Blackwell Prediction for Categorical Data

H. R. Lerche
University of Freiburg i. Br.

Abstract

We study the problem of sequential prediction of categorical data and discuss a generalisation of Blackwell's algorithm on 0-1 data. The arguments are based on Blackwell's approachability results given in [1]. They use mainly linear algebra.

1 Introduction and Background

Let us consider the problem of sequential prediction of categorical data. Let $D=\{0,1, \ldots, d-1\}$ denote the set of possible outcomes with $d \geq 2$. Let x_{1}, x_{2}, \ldots be an infinite sequence with values in D. Let Y_{1}, Y_{2}, \ldots denote the sequence of predictions. This is a random sequence with values in $D . Y_{n+1}$ predicts x_{n+1} and may depend on the first n outcomes $x_{1}, x_{2}, \ldots, x_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}$ and some additional random mechanism. Our goal ist to construct a sequential prediction procedure which works well for all sequences $\left(x_{i}\right)_{i \in \mathbb{N}}$ in an asymptotic sense. We intend to generalize Blackwell's prediction procedure for two categories. The algorithm of Blackwell can be described as follows using Figure 1 below. Let x_{1}, x_{2}, \ldots be an infinite $0-1$ sequence. Let $\bar{x}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$ be the relative frequency of the "ones" and $\bar{\gamma}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\left\{Y_{k}=x_{k}\right\}}$ the relative frequency of correct guesses. Let $\mu_{n}=\left(\bar{x}_{n}, \bar{\gamma}_{n}\right) \in[0,1]^{2}$ and $\mathcal{S}=\left\{(x, y) \in[0,1]^{2} \mid y \geq \max (x, 1-x)\right\}$.

Figure 1

[^0]In Fig. [1, let D_{1}, D_{2} and D_{3} be the left, right, and bottom triangles, respectively, in the unit square so that $D_{1}=\left\{(x, y) \in[0,1]^{2} \mid x \leq y \leq 1-x\right\}$ etc. When $\mu_{n} \in D_{3}$, draw the line through the points μ_{n} and $\left(\frac{1}{2}, \frac{1}{2}\right)$ and let $\left(w_{n}, 0\right)$ be the point where this line crosses the horizontal axis. The Blackwell algorithm chooses its prediction Y_{n+1} on the basis of μ_{n} according to the (conditional) probabilities

$$
P\left(Y_{n+1}=1\right)= \begin{cases}0 & \text { if } \mu_{n} \in D_{1} \\ 1 & \text { if } \mu_{n} \in D_{2} \\ w_{n} & \text { if } \mu_{n} \in D_{3}\end{cases}
$$

When μ_{n} is in the interior of \mathcal{S}, Y_{n+1} can be chosen arbitrarily. Let $Y_{1}=0$. It then holds that for the Blackwell algorithm applied to any $0-1$ sequence x_{1}, x_{2}, \ldots the sequence $\left(\mu_{n} ; n \geq 1\right)$ converges almost surely to \mathcal{S}, i.e. $\operatorname{dist}\left(\mu_{n}, \mathcal{S}\right) \rightarrow 0$ as $n \rightarrow \infty$ almost surely. Here $\operatorname{dist}(\cdot, \cdot)$ denotes the Euclidean distance from μ_{n} to \mathcal{S}.

As Blackwell once pointed out this is a direct consequence of his Theorem 1 in [1] when one chooses the payoff matrix as

$$
\left(\begin{array}{ll}
(0,1) & (1,0) \\
(0,0) & (1,1)
\end{array}\right) .
$$

For a quick almost sure argument see [4]. Blackwell also raised the question whether his Theorem 1 of [1] applies to sequential prediction when there are more than two categories. We shall study this question and finally answer it affirmative.

We construct a Blackwell type prediction procedure for $d>2$ categories by choosing the state space and the randomisation rules in a certain way. This procedure then has similar properties as Blackwell's original one. It also has the feature that the d-category procedure reduces to the $(d-1)$ category procedure if one category is not observed.

The structure of this paper is as follows. In Section 2 we introduce the appropriate state space and define the randomisation rule. In Section 3 we state the convergence result and prove it. For that we shall apply a simplified version of Blackwell's Theorem 1 of [1], which we also state in Section 3,

This paper is a continuation of [2], where the case $d=3$ was discussed, and of the diploma thesis of R. Sandvoss [5].

We shall use the following notation: Latin letters for points, vectors, and indices, greek letters for scalars. We denote components of vectors or points by superindices like $v=\left(v^{(0)}, \ldots, v^{(d-1)}\right) \in \mathbb{R}^{d} . e_{0}=(1,0, \ldots, 0), \ldots, e_{d-1}=(0, \ldots, 0,1)$ denote the d-dimensional unit points and $\mathbb{1}_{d}=(1, \ldots, 1)$. The affine subspace of \mathbb{R}^{d} generated by the points $a_{0}, \ldots, a_{n} \in \mathbb{R}^{d}$ is given by
$A\left(\left\{a_{0}, \ldots, a_{n}\right\}\right):=\left\{a \in \mathbb{R}^{d} \mid a=\sum_{i=0}^{n} \lambda_{i} a_{i}, \sum_{i=0}^{n} \lambda_{i}=1, \lambda_{i} \in \mathbb{R}, a_{i} \in \mathbb{R}^{d}, i=0, \ldots, n\right\}$.

The convex hull of $a_{i}, \ldots, a_{n} \in \mathbb{R}^{d}$ is given by

$$
\begin{aligned}
& \operatorname{conv}\left(\left\{a_{0}, \ldots, a_{n}\right\}\right) \\
& \quad=\left\{a \in \mathbb{R}^{d} \mid a=\sum_{i=0}^{n} \lambda_{i} a_{i}, \sum_{i=0}^{n} \lambda_{i}=1, \lambda_{i} \in[0,1], a_{i} \in \mathbb{R}^{d}, i=0, \ldots, n\right\} .
\end{aligned}
$$

The Euclidean scalar product on \mathbb{R}^{d} is given by $\langle\cdot, \cdot\rangle$, the Euclidean distance by $\operatorname{dist}(\cdot, \cdot)$.

2 The Construction of the d-Dimensional Prediction Procedure

2.1 The Structure of the Prediction Prism

For $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in D$ let $Y_{1}, Y_{2}, \ldots, Y_{n} \in D$ denote the corresponding predictions. Let $\bar{x}_{n}=\left(\bar{x}_{n}^{(0)}, \ldots, \bar{x}_{n}^{(d-1)}\right)$ with $\bar{x}_{n}^{(l)}=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\left\{x_{i}=l\right\}}, l \in D$, denote the vector of the relative frequencies of the n outcomes and $\bar{\gamma}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\left\{Y_{k}=x_{k}\right\}}$ the relative frequency of correct predictions.

Let

$$
\boldsymbol{\Sigma}_{d-1}=\left\{\left(q_{0}, \ldots, q_{d-1}\right) \mid q_{l} \geq 0, \sum_{l=0}^{d-1} q_{l}=1\right\}
$$

denote the unit simple in \mathbb{R}^{d} and

$$
W_{d}=\Sigma_{d-1} \times[0,1]=\left\{(q, \gamma) \mid q \in \Sigma_{d-1}, 0 \leq \gamma \leq 1\right\}
$$

Since $\sum_{l=0}^{d-1} x_{n}^{(l)}=1$, we have $\bar{x}_{n} \in \boldsymbol{\Sigma}_{d-1}$ and $\left(\bar{x}_{n}, \bar{\gamma}_{n}\right) \in W_{d}$. Let $\mathscr{S}_{d}=$ $\left\{(q, \gamma) \in W_{d} \mid \gamma \geq \max _{l} q^{(l)}\right\}$. We are interested in prediction procedures for which $\mu_{n}:=\left(\bar{x}_{n}, \bar{\gamma}_{n}\right)$ converges to \mathscr{S}_{d} for every sequence x_{1}, x_{2}, \ldots This means that the Euclidean distance $\operatorname{dist}\left(\mu_{n}, \mathscr{S}_{d}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Unfortunately Blackwell's Theorem 1 of [1] cannot be applied directly. The reader may take a look at Theorem 3.3 below which is a simplified version of Blackwell's result. The condition (C) there does not hold in general for W_{d} and \mathcal{S}_{d}. (To see this, let $d=3, s=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \mu_{n}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right)$. Then $p\left(\mu_{n}\right)=\mu_{n}$, and $s-\mu_{n}$ is not perpendicular to $\mathcal{R}\left(p\left(\mu_{n}\right)\right)$.)

The difficulties vanish when one modifies the state space in the right way. Let $V_{d}=\left\{q+\gamma \mathbb{1}_{d} \mid(q, \gamma) \in W_{d}\right\}$ with $\mathbb{1}_{d}=(1, \ldots, 1)$. Then $v_{n}:=\bar{x}_{n}+\bar{\gamma}_{n} \mathbb{1}_{d} \in V_{d}$ for all n. The convergence of μ_{n} to \mathscr{S}_{d} corresponds to that of v_{n} to \mathcal{S}_{d} where $\mathcal{S}_{d}=\left\{q+\gamma \mathbb{1}_{d} \in V_{d} \mid \gamma \geq \max _{l} q^{(l)}\right\}$. This follows from the fact that $\Psi: W_{d} \rightarrow V_{d}$ with $\Psi((q, \gamma))=q+\gamma \mathbb{1}_{d}$ is an isometric bijection of W_{d} on V_{d}. We note that for $z, z^{\prime} \in W_{d}$ it holds that

$$
\operatorname{dist}\left(\Psi(z), \Psi\left(z^{\prime}\right)\right)^{2}=\sum_{i=0}^{d-1}\left(z_{i}-z_{i}^{\prime}\right)^{2}+d \cdot\left(z_{d}-z_{d}^{\prime}\right)^{2}
$$

To construct the appropriate randomisation regions let us "cut" the prism V_{d} by certain hyperplanes. (This corresponds to splitting the unit square by the diagonals in the case of two categories.)

Let $e_{0}=(1,0,0, \ldots, 0), \ldots, e_{d-1}=(0,0, \ldots, 0,1)$ denote the d-dimensional unit points. Let $E_{l}=A\left(\left\{e_{0}, \ldots, e_{l-1}, e_{l}+\mathbb{1}_{d}, e_{l+1}, \ldots, e_{d-1}\right\}\right), l=0, \ldots, d-1$, denote the hyperplanes which contain one vertex of the "upper side" of the prism $e_{l}+\mathbb{1}_{d}$ and $(d-1)$ vertices $e_{k} \neq e_{l}$ of \mathcal{S}_{d-1}. The d hyperplanes E_{l} cut the prism V_{d} in 2^{d} pieces, and all contain the point $s=\left(\frac{2}{d}, \frac{2}{d}, \ldots, \frac{2}{d}\right)$. In this point s the planes E_{l} are all perpendicular to each others.

This can easily be seen since their corresponding normal vectors are given by $n_{l}=-e_{l}+\frac{2}{d} \mathbb{1}_{d}$. This leads to the following characterization of lying "above" E_{i} :

$$
v \text { lies above } E_{i} \Leftrightarrow\left\langle v-n_{i}, n_{i}\right\rangle<0 .
$$

In the same way one defines lying below and in E_{i}.
Now we can describe \mathcal{S}_{d} in two different ways:

$$
\begin{aligned}
\mathcal{S}_{d} & =\left\{q+\gamma \mathbb{1}_{d} \in V_{d} \mid\left\langle q-n_{l}, n_{l}\right\rangle \geq 0 \text { for } l=0, \ldots, d-1\right\} \\
& =\left\{q+\gamma \mathbb{1}_{d} \in V_{d} \mid \gamma \geq \max \left(q^{(0)}, \ldots, q^{(d-1)}\right)\right\} .
\end{aligned}
$$

For the case $d=3$ the sets V_{d} and \mathcal{S}_{d} are shown in the following figures.

Figure 2

Figure 3

2.2 The Randomisation Rule

For $v_{n}=\bar{x}_{n}+\bar{\gamma}_{n} \mathbb{1}_{d}$ we will define a d-dimensional random vector $p\left(v_{n}\right) \in \boldsymbol{\Sigma}_{d-1}$. It plays the same role as w_{n} does in the $0-1$ case. With it we define Y_{n+1} :

$$
P\left(\left\{Y_{n+1}=k\right\}\right)=p^{(k)}\left(v_{n}\right) \text { for } k \in D .
$$

Definition 2.1 Let $v_{n} \in V_{d}, n \in \mathbb{N}$ and let $\left(i_{0}, \ldots, i_{d-1}\right)$ be a permutation of $(0, \ldots, d-1)$ such that it holds:

$$
\begin{aligned}
\left\langle v_{n}-n_{l}, n_{l}\right\rangle \leq 0 & \text { for } l=i_{0}, \ldots, i_{j} \\
\text { and } \quad\left\langle v_{n}-n_{l}, n_{l}\right\rangle>0 & \text { for } l=i_{j+1}, \ldots, i_{d-1} .
\end{aligned}
$$

Case 1: Let $v_{n} \in V_{d} \backslash \mathcal{S}_{d}$.
Let $A_{1}=A\left(\left\{\frac{2}{d} \mathbb{1}_{d}, e_{i_{j+1}}, \ldots, e_{i_{d-1}}, v_{n}\right\}\right)$ be the affine space of \mathbb{R}^{d} generated by the points in the waved brackets. Let $A_{2}=A\left(\left\{e_{i_{0}}, \ldots, e_{i_{j}}\right\}\right)$ denote the corresponding affine space. The intersection $A_{1} \cap A_{2}$ contains exactly one point of $\boldsymbol{\Sigma}_{d-1}$, we call it $p\left(v_{n}\right)$.
Case 2: Let $v_{n} \in \partial \mathcal{S}_{d}$. Let $\nu=\#\left\{E_{k} \mid v_{n} \in E_{k}\right.$ for $\left.k=0, \ldots, d-1\right\}$.
Then

$$
p_{\left(v_{n}\right)}^{(k)}= \begin{cases}1 / \nu & \text { for } v_{n} \in E_{k} \\ 0 & \text { for } v_{n} \notin E_{k}\end{cases}
$$

for $k=0,1, \ldots, d-1$.
The prediction procedure just defined is called "Generalized Blackwell algorithm".

Remarks 2.2 1) The case $v_{n} \in \mathcal{S}_{d} \backslash \partial \mathcal{S}_{d}$ does not occur by the construction of the rule.
2) $A_{2}=\emptyset$ cannot occur, since then there exists at least one $k \in D$ with $\left\langle v_{n}-n_{k}, n_{k}\right\rangle \leq 0$.
3) We note that $A_{1} \cap A_{2}$ contains always just one point of $\boldsymbol{\Sigma}_{d-1}$.
4) For $j=d-1$ one obtains $A_{1}=A\left(\left\{\frac{2}{d} \mathbb{1}_{d}, v_{n}\right\}\right)$, $A_{2}=A\left(\left\{e_{i_{0}}, \ldots, e_{i_{d-1}}\right\}\right)$ and $p\left(v_{n}\right)$ is the projection along the line, defined by $\frac{2}{d} \mathbb{1}_{d}$ and v_{n} "down" to Σ_{d-1}.
5) For $d=3$ the following figure shows the randomisation in a "lower" side piece of the prism. Here planes lie above μ_{n} and one below.

Figure 4

3 The Convergence Result

3.1 Main Result

Theorem 3.1 Let $d \geq 2$. Then for the generalized Blackwell algorithm, applied to any infinite sequence x_{1}, x_{2}, \ldots with values in D, it holds that $\operatorname{dist}\left(v_{n}, \mathcal{S}_{d}\right) \rightarrow 0$ with probability one as $n \rightarrow \infty$.

Now we shall derive Theorem [3.1] by tracing it back to Blackwell's Theorem 1 of [1]. This we first state in a simplified version.

3.2 Blackwell's Minimax Theorem

We consider a repeated game of two players with a payoff matrix $M=\left(m_{i j}\right)$ with $m_{i j} \in \mathbb{R}^{d}$ and $1 \leq i \leq r$ and $1 \leq j \leq s$. Player I chooses the row, player II the column. Let

$$
\mathcal{P}=\left\{p=\left(p_{1}, \ldots, p_{r}\right) \mid p_{i} \geq 0, \sum_{i=1}^{r} p_{i}=1\right\}
$$

denote the mixed actions of player I and

$$
\mathcal{Q}=\left\{q=\left(q_{1}, \ldots, q_{s}\right) \mid q_{j} \geq 0, \sum_{j=1}^{s} q_{j}=1\right\}
$$

the mixed actions of player II. A strategy f in a repeated game for player I is a sequence $f=\left(f_{k} ; k \geq 1\right)$ with $f_{k} \in \mathcal{P}$. A strategy g for player II is defined similarly. Two strategies define a sequence of payoffs $z_{k}, k=1,2, \ldots$ In detail: If in the k-th game i and j are choosen according to f_{k} and g_{k}, the payment to player I is $m_{i j} \in \mathbb{R}^{d}$. Blackwell discussed in [1] the question: Can player I control
$\bar{z}_{n}=\frac{1}{n} \sum_{k=1}^{n} z_{k}$ with a certain strategy such that \bar{z}_{n} approaches a given set \mathcal{S} independently of what player II does?

Definition 3.2 A set $\mathcal{S} \subset \mathbb{R}^{d}$ is approachable for player I if there exists a strategy f^{*} for which $\operatorname{dist}\left(\bar{z}_{n}, \mathcal{S}\right) \rightarrow 0$ with probability one.

Theorem 3.3 (Blackwell) For $p \in \mathcal{P}$ let

$$
\mathcal{R}(p)=\operatorname{conv}\left(\sum_{i=1}^{r} p_{i} m_{i j} ; j=1,2, \ldots, s\right)
$$

Let \mathcal{S} denote a closed convex subset of \mathbb{R}^{d}. For every $z \notin \mathcal{S}$ let y denote the closest point in \mathcal{S} to z. We assume:
(C) For every $z \notin \mathcal{S}$ there exists a $p(z) \in \mathcal{P}$ such that the hyperplane through y, which is perpendicular to the line segment $\overline{z y}$, seperates z from $\mathcal{R}(p(z))$.

Then \mathcal{S} is approachable for player I.

3.3 Proof of the Main Result

To apply Theorem 3.3 to our case, we choose the vertices of V_{d} as "payments":

$$
m_{i j}= \begin{cases}e_{i}+\mathbb{1}_{d} & \text { if } i=j \\ e_{j} & \text { if } i \neq j\end{cases}
$$

We choose \mathcal{S} as $\mathcal{S}_{d}=\left\{q+\gamma \mathbb{1}_{d} \in V_{d} \mid \gamma \geq \max _{l} q^{(l)}\right\}$. Then

$$
\begin{aligned}
\mathcal{R}(p) & =\operatorname{conv}\left(\left\{\sum_{i=0, i \neq j}^{d-1} p^{(i)} e_{j}+p^{(j)}\left(e_{j}+\mathbb{1}_{d}\right) \mid j=0, \ldots, d-1\right\}\right) \\
& =\operatorname{conv}\left(\left\{\sum_{i=0}^{d-1} p^{(i)} e_{j}+p^{(j)} \mathbb{1}_{d} \mid j=0, \ldots, d-1\right\}\right) \\
& =\operatorname{conv}\left(\left\{e_{j}+p^{(j)} \mathbb{1}_{d} \mid j=0, \ldots, d-1\right\}\right) .
\end{aligned}
$$

It is left to show that condition (C) is fulfilled.
Let $v \in V_{d} \backslash \mathcal{S}_{d}$. We denote by $v_{\text {proj }}$ the closest point in \mathcal{S}_{d} to v. We will show:
Fact $1 v_{\text {proj }} \in \mathcal{R}(p(v))$
Fact $2 v-v_{\text {proj }}$ is perpendicular to $A(\mathcal{R}(p))$. Here $A(\mathcal{R}(p))$ means the smallest affine subspace which contains $\mathcal{R}(p)$.

Both facts together imply condition (C) and finally Theorem 3.1.
For the proofs we shall assume that the following situation holds: For $v \in V_{d} \backslash \mathcal{S}_{d}$ it holds

$$
\begin{aligned}
\left\langle v-n_{i}, n_{i}\right\rangle \leq 0 & \text { for } i=0, \ldots, j \\
\text { and } \quad\left\langle v-n_{i}, n_{i}\right\rangle>0 & \text { for } i=j+1, \ldots, d-1 .
\end{aligned}
$$

Proof of Fact 1: v lies below E_{i} for $i=0,1, \ldots, j$, but $v_{\text {proj }} \in \mathcal{S}_{d}$. Thus $v_{\text {proj }} \in$ $E_{0} \cap \cdots \cap E_{j}$. Then

$$
E_{0} \cap \cdots \cap E_{j}=A\left(\left\{e_{j+1}, \ldots, e_{d-1}, \frac{2}{d} \mathbb{1}_{d}\right\}\right) .
$$

Thus

$$
\begin{aligned}
v_{\text {proj }} \in & A\left(\left\{e_{j+1}, \ldots, e_{d-1} \frac{2}{d} \mathbb{1}_{d}\right\}\right) \cap V_{d} \\
& \subset A\left(\left\{e_{i}+p^{(i)}(v) \mathbb{1}_{d} \mid i=0, \ldots, d-1\right\}\right) \cap V_{d}=\mathcal{R}(p(v))
\end{aligned}
$$

The inclusion follows since $p^{(l)}(v)=0$ for $j+1=l \leq d-1$ and $\frac{2}{d} \mathbb{1}_{d}=\frac{1}{d} \sum_{i=0}^{d-1}\left(e_{i}+\right.$ $p^{(i)} \mathbb{1}_{d}$.

Fact 2 will be proven by a sequence of lemmata. At first we generate a new auxiliary point \tilde{v} which lies in the same plane as $p(v)$.

Lemma 3.4 For $v \in V_{d} \backslash \mathcal{S}_{d}$ let $A^{\prime}=A\left(\left\{v, v_{\text {proj }}\right\}\right)$ and $A^{\prime \prime}=$ $A\left(\left\{e_{j+1}, \ldots, e_{d-1}, p(v)\right\}\right)$. Then there exists exactly one point $\tilde{v} \in A^{\prime} \cap A^{\prime \prime}$ and $\tilde{v} \notin S_{d}$.

Proof: Let $A_{1}=A\left(\left\{e_{j+1}, \ldots, e_{d-1}, \frac{2}{d} \mathbb{1}_{d}, v\right\}\right)$ as in Definition 2.1. Then according to Definition 2.1 $p(v) \in A_{1}$ and $v_{\text {proj }} \in A_{1}$ by the proof of Fact 1 . Then it follows that $\frac{2}{d} \mathbb{1}_{d} \in A^{\prime} \vee A^{\prime \prime}$. Here $A^{\prime} \vee A^{\prime \prime}$ denotes the smallest affine space, which contains $A^{\prime}, A^{\prime \prime}$. It holds $A_{1}=A^{\prime} \vee A^{\prime \prime}$. Since A^{\prime} and $A^{\prime \prime}$ are not parallel it follows that $A^{\prime} \cap A^{\prime \prime} \neq \emptyset$ and by the dimension formula $\operatorname{dim}\left(A^{\prime} \cap A^{\prime \prime}\right)=0$. Hence $A^{\prime} \cap A^{\prime \prime}$ contains exactly one point. We call it \tilde{v}. If $\tilde{v} \in \mathcal{S}_{d}$, then $\tilde{v} \in \mathcal{S}_{d} \cap A^{\prime \prime}$. Then $\mathcal{S}_{d} \cap A\left(\boldsymbol{\Sigma}_{d-1}\right) \neq \emptyset$, which is a contradiction to the definitions of \mathcal{S}_{d} and $\boldsymbol{\Sigma}_{d-1}$.

A direct consequence of Lemma 3.4 is
Fact 3: a) $v_{\text {proj }}=(\tilde{v})_{\text {proj }}$;
b) $v-v_{\text {proj }} \perp A(\mathcal{R}(p)) \Leftrightarrow \tilde{v}-(\tilde{v})_{\text {proj }} \perp A(\mathcal{R}(p))$.

We shall use Fact 3 to show Fact 2. At first we calculate $(\tilde{v})_{\text {proj }}$ from \tilde{v}. For simplification, we write $\tilde{v}_{\text {proj }}$ instead of $(\tilde{v})_{\text {proj }}$ from now on.

Lemma 3.5

$$
\tilde{v}_{\mathrm{proj}}^{(l)}= \begin{cases}\frac{2}{d}\left(1-\sum_{\substack{k=j+1}}^{d-1} \lambda_{k}\right) & \text { for } l=0, \ldots, j, \\ \frac{2}{d}\left(1-\sum_{\substack{k=j+1 \\ k \neq l}}^{d-1} \lambda_{k}\right)+\left(1-\frac{2}{d}\right) \lambda_{l} & \text { for } l=j+1, \ldots, d-1,\end{cases}
$$

where $\tilde{v}=p+\lambda_{j+1}\left(e_{j+1}-p\right)+\cdots+\lambda_{d-1}\left(e_{d-1}-p\right) \in A^{\prime \prime}$.

Proof: From the proofs of Fact 1 and 3 it follows that

$$
\tilde{v}_{\text {proj }} \in A\left(\left\{e_{j+1}, \ldots, e_{d-1}, \frac{2}{d} \mathbb{1}_{d}\right\}\right) \cap \mathcal{S}_{d} .
$$

The smallest affine space, which contains this set is given by

$$
A=\left\{a \in \mathbb{R}^{d} \left\lvert\, a=\frac{2}{d} \mathbb{1}_{d}+\delta_{j+1}\left(e_{j+1}-\frac{2}{d} \mathbb{1}_{d}\right)+\ldots+\delta_{d-1}\left(e_{d-1}-\frac{2}{d} \mathbb{1}_{d}\right)\right.\right\}
$$

To find $\tilde{v}_{\text {proj }}$ the projection for v on \mathcal{S}_{d}, we minimize the distance of v to A.

For $a \in A$

$$
\begin{align*}
d(\tilde{v}, a)^{2}= & \sum_{l=0}^{j}\left(\tilde{v}^{(l)}-\frac{2}{d}+\delta_{j+1} \frac{2}{d}+\ldots+\delta_{d-1} \frac{2}{d}\right)^{2} \tag{3.1}\\
& +\sum_{l=j+1}^{d-1}\left(\tilde{v}^{(l)}-\frac{2}{d}-\delta_{l}\left(1-\frac{2}{d}\right)+\sum_{\substack{k=j+1 \\
k \neq l}}^{d-1} \delta_{k} \frac{2}{d}\right)^{2} .
\end{align*}
$$

Calculating partial derivatives with respect to $\delta_{i}, i=j+1, \ldots, d-1$, yields

$$
\begin{aligned}
\frac{\partial d(\tilde{v}, a)^{2}}{\partial \delta_{i}}= & \sum_{l=0}^{j} 2\left(\tilde{v}^{(l)}-\frac{2}{d}+\delta_{j+1} \frac{2}{d}+\ldots+\delta_{d-1} \frac{2}{d}\right) \frac{2}{d} \\
& +\sum_{l=j+1}^{d-1} 2\left(\tilde{v}^{(l)}-\frac{2}{d}-\delta_{l}\left(1-\frac{2}{d}\right)+\sum_{\substack{k=j+1 \\
k \neq l}}^{d-1} \delta_{k} \frac{2}{d}\right) \alpha \\
= & 2\left(\frac{2}{d} \sum_{\substack{l=0 \\
l \neq i}}^{d-1} \tilde{v}^{(l)}-\left(1-\frac{2}{d}\right) \tilde{v}^{(i)}-\frac{2}{d}+\delta_{i}\right)
\end{aligned}
$$

where $\alpha=\frac{2}{d}$ for $l \neq i, \alpha=-\left(1-\frac{2}{d}\right)$ for $l=i$, and thus

$$
\frac{\partial d(\tilde{v}, a)^{2}}{\partial \delta_{i}}=0 \Leftrightarrow \delta_{i}=\frac{2}{d}\left(1-\sum_{\substack{l=0 \\ l \neq i}}^{d-1} \tilde{v}^{(l)}\right)+\left(1-\frac{2}{d}\right) \tilde{v}^{(i)} .
$$

The determinant of the Hessian is positive which shows that a minimum occurs. According to the statement of Lemma 3.5 the components of \tilde{v} has the following representation

$$
\tilde{v}^{(l)}= \begin{cases}p^{(l)}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & \text { for } l=0, \ldots, j \tag{3.2}\\ \lambda_{l} & \text { for } l=j+1, \ldots, d-1\end{cases}
$$

where one should note that $p^{(j+1)}=\ldots=p^{(d-1)}=0$.
Plugging in the equation of $\delta_{i}, i=j+1, \ldots, d-1$, and noting that $\sum_{l=0}^{j} p^{(l)}=1$ leads to

$$
\delta_{i}=\frac{2}{d}\left(1-\sum_{l=0}^{j} p^{(l)}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)-\sum_{\substack{l=j+1 \\ l \neq i}}^{d-1} \lambda_{k}\right)+\left(1-\frac{2}{d}\right) \lambda_{i}
$$

and finally to $\delta_{i}=\lambda_{i}$. Plugging this in equation (3.1) leads to the statement of the Lemma.

Lemma 3.6 It holds:

1) $\left(\tilde{v}-\tilde{v}_{\text {proj }}\right)^{(l)}= \begin{cases}\left(p^{(l)}-\frac{2}{d}\right)\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & \text { for } l=0, \ldots, j, \\ -\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & \text { for } l=j+1, \ldots, d-1 .\end{cases}$
2) The smallest affine subspace which contains $\mathcal{R}(p)$ can be expressed as $x+U$ where one can choose $x=\tilde{v}_{\text {proj }}$ and

$$
\begin{array}{ll}
e_{i}+p^{(i)} \mathbb{1}_{d}-\tilde{v}_{\text {proj }} & \text { for } i=0, \ldots, j \\
e_{i}-\tilde{v}_{\text {proj }} & \text { for } i=j+1, \ldots, d-1
\end{array}
$$

as linear generating system of U.

Proof: Statement 1) is a direct consequence of Lemma 3.5 and (3.1). Statement 2) follows from the fact that $\tilde{v}_{\text {proj }}=v_{\text {proj }} \in \mathcal{R}(p(v))$ and that $\mathcal{R}(p)=\operatorname{conv}\left(e_{i}+p^{(i)} \mathbb{1}_{d} \mid\right.$ $i=1, \ldots, d-1)$ where $p^{(j+1)}=\ldots=p^{(d-1)}=0$.

Lemma 3.7 It holds

$$
\tilde{v}-\tilde{v}_{\text {proj }} \perp e_{i}+p^{(i)} \mathbb{1}_{d}-\tilde{v}_{\text {proj }} \quad \text { for } i=0, \ldots, j .
$$

Proof: Lemma 3.5 implies

$$
\begin{array}{rll}
\left(e_{i}+\right. & \left.p^{(i)} \mathbb{1}_{d}-\tilde{v}_{\text {proj }}\right)^{(l)} \\
& = \begin{cases}p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & l=0, \ldots, j ; l \neq i, \\
1+p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & l=i, \\
p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1, k \neq l}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{l} & l=j+1, \ldots, d-1 .\end{cases} \tag{3.4}
\end{array}
$$

From (3.3) and (3.4) it follows

$$
\begin{aligned}
\langle\tilde{v}= & \left.\tilde{v}_{\text {proj }}, e_{i}+p^{(i)} \mathbb{1}_{d}-\tilde{v}_{\text {proj }}\right\rangle \\
= & \sum_{\substack{l=0 \\
l \neq i}}^{j}\left(p^{(l)}-\frac{2}{d}\right)\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right) \\
& +\left(p^{(i)}-\frac{2}{d}\right)\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(1+p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right) \\
& -\sum_{l=j+1}^{d-1} \frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1 k \neq l}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{l}\right) \\
= & \left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) \cdot\left[\left(p^{(i)}-\frac{2}{d}\right)+\sum_{i=0}^{j} p^{(l)}\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right)\right. \\
& -\sum_{l=0}^{i} \frac{2}{d}\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right)-\sum_{l=j+1}^{d-1} \frac{2}{d}\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right) \\
& \left.+\sum_{k=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{k}+\sum_{l=j+1}^{d-1} \frac{2}{d}\left(1-\frac{2}{d}\right) \lambda_{l}\right] \\
= & \left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) \\
& \cdot\left[p^{(i)}-\frac{2}{d}+p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)-d \frac{2}{d}\left(p^{(i)}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right)\right. \\
& \left.+\sum_{k=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{k}+\sum_{l=j+1}^{d-1} \frac{2}{d} \lambda_{l}-\sum_{l=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{l}\right]=0 .
\end{aligned}
$$

Lemma 3.8 It holds

$$
\tilde{v}-\tilde{v}_{\text {proj }} \perp e_{i}+\tilde{v}_{\text {proj }} \quad \text { for } i=j+1, \ldots, d-1 .
$$

Proof: By Lemma 3.5 one gets

$$
\begin{align*}
& \left(e_{i}-\tilde{v}_{\mathrm{proj}}\right)^{(l)} \\
& \quad= \begin{cases}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) & l=0, \ldots, j, \\
-\frac{2}{d}\left(1-\sum_{\substack{k=j+1 \\
k \neq l}}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{l} & l=j+1, \ldots, d-1 ; l \neq i, \\
1-\frac{2}{d}\left(1-\sum_{\substack{k=j+1 \\
k \neq i}}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{i} & l=i .\end{cases} \tag{3.5}
\end{align*}
$$

From (3.3) and (3.5) it follows

$$
\begin{aligned}
\langle\tilde{v}- & \left.\tilde{v}_{\text {proj }}, e_{i}-\tilde{v}_{\text {proj }}\right\rangle \\
= & \sum_{l=0}^{j}\left(p^{(l)}-\frac{2}{d}\right)\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right) \\
& +\sum_{\substack{l=j+1 \\
l \neq i}}^{d-1}-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(-\frac{2}{d}\left(1-\sum_{\substack{k=j+1 \\
k \neq l}}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{l}\right) \\
& -\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\left(1-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)-\left(1-\frac{2}{d}\right) \lambda_{i}\right) \\
= & \left(1-\sum_{k=j}^{d-1} \lambda_{k}\right) \\
& \cdot\left[\sum_{l=0}^{i} p^{(l)}\left(-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right)+\sum_{l=0}^{j} \frac{2}{d} \frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)\right. \\
& \left.+\sum_{l=j+1}^{d-1} \frac{2}{d} \frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)+\sum_{k=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{k}+\sum_{l=j+1}^{d-1} \frac{2}{d}\left(1-\frac{2}{d}\right) \lambda_{l}-\frac{2}{d}\right] \\
= & \left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right) \\
& \cdot\left[-\frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)+d \frac{2}{d} \frac{2}{d}\left(1-\sum_{k=j+1}^{d-1} \lambda_{k}\right)+\sum_{k=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{k}\right. \\
& \left.+\sum_{l=j+1}^{d-1} \frac{2}{d} \lambda_{l}-\sum_{l=j+1}^{d-1} \frac{2}{d} \frac{2}{d} \lambda_{l}-\frac{2}{d}\right]=0 .
\end{aligned}
$$

Finally we can state the proof of Fact 2: By Lemma 3.6, 3.7, and 3.8 one has $\tilde{v}-\tilde{v}_{\text {proj }} \perp A(\mathcal{R}(p))$. By Fact 1 it follows that $v-v_{\text {proj }} \perp A(\mathcal{R}(p))$.

Acknowledgements.

References

[1] Blackwell, D. (1956) An Analog of the Minimax Theorem for Vector Payoffs. Pacific Journal of Mathematics, 6, 1-8.
[2] Lerche, H. R., Sakar, J. (1994) The Blackwell Prediction Algorithm for 0-1 sequences and generalization. In Statistical Decision Theory and Related Topics V, Eds.: S. S. Gupta, Y. O. Berger, Springer Verlag, 503-511.
[3] Riedel, F. (2008) Blackwell's Theorem with Weighted Averages. Preprint.
[4] Robbins, H. and Siegmund, D. (1971) A Convergence Theorem for Nonnegative Almost Supermartingales and Some Applications. Optimizing Methods in Statistics. 233-257. Academic Press, New York.
[5] Sandvoss, R. (1994) Blackwell Vorhersageverfahren - zur Komplexität von Finanzdaten. Diplomarbeit Universität Freiburg.

[^0]: ${ }^{0}$ Date: 15 Feb 2011

