arXiv:1012.0557v1 [cs.DS] 2 Dec 2010

Infinite computable version of Lovasz Local Lemmia.

Andrey Yu. Rumyantsev

Abstract

Lovasz Local Lemma (LLL) is a probabilistic tool that allews to prove the existence
of combinatorial objects in the cases when standard pris@Ebargument does not work
(there are many partly independent conditions).

LLL can be also used to prove the consistency of an infiniteoebnditions, using
standard compactness argument (if an infinite set of camditis inconsistent, then some
finite part of it is inconsistent, too, which contradicts LLIn this way we show that ob-
jects satisfying all the conditions do exist (though thebataility of this event equals 0).
However, if we are interested in findingc@mputablesolution that satisfies all the con-
straints, compactness arguments do not work anymore.

Moser and Tardos [1] recently gave a nice constructive poddi L. Lance Fortnow
asked whether one can apply Moser—Tardos technique to phevexistence of a com-
putable solution. We show that this is indeed possible (uatteost the same conditions
as used in the non-constructive version).

1 Computable LLL: the statement.

Let P be a sequence of mutually independent random variables,adélcem has a finite range.
(In the simplest casB are independent random bits.)

We consider some familyl of forbidden eventseach of them depends on a finite set of
variables, denoted viA) (for eventA). Informally speaking, the classical LLL together with
the compactness argument guarantee that if the events smeatifprobability and each of them
is mostly independent with the others, there exists an atialufor all variables that avoids all
the forbidden events.

To make the statement exact, we need to introduce some t@oginand notation. Two
eventsA andB aredisjointif they do not share variables, i.e., if &) "vbl(B) = @. For every
A€ Aletl(A) be the open (punctured) neighborhoodof.e., the set of all events € A that
share variables (are not disjoint) wiit) exceptA itself.

Theorem 1 (Infinite version of LLL) Suppose that for every eventeAA a rational number
X(A) € (0,1) is fixed such that

PAl < x(A) [] (1-X(E)),
Ecl(A)

for all A € A. Then there exists an evaluation of variables that avoita a A.

*Supported by RFBR 0901-00709a and NAFIT ANR-08-EMER-0G8ts.

1

http://arxiv.org/abs/1012.0557v1

This is just a combination of finite LLL and compactness argotn Indeed, each event
from A is open the the product topology; if the claim is false, thegents cover the entire
(compact) product space, so there exists a finite subseteot®that covers the entire space,
which contradicts the finite LLL.

Our goal is to make this theorem effective. For that we asstimewe have a count-
able sequence of variabl&s= Py, Py,.. ., the range oR, is {0,1,...,n, — 1}, andn; and the
probability distribution of? are computable given Then we consider a sequence of events,
A ={Aog,A1,...}. We assume that these events are effectively presentedor.a givenj one
can compute the list of all the variables from (Ay) and the event itself (i.e., the list of eval-
uations that belong to that event). Moreover, we assumddhatch variablé} only finitely
many events involve this variable, and the list of thosealdes can be computed given

Theorem 2(Computable version of LLL)Suppose there is a rational constang& (0,1) and
a computable assignment of rational numbersAx— (0, 1) such that

PHA < (1-£)x(A) [] A-xXE)).
Ecl(A)

for all A € A. Then there exists a computable evaluation of variablesahaids all Ac A.

Note that the computability restrictions look quite natiyrand that we only need to make
the upper bounds for probability just a bit stronger mujtipy all the bounds by some fixed
constant - €. (It should not be a problem for typical applications of LLisualy this stronger
bound on P can be easily established.)

2 The proof

To explain the proof, we recall first how Moser and Tardos prthe finite LLL. (We do not
repeat the argument here and assume that the reader isafamithh [1]: some estimates from
this paper are needed and we assume that the reader knowsrtdods from [1].)

The probabilistic algorithm used inl[1] for the finite case,quite natural: it starts by
assigning random values to all variables. Then, while tlaeeesome non-satisfied conditions
(=some bad events happen), the algorithm takes one of thvesgseand resamples all the
variables that appear in this event (assigning fresh randdues to them).

There is some freedom in this algorithm: the event for redagan be chosen in an
arbitrary (deterministic or probabilistic) way.

We modify this algorithm for the case of infinitely many vdolies and events. First we
construct a probabilistic algorithm that with probabilitygenerates a satisfying assignment
in the limit (with predictable convergence, see below thacexlefinitions). Then we use the
existence of such an algorithm to show that there is a corbfutssignment that satisfies all
the conditions.

The probabilistic algorithm is a natural modification of MosTardos algorithm. We intro-
duce some priority on conditions. For each condition we labthe variables it involves, and
take the variable with maximal index. Then we reorder alldbeditions in such a way that

maxvblAg) < maxvblA;) < maxvbl(Az) <...

(Recall that each variable is used only in finitely many ctinds, so we can make the rear-
rangement in a computable way. This rearrangement is nquat)i

Then the algorithm works exactly as before, and we choosériteviolated condition (in
this new ordering).

Remark: for soma consider all the conditions that depend on variaBlg#®:, ..., P, only.
These conditions form a prefix in our ordering. Thereforeilevhot all of them are satisfied,
we will not consider the other conditions, so our infinitealthm will behave (up to some
point) like a Moser—Tardos finite algorithm. They give a bdufA)/(1—x(A)) for an average
number of resamples for conditidy so the expected total number of resamples for this finite
algorithm is finite. We come to the following conclusion:

Lemma 1. With probability1l our algorithm will at some point satisfy all the conditions
dependingon@...,P.

Therefore, with probability 1 the actions of the infinite padilistic algorithm can be split
into stages: aith stage we resample conditions that depen@&gpn ., B only until all of them
are satisfied. Lepio, ey p% be the values of the variabl®, ..., P, at the end of théth stage,
i.e., at the first moment when all the conditions dependifngonP,..., R are satisfied.

Thesepi‘ are random variables defined with probability 1 (due to LenithaThe values
pio, ey pi0 form a satisfying assignment for all the conditions thatedeponly on them. How-
ever, these values are not “final”. when we start to work witheo variables, this may lead to
changes in the previous variables. So, epﬂ;*.,1 can differ frompij.

The compactness argument (that proves the existence ofséysey assignment for all
condition) then takes the limit point of these assignmeftss is not enough for us, we need
the following

Lemma 2. For every i with probabilityl the sequence

P, o pi e
s Mj s Mj 9e e

stabilizes.

Moreover, for every variable with probability 1 there egsisbome moment in our algorithm
such that after this moment it will never be changed. (Thisrismally even a stronger statement
since a variable can change during some stage but retuhpoeious value at the end of the
stage.)

Proof of Lemma 2. It is enough to show that for evergnd sufficiently largg the prob-
ability of them event “value oPR is changed after stagé is small. To show this, we need to
refer to the details of Moser—Tardos argument. Considehalevents that involve the variable
P. Then consider all the neighbors of these events, all neighbf their neighbors, etc.m(
times for some largen). Let j be the maximal variable that appears in all these eventso(up t
distancam).

We claim thatfor every event A that involves, Bhe probability of being resampled after
stage j does not excedd — €)™. Indeed, consider such a resample and its tree (constructed
as in [1]). This tree should contain some event that involgegble with index greater than
(since a new resample became necessary after all varigblesRy) have satisfactory values).
The choice of] guarantees then that the size of the tree is at fegahd the sum of probabilities
of all those trees to appear during the algorithm is bounded.b- €)"x(A)/(1—x(A)). By a
suitable choice ofnwe can make this probability as small as we wish. Lemma 2 iggoro

Note that at this stage we have shown the existence of anaga@i(=assignment) that sat-
isfies all the conditions, since such an assignment is pexting our algorithm with probability

3

1. To show that there existscamputableassignment, we need some additional work.

Lemma 3. The convergence in Lemma 2 has predictable speed: for eweny for every
€ one can compute sonM(i, €) such that the probability of the event “valueRfwill change
afterN(i, €) steps of the algorithm” is less than

Proof of Lemma 3. The estimate in the proof of Lemma 2 gives some @hauterms of
the number of stages. At the same time we know the bounds doexpected length of each
stage, and can use Chebyshev inequality. Lemma 3 is proven.

Lemma 2 allows us to define an almost everywhere defined mgyipett maps the Cantor
spaceQ = {0, 1} into evaluations and maps the sequence of random bits usaa aygorithm
to the sequencgpy, py, . ..) of limit values of the variables.

Lemma 3 guaranteed that the output distribution of this rmapfihe image of the uniform
distribution on sequences of random bits) is computablés fieans that the probability of the
eventpy = ao, ..., p; = as can be effectively computed (with any given precision) gisand
ao,...,as. Indeed, due to Lemma 3 we know how many steps of the algomitemeeded to
get the output value with given certainty level, and can $ateuour algorithm for this number
of steps. (Here we use the computability assumptions.)

This computable output distribution is concentrated orstteof satisfying assignments. It
remain to use the following simple remark.

Lemma 4. If a computable probability distribution is concentrated some closed séite.
the measure of its complement is 2ethen this set contains a computable element

Proof. Computing this distribution, we can choose seqaéytihe valuesag, aj,ay, ... in
such a way that the measure of the evet ay, ..., pxk = a (according to the distribution)
is positive for everyk. The sequenceg,aj,ay,... iIs computable; if it does not belongs to
the closed set, then finitely mamy, ...,ax ensure this, and this contradicts the assumption
(the probability should remain positive). Lemma 4 is prgvadd this finishes the proof of
Theoreni 2.

3 Infinite CNFs

A standard illustration for LLL is the following resulia CNF where all clauses contain m
different variables and each clause has at n®89%t2 neighbors, is always satisfiable

Here neighbors are clauses that have common variables.

Indeed, we lek(A) = 2-™2 and note that

2—m S 2—m+2[(1_ 2_m_~_2)2m72

I,
since the expression in square brackets is approximafely 11 /22,

This was about finite CNFs; now we may consider effective itdi€NF with countably
many variables and clauses (hnumbered by natural numbezgssume that for givarwe can
compute the list of clauses wheith variable appears, and for givgnwe can computgth
clause.

Theorem 3. For every effective infinite CNF where each clause contaimfi@rent variables
and every clause has at mo&t—2 neighbors, one can find a computable assignment that
satisfies it.

Indeed, the same choice x{fA) works, if we choose& small enough (say = 0.1).

Similar argument can be applied in the case where there auses of different sizes. The
condition now is as follows: for every variable there are ast#" clauses of size that involve
this variable, wherer € (0,1) is some constant. Note that here we do not assume that every
variable appears in finitely many clauses, so the notion feicé¥e infinite CNF should be
extended. Instead, we assume that for eatd for eacn one can compute the list of clauses
of sizen that include;.

Theorem 4. For everya € (0,1) there exists some N such that every effective infinite CNF
where each variable appears in at m@8t' clauses of size (for every) and all clauses have
size at least N, has a computable satisfying assignment.

Proof. Let us consider first a special case when each variable eppely in finitely many
clauses. Then we are in the situation covered by Theafemd2wameed only to choose the
values ofx(A). These value will depend on the size of the clafisket us choose

X(A) = 2P

for clauses of siz&, wheref3 is some constant. In fact, any constant betweeand 1 will
work, so we can use, e.@8,= (14 a)/2. So we need to check (for clauses of some kjzhat

2—k < Z—Bk |—| (1_2—B#B)
Bel (A)

Note that for every ok variables inA there are at most®” clauses of sizen that involve it.
So together there are at mé&'™ neighbors of sizen. So it is enough to show that

ka S Zfﬁk |—L(1_ Zfﬁm)kz"m

m>

Using that(1— h)® > 1 —hsand takingkth roots, we see that it is enough to show that

27l <2 B1— § 20mp-Bm
2

Since the serie§ 2(@—B)mis converging, this is guaranteed for lafge

So we have proven Theorérn 4 for the special case when eaalbbeaaippear only in finitely
many clauses (and we can compute the list of those clauses).

The general case is easily reducible to this special oneelhdiix some > 0 and delete
from each claus®-fraction of its variables with minimal indices. The CNF betes only
harder to satisfy. But i is small enough, the conditions of the theorem (the number of
clauses wittm variables containing a given variable is bounded BY @re still true for some
a’ € (a,1). And in this modified CNF each variable appears only in clawgdimited size (it
is deleted from all large enough clauses).

Theoreni 4 is proven.

Let us note some immediate corollaries. Assume thas a set of binary strings that
contains at most %' strings of sizen. Then one can use LLL to prove the existence of an
infinite (or bi-infinite) sequencey and a numbeN such thatw does not have substrings in
F of length greater thal. There are several proofs of this statement; one may use kLL o
Kolmogorov complexity, see [2] 3].

Joseph Miller noted that his proof (given i [4]) can be usedhow that for a decidable
(with this property) one can find a computalbbehat avoids long substrings . Konstantin
Makarychev extended this argument to bi-infinite stringsrgpnal communication). Now we
get it as an immediate corollary of Theoréi 4: places in tljgsace correspond to variables,
each forbidden string gives a family of clauses (one pertjpogi and there is at mos29"
clauses of siza that involve given position (and this number is bounded %Y for slightly
biggera’ and large enough).

Moreover, we can do the same for 2-dimensional case: havieraable seF of rect-
angular patterns that contains at mo%t 2ifferent patterns of size (=area) one can find a
numberN and computable 2D configuration (a mappiag— {0,1}) that does not contain
patterns fronF of sizeN or more. (The author does not know how to get this result tyec
not using Moser—Tardos algorithm.)

Author is grateful to Lance Fortnow who suggested to applg&teTardos technique to the
infinite computable version of LLL.

References

[1] Robin A. Moser, Gabor Tardo#, constructive proof of the general Lasz Local Lemma
Available fromhttp://arxiv.org/abs/0903.0544

[2] Andrey Rumyantsev, Forbidden Substrings, Kolmogorowplexity and Almost Periodic
Sequences, STACS 2006, 23rd Annual Symposium on Thedrétsgeects of Computer
Science, Marseille, France, February 23-25, 2006. Ledtiates in Computer Science,
3884, Springer, 2006, p. 396—-407.

[3] Andrey Rumyantsev, Kolmogorov Complexity, Lovasz bbd.emma and Critical Ex-
ponents. Computer Science in Russia, 2007, Lecture Not€smputer Science, 4649,
Springer, 2007, p. 349-355.

[4] Joseph Miller,Two notes on subshiftAvailable from
http://www.math.wisc.edu/~jmiller/downloads.html

http://arxiv.org/abs/0903.0544
http://www.math.wisc.edu/~jmiller/downloads.html

	1 Computable LLL: the statement.
	2 The proof
	3 Infinite CNFs

