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1 Introduction

The Temperley-Lieb algebra TLN (q) [1, 2], hereafter denoted TL-algebra, plays a central

role in the construction and derivation of quantum integrable models of great interest in

statistical mechanics and solid state physics (see e.g. [2, 3]). In particular it is well known

that special representations of the TL algebra give rise to constant solutions R of the

Yang-Baxter equation. From such R-matrices one then constructs integrable quantum

spin chains [4] on the space of state H =
N
⊗
1
Cn for any integer n. These spin chains are

very similar to the spin 1/2 XXZ-model.

In order to formulate the generalization of this construction to TL-related open spin

chains one is lead to consider scalar (i.e. non-operatorial) solutions to the related reflection

equation [5]. The complete resolution, and classification of solutions to such equations,

are therefore key issues in the definition of new quantum integrable models with a sym-

metry algebra related to TL algebra. Relevance of such quantum systems is manifold and

the associated algebraic structures present several interesting features: indeed their corre-

sponding quantum algebra Uq(n) is different from Uq(sl(2)) for n ≥ 2, while the integrals

of motion are elements of TLN (q) [6].

To construct these spin chains a (reducible) representation of TLN (q) on H the tensor

product of local state spaces Cn will be used. Let us be more specific: The TL R-matrix

considered throughout this paper is parametrized by an invertible n × n matrix b while

the parameter q of the corresponding “XXZ-type” TL spin model is given by:

tr(tb b−1) = −(q +
1

q
). (1.1)

It was pointed out [4] that the n × n matrices K solving the reflection equation for this

TL R-matrix actually satisfy a quadratic equation:

q K2 + c1 K + (q +
1

q
)−1(c21 + q c2) I = 0 (1.2)

with appropriate central elements c1 and c2 depending on K and b.

The aim of the paper is to describe a complete parametrization of these K-matrices.

In addition, once the constant R- and K-matrices are known, the Yang-Baxterization

procedure then yields the spectral parameter dependent matrices, which are cornerstones

of the quantum inverse scattering method [7, 8, 9, 5].

We shall first recall more precisely the context of TL R-matrices construction from

braid groups and Hecke algebras, prepare the notation and formulate a derivation of

the quadratic equation (1.2). The complete classification, and full parametrization of

constant solutions shall be obtained (Section 3). Finally the Yang-Baxterized form for

the K-matrices will be given. The integrable spin systems with boundary interactions will

be constructed and some comments on their spectral properties will be given (Section 4).

2 Hecke and Temperley-Lieb Algebras

Both Hecke algebra HN (q) and TL algebra TLN (q) are quotients of the group algebra of

the braid group BN generated by (N −1) generators Řj , j = 1, 2, . . . , N −1, their inverses

Ř−1
j and the relations (see [10]):

ŘjŘkŘj = ŘkŘjŘk, for |j − k| = 1 and ŘjŘk = ŘkŘj, for |j − k| > 1. (2.1)
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The Hecke algebraHN (q) is obtained by adding to these relations the following constraints

obeyed by each generator Řj (q-deformation of the symmetric group):

(
Řj − q

) (
Řj + 1/q

)
= 0. (2.2)

Equation (2.2) is equivalent to write Řj in term of some idempotent Xj, namely:

Řj = qI+Xj (2.3)

with

X2
j = −

(

q +
1

q

)

Xj . (2.4)

I denotes the identity in the Hecke algebra. The braid group relations (2.1) read in terms

of the idempotents Xj and Xk such that |j − k| = 1:

XjXkXj −Xj = XkXjXk −Xk. (2.5)

Finally the TL algebra TLN (q) is obtained as the quotient algebra of the Hecke algebra

HN (q) by the set of equations requiring that each side of (2.5) be zero. To sum up,

TLN (q) is defined by the generators Xj , j = 1, 2, . . . , N − 1 and their relations:

X2
j = −ν(q)Xj,

XjXkXj = Xj , |j − k| = 1,

XjXk = XkXj, |j − k| > 1 (2.6)

with ν(q) = q + 1/q.

The dimension of the Hecke algebra, N !, is the same as the dimension of the sym-

metric group, whereas the dimension of TLN (q) is equal to the Catalan number CN =

(2N)!/N !(N + 1)!. Implementation of the TL constraint thus considerably reduces the

dimension of the algebra.

In connection with integrable spin systems we will be interested in representations

of TLN (q) on the tensor product space H =
N
⊗
1
C
n. We will consider in the following a

particular representation (reducible) defined by a single complex invertible n× n matrix

b which can also be seen as a vector of Cn ⊗ C
n (with n2 entries: {bcd}) [4]. We use the

notation b̄ := b−1 and view this matrix also as a vector of Cn ⊗ C
n with entries {b̄cd}.

The matrix realization on H of the idempotent generator Xj now reads in terms of b:

Xj = I⊗ . . .⊗ I
︸ ︷︷ ︸

j−1

⊗







∑

c, d, c′, d

∈ {1 . . . n}

bcdb̄c′d′Ecc′ ⊗ Edd′







⊗ I⊗ . . .⊗ I
︸ ︷︷ ︸

N−j−1

(2.7)

where we have now denoted by I the identity matrix in End(Cn) and we have used the

canonical basis of n× n matrices, Ecc′ denoting the n× n matrix with entries (Ecc′)xx′ =

δcx δc′x′ .

One sees here that




∑

c,d,c′,d′=1,...,n

bcdb̄c′d′Ecc′ ⊗ Edd′



 is proportional to a rank-1 pro-

jector on Cn ⊗Cn. Direct computation shows that the set of relations (2.6) are satisfied

and they fix the value of the parameter q up to a duality q → 1/q :

−ν(q) = tr tbb̄ = −

(

q +
1

q

)

. (2.8)
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The Řj generators are now also represented in terms of endomorphisms on H. From

the particular form (2.7) these endomorphisms can be consistently denoted as Řjj+1.

Conditions (2.1) are in particular represented as the braided Yang-Baxter equation:

Ř12 Ř23 Ř12 = Ř23 Ř12 Ř23. (2.9)

The R-matrix is then defined from this representation of the braid group generators

by Rjj+1 = Pjj+1Řjj+1, with P(v ⊗ v′) = v′ ⊗ v for any couple of vectors of Cn. The

indexation jj + 1 of P is self-explanatory. The notation Rjj+1 is then straightforwardly

extended to define general endomorphisms Rij of H labeled by any non-adjacent pair of

“site indices” (i, j), using the time-honored notation [7] for such elements of End(H) with

indices labelling the spaces.

Equation (2.9) then immediately becomes the Yang-Baxter equation for R:

R12 R13 R23 = R23 R13 R12. (2.10)

Let us finally formulate the Yang-Baxterization procedure of these R-matrices. In fact

the Yang-Baxterization procedure is already valid at the stage of abstract Hecke algebra

generators: Indeed if one defines the spectral parameter-dependant R-matrix as

Řj(u) = uŘj −
1

u
Ř−1

j = (u−
1

u
)Řj +

ω(q)

u
I; ω(q) = q −

1

q
(2.11)

one sees that it obeys the cubic equation in braid group form with multiplicative spectral

parameter u (additive spectral parameter is of course obtained as u ≡ eλ:

Řj(u)Řk(uw)Řj(w) = Řk(w)Řj(uw)Řk(u), for |j − k| = 1. (2.12)

Now once the generators Ř of the Hecke algebra HN(q) itself have been represented

as R-matrices acting on some tensor product of two finite-dimensional vector spaces, this

procedure will immediately give rise to solutions of the non-constant braided Yang-Baxter

equation with multiplicative spectral parameters:

Ř12(u)Ř23(uw)Ř12(w) = Ř23(w)Ř12(uw)Ř23(u). (2.13)

3 Classification of the solutions of the constant

reflection equation

We present here a complete classification of the solutions to the constant reflection equa-

tion (boundary Yang-Baxter equation) associated to the TL R-matrix R (viewed as an

endomorphism of Cn⊗C
n) for any value of n. The Yang-Baxterization procedure defined

in [11, 12, 13] will then allow to obtain general spectral-parameter dependant reflection

matrices K(u) (section 4.1) which will then be of direct use for the construction of TL

spin chains (section 4.2).

Let us first recall how one derives the quadratic equation (1.2) satisfied by matrix

solutions K of the constant reflection equation:

R12 K1 R21 K2 = K2 R12 K1 R21 (3.1)

whenever R is a constant solution of the Yang-Baxter equation, associated with the TL

representation obtained in the previous section.
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Since the R-matrix is obtained from the braid group generators by R = PŘ, (3.1) can

be rewritten:

Ř12 K1 Ř12 K1 = K1 Ř12 K1 Ř12. (3.2)

Using Ř = qI+X, it yields:

q X12 K2
1 + X12 K1 X12 K1 = q K2

1 X12 +K1 X12 K1 X12. (3.3)

This equation reads in term of the b matrix:

q b⊗ (tK2b̄) + tr(tbtKb̄) b⊗ (tKb̄) = q (tK2b)⊗ b̄ + tr(tbtKb̄) (tKb)⊗ b̄. (3.4)

Since matrices b and b̄ are invertible, this is equivalent (after taking the transposition) to:

I⊗ (q K2 + tr(tbtKb̄) K) = (q K2 + tr(tbtKb̄) K)⊗ I. (3.5)

This establishes that q K2 + tr(tb̄Kb) K is proportional to identity.

The value of the coefficient of the identity term is immediately obtained as a consis-

tency condition for the value of the linear form (q-trace) tr(tbb̄−−) applied to both sides

of the equality. One finally gets the normalized quadratic polynomial annihilating K as:

K2 +
1

q
tr(tb̄Kb) K = k2I (3.6)

with

k2 = −
1

qtr(tb̄b)
(tr(tb̄Kb)2 + qtr(tb̄K2b)). (3.7)

It follows that the complete resolution of the reflection equation for these constant TL

R-matrices will be realized in two steps:

1. Parametrize all matrices K with a minimal polynomial of degree 2 (or less).

2. Fix the value of the coefficient of the linear term to its expression in (3.6).

The coefficient of the constant term, as we have seen, is the result of a self-consistent

evaluation of a trace and therefore does not represent a supplementary independant con-

straint on K. These two steps are thus necessary AND sufficient to obtain all solutions

of the reflection equation.

Step 1 is separated into three obvious subcases:

1a: Minimal polynomial of degree 1. The matrix K is then proportional to the Identity

and automatically solves the reflection equation without further conditions.

1b: Minimal polynomial of degree 2 with two distinct roots. The matrix K is then

diagonalizable with the same two zeroes as eigenvalues.

1c: Minimal polynomial of degree 2 with a double root. The matrix K is then only

trigonalizable (i.e. is written with Jordanian cells) with a single eigenvalue and an order-2

nilpotency on the corresponding eigenspace.

We now consider in detail cases 1b and 1c.

3.1 Diagonalizable K-matrices

Any diagonalizable n × n matrix with two distinct eigenvalues denoted λ and µ can be

parametrized as follows:

K = λI+ (µ − λ)P (3.8)
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where P is the projector parallel to the eigenspace Vλ with eigenvalue λ, onto the eigenspace

Vµ with eigenvalue µ. One can always choose µ such that the dimension of Vµ, hereafter

denoted m, is lower than (or at most equal to) the dimension of Vλ, hence m ≤ [n2 ].

The projector P is then constructed from two sets of data encapsulating all the infor-

mation on Vµ and Vλ albeit with redundancies:

a: a set of m independent vectors building a basis of Vµ, defining in this way an n×m

rectangular matrix B of maximal rank m. The redundancy in this parametrization corre-

spond to the arbitrariness in the choice of the basis in Vµ , described by the transformation

B → Bg for any g in Gl(m).

b: a set of m independent vectors building a basis of V̄λ defined as the m-dimensional

vector space of solutions to the rank n−m homogeneous linear system:

tvC = 0 (3.9)

where v is the unknown n dimensional vector and C is an n× (n−m) rectangular matrix

defined from any basis of vectors for Vλ in the same way as B is defined for Vµ. C is of

course defined up to rhs multiplication by g′ in Gl(n −m) which does not affect v. This

second set of m n-dimensional vectors allows then to build a second n × m rectangular

matrix A of maximal rank m. A is also defined up to a rhs multiplication by any h in

Gl(m). From (3.9) one sees that tAC = 0.

In addition one must impose that the intersection of Vµ and Vλ is empty, which is

equivalent to asking that no vector of Vµ be a solution of (3.9), or finally to requiring that

the square m×m matrix tAB be invertible.

P is then built as:

P = B(tAB)−1At (3.10)

as is immediately checked by operating P on B (vectors of Vµ), yielding again B, and C

(vectors of Vλ), yielding 0.

We recall that this parametrization is defined up to separate rhs multiplication of A

and B by any matrix of Gl(m). This redundancy shall be presently used to simplify

(3.10).

Hence, any diagonalizable K-matrix with 2 eigenvalues can be written as:

K = λI+ (µ − λ)B(tAB)−1At. (3.11)

The number of relevant parameters is thus 2 (eigenvalues) +2nm (matrices A and

B) −2m2 (2 changes of basis in Gl(m)). The redundancy of the parametrization under

A → Ag and B → Bh is manifest in (3.11).

We now realize Step 2 by imposing that the value of the coefficient of the linear term

in the minimal polynomial, which is identified with the sum of the two zeroes λ + µ, be

identified to its expression in (3.6), i.e.:

λ+ µ = −
1

q
tr(btb̄K) (3.12)

that is:

λ(1 +
1

q
tr(btb̄)−

1

q
tr(btb̄B(tAB)−1At)) + µ(1 +

1

q
tr(btb̄B(tAB)−1At) = 0. (3.13)
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This fixes univocally the ratio
λ

µ
unless both coefficients in (3.13) vanish. This in turn

implies that tr(btb̄) = −2q hence from the TL trace condition (2.8) q = 1. In this case Ř

is triangular and indeed no condition may relate the eigenvalues (see e.g. [14]).

We can now use the arbitrariness in the choice of A and B to impose that the m×m

matrix (tAB) be set to I. This leaves a set of m2 non-relevant parameters. K is then

given as:

K = λ{I+ {
−q + 1/q

q + tr(btb̄BtA)
}BtA}; (tAB) = I. (3.14)

The overall number of relevant parameters in K is now 2(n−m)m+ 1 (except in the

triangular case where one extra parameter occurs as just seen). Using a spin notation

which is useful in the context of spin chain construction using TL algebra, one equivalently

rewrites n = 2s+1 leading to 2(2s+1−m)m+1 parameters. The irrelevant parameters are

the components of the diagonal global Gl(m) gauge transformation A → A(g−1)t ; B →

Bg.

This enables us to identify the solutions recently proposed in [15] (at least the infinite-

spectral parameter limit thereof, which solve the constant reflection equation). They

are precisely the diagonalizable solutions corresponding to the choice m = [
2s+ 1

2
]. For

instance when s = 3/2 (n = 4) one obtains a 9 parameter solution which can be shown

to have two eigenvalues of multiplicity 2. Explicit formulation of the eigenvectors is also

available but the particular form of the parametrization used in [15] yields cumbersome

formulae which we shall not give here.

3.2 Non-diagonalizable K-matrices

In this case K is automatically of the form λI+N where N is a nilpotent n× n matrix:

N2 = 0. A similar parametrization for N as in the diagonalizable case exists. Set the

dimension of the kernel of N to be n −m with of course m ≤ n/2 since ImN ⊂ KerN .

This time the m-dimensional image of the cokernel of N yields a rectangular matrix B

up to rhs multiplication by g in Gl(m). The n −m-dimensional kernel of N , as in (3.9)

can again be characterized by another n × m rectangular matrix A. However this time

one must impose a complete inclusion condition of the image vectors defining B in the

kernel, in other words tAB = 0. N is then immediately obtained as N = BtA. Because

of the condition tAB = 0 the scale of N is not fixed; this scale fixing is here obtained by

the implementation of Step 2 to impose:

λ(q − q−1) = tr(btb̄BtA). (3.15)

The irrelevant parameters are again the components of the diagonal global Gl(m)

gauge transformation A → A(g−1)t ; B → Bg. The number of relevant parameters

is thus 1 (eigenvalue) +2nm (matrices A and B) −m2 (changes of basis in Gl(m)) −m2

(inclusion relation tAB = 0) −1 (trace relation) = 2nm− 2m2.

3.3 Complete parametrization

Both situations can now be summarized into a single representation:

Proposition
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Any solution to the Temperley-Lieb constant reflection equation (3.1) takes the form:

K = λI+BtA (3.16)

where A and B are rectangular n×m matrices of rank m, m ≤ [n2 defined up to a diagonal

Gl(m) gauge transformation g:

A → A(g−1)t ; B → Bg (3.17)

and submitted to the condition:

tAB = (µ− λ)I (3.18)

and

−
1

q
λ+ qµ = −

1

q
tr(btb̄BtA). (3.19)

If µ = λ one recovers the non-diagonalizable case

If µ 6= λ one recovers the diagonalizable case.

4 Spectral parameter dependent K matrices

4.1 Yang-Baxterization

The Yang-Baxterization of the Hecke R-matrices was formulated in Section 2, eqn. (2.11).

In order to define the corresponding Yang-Baxterization for the associated K-matrices

obeying the reflection equation one is lead to define the extension of the Hecke algebra to

the affine Hecke algebra ĤN (q). It has one more generator K with relations:

Ř1KŘ1K = KŘ1KŘ1 KŘj = ŘjK, j > 1. (4.1)

As in the Hecke case an extra polynomial constraint imposed on K as pn(K) = 0, will

define a quotient of ĤN (q) known as “cyclotomic Hecke algebra” [16]. There exists then

consistent realizations of the Yang-Baxterized K-matrix by Laurent polynomials K(u) in

u, u−1, depending on the coefficients of pn and Km, m = 0, 1, ...n − 1 [12, 13]. They are

solutions to the algebraic reflection equation [5]:

Ř1(u/w)K(u)Ř1(uw)K(w) = K(w)Ř1(uw)K(u)Ř1(u/w) (4.2)

where Ř1(u/w) is the Yang-Baxterized Ř matrix (2.11). Once suitable matrix represen-

tations of both R and K are considered, respectively in End(Cn⊗Cn) and End(Cn) this

becomes the well-known Sklyanin reflection equation

Ř12(u/w)K1(u)Ř12(uw)K1(w) = K1(w)Ř12(uw)K1(u)Ř12(u/w). (4.3)

We are here considering specifically the case of a represented TL-type R-matrix built

from a rank-1 projector. We have seen in Section 2 that the constant solution of the

reflection equation then satisfies a quadratic constraint. It follows from general arguments
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[11, 12, 13] that the corresponding spectral parameter-dependent K(u) is given by the

expression:

K(u) = u2K −
1

u2
K−1 + cI (4.4)

with an arbitrary central element c. Due to the relation (4.4), after a suitable normaliza-

tion of K, one gets the regularity property of K(u): K(u)|(u = 1) = I. This property

is important to construct an integrable spin chain Hamiltonian with nearest-neighbour

interaction and a boundary interaction on the left and right boundary sites described by

matrices K−(u) and K+(u) respectively [5].

4.2 Spin chains

The construction of the spin chain Hamiltonian proceeds now from general principles.

Taking the R-matrix R0j(u) = P0jŘ0j as an L-operator at each site j with auxiliary

space labeled by 0 index, one constructs the monodromy matrix [7, 8]:

T (u) = L0N (u)L0N−1(u) · · ·L01(u) (4.5)

and the two-row monodromy matrix [5]:

T (u) = T (u)K−

0 (u)T−1(1/u) (4.6)

where K−

0 (u) is a solution of the reflexion equation. The generating functional of integrals

of motions (including the Hamiltonian) is:

τ(u) = trK+
0 (u)T (u)K

−

0 (u)T−1(1/u). (4.7)

where in addition K+
0 (u) is a solution of the suitably defined dual reflexion equation. All

solutions thereof can be obtained straightforwardly from the set of solutions K− due to

crossing-unitarity of R-matrix. In terms of the R-matrix τ(u) reads:

τ(u) = trK+
0 (u)R0N (u)R0N−1(u) · · ·R01(u)K

−

0 (u)R10(u)R20(u) · · ·RN0(u). (4.8)

With an appropriate normalization one fixes τ(1) = trK+
0 (1) (remember that in the

multiplicative spectral parameter representation the critical value for regularity properties

is 1). The spin chain hamiltonian becomes then proportional to the local expression:

H = ΣN−1
k=1

d

du
Řkk+1(u = 1) +

1

2

d

du
K−

1 (u = 1) + (trK+
0 (1))−1trK+

0 (1)
d

du
ŘN0(u = 1)(4.9)

where the contribution of the boundary conditions is explicit.

If one chooses general n × n K-matrices K+ and K− with the full arbitrariness

parametrized in Section 3 this contribution makes it difficult to characterize quantita-

tively properties (such as spectrum and eigenvectors) of the spin system. At this time

we lack a proper framework to deal with this general case and this is the key issue which

must be adressed in the future.

To illustrate what could be done, were the suitable algebraic tools available, let us

finally concentrate on the simplest particular case which indeed can be treated very ex-

tensively using general algebraic arguments.

Restricting oneself to the free ends case:

K−

1 (u) = I K+
1 (u) = M = btb̄ (4.10)
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where M is the matrix entering into the crossing-unitarity relation for R, the spin chain

Hamiltonian and the higher conserved quantities then lose altogether their boundary

contributions and become elements of the TL algebra, for instance:

H = ΣN−1
k=1

d

du
Řkk+1(u = 1) ∈ TLN (q) (4.11)

This Hamiltonian is now symmetric w.r.t. the quantum algebra Uq(n) and can be re-

stricted to the irreducible representation subspaces of TLN (q) in a decomposition of the

phase space:

H =
N
⊗
1
C
n =

[N/2]
⊕
k=0

Wk ⊗ C
ν(k) (4.12)

where Wk denotes the irrep of TLN (q) corresponding to the two-row Young diagramme

with partition {(λ1, λ2)|λ1 + λ2 = N,λ2 = k} and ν(k) is the multiplicity of this irrep

in the decomposition. Hence the spectrum of H consists here of multiplets of subspaces

{E
(j)
k }, j = 1, 2, · · · dimWk. associated with the irreps Wk, each with multiplicity ν(k).
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09-01-00504-a.

References

[1] H.N.V. Temperley, E. Lieb; Relations between percolation and colouring problems...,

Proc. Roy. Soc. A 322 (1971), 251

[2] R.J. Baxter; Exactly Solved Models in Statistical Mechanics, London, Academic Press

(1982)

[3] P. Martin; Potts models and related problems in Statistical Mechanics, World Scien-

tific, Singapore (1991)

[4] P.P. Kulish; On spin systems related to Temperley-Lieb algebra, J. Phys. A

(Math.Gen.) 36 (2003), L489.

[5] E.K. Sklyanin; Boundary conditions for integrable quantum systems, J. Phys. A

(Math. Gen.) 21 (1988), 2375.

[6] P.P. Kulish, N. Manojlovic, Z. Nagy; Symmetries of spin systems and Birman-Wenzl-

Murakami algebra, Journ. Math. Phys. 49 (2008), 023510.

[7] L.D. Faddeev, L.M. Takhtadzyan; The quantum method for the Inverse Problem and

the XYZ Heisenberg model, Usp. Math. Nauk 34 (1979), 13;

[8] L.D. Faddeev; How the algebraic Bethe Ansatx works for integrable models in Quan-

tum Symmetries: Proceedings of Les Houches Summer School Session LXIV (1998),

ed.by A. Connes, K. Gawedzki and J. Zinn-Justin, North Holland.

[9] P.P. Kulish, E.K. Sklyanin; Quantum Spectral Transform Methods: Recent Develop-

ments in Integrable Quantum Field Theories, Lecture Notes in Physics 151 (1982),

61, edited by J. Hietarinta and C. Montonen, Springer.

10



[10] V. Chari, A.N. Pressley; A Guide to Quantum Groups, Cambridge University Press

(1995).

[11] D. Levy, P. Martin; Hecke algebra solutions to the reflection equations, J.Phys. A

(Math. Gen) 27 (1994), 521;.

[12] A. Doikou; From affine Hecke algebras to boundary symmetries, Nucl.Phys. B725

(2005) 493.

[13] P.P. Kulish, A. Mudrov; Baxterization of solutions to the reflection equation with

Hecke R-matrix, Lett. Math. Phys. 75 (2006), 151.

[14] P.P. Kulish, N. Manojlovic, Z. Nagy; Jordanian deformation of the open XXX-spin

chain, Theor. Math. Phys.163 No. 2 (2010) 644.

[15] A. Lima-Santos; On the Uq[sl(2)] Temperley-Lieb reflection matrices,

arXiv:1011.2891v1 [nlin.SI].

[16] S. Ariki; Lectures on cyclotomic algebras, in Quantum groups and Lie theory, London

Mathematical Society Lecture Notes Series 290 Edited by Andrew Pressley (2002)

11


