
ar
X

iv
:1

01
2.

04
68

v1
  [

nl
in

.S
I]

  2
 D

ec
 2

01
0

Separation of variables for the generalized Henon-Heiles system

and system with quartic potential

Yu. A. Grigoryev and A. V. Tsiganov

St.Petersburg State University, St.Petersburg, Russia

e–mail: yury.grigoryev@gmail.com, andrey.tsiganov@gmail.com

Abstract

We consider two well-known integrable systems on the plane using the concept of natural Poisson

bivectors on Riemaninan manifolds. Geometric approach to construction of variables of separation

and separated relations for the generalized Henon-Heiles system and the generalized system with

quartic potential is discussed in detail.

1 Introduction.

A fundamental requirement for new developments in mechanics is to unravel the geometry that underlies
different dynamical systems, especially mechanical systems. In fact, geometric analysis of such systems
reveals what they have in common and indicates the most suitable strategy to obtain and to analyze
their solutions.

The Hamilton-Jacobi theory for finite-dimensional Hamiltonian systems is well understood in both
classical and geometric points of view, see foundational works of Jacobi, Stäckel, Levi-Civita and others.
Apart from its fundamental aspects such as its relation to the action integral and generating functions of
symplectic maps, the theory is known to be very useful in integrating the Hamilton equations using the
technique of separation of variables.

An integrable system is separable if there are variables of separation (u, pu) and n separation relations

Φi(ui, pui
, H1, . . . , Hn) = 0 , i = 1, . . . , n , with det

[
∂Φi

∂Hj

]
6= 0 , (1.1)

connecting single pairs ui, pui
of canonical coordinates with the n Hamiltonians H1, . . . , Hn. Solving

these relations in terms of pui
one gets the Jacobi equations and a corresponding additively separable

complete integral of the Hamilton-Jacobi equation

W =

n∑

i=1

∫ ui

pui
(u′

i, α1, . . . , αn) du
′

i , αj = Hj .

Any separable system is a bi-integrable system [7, 10], i.e. n functionally independent integrals of
motion Hk are in bi-involution

{Hi, Hk} = {Hi, Hk}′ = 0 , i, k = 1, . . . , n, (1.2)

with respect to compatible Poisson brackets {., .} and {., .}′ associated with the Poisson bivectors P and
P ′, such that

[P, P ] = 0, [P, P ′] = 0, [P ′, P ′] = 0. (1.3)

Here [., .] is the Schouten bracket.
For the given integrable system fixed by kinematic bivector P and a tuple of integrals of motion

H1, . . . , Hn bi-Hamiltonian construction of variables of separation consists in a direct solution of the
equations (1.2) and (1.3) with respect to an unknown bivector P ′ [8, 9]. The main problem is that
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geometrically invariant equations (1.2,1.3) a’priori have infinite number of solutions [7, 10]. So, in order
to get a search algorithm of effectively computable solutions we have to narrow the search space by using
some non-invariant additional assumptions.

The aim of this note is to prove that the concept of natural Poisson bivectors on the Riemannian
manifolds allows us to properly restrict the search space and to calculate new variables of separation for
the well-known generalized Henon-Heiles system and the system with quartic potential [2, 3, 4].

2 Settings

In this section we recall some necessary facts about natural bi-integrable systems on Riemannian manifolds
admitting separation of variables in the Hamilton-Jacobi equation.

Let Q be a n-dimensional Riemannian manifold. Its cotangent bundle T ∗Q is naturally endowed
with canonical invertible Poisson bivector P , which has a standard form in fibered coordinates z =
(q1, . . . , qn, p1, . . . , pn) on T ∗Q

P =

(
0 I
−I 0

)
, {f, g} = 〈P df, dg〉 =

2n∑

i=1

Pij
∂f

∂zi

∂g

∂zj
. (2.1)

The Hamilton function for natural system on Q

H = T + V =

n∑

i,j=1

gij pi pj + V (q1, . . . , qn) (2.2)

is a sum of the geodesic Hamiltonian T and potential energy V .
According to [10, 11], for the overwhelming majority of known natural Hamiltonian systems second

bivector P ′ usually has a natural form, i.e. P ′ is a sum of the geodesic Poisson bivector P ′
T and the

potential Poisson bivector defined by a torsionless (1,1) tensor field Λ(q1, . . . , qn) on Q associated with
potential V

P ′ = P ′

T +




0 Λij

−Λji

n∑

k=1

(
∂Λki

∂qj
− ∂Λkj

∂qi

)
pk


 . (2.3)

The geodesic Poisson bivector P ′
T is defined by n× n matrix Π on T ∗Q and functions x, y and z:

P ′

T =




n∑

k=1

xjk(q)
∂Πjk

∂pi
− yik(q)

∂Πik

∂pj
Πij

−Πji

n∑

k=1

(
∂Πki

∂qj
− ∂Πkj

∂qi

)
zk(p )




. (2.4)

In fact, functions x, y and z are completely determined by the matrix Π via compatibility conditions

[P, P ′

T ] = [P ′

T , P
′

T ] = 0. (2.5)

We can add various integrable potentials V to the given geodesic Hamiltonian T in order to get integrable
natural Hamiltonians (2.2). In similar manner we can add different compatible potential matrices Λ to the
given geodesic matrix Π in order to get natural Poisson bivectors P ′ (2.3) compatible with the canonical
bivector P .

The definitions of natural Hamilton functions (2.2) and natural Poisson bivectors (2.3) are non-
invariant because they depend on a choice of coordinate system. Below we show how canonical transfor-
mations of variables change this definitions of natural Poisson bivectors.
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3 Generalized Henon-Heiles system

Let us consider a generalized Henon-Heiles system [2, 3] defined by the following Hamilton function

H1 =
p21 + p22

2
+

c1

8
q2(3q

2
1 + 16q22) + c2

(
2q22 +

q21
8

)
+

c4

q21
+

c5

q61
(3.1)

and second integral of motion

H2 = p41 +

(
q21(3c1q2 + c2)

2
+

4c4
q21

+
4c5
q61

)
p21 −

c1q
3
1

2
p1p2 −

c21q
6
1

32
+

(c2 − 3c1q2)(c2 + c1q2)q
4
1

16

(3.2)

+ c1c4q2 +
c2c5 + 4c24 + 3c1c5q2

q41
+

8c4c5
q81

+
4c25
q121

.

At c4 = c5 = 0 variables of separation have been obtained in [4], see also discussion in [1, 5]. In this section
we recover these results in the framework of the bi-Hamiltonian geometry and obtain new variables of
separation for the generic case.

3.1 Case c4 = c5 = 0

Let us suppose that the required bi-vector P ′ has a natural form (2.3). Substituting H1,2 (3.1,3.2) into
the equation (1.2) and solving resulting equation together with (1.3) one gets two distinct solutions P ′

1

and P ′
2.

First solution P ′
1 is defined by the following geodesic matrix

Π(1) =
1

2




p21 +
1
2p

2
2 0

1
2p1p2

1
2p

2
2


 (3.3)

and potential matrices

Λ(1) =




q2
1
(3c1q2+c2)

8 + c1q
3
2 + c2q

2
2

c1q
3

1

16 +
(
3c1q2

2 + c2
)
q1q2

− c1q
3

1

32 c1q
3
2 + c2q

2
2


 , (3.4)

for which
xjk = yjk = δjkqk , zk(p) = 0.

The corresponing recursion operator N1 = P ′
1P

−1 yields the integrals of motion

Hk =
1

2k
trNk

1 , k = 1, 2, (3.5)

which form a bi-Hamiltonian hierarchy, i.e. the Lenard relations hold

P ′dH1 = PdH2. (3.6)

These integrals are the following functions of initial integrals of motion (3.1,3.2)

H1 = 2H1 H2 =
H2

8
+

H2
1

2
.

So, the first recursion operator N1 = P ′
2P

−1 gives rise to the action variables H1,2 (3.5) with trivial
dynamics.

Second solution P ′
2 is defined by the matrices

Π(2) =
1

2q21




2p21 0

p1p2 0


 , Λ(2) =




c1q2

2
+

c2

4

c1q1

8
+

q2(3c1q2 + 2c2)

q1

−c1q1

16
−c1q2

4


 (3.7)
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and functions
xj1 = yi1 = −q1 , zk(p) = 0 .

Instead of the Lenard relations (3.6) here we have the following relations

P ′dHi = P

2∑

j=1

Fij dHj , i = 1, . . . , 2, (3.8)

where F is a so-called control matrix

F =
1

2




4p21q
−2
1 + c1q2 + c2 q21

16H2 q
−2
1 4p21q

−2
1 + c1q2 + c2


 .

Eigenvalues of F coincide with the eigenvalues of recursion operator, which are the desired variables of
separation.

So, the second recursion operator N2 = P ′
2P

−1 yields the variables of separation with non-trivial se-
parated relations. These variables of separation and the corresponding separated relations are considered
in the next section.

As usual, the recursion operators N1,2 generate two infinite families of solutions of the equations
(1.2,1.3)

P
(m)
1,2 = Nm

1,2 P , m = . . . ,−1, 0, 1, . . . , (3.9)

associated with the Hamiltonians H1,2 (3.1,3.2).

3.2 Case c4,5 6= 0

According to [10] at c5 6= 0 we have to apply the following canonical transformation

p1 → p1 +

√
−2c5
q61

, (3.10)

to the natural Poisson bivectors P ′
1,2. Namely, in generic case the integrals of motion H1,2 (3.1,3.2) are

in involution with respect to the Poisson brackets associated with the shifted bivectors

P̂1 = P ′

1 +

√−2c5
q31




0 0 p1 +
1

2

√
−2c5
q61

0

∗ 0 p2 0

∗ ∗ 0
3c1
8

q21 + 6c1q
2
2 + 4c2q2

∗ ∗ ∗ 0




(3.11)

and

P̂2 = P ′

2 +
2
√
−2c5
q51




0 0 p1 +
1

2

√
−2c5
q61

0

∗ 0 p2 0

∗ ∗ 0
3c1q

2
1

8
+ 6c1q

2
2 + 4c2q2

∗ ∗ ∗ 0




. (3.12)

These bivectors were obtained by substituting non-homogeneous polynomial ansatz for the geodesic bivec-
tor P ′

T into the equation (2.5). In contrast with the pair of bivectors P ′
1,2 (3.3,3.7) these bivectors P̂1,2

generate variables of separation with nontrivial separated relations in both cases.
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Firstly, let us consider the recursion operator N̂2 = P̂2P
−1 and its eigenvalues u1,2, which are the

roots of the following polynomial

B(λ) = (λ− u1)(λ − u2) = λ2 −
(
p21
q21

+
c1q2 + c2

4
+

2
√
−2c5 p1
q51

− 2c5
q81

)
λ

(3.13)

− c1(4p
2
1q2 − 2q1p1p2 − c2q

2
1q2)

16q21
+

c21(8q
2
1 + q2)

16
− c1

√
−2c5(4p1q2 − q1p2)

8q51
+

c1c5q2

2q81
.

According to [8, 9, 10] now we are looking for the auxiliary polynomial A(λ) = a1λ+a0, which is solution
of the equation

{B(λ), A(µ)} = −
(
d2µ

2 + d1µ+ d0
)
B(λ) −

(
d2λ

2 + d1µ+ d0
)
B(µ)

λ− µ
, {A(λ), A(µ)} = 0 (3.14)

with respect to unknown functions a1,0, d1,2 and d0. In our case d2 = d0 = 0, d0 = 1, and desired
polynomial

A(λ) = −64(q31p1 +
√−2c5)

c21q
4
1

λ− 4(4p1q2 − q1p2)

c1q1
− 16

√−2c5q2
c1q

4
1

satisfies the following equations

{B(λ), A(µ)} = − 1

λ− µ

(
B(λ) −B(µ)

)
, {A(λ), A(µ)} = 0 .

It entails that
puj

= A(λ = uj) , {ui, puj
} = δij , i, j = 1, 2,

are canonically conjugated momenta.
An inverse canonical transformation from variables of separation to the initial variables looks like

q1 =

√
c21(p

2
u1

− p2u2
)

32 (u1 − u2)
+ 32

c2(u1 + u2)− 4(u2
1 − u1u2 − u2

2)

c21
,

p1 = −c21(pu1
− pu2

)

64(u1 − u2)
q1 −

√
−2c5
q31

, q2 = −c31

(
pu1

− pu2

32(u1 − u2)

)2

+
4(u1 + u2)− c2

c1
,

p2 = 2c51

(
pu1

− pu2

32(u1 − u2)

)3

+
c1

4(u1 − u2)

(
pu1

− pu2

4
c2 − (u1 + 2u2)pu1

+ (2u1 + u2)pu2

)
.

Now it is easy to calculate the separated relations

Φ(uk, puk
) = Φ+(uk, puk

)Φ−(uk, puk
)− c4(c2 − 8uk)

4
+

c21
√−2c5 puk

32
= 0 , k = 1, 2, (3.15)

where

Φ±(uk, puk
) =

(
c21p

2
uk

32
−H1 ±

√
H2

2
− 128u3

k

c21
+

32c2u
2
k

c21

)
.

These separated relations are given by the affine equations in Hamiltonians H1 and H2 − 4H2
1 . It means

that the generalized Henon-Heiles system belongs to the Stäckel family of separable systems.
At c4 = c5 = 0 these separated relations (3.15) may be reduced to a pair of distinct separated

relations
Φ+(u1, pu1

) = 0 , and Φ−(u2, pu2
) = 0 .

and the equations of motion are linearized on two different elliptic curves, see [1, 4, 5].
In generic case c4 6= 0 and c5 6= 0 equations of motion are linearized on the two copies of non-

hyperelliptic curve of genus three defined by (3.15). An explicit description of the linerization procedure
is an open problem similar to the generalized Kowalevski and Chaplygin systems [8, 9].
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Using the first bivector P̂1 (3.11) we can get other variables of separation

B̂(λ) =
(
det(P̂1P

−1 − λI)
)1/2

= (λ− v1)(λ− v2) ,

which are related with the previous separated variables by canonical transformation

vk =
c21p

2
uk

64
− 64u3

k

c21
+

16c2u
2
k

c21
, k = 1, 2.

4 Generalized system with quartic potential

Let us consider a generalization of the system with quartic potential [3] with the Hamilton function

H1 =
p21 + p22

2
+

c1

4

(
q41 + 6q21q

2
2 + 8q42

)
+

c2

2

(
q21 + 4q22

)
+

2c3
q22

+
c4

q21
+

c5

q61
(4.1)

and second integral of motion

H2 = p41 +p21

(
c1q

4
1 + 6c1q

2
1q

2
2 + 2c2q

2
1 +

4c4
q21

+
4c5
q61

)
− 4c1q

3
1q2p1p2

+c1q
4
1p

2
2 +

4c24
q41

+ 2c1c4q
2
1 + 4c1c4q

2
2 + c22q

4
1 + c1c2q

6
1 + 2c1c2q

4
1q

2
2 +

c21q
8
1

4

+c21q
6
1q

2
2 + c21q

4
1q

4
2 +

4c1c3q
4
1

q22
+ c5

(
8c4
q81

+
4c5
q121

+
4c2
q41

+
2c1
q21

+
12c1
q41q

2
2

)
. (4.2)

At c4 = c5 = 0 variables of separation were obtained in [4], see also [5]. In the following section we
reproduce this result in the framework of bi-Hamiltonian geometry and obtain variables of separation in
the generic case at c4,5 6= 0.

4.1 Case c4 = c5 = 0

According to [6, 10], the geodesic matrices Π(1,2) (3.3,3.7) are compatible with another pair of potential
matrices

Λ(1′) =




c1q
4
1

4
+
(
3c1q

2
2 + c2

) q21
2

+ c1q
4
2 + c2q

2
2 +

c3

q22

c1q
3
1q2

2
+

(
2c1q

3
2 + c2q2 −

c3

q32

)
q1

−c1q
3
1q2

4
c1q

4
2 + c2q

2
2 +

c3

q22




(4.3)

and

Λ(2′) =




c2 + c1

(
q21
2

+ 2q22

)
c1q1q2 + 2

2c1q
6
2 + c2q

4
2 − c3

q1q
3
2

−c1q1q2

2
−c1q

2
2


 . (4.4)

As above, a natural Poisson bivector P ′
1 defined by the matrices Π(1) and Λ(1′) yields recursion operator

N1 and integrals of motion H1,2 (3.5), which form a bi-Hamiltonian hierarchy (3.6).

Matrices Π(2) and Λ(2′) define the second natural bivector P ′
2 and the recursion operatorN2 = P ′

2P
−1,

whose eigenvalues are the variables of separation u1,2

B(λ) =
(
det(N2 − λI)

)1/2

= (λ− u1)(λ − u2) (4.5)

= λ2 +
q41c1 + 2c2q

2
1 + 2q21c1q

2
2 + 2p21

2q21
λ+

c1(q
2
2q

2
1p

2
2 + 4c3q

2
1 + 4p21q

4
2 − 4p1q

3
2q1p2)

4q21q
2
2

.
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In this case equation (3.14) has another solution d2 = d0 = 0, d1 = 1, and

A(λ) = − p1

c1q1
λ− q22p1

q1
+

q2p2

2
. (4.6)

It allows us to calculate the desired momenta

puj
=

A(uj)

uj
, {ui, puj

} = δij , i, j = 1, 2. (4.7)

In the variables of separation (u, pu) the second integral of motion H2 (4.2) is a complete square and it
is easy to prove that H1 and

√
H2 satisfy the following separated relations

Φ− (u, pu) = H1 −
1

2

√
H2 + 2c1up

2
u − 2u2

c1
+

2c2u

c1
+

2c1c3
u

= 0 , u = u1, pu = pu1
,

(4.8)

Φ+ (u, pu) = H1 +
1

2

√
H2 + 2c1up

2
u − 2u2

c1
+

2c2u

c1
+

2c1c3
u

= 0 , u = u2, pu = pu2
,

and equations of motion are linearized on a pair of elliptic curves (see [1, 4, 5]).

4.2 Case c4,5 6= 0

At c5 6= 0 in order to get bi-Hamiltonian structures we apply the same canonical transformation as for
the Henon-Heiles system (3.10)

p1 → p1 +

√
−2c5
q61

, (4.9)

which shifts the Poisson bivectors defined by potential matrices (4.3,4.4) by the rule

P̃1 = P ′

1 +

√
−2c5
q31




0 0 p1 +
1

2

√
−2c5
2q61

0

∗ 0 p2 0

∗ ∗ 0 8c1q
3
2 + (3c1q

2
1 + 4c2)q2 −

4c3
q32

∗ ∗ ∗ 0




(4.10)

and

P̃2 = P ′

2 +
2
√
−2c5
q51




0 0 p1 +
1

2

√
−2c5
q61

0

∗ 0 p2 0

∗ ∗ 0 8c1q
3
2 + (3c1q

2
1 + 4c2)q2 −

4c3
q32

∗ ∗ ∗ 0




. (4.11)

At c5 6= 0 polynomials B(λ) and A(λ) are obtained from (4.5) and (4.6) using the canonical transformation
(4.9). For instance, a ”shifted” polynomial A(λ) reads as

A(λ) = −

(
p1 +

√−2c5
q61

)
λ

c1q1
−

q22

(
p1 +

√−2c5
q61

)

q21
+

p2q2

2
.
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An inverse canonical transformation from variables of separation to the original variables looks like

q1 =

√(
−2(u1p

2
u1

− u2p
2
u2
)

u1 − u2
+

2c3
u1u2

)
c1 +

2(u1 + u2 − c2)

c1
,

p1 =
c1(u1pu1

− u2pu2
)

u1 − u2
q1 −

√−2c5
q31

, q2 =

√
−c1u1u2(pu1

− pu2
)2

(u1 − u2)2
− c3

u1u2
,

p2 = − 2

q2

(
c21c3(u1pu1

− u2pu2
)

u1u2(u1 − u2)
+

u1u2(pu1
− pu2

)

(u1 − u2)3

(
c21(pu1

− pu2
)(u1pu1

− u2pu2
)− (u1 − u2)

2
))

.

Now it is easy to prove that the corresponding separated relations are equal to

Φ(uk, puk
) = Φ+(uk, puk

)Φ−(uk, puk
) + (2uk − c2)c4 − 2c1

√
−2c5 uk puk

= 0 , k = 1, 2, (4.12)

where Φ±(u, pu) are given by (4.8). The separated relations are affine equations with respect to the
Hamilton functions H1 and integral of motion H2 − 4H2

1 . It means that the generalized system with
quartic potential belongs to the Stäckel family of separable systems.

As above, in the generic case c4 6= 0 and c5 6= 0 equations of motion are linearized on the two copies
of the non-hyperelliptic curve of genus three defined by (4.12) and we do not know how to solve the
corresponding Abel-Jacobi equations as yet.

Using the first bivector P̃1 (4.10) we can get other variables of separation

B̃(λ) =
(
det(P̃1P

−1 − λI)
)1/2

= (λ− v1)(λ− v2) ,

which are related with previous separated variables by the following canonical transformation

vk = c1ukp
2
uk

− u2
k

c1
+

c2uk

c1
+

c1c3

uk
, k = 1, 2.
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