above relation — computing

the fusion rules of a coset theory from the modular properties of its characters and the Verlinde formula —does

not apply, because the fusion ring cannot, in this case, be reconstructed from the modular transformations. This

relation therefore requires a more fundamental (and probably more natural) explanation.

We conclude by briefly discussing the implications of these results for theβ γ ghost system (2.9). As men-

tioned in Section 2, this algebra corresponds to an extension of the affine Kac-Moody algebra by the (zero-grade

fields of the) simple current̂L1. The orbits in the fusion ring (5.1) under the simple currentaction therefore

combine into modules for theβ γ system. Specifically, we find two families of irreducibleβ γ-modulesγℓ
(
L
)

andγℓ
(
E
)
, and a single family of indecomposablesγℓ

(
S
)
, confirming the logarithmic nature of theβ γ ghost

system. We picture theℓ = 0 representatives of these families in Figure 8. Their structure and fusion rules are

easily deduced from the results presented here. For example, L is found to be the fusion identity, whereas

E×f E= S, E×f S= γ−2(
E
)
⊕2E⊕ γ2(

E
)

and S×f S= γ−2(
S
)
⊕2S⊕ γ2(

S
)
. (5.8)

Note however that theβ γ chiral algebra admits a much larger spectrum, so that which appears here (and in [1])

must correspond to a compactification/orbifold. We hope to return to this in the future.
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[2] D Ridout. ŝl(2)−1/2 and the Triplet Model.Nucl. Phys., B835:314–342, 2010.arXiv:1001.3960 [hep-th].

[3] L Rozansky and H Saleur. Quantum Field Theory for the Multivariable Alexander-Conway Polynomial.Nucl. Phys., B376:461–509,

1992.

[4] V Gurarie. Logarithmic Operators in Conformal Field Theory. Nucl. Phys., B410:535–549, 1993.arXiv:hep-th/9303160.
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