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Abstract

This paper presents a finite-time analysis of the KL-UCB algorithm, an online, horizon-free
index policy for stochastic bandit problems. We prove two distinct results: first, for arbi-
trary bounded rewards, the KL-UCB algorithm satisfies a uniformly better regret bound
than UCB or UCB2; second, in the special case of Bernoulli rewards, it reaches the lower
bound of Lai and Robbins. Furthermore, we show that simple adaptations of the KL-UCB
algorithm are also optimal for specific classes of (possibly unbounded) rewards, includ-
ing those generated from exponential families of distributions. A large-scale numerical
study comparing KL-UCB with its main competitors (UCB, UCB2, UCB-Tuned, UCB-V,
DMED) shows that KL-UCB is remarkably efficient and stable, including for short time
horizons. KL-UCB is also the only method that always performs better than the basic
UCB policy. Our regret bounds rely on deviations results of independent interest which
are stated and proved in the Appendix. As a by-product, we also obtain an improved regret
bound for the standard UCB algorithm.

1 Introduction

The multi-armed bandit problem is a simple, archetypal setting of reinforcement learning, where an
agent facing a slot machine with several arms tries to maximize her profit by a proper choice of arm
draws. In the stochastic1 bandit problem, the agent sequentially chooses, for t = 1, 2, . . . , n, an arm
At ∈ {1, . . . ,K}, and receives a reward Xt such that, conditionally on the arm choices A1, A2, . . . ,
the rewards are independent and identically distributed, with expectation µA1 , µA2 , . . . . Her policy
is the (possibly randomized) decision rule that, to every past observations (A1, X1, . . . , At−1, Xt),
associates her next choice At. The best choice is any arm a∗ with maximal expected reward µa∗ . The
performance of her policy can be measured by the regret Rn, defined as the difference between the
rewards she accumulates up to the horizon t = n, and the rewards that she would have accumulated
during the same period, had she known from the beginning which arm was the best.

The agent typically faces an “exploration versus exploitation dilemma” : at time t, she can take
advantage of the information she has gathered, by choosing the so-far best performing arm, but
she has to consider the possibility that the other arms are actually under-rated and she must play
sufficiently often all of them. Since the works of Gittins (1979) in the 1970s, this problem raised
much interest and several variants, solutions and extensions have been proposed, see Even-Dar et al.
(2002) and references therein.

Two families of bandit settings can be distinguished: in the first family, the distribution of Rt
given At = a is assumed to belong to a family {pθ, θ ∈ Θa} of probability distributions. In a
particular parametric framework, Lai and Robbins (1985) proved a lower-bound on the performance
of any policy, and determined optimal policies. This framework was extended to multi-parameter
models by Burnetas and Katehakis (1997) who showed that the number of draws up to time n,
Na(n), of any sub-optimal arm a is lower-bounded by

Na(n) ≥
(

inf
θ∈Θa:E[pθ]>µa∗

1

KL (pθa , pθ)
+ o(1)

)
log(n), (1)

1Another interesting setting is the adversarial bandit problem, where the rewards are not stochastic but
chosen by an opponent - this setting is not the subject of this paper.
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where KL denotes the Kullback-Leibler divergence and E(pθ) is the expectation under pθ; hence,
the regret is lower-bounded as follows:

lim sup
n→∞

E[Rn]

log(n)
≤

∑
a:µa<µa∗

inf
θ∈Θa:E[pθ]>µa∗

µa∗ − µa
KL (pθa , pθ)

. (2)

Recently, Honda and Takemura (2010) proposed an algorithm called Deterministic Minimum Em-
pirical Divergence (DMED) which they proved to be first order optimal. This algorithm, which
maintains a list of arms that are close enough to the best one (and which thus must be played), is
inspired by large deviations ideas and relies on the availability of the rate functions associated to
the reward distributions.

In the second family of bandit problems, the rewards are only assumed to be bounded (say,
between 0 and 1), and policies rely directly on the estimates of the expected rewards for each
arm. The KL-UCB algorithm considered in this paper is primarily meant to address this second,
non-parametric, setting. We will nonetheless show that KL-UCB also matches the lower bound of
Burnetas and Katehakis (1997) in the binary case and that it can be extended to a larger class of
parametric bandit problems.

Among all the bandit policies that have been proposed, a particular family has raised a strong
interest, after Gittins (1979) proved that (in the Bayesian setting he considered) optimal policies
could be chosen in the following very special form: compute for each arm a dynamic allocation index
(which only depends on the draws of this arm), and simply choose an arm with maximal index.
These policies not only compute an estimate of the expected rewards, but rather an upper-confidence
bound (UCB), and the agent’s choice is an arm with highest UCB. This approach is sometimes called
“optimistic”, as the agent acts as if, at each instant, the expected rewards were equal to the highest
possible values that are compatible with her past observations. Auer et al. (2002), following Agrawal
(1995), proposed and analyzed two variants, UCB1 (usually called simply UCB in latter works) and
UCB2, for which they provided regret bounds. UCB is an online, horizon-free procedure for which
(Auer et al., 2002) proves that there exists a constant C such that

E[Rn] ≤
∑

a:µa<µa∗

8 log(n)

(µa∗ − µa)
+ C . (3)

The UCB2 variant relies on a parameter α that needs to be tuned, depending in particular on the
horizon, and satisfies the tighter regret bound

E[Rn] ≤
∑

a:µa<µa∗

(1 + ε(α)) log(n)

2 (µa∗ − µa)
+ C(α) ,

where ε(α) > 0 is a constant that can get arbitrary small when α is small, at the expense of an

increased value of the constant C(α). The constant 1/2 in front of the factor log(n)/ (µa∗ − µa)
2

cannot be improved. However, Auer et al. (2002) found in numerical experiments that UCB and
UCB2 were outperformed by a third heuristic variant called UCB-Tuned, which includes estimates
of the variance, but no theoretical guarantee was given. In a latter work, Audibert et al. (2009)
proposed a related policy, called UCB-V, which uses an empirical version of the Bernstein bound to
obtain refined upper confidence bounds.

In this contribution, we first consider the stochastic, non-parametric, bounded bandit problem.
We consider an online index policy, called KL-UCB (for Kullback-Leibler UCB), that requires no
problem- or horizon-dependent tuning. This algorithm was recently advocated by Filippi (2010),
together with a similar procedure for Markov Decision Processes (Filippi et al., 2010). We prove in
Theorem 1 below that the regret of KL-UCB satisfies

lim sup
n→∞

E[Rn]

log(n)
≤

∑
a:µa<µa∗

µa∗ − µa
d(µa, µa∗)

,

where d(p, q) = p log(p/q) + (1 − p) log((1 − p/(1 − q)) denotes the Kullback-Leibler divergence
between Bernoulli distributions of parameters respectively p and q. This comes as a consequence of
Theorem 2, a non-asymptotic upper-bound on the number of draws of a sub-optimal arm a: for all
ε > 0 there exist C1, C2(ε) and β(ε) such that

E[Nn(a)] ≤ log(n)

d(µa, µa∗)
(1 + ε) + C1 log(log(n)) +

C2(ε)

nβ(ε)
.
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We insist on the fact that, despite the presence of divergence d, this bound is not specific to the
Bernoulli case and applies to all reward distributions bounded in [0, 1] (and thus, by rescaling, to
all bounded reward distributions). By Pinsker’s inequality, d(µa, µa∗) > 2(µa−µa∗)2, and thus KL-
UCB has strictly better theoretical guarantees than UCB and UCB-2, while it has the same range
of application. The improvement appears to be significant in simulations. Moreover, KL-UCB is
the first index policy that reaches the lower-bound of Lai and Robbins (1985) for binary rewards; it
does also achieve lower regret than UCB-V in that case. Hence, KL-UCB is both a general-purpose
procedure for bounded bandits, and an optimal solution for the binary case.

Furthermore, it is easy to adapt KL-UCB to particular (possibly non-bounded) bandit settings,
when the distribution of reward is known to belong to some family of probability laws. By simply
changing the definition of the divergence d, optimal algorithms may be built in a great variety of
situations.

The proofs we give for these results are short and elementary. They rely on deviation results for
bounded variables that are of independent interest : Lemma 9 shows that Bernoulli variable are, in
a sense, the “least concentrated” bounded variables with a given expectation (as is well-known for
variance), and Theorem 10 shows an efficient way to build confidence intervals for sums of bounded
variables with an unknown number of summands. As a by-product, we show that UCB has the same
theoretical guarantees than UCB-2.

In practice, numerical experiments confirm the significant advantage of KL-UCB over existing
procedures; not only does this method outperform UCB, UCB-2, UCB-V and even UCB-tuned in
various scenarios, but it also compares well to DMED in the Bernoulli case, especially for small or
moderate horizons.

The paper is organized as follows: in Section 2, we introduce some notation and we present the
KL-UCB algorithm. Section 3 contains the main results of the paper, namely the regret bound
for KL-UCB and the optimality in the Bernoulli case. In Section 4, we show how to adapt the
KL-UCB algorithm to address general families of reward distributions, and we provide finite-time
regret bounds showing asymptotic optimality. Section 5 reports the results of extensive numerical
experiments, showing the practical superiority of KL-UCB. Section 6 is devoted to an elementary
proof of the main theorem. Finally, the Appendix gathers some deviation results which are useful
in the proofs of our regret bounds, but which are also of independent interest.

2 The KL-UCB Algorithm

We consider the following bandit problem: the set of actions is {1, . . . ,K}, where K denotes a
finite integer. For each a ∈ {1, . . . ,K}, the rewards (Xa,t)t≥1 are independent and bounded2 in
Θ = [0, 1] with common expectation µa. The sequences (Xa,·)a are independent. At each time step
t = 1, 2, . . . , the agent chooses an action At according to his past observations (possibly using some

independent randomization) and gets the reward Xt = XAt,NAt (t)
, where Na(t) =

∑t
s=1 1{As = a}

denotes the number of times action a was chosen up to time t. The sum of rewards she has obtained

when choosing action a is denoted by Sa(t) =
∑
s≤t 1{As = a}Xs =

∑Na(t)
s=1 Xa,s. For (p, q) ∈ Θ2

denote the Bernoulli Kullback-Leibler divergence by

d(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

,

with, by convention, 0 log 0 = 0 log 0/0 = 0 and x log x/0 = +∞ for x > 0.
Algorithm 1 provides the pseudo-code for KL-UCB. On line 6, c is a parameter that, in the regret

bound stated below in Theorem 1 is chosen equal to 3; in practice, however, we recommend to take
c = 0 for optimal performance. For each arm a the upper-confidence bound

max

{
q ∈ Θ : N [a] d

(
S[a]

N [a]
, q

)
≤ log(t) + c log(log(t))

}
can be efficiently computed using Newton iterations, as for any p ∈ [0, 1] the function q 7→ d(p, q)
is strictly convex and increasing on the interval [p, 1]. In case of ties between severals arms, any
maximizer can be chosen (for instance, at random).

3 Regret bounds and optimality

We first state the main result of this paper. It is a direct consequence of the non-asymptotic bound
in Theorem 2 stated below.

2if the rewards are bounded in another interval [a, b], they should first be rescaled to [0, 1].
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Algorithm 1 KL-UCB

Require: n (horizon), K (number of arms), REWARD (reward function, bounded in [0, 1])
1: for t = 1 to K do
2: N [t]← 1
3: S[t]← REWARD(arm = t)
4: end for
5: for t = K + 1 to n do

6: a← arg max1≤a≤K max
{
q ∈ Θ : N [a] d

(
S[a]
N [a] , q

)
≤ log(t) + c log(log(t))

}
7: r ← REWARD(arm = a)
8: N [a]← N [a] + 1
9: S[a]← S[a] + r

10: end for

Theorem 1 Consider a bandit problem with K arms and independent rewards bounded in [0, 1],
and denote by a∗ an optimal arm. Choosing c = 3, the regret of the KL-UCB algorithm satisfies:

lim sup
n→∞

E[Rn]

log(n)
≤

∑
a:µa<µa∗

µa∗ − µa
d(µa, µa∗)

.

Theorem 2 Consider a bandit problem with K arms and independent rewards bounded in [0, 1].
Let ε > 0, and take c = 3 in Algorithm 1. Let a∗ denote an arm with maximal expected reward µa∗ ,
and let a be an arm such that µa < µa∗ . For any positive integer n, the number of times algorithm
KL-UCB chooses arm a is upper-bounded by

E[Nn(a)] ≤ log(n)

d(µa, µa∗)
(1 + ε) + C1 log(log(n)) +

C2(ε)

nβ(ε)
,

where C1 denotes a positive constant and where C2(ε) and β(ε) denote positive functions of ε. Hence,

lim sup
n→∞

E[Nn(a)]

log(n)
≤ 1

d(µa, µa∗)
.

Corollary 3 If the reward distributions are Bernoulli, the KL-UCB algorithm is asymptotically
optimal, in the sense that the regret of KL-UCB matches the lower-bound proved by Lai and Robbins
(1985) and generalized by Burnetas and Katehakis (1997):

Nn(a) ≥
(

1

d(µa, µa∗)
+ o(1)

)
log(n)

with a probability tending to 1.

The KL-UCB algorithm thus appears to be (asymptotically) optimal for Bernoulli rewards.
However, Lemma 9 shows that the Chernoff bounds obtained for Bernoulli variables actually apply
to any variable with range [0, 1]. This is why KL-UCB is not only efficient in the binary case, but
also for general bounded rewards.

Remark 4 By using Pinsker’s inequality d(µa, µa∗) ≥ 2(µa − µa∗)2, we obtain in particular that

E[Nn(a)] ≤ log(n)

2(µa − µa∗)2
(1 + ε) + C1 log(log(n)) +

C2(ε)

nβ(ε)
(4)

Furthermore, proceeding just as in Section 6 with d(p, q) := 2(p − q)2, it can be shown that (4)
also holds for the plain UCB policy, which leads to a significant improvement of (3). Hence, UCB
and UCB2 appear to have the same theoretical guarantees. In contrast, KL-UCB asymptotically
dominates UCB, and we will see in the simulation study that the difference is significant already for
small values of the horizon.

Remark 5 At line 6, Algorithm 1 computes for each arm a ∈ {1, . . . ,K} the upper-confidence bound

max

{
q ∈ Θ : N [a] d

(
S[a]

N [a]
, q

)
≤ log(t) + c log(log(t))

}
.

4



The level of this confidence bound is parameterized by the exploration function log(t) + c log(log(t)),
and the results of Theorems 1 and 2 are true as soon as c ≥ 3. However, similar results can be
proved with an exploration function equal to (1 + ε) log(t) (instead of log(t) + c log(log(t))) for every
ε > 0; this is no surprise, as (1 + ε) log(t) ≥ log(t) + c log(log(t)) when t is large enough. But “large
enough”, in that case, can be quite large : for ε = 0.1, this holds true only for t > 2.1051. This is
why, in practice (and for the simulations presented in Section 5), we rather suggest to choose c = 0.

4 KL-UCB for parametric families of reward distributions

The KL-UCB algorithm makes no assumption on the distribution of the rewards, except that they
are bounded. Actually, the definition of the divergence function d in KL-UCB is dictated by the
rate function of the Large Deviations Principle satisfied by Bernoulli random variables: the proof
of Theorem 10 relies on the control of the Fenchel-Legendre transform of the Bernoulli distribution.
Thanks to Lemma 9, this choice also makes sense for all bounded variables.

But the method presented here is not limited to the Bernoulli case: KL-UCB can very easily be
adapted to other settings by choosing an appropriate divergence function d. As an illustration, we
will assume in this section that, for each arm a, the distribution of rewards belongs to a canonical
exponential family, i.e. that its density with respect to some reference measure can be written as
pθa(x) for some real parameter θa, with

pθ(x) = exp (xθ − b(θ) + c(x)) , (5)

where θ is a real parameter, c is a real function and the log-partition function b(·) is assumed
to be twice differentiable. This family contains for instance the Exponential, Poisson, Gaussian
(with fixed variance), Gamma (with fixed shape parameter) distributions (as well as, of course, the
Bernoulli distribution). For a random variable X with density defined in (5), it is easily checked

that µ(θ) , Eθ[X] = ḃ(θ); moreover, as b̈(θ) = Var(X) > 0, the function θ 7→ µ(θ) is one-to-one.
Theorem 11 states that the probability of under-estimating the performance of the best arm can
be upper-bounded just as in the Bernoulli case by replacing the divergence d(·, ·) in line 6 of the
KL-UCB algorithm by

d(x, µ(θ)) = sup
λ
{λx− logEθ [exp(λX)]} .

For example, in the case of exponential rewards, one should choose d(x, y) = x/y − 1 − log(x/y).
Or, for Poisson rewards, the right choice is d(x, y) = y− x+ x log(x/y). Then, all the results stated
above apply (as the proofs did not involve the particular form of the function d), and in particular :

lim sup
n→∞

E[Rn]

log(n)
≤

∑
a:µa<µa∗

µa∗ − µa
d(µa, µa∗)

.

In order to prove that this version of the KL-UCB algorithm matches the bound of Lai and Robbins
(1985) for the families of rewards, it remains only to show that d(x, y) = KL(pµ−1(x), pµ−1(y)). This
is the object of Lemma 6. Generalizations to other families of reward distributions (possibly different
from arm to arm) are conceivable, but require more technical, topological discussions, as in Burnetas
and Katehakis (1997) and Honda and Takemura (2010).

To conclude, observe that it is not required to work with the divergence function d corresponding
exactly to the family of reward distributions: using an upper-bound instead often leads to more
simple and versatile policies for the price of a slight loss of performance. This is illustrated in the
third scenario of the simulation study presented in Section 5, but also by Theorems 1 and 2 for
bounded variables.

Lemma 6 Let (β, θ) be two real numbers, let pβ and pθ be two probability densities of the canonical
exponential family defined in (5), and let X have density pθ. Then Kullback-Leibler divergence
KL(pβ , pθ) is equal to d(µ(β), µ(θ)). More precisely,

KL(pβ , pθ) = d(µ(β), µ(θ)) = µ(β) (β − θ)− b(β) + b(θ) .

Proof: First, it holds that

KL(pβ , pθ) =

∫
exp (xβ − b(β) + c(x)) {x (β − θ)− b(β) + b(θ)} dx = µ(β) (β − θ)− b(β) + b(θ) .

Then, observe that

E [exp(λX)] =

∫
exp (x(β + λ)− b(β) + c(x)) dx = exp(b(β + λ)− b(β)) .

5



Thus, for every x the maximum of the (smooth, concave) function

λ 7→ λx− logE [exp(λX)] = λx− b(θ + λ) + b(θ)

is reached for λ = λ∗ such that x = ḃ(θ + λ∗) = µ(θ + λ∗). Thus, if x = µ(β), the fact that µ is
one-to-one implies that θ + λ∗ = β and thus that:

d(µ(β), µ(θ)) = (β − θ)µ(β)− b(β) + b(θ) .

5 Numerical experiments and comparisons of the policies

Simulations studies require particular attention in the case of bandit algorithms. As pointed out by
Audibert et al. (2009), for a fixed horizon n the distribution of the regret is very poorly concentrated
around its expectation. This can be explained as follows: most of the time, the estimates of all arms
remain correctly ordered for almost all instants t = 1, . . . , n and the regret is of order log(n). But
sometimes, at the beginning, the best arm is under-estimated while one of the sub-optimal arms
is over-estimated, so that the agent keeps playing the latter; and as she neglects the best arm, she
has hardly an occasion to realize her mistake, and the error perpetuates for a very long time. This
happens with a small, but not negligible probability, because the regret is very important (of order
n) on these occasions. Bandit algorithms are typically designed to control the probability of such
adverse events but usually at a rate which only decays slightly faster than 1/n, which results in very
skewed regret distributions with slowly decaying upper tails.
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Figure 1: Performance of the various algorithms in the simple two arms, scenario. Left, mean number
of draws of the suboptimal arm as a function of time; right, box-plots showing the distributions of
the number of draws of the suboptimal arm at time n = 5, 000. Results based on 50, 000 independent
runs.

5.1 Scenario 1: two arms

We first consider the basic two arm scenario with Bernoulli rewards of expectations µ1 = 0.9 and µ2 =
0.8, respectively. The left panel of Figure 1 shows the average number of draws of the suboptimal arm
as a function of time (on a logarithmic scale) for KL-UCB compared to five benchmark algorithms
(UCB, UCB2, UCB-Tuned, UCB-V and DMED). The right panel of Figure 1 shows the empirical
distributions of suboptimal draws, represented as box-and-whiskers plots, at a particular time (t =
5, 000) for all six algorithms. These plot are obtained from N = 50, 000 independent runs of the
algorithms and the right panel of Figure 1 clearly highlight the tail effect mentioned above. On
this very simple example, we observed that results obtained from N = 1, 000 or less simulations
were not reliable, typically resulting in a significant over-estimation3 of the performance of “risky”
algorithms, in particular of UCB-Tuned. More generally, results obtained in configurations where
N is much smaller than n are likely to be unreliable. For this reason, we limit our investigations to
a final instant of n = 20, 000. Note however that the average number of suboptimal draws of most
algorithms at n = 20, 000 is only of the order of 300, showing that there is no point in considering
larger horizons for such a simple problem.

3Incidentally, Theorem 10 could be used to construct sharp confidence bounds for the regret.
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UCB-Tuned and UCB-V are run exactly as described by Auer et al. (2002) and Audibert et al.

(2009), respectively. For UCB, we use an upper confidence bound S[a]/N [a] +
√

log(t)/(2N [a]) as,
by Remark 4 it provably provides a policy that reaches the bound of {2(µ1 − µ2)2}−1 log(n) for
the number of suboptimal choices. Note that in our two arm scenario, {2(µ1 − µ2)2}−1 = 50 while
d−1(µ2, µ1) = 22.5. Hence, the performance of DMED and KL-UCB should be about two times
better than that of UCB and UCB2. The left panel of Figure 1 does show the expected behavior
but with a difference of lesser magnitude. Indeed, one can observe that the bound d−1(µ2, µ1) log(n)
(shown in dashed line) is quite pessimistic for the values of the horizon n considered here as the
actual performance of KL-UCB is significantly below the bound. The same holds true for UCB and
UCB2 (when compared to the {2(µ1 − µ2)2}−1 log(n) bound). For UCB2, we tuned the constant
α based on pilot runs of the algorithm. We found the optimal value to be of α = 0.05, which is
significantly more than the value suggested by Auer et al. (2002). Note however that the optimal
choice of α appears to depend on the problem and on the horizon. For DMED, we follow Honda
and Takemura (2010) but using

N [a] d

(
S[a]

N [a]
,max

b

S[b]

N [b]

)
< log t (6)

as the criterion to decide whether arm a should be included in the list of arms to be played. This
criterion is clearly related to the decision rule used by KL-UCB when c = 0 (see line 6 of Algorithm 1)
except for the fact that in KL-UCB the estimate S[a]/N [a] is not compared to that of the current
best arm maxb S[b]/N [b] but to the corresponding upper confidence bound. As a consequence, any
arm that is not included in the list of arms to be played by DMED would not be played by KL-UCB
either (assuming that both algorithms share a common history). As one can observe on the left
panel of Figure 1, this results in a degraded performance for DMED. We also observed this effect
on UCB, for instance, and it seems that index algorithms are generally preferable to their “arm
elimination” variant.

The original proposal of Honda and Takemura (2010) consists in using in the exploration function
a factor log(t/N [a]) instead of log(t). As will be seen below on Figure 2, this variant (which we refer
to as DMED+) indeed outperforms DMED. But our previous conjecture appears to hold also in this
case as the heuristic variant of KL-UCB (termed KL-UCB+) in which log(t) in line 6 of Algorithm 1
is replaced by log(t/N [a]) remains preferable to DMED+.

As final comments on Figure 1, first note that UCB-Tuned performs as expected –though slightly
worse than KL-UCB– but is a very risky algorithm: the right panel of Figure 1 casts some doubts
on the fact that the tails of Na(n) are indeed controlled uniformly in n for UCB-Tuned. Second, the
performance of UCB-V is somewhat disappointing. Indeed, the upper-confidence bounds of UCB-V
differ from those of UCB-Tuned simply by the non-asymptotic correction term 3 log(t)/N [a] required
by Bennett’s and Bernstein’s inequalities (Audibert et al., 2009). These correction terms appear to
have a significant impact on moderate time horizons: for a sub-optimal arm a, the number of draws
N [a] does not grow faster than the log(t) exploration function, and log(t)/N [a] does not vanish.

5.2 Scenario 2: low rewards

In Figure 2 we consider a significantly more difficult scenario, again with Bernoulli rewards, inspired
by a situation (frequent in applications like marketing or Internet advertising) where the mean reward
of each arm is very low. In this scenario, there are ten arms: the optimal arm has expected reward
0.1, and the nine suboptimal arms consist of three different groups of three (stochastically) identical
arms each with expected rewards 0.05, 0.02 and 0.01, respectively. We again used N = 50, 000
simulations to obtain the regret plots of Figure 2. These plots show, for each algorithm, the average
cumulated regret together with quantiles of the cumulated regret distribution as a function of time
(again on a logarithmic scale).

In this scenario, the difference are more pronounced between UCB, UCB2 on the one hand and
DMED and KL-UCB on the other hand. The performance gain of UCB-Tuned is also much less
significant. KL-UCB and DMED reach a performance that is on par with the lower bound of Bur-
netas and Katehakis (1997) in (2), although the performance of KL-UCB is here again significantly
better. Using KL-UCB+ and DMED+ results in significant mean improvements, although there are
hints that those algorithms might indeed be too risky with occasional very large deviations from the
mean regret curve.

The final algorithm included in this roundup, called CP-UCB, is in some sense a further adap-
tation of KL-UCB to the specific case of Bernoulli rewards. For n ∈ N and p ∈ [0, 1], denote by
Pn,p the binomial distribution with parameters n and p. For a random variable X with distribution
Pn,p, the Clopper-Pearson (see Clopper and Pearson (1934)) or “exact” upper-confidence bound of
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Figure 2: Regret of the various algorithms as a function of time (on a log scale) in the ten arm
scenario. On each graph, the red dashed line shows the lower bound, the solid bold curve corresponds
to the mean regret while the dark and light shaded regions show respectively the central 99% region
and the upper 0.05% quantile, respectively.

risk α ∈]0, 1[ for p is

uCP (X,n, α) = max {q ∈ [0, 1] : Pn,q([0, X]) ≥ α} .
It is easily verified that Pn,p

(
µ ≤ uCP (X)

)
≥ 1 − α, and that uCP (X) is the smallest quantity

satisfying this property: uCP (X) ≤ ũ(X) for any other upper-confidence bound ũ(X) of risk at
most α.

The Clopper-Pearson Upper-Confidence Bound algorithm (CP-UCB) differs from KL-UCB only
in the way that the upper-confidence bound on the performance of each arm is computed: on line
6, the next action is chosen as:

a← arg max
1≤a≤K

uCP
(
S[a], N [a],

1

t log(t)c

)
.

As the Clopper-Wilson confidence intervals are always sharper than the Kullback-Leibler intervals,
one can very easily adapt the proof of Section 6 to show that the regret bounds proved for the KL-
UCB algorithm also hold for CP-UCB in the case of Bernoulli rewards. However, the improvement
over KL-UCB is very limited (often, the two algorithms actually take exactly the same decisions).
In terms of results, one can observe on Figure 2 that CP-UCB only achieves a performance that is
marginally better than that of KL-UCB. Besides, there is no guarantee that the CP-UCB algorithm
is also efficient on arbitrary bounded distributions.

5.3 Scenario 3: bounded exponential rewards

In the third example, there are 5 arms: the rewards are exponential variables, with parameters
1/5, 1/4, 1/3, 1/2 and 1 respectively, truncated at xmax = 10 (thus, they are bounded in [0, 10]).
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Figure 3: Regret of the various algorithms as a function of time in the bounded exponential scenario.

The interest of this scenario is twofold: first, it shows the performance of KL-UCB for non-binary,
non-discrete, non [0, 1]-valued rewards. Second, it illustrates that, as explained in Section 4, variants
of the KL-UCB algorithm can reach an even better performance.

In this scenario, UCB and UCB-2, but also KL-UCB are clearly sub-optimal. Among these three
policies, KL-UCB has a slight advantage. UCB-Tuned and UCB-V, by taking into account the
variance of the reward distributions (much smaller than the variance of a {0, 10}-valued distribution
with the same expectation), were expected to perform significantly better. For the time horizon
n = 20, 000, this is not the case for UCB-V, for the reasons mentioned above. Yet, UCB-Tuned is
spectacularly more efficient, and is only caught up by KL-UCB-exp, the variant of KL-UCB designed
for exponential rewards. Actually, the KL-UCB-exp algorithm ignores the fact that the rewards are
truncated, and uses the divergence d(x, y) = x/y − 1− log(x/y) prescribed for genuine exponential
distributions. One can easily show that this choice leads to slightly too large upper confidence
bounds. Yet, the performance is still excellent, stable, and the algorithm is particularly simple.

5.4 Scenario 4 : unbounded exponential rewards

In this last example, we illustrate the efficiency of KL-UCB for unbounded rewards. We consider
the same setup as in scenario 3, except that the exponential variables are not truncated. The UCB,
UCB-2 and UCB-V algorithms are not designed for unbounded variables, so that we compare the
KL-UCB algorithm only with UCB-tuned. Again,the upper confidence bounds are computed using
the divergence function d(x, y) = x/y − 1− log(x/y). Results are displayed in Figure 4. Obsiously,
UCB-Tuned is much perturbated by the relatively large tail of the exponential distribution, which
results in a very skewed distribution of regrets. The median regret is low, but the mean regret is
much impacted by (relatively frequent) catastrophic runs. In contrast, the performance of KL-UCB
is significantly better both in average and in terms of stability.

6 Proof of Theorem 2

Consider a positive integer n, a small ε > 0, an optimal arm a∗ and a sub-optimal arm a such that
µa < µa∗ . Without loss of generality, we will assume that a∗ = 1. For any arm b ∈ {1, a}, the past
average performance of arm b is denoted by µ̂b(t) = Sb(t)/Nb(t); by convenience, for every positive
integer s we will also denote µ̂b,s = (Xb,1 + · · ·+Xb,s) /s, so that µ̂t(b) = µ̂b,Nb(t). KL-UCB relies
on the following upper-confidence bound for µb:

ub(t) = arg max {q > µ̂b(t) : Nb(t) d (µ̂b(t), q) ≤ log(t) + 3 log(log(t))} .
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Figure 4: Regret of the KL-UCB and UCB-tuned algorithms as a function of time in the unbounded
exponential scenario. On each graph, the solid bold curve corresponds to the mean regret while the
dark and light shaded regions show respectively the central 20% region and the upper 1% quantile,
respectively.

For x, y ∈ [0, 1], define d+(x, y) = d(x, y)1x<y. The expectation of Nn(a) is upper-bounded by using
the following decomposition:

E[Nn(a)] = E

[
n∑
t=1

1{At = a}

]
≤ E

[
n∑
t=1

1{µ1 > u1(t)}

]
+ E

[
n∑
t=1

1{At = a, µ1 ≤ u1(t)}

]

≤
n∑
t=1

P (µ1 > u1(t)) + E

[
n∑
s=1

1{sd+(µ̂a,s, µ1) < log(n) + 3 log(log(n))}

]
,

where the last inequality is a consequence of Lemma 7. The first summand is upper-bounded as
follows: by Theorem 10 (proved in the Appendix),

P (µ1 > u1(t)) ≤ e dlog(t) (log(t) + 3 log(log(t)))e exp(− log(t)− 3 log(log(t)))

=
e
⌈
log(t)2 + 3 log(t) log(log(t))

⌉
t log(t)3

.

Hence,
n∑
t=1

P (µ1 > u1(t)) ≤
n∑
t=1

e
⌈
log(t)2 + 3 log(t) log(log(t))

⌉
t log(t)3

≤ C ′1 log(log(n))

for some positive constant C ′1 (C ′1 ≤ 7 is sufficient).
For the second summand, let

Kn =
1 + ε

d+(µa, µ1)

(
log(n) + 3 log(log(n))

)
.

Then:

n∑
s=1

P
(
sd+(µ̂a,s, µ1) < log(n) + 3 log(log(n))

)
≤ Kn +

∞∑
s=Kn+1

P
(
sd+(µ̂a,s, µ1) < log(n) + 3 log(log(n))

)
≤ Kn +

∞∑
s=Kn+1

P
(
Knd

+(µ̂a,s, µ1) < log(n) + 3 log(log(n))
)

= Kn +

∞∑
s=Kn+1

P
(
d+(µ̂a,s, µ1) <

d(µa, µ1)

1 + ε

)
≤ 1 + ε

d+(µa, µ1)

(
log(n) + 3 log(log(n))

)
+
C2(ε)

nβ(ε)

according to Lemma 8. This finishes the proof, provided that we prove the following lemmas.
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Lemma 7

n∑
t=1

1{At = a, µ1 ≤ u1(t)} ≤
n∑
s=1

1{sd+(µ̂a,s, µ1) < log(n) + 3 log(log(n))} .

Proof: Observe that At = a and µ1 ≤ u1(t) together imply that ua(t) ≥ u1(t) ≥ µ1, and hence that

d+ (µ̂a(t), µ1) ≤ d(µ̂a(t), ua(t)) =
log(t) + 3 log(log(t))

Na(t)
.

Thus,

n∑
t=1

1{At = a, µ1 ≤ u1(t)} ≤
n∑
t=1

1{At = a,Na(t)d+(µ̂a(t), µ1) ≤ log(t) + 3 log(log(t))}

=

n∑
t=1

t∑
s=1

1{Nt(a) = s,At = a, sd+(µ̂a,s, µ1) ≤ log(t) + 3 log(log(t))}

≤
n∑
t=1

t∑
s=1

1{Nt(a) = s,At = a}1{sd+(µ̂a,s, µ1) ≤ log(n) + 3 log(log(n))}

=

t∑
s=1

1{sd+(µ̂a,s, µ1) ≤ log(n) + 3 log(log(n))}
n∑
t=1

1{Nt(a) = s,At = a}

=

t∑
s=1

1{sd+(µ̂a,s, µ1) ≤ log(n) + 3 log(log(n))} ,

as, for every s ∈ {1, . . . , n},
∑n
t=1 1{Nt(a) = s,At = a} ≤ 1.

Lemma 8 For each ε > 0, there exist C2(ε) > 0 and β(ε) > 0 such that

∞∑
s=Kn+1

P
(
d+(µ̂a,s, µ1) <

d(µa, µ1)

1 + ε

)
≤ C2(ε)

nβ(ε)
.

Proof: If d+(µ̂a,s, µ1) < d(µa, µ1)/(1 + ε) , then µ̂a,s > r(ε), where r(ε) ∈]µa, µ1[ is such that
d(r(ε), µ1) = d(µa, µ1)/(1 + ε). Hence,

P
(
d+(µ̂a,s, µ1) <

d(µa, µ1)

1 + ε

)
≤ P (d(µ̂a,s, µa) > d(r(ε), µa), µ̂a,s > µa)

≤ P(µ̂a,s > r(ε)) ≤ exp(−sd(r(ε), µa)) ,

and
∞∑

s=Kn+1

P
(
d+(µ̂a,s, µ1) <

d(µa, µ1)

1 + ε

)
≤ exp(−d(r(ε), µa)Kn)

1− exp(−d(r(ε), µa))
≤ C2(ε)

nβ(ε)
,

with C2(ε) = (1− exp(−d(r(ε), µa)))−1 and β(ε) = (1 + ε)d(r(ε), µ1)/d(µa, µ1). Easy computations
show that r(ε) = µa +O(ε), so that C2(ε) = O(ε−2) and β(ε) = O(ε2).

7 Conclusion

The self-normalized deviation bound of Theorems 10 and 11, together with the new analysis pre-
sented in Section 6, allowed us to design and analyze improved UCB algorithms. In this approach,
only an upper-bound of the deviations (more precisely, of the exponential moments) of the rewards is
required, which makes it possible to obtain versatile policies satisfying interesting regret bounds for
large classes of reward distributions. The resulting index policies are simple, fast, and very efficient
in practice, even for small time horizons.
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Appendix: Deviation Results

We start with a simple lemma justifying the focus on binary rewards.

Lemma 9 Let X be a random variable taking value in [0, 1], and let µ = E[X]. Then, for all λ ∈ R,

E [exp(λX)] ≤ 1− µ+ µ exp(λ) ,

Proof: The function f : [0, 1] → R defined by f(x) = exp(λx) − x (exp(λ)− 1) − 1 is convex and
such that f(0) = f(1) = 0, hence f(x) ≤ 0 for all x ∈ [0, 1]. Consequently,

E [exp(λX)] ≤ E [X (exp(λ)− 1) + 1] = µ(exp(λ)− 1) + 1 .

Theorem 10 Let (Xt)t ≥ 1 be a sequence of independent random variables bounded in [0, 1] defined
on a probability space (Ω,F ,P) with common expectation µ = E[Xt]. Let Ft be an increasing sequence
of σ-fields of F such that for each t, σ(X1 . . . , Xt) ⊂ Ft and for s > t, Xs is independent from Ft.
Consider a previsible sequence (εt)t≥1 of Bernoulli variables (for all t > 0, εt is Ft−1-measurable).
Let δ > 0 and for every t ∈ {1, . . . , n} let

S(t) =

t∑
s=1

εsXs , N(t) =

t∑
s=1

εs , µ̂(t) =
S(t)

N(t)
,

u(n) = arg max {q > µ̂n : N(n)d (µ̂(n), q) ≤ δ} .

Then
P (u(n) < µ) ≤ e dδ log(n)e exp(−δ) .

Proof: For every λ > 0, let φµ(λ) = logE [exp (λX1)]. By Lemma 9, φµ(λ) ≤ log (1− µ+ µ exp (λ)).
Let Wλ

0 = 1 and for t ≥ 1,
Wλ
t = exp(λS(t)−N(t)φµ(λ)).(

Wλ
t

)
t≥0

is a super-martingale relative to (Ft)t≥0. In fact,

E
[

exp (λ {S(t+ 1− S(t)}) |Ft
]

= E
[

exp (λεt+1Xt+1) |Ft
]

= exp
(
εt+1 logE [exp (λX1)]

)
≤ exp

(
εt+1φµ (λ)

)
= exp

(
{N(t+ 1)−N(t)}φµ (λ)

)
which can be rewritten

E
[

exp (λS(t+ 1)−N(t+ 1)φµ (λ)) |Ft
]

= exp (λS(t)−N(t)φµ (λ)) .

To proceed, we make use of the so-called ’peeling trick’ (see for instance Massart (2007)): we
divide the interval {1, . . . , n} of possible values for N(n) into ”slices” {tk−1 + 1, . . . , tk} of geometri-
cally increasing size, and treat the slices independently. We may assume that δ > 1, since otherwise
the bound is trivial. Take4 η = 1/(δ−1), let t0 = 0 and for k ∈ N∗, let tk =

⌊
(1 + η)k

⌋
. Let D be the

first integer such that tD ≥ n, that is D =
⌈

logn
log 1+η

⌉
. Let Ak = {tk−1 < N(n) ≤ tk} ∩ {u(n) < µ}.

We have:

P (u(n) < µ) ≤ P

(
D⋃
k=1

Ak

)
≤

D∑
k=1

P (Ak) . (7)

Observe that u(n) < µ if and only if µ̂(n) < µ and N(n)d(µ̂(n), µ) > δ. Let s be the smallest integer
such that δ/(s + 1) ≤ d(0;µ); if N(n) ≤ s, then N(n)d(µ̂(n), µ) ≤ sd(µ̂(n), µ) ≤ sd(0, µ) < δ and
P(u(t) < µ) = 0. Thus, P (Ak) = 0 for all k such that tk ≤ s.

Take k such that tk > s, and let t̃k−1 = max{tk−1, s}. Let x ∈]0, µ[ be such that d(x;µ) =
δ/N(n), and let λ(x) = log(x (1− µ))− log(µ (1− x)) < 0, so that d(x;µ) = λ(x)x− φµ(λ(x)). Let
z such that z < µ and d(z, µ) = δ/(1 + η)k. Observe that:

• if N(n) > t̃k−1, then

d(z;µ) =
δ

(1 + η)k
≥ δ

(1 + η)N(n)
;

4if δ ≤ 1, it is easy to check that the bound holds whatsoever.
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• if N(n) ≤ tk, then as

d(µ̂(n);µ) >
δ

N(n)
>

δ

(1 + η)k
= d(z;µ),

it holds that :

µ̂(n) < µ and d(µ̂(n);µ) >
δ

N(n)
=⇒ µ̂(n) ≤ z.

Hence, on the event
{
t̃k−1 < N(n) ≤ tk

}
∩ {µ̂(n) < µ} ∩

{
d(µ̂(n);µ) > δ

N(n)

}
it holds that

λ(z)µ̂(n)− φµ(λ(z)) ≥ λ(z)z − φµ(λ(z)) = d(z;µ) ≥ δ

(1 + η)N(n)
.

Putting everything together,{
t̃k−1 < N(n) ≤ tk

}
∩{µ̂(n) < µ}∩

{
d(µ̂(n);µ) ≥ δ

N(n)

}
⊂
{
λ(z)µ̂(n)− φµ(λ(z)) ≥ δ

N(n) (1 + η)

}
⊂
{
λ(z)Sn −N(n)φµ(λ(z)) ≥ δ

1 + η

}
⊂
{
Wλ(z)
n > exp

(
δ

1 + η

)}
.

As
(
Wλ
t

)
t≥0

is a supermartingale, E
[
W

λ(z)
n

]
≤ E

[
W

λ(z)
0

]
= 1, and the Markov inequality yields:

P
({

t̃k−1 < N(n) ≤ tk
}
∩ {µ̂(n) ≥ µ} ∩ {N(n)d(µ̂(n), µ) ≥ δ}

)
≤ P

(
Wλ(z)
n > exp

(
δ

1 + η

))
≤ exp

(
− δ

1 + η

)
.

Finally, by Equation (7),

P

(
D⋃
k=1

{
t̃k−1 < N(n) ≤ tk

}
∩ {u(n) < µ}

)
≤ D exp

(
− δ

1 + η

)
.

But as η = 1/(δ − 1), D =
⌈

logn
log(1+1/(δ−1))

⌉
and as log(1 + 1/(δ − 1)) ≥ 1/δ, we obtain:

P (u(n) < µ) ≤

 log n

log
(

1 + 1
δ−1

)
 exp(−δ + 1) ≤ e dδ log(n)e exp(−δ).

Of course, a symmetric bound for the probability of over-estimating µ can be derived following
the same lines. Together, they show that for all δ > 0:

P
(
N(n)d(µ̂(n), µ) > δ

)
≤ 2e dδ log(n)e exp(−δ) .

Finally, we state a more general deviation bound for arbitrary reward distributions with finite
exponential moments.

Theorem 11 Let (Xt)t ≥ 1 be a sequence of random variables defined on a probability space
(Ω,F ,P) with common expectation µ = E[Xt]. Assume that the cumulant-generating function

φ(λ) = logE [exp(λX)]

is defined and finite on some open subset ]λ1, λ2[ of R containing 0. Define the (good) rate function
d : R× R→ R ∪ {+∞} of X1 to be the Fenchel-Legendre transform of φ: for all x ∈ R,

d(x, µ) = sup
λ∈]λ1,λ2[

{λx− φ(λ)} .

Let Ft be an increasing sequence of σ-fields of F such that for each t, σ(X1 . . . , Xt) ⊂ Ft and
for s > t, Xs is independent from Ft. Consider a previsible sequence (εt)t≥1 of Bernoulli variables
(for all t > 0, εt is Ft−1-measurable). Let δ > 0 and for every t ∈ {1, . . . , n} let

S(t) =

t∑
s=1

εsXs , N(t) =

t∑
s=1

εs , µ̂(t) =
S(t)

N(t)
,

u(n) = arg max {q > µ̂n : N(n)d (µ̂(n), q) ≤ δ} .
Then

P (u(n) < µ) ≤ e dδ log(n)e exp(−δ) .
The proof is very similar to that of Theorem 10, and omitted here because of space limitations.
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