
ar
X

iv
:1

10
2.

28
78

v1
 [

st
at

.C
O

]
 1

4
Fe

b
20

11

Dual-Tree Fast Gauss Transforms

Dongryeol Lee

School of Computational Science and Engineering

Georgia Institute of Technology, Atlanta, GA. USA.

dongryel@cc.gatech.edu

Alexander G. Gray

School of Computational Science and Engineering

Georgia Institute of Technology, Atlanta, GA. USA.

agray@cc.gatech.edu

Andrew W. Moore

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA. USA.

awm@cs.cmu.edu

February 15, 2011

Abstract

Kernel density estimation (KDE) is a popular statistical technique for estimating the under-
lying density distribution with minimal assumptions. Although they can be shown to achieve
asymptotic estimation optimality for any input distribution, cross-validating for an optimal
parameter requires significant computation dominated by kernel summations. In this paper
we present an improvement to the dual-tree algorithm, the first practical kernel summation
algorithm for general dimension. Our extension is based on the series-expansion for the Gaus-
sian kernel used by fast Gauss transform. First, we derive two additional analytical machinery
for extending the original algorithm to utilize a hierarchical data structure, demonstrating the
first truly hierarchical fast Gauss transform. Second, we show how to integrate the series-
expansion approximation within the dual-tree approach to compute kernel summations with a
user-controllable relative error bound. We evaluate our algorithm on real-world datasets in the
context of optimal bandwidth selection in kernel density estimation. Our results demonstrate
that our new algorithm is the only one that guarantees a hard relative error bound and offers
fast performance across a wide range of bandwidths evaluated in cross validation procedures.

1 Introduction

Kernel density estimation (KDE) is the most widely used and studied nonparametric density esti-
mation method. The model is the reference datasetR itself, containing the reference points indexed

1

http://arxiv.org/abs/1102.2878v1

Algorithm 1 NaiveKDE(Q,R): A brute-force computation of KDE.

for each qi ∈ Q do
G(qi,R)← 0
for each rj ∈ R do
G(qi,R)← G(qi,R) +Kh(||qi − rj ||)

Normalize each G(qi,R)

by natural numbers. Assume a local kernel function Kh(·) centered upon each reference point, and
its scale parameter h (the ’bandwidth’). The common choices for Kh(·) include the spherical, Gaus-
sian and Epanechnikov kernels. We are given the query dataset Q containing query points whose
densities we want to predict. The density estimate at the i-th query point qi ∈ Q is:

p̂h(qi) =
1

|R|
∑

rj∈R

1

VDh

Kh (||qi − rj ||) (1)

where ||qi − rj || denotes the Euclidean distance between the i-th query point qi and the j-th
reference point rj , D the dimensionality of the data, |R| the size of the reference dataset, and

VDh =
∞∫

−∞
Kh(z)dz, a normalizing constant depending on D and h. With no assumptions on the

true underlying distribution, if h→ 0 and |R|h→∞ and K(·) satisfy some mild conditions:
∫
|p̂h(x)− p(x)|dx→ 0 (2)

as |R| → ∞ with probability 1. As more data are observed, the estimate converges to the true
density. In order to build our model for evaluating the densities at each qi ∈ Q, we need to
find the initially unknown asymptotically optimal bandwidth h∗ for the given reference dataset
R. There are two main types of cross-validation methods for selecting the asymptotically optimal
bandwidth. Cross-validation methods use the reference dataset R as the query dataset Q (i.e.
Q = R). Likelihood cross-validation is derived by minimizing the Kullback-Leibler divergence∫
p(x) log p(x)

p̂h(x)
dx, which yields the score:

CVLK(h) =
1

|R|
∑

rj∈R
log p̂h,−j(rj) (3)

where the −j subscript denotes an estimate using all |R| points except the j-th reference point. The
bandwidth h∗

CVLK
that maximizes CVLK(h) is an asymptotically optimal bandwidth in likelihood

cross validation sense. Least-squares cross-validation minimizes the integrated squared error∫
(p̂h(x) − p(x))

2
dx, yielding the score:

CVLS(h) =
1

|R|
∑

rj∈R

(
p̂
∗
−j(rj)− 2p̂−j(rj)

)
(4)

where p̂∗−j(·) is evaluated using the convolution kernel Kh(·) ∗ Kh(·). For the Gaussian kernel
with bandwidth of h, the convolution kernel Kh(·) ∗Kh(·) is the Gaussian kernel with bandwidth
of 2h. Both cross validation scores require |R| density estimate based on |R| − 1 points, yielding
a brute-force computational cost scaling quadratically (that is O(|R|2)) (see Algorithm 1). To
make matters worse, nonparametric methods require a large number of reference points for conver-
gence to the true underlying distribution and this has prevented many practitioners from applying
nonparametric methods for function estimation.

2

1.1 Efficient Computation of Gaussian Kernel Sums

One of the most commonly used kernel function is the Gaussian kernel, Kh(||qi−rj ||) = e
−||qi−rj||

2

2h2 ,
although it is not the asymptotically optimal kernel. In this paper we focus on evaluating the
Gaussian sums efficiently for each qi ∈ Q:

G(qi,R) =
∑

rj∈R
e

−||qi−rj ||
2

2h2 (5)

which is proportional to p̂(qi) using the Gaussian kernel. This computationally expensive sum
is evaluated many times when cross-validating for an asymptotically optimal bandwidth for the
Gaussian kernel. Algorithms have been developed to approximate the Gaussian kernel sums at the
expense of reduced precision. We consider the following two error bound criteria that measure the
quality of the approximation with respect to the true value.

Definition 1.1. (Bounding the absolute error) An approximation algorithm guarantees ǫ

absolute error bound, if for each exact value Φ(qi,R), it computes an approximation Φ̃(qi,R) such
that |Φ̃(qi,R)− Φ(qi,R)| ≤ ǫ.

Definition 1.2. (Bounding the relative error) An approximation algorithm guarantees ǫ

relative error bound, if for each exact value Φ(qi,R), it computes an approximation Φ̃(xq,R) such

that |Φ̃(qi,R)− Φ(qi,R)| ≤ ǫ|Φ(qi,R)|.

Bounding the relative error is much harder because the error bound is in terms of the initially
unknown exact quantity. Many previous methods [11, 19] have focused on bounding the absolute
error. Nevertheless, the relative error bound criterion is preferred to the absolute error bound
criterion in statistical applications. Therefore, our experiment will evaluate the performance of the
algorithms for achieving the user-specified relative error tolerance. Our new algorithm which builds
upon [9, 6, 7] is the only one to guarantee both the absolute error and the relative error bound
criterion for all density estimates.

1.2 Previous Approaches

There are three main approaches proposed for overcoming the computational barrier in evaluating
the Gaussian kernel sums:

1. to expand the kernel sum as a power series [11, 19, 13] using a grid or a flat-clustering.

2. to express the kernel sum as a convolution sum by using the grid of field charges created from
the dataset [18].

3. to utilize an adaptive hierarchical structure to group data points based on proximity [9, 6, 7].

Now we briefly describe the strengths and the weaknesses of these methods.

The Fast Gauss Transform (FGT). FGT [11] belongs to a family of methods called the Fast
Multipole Methods (FMM). These family of methods come with rigorous error bound on the kernel
sums. Unlike other FMM algorithms, FGT uses a grid structure (see Figure 1(a)) whose maximum
side length is restricted to be at most the bandwidth h used in cross-validation due to the error

3

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

(a) (b)

Figure 1: (a) Grid structure used in fast Gauss transform and multidimensional fast Fourier trans-
form. (b) Single-level Clustering structure used in improved fast Gauss transform.

bound criterion. FGT has not been widely used in higher dimensional statistical contexts. First,
the number of the terms in the power series expansion for the kernel sums grows exponentially
with dimensionality D; this causes computational bottleneck in evaluating the series expansion or
translating a series expansion from one center to another. Second, the grid structure is extremely
inefficient in higher dimensions since the storage cost is exponential in D and many of the boxes
will be empty.
The Improved Fast Gauss Transform (IFGT). IFGT is similar to FMM but utilizes a flat
clustering to group data points (see Figure 1(b)), which is more efficient than a grid structure used
in FGT. The number of clusters k is chosen in advance. A partition of the data points into C1, C2,
· · · , Ck is formed so that each reference point rj ∈ R is grouped according to its proximity to the
set of representative points c1, c2, · · · , ck. That is, rj ∈ Cm (whose representative point is cm) if
and only if ||rj − cm|| ≤ ||rj − cl|| for 1 ≤ l ≤ k.

Furthermore, IFGT proposes using a different series expansion that does not require translation
of expansion centers as done in FGT. The original algorithm [19] required tweaking of multiple
parameters which did not offer for a user to control the accuracy of the approximation. The latest
version [13] is now fully automatic in choosing the approximation parameter for the absolute error
bound, but is still inefficient except on large bandwidth parameters. We will discuss this further in
Section 4.

Fast Fourier Transform (FFT). FFT is often quoted as the solution to the computational
problem in evaluating the Gaussian kernel sums. Gaussian kernel summation using FFT is described
in [14] and [18]. [14] discusses the implementation of KDE only in a univariate case, while [18]
extends [14] to handle more than one dimension. It uses a grid structure shown in Figure 1(a) by
specifying the number of grid points along each dimension.

The algorithm first computes theM1×···×MD matrix by binning the data assigning the raw data
to neighboring grid points using one of the binning rules. This involves computing the minimum and
maximum coordinate values (gi,Mi

, gi,1), and the grid width δi =
gi,Mi

−gi,1
Mi−1 for each i-th dimension.

This essentially divides each i-th dimension into Mi− 1 intervals of equal length. In particular, [18]
discusses two different types of binning rules - linear binning, which is recommended by Silverman,
and nearest-neighbor binning. [18] states that nearest-neighbor binning rule performs poorly, so

4

A(0,0)

B(0,150) C(150,150)

D(150,0)

d

(50,50)

(a) Nearest Neighbor Binning Rule (A =
1, B = C = D = 0)

A(0,0)

B(0,150) C(150,150)

D(150,0)

(50,50)
d

(b) Linear Binning Rule (A = 4
9
, B =

2
9
, C = 1

9
,D = 2

9
)

Figure 2: Two possible binning rules for KDE using multidimensional fast Fourier transform.
Consider a data point falling in a two-dimensional rectangle. In 2(a), the entire weight is assigned
to the nearest grid point. In 2(b), the weight is distributed to all neighboring grid points by linear
interpolation.

we will test the implementation using the linear binning rule, as recommended by both authors. In

addition, we compute the L1 × · · · × LD kernel weight matrix, where Li = min
(⌊

τh
δi

⌋
,Mi − 1

)
,

with τ ≈ 4 and Kl =
d∏

k=1

e
−0.5lkδk

h2 , −Lk ≤ lk ≤ Lk, for l = [l1, ..., lD]T ∈ Z
D.

To reduce the wrap-around effects of fast Fourier transform near the dataset boundary, we
appropriately zero-pad the grid count and the kernel weight matrices to two matrices of the di-
mensionality P1 × · · ·PD, where Pi = 2log2⌈Mi+Li⌉. The key ingredient in this method is the use
of Convolution Theorem for Fourier transforms. The structure of the computed grid count ma-
trix and the kernel weight matrix is crafted to take advantage of the fast Fourier transform. For

every grid point g = (g1j1 , ..., gdjD), s̃k(gj) =
L1∑

l1=−L1

· · ·
LD∑

lD=−LD

cj−lKk,l can be computed using

the Convolution Theorem for Fourier Transform. After taking the convolution of the grid count
matrix and the kernel weight matrix, the M1 × · · · ×MD sub-matrix in the upper left corner of
the resultant matrix contains the kernel density estimate of the grid points. The density estimate
of each query point is then linearly interpolated using the density estimates of neighboring grid
points inside the cell it falls into. However, performing a calculation on equally-spaced grid points
introduces artifacts at the boundaries of the data. The linear interpolation of the data points by
assigning to neighboring grid points introduce further errors. Increasing the number of grid points
to use along each dimension can provide more accuracy but also require more space to store the
grid. Moreover, it is impossible to directly quantify incurred error on each estimate in terms of the
number of grid points.
Dual-tree KDE. In terms of discrete algorithmic structure, the dual-tree framework of [8] gener-
alizes all of the well-known kernel summation algorithms. These include the Barnes-Hut algorithm
[2], the Fast Multipole Method [10], Appel’s algorithm [1], and the WSPD [5]: the dual-tree method

5

The grid count matrix: cZ =




c1,1 · · · c1,M2

...
. . .

... 0
cM1,1 · · · cM1,M2

0 0




The kernel weight matrix: KZ =




K00 · · · K0L2 K0L2 · · · K01

...
. . .

... 0
...

. . .
...

KL10 · · · KL1L2 KL1L2 · · · KL11

0 0 0
KL10 · · · KL1L2 KL1L2 · · · KL11

...
. . .

... 0
...

. . .
...

K10 · · · K1L2 K1L2 · · · K11




where Kl1,l2 = e
−0.5((l1δ1)2+(l2δ2)2)

h2 .

Figure 3: The grid count and the kernel weight matrix formed for a two-dimensional dataset. They
are formed by appropriately zero-padding for taking the boundary-effects of fast Fourier transform
based algorithms into account.

is a node-node algorithm (considers query regions rather than points), is fully recursive, can use
distribution-sensitive data structures such as kd-trees, and is bichromatic (can specialize for differ-
ing query set Q and reference set R). It was applied to the problem of kernel density estimation in
[9] using a simple variant of a centroid approximation used in [1].

This algorithm is currently the fastest Gaussian kernel summation algorithm for general di-
mensions. Unfortunately, when performing cross-validation to determine the (initially unknown)
optimal bandwidth, both sub-optimally small and large bandwidths must be evaluated. Section 4
demonstrates that the dual-tree method tends to be efficient at the optimal bandwidth and at
bandwidths below the optimal bandwidth and at very large bandwidths. However, its performance
degrades for intermediately large bandwidths.

1.3 Our Contribution

In this paper we present an improvement to the dual-tree algorithm [9, 6, 7], the first practical kernel
summation algorithm for general dimension. Our extension is based on the series-expansion for the
Gaussian kernel used by fast Gauss transform [11]. First, we derive two additional analytical
machinery for extending the original algorithm to utilize a adaptive hierarchical data structure
called kd-trees [4], demonstrating the first truly hierarchical fast Gauss transform, which we call
the Dual-tree Fast Gauss Transform (DFGT). Second, we show how to integrate the series-expansion
approximation within the dual-tree approach to compute kernel summations with a user-controllable
relative error bound. We evaluate our algorithm on real-world datasets in the context of optimal
bandwidth selection in kernel density estimation. Our results demonstrate that our new algorithm
is the only one that guarantees a relative error bound and offers fast performance across a wide
range of bandwidths evaluated in cross validation procedures.

6

1.4 Structure of This Paper

This paper builds on [12] where the Dual-Tree Fast Gauss Transform was presented briefly. It
adds details on the approximation mechanisms used in the algorithm and provides a more thorough
comparison with the other algorithms. In Section 2, we introduce a general computational strategy
for efficiently computing the Gaussian kernel sums. In Section 3, we describe our extensions to
the dual-tree algorithm to handle higher-order series expansion approximations. In Section 4, we
provide performance comparison with some of the existing methods for evaluating the Gaussian
kernel sums.

1.5 Notations

The general notation conventions used throughout this paper are as follows. Q denotes the set of
query points for which we want to make the density computations. R denotes the set of reference
points which are used to construct the kernel density estimation model. Query points and reference
points are indexed by natural numbers i, j ∈ N and denoted qi and rj respectively. For any set S,
|S| denotes the number of elements in S. For any vector v ∈ R

D and 1 ≤ i ≤ D, let v[i] denote the
i-th component of v.

2 Computational Technique

We first introduce a hierarchical method for for organizing the data points for computation, and
describe the generalized N -body approach [9, 6, 7] that enables the efficient computation of kernel
sums using a tree.

2.1 Spatial Trees

A spatial tree is a hierarchical data structure that allows summarization and access of the dataset
at different resolutions. The recursive nature of hierarchical data structures enables efficient com-
putations that are not possible with single-level data structures such as grids and flat clusterings.
A hierarchical data structure satisfies the following properties:

1. There is one root node representing the entire dataset.

2. Each leaf node is a terminal node.

3. Each internal node N points to two child nodes NL and NR such that NL ∩ NR = ∅ and
NL ∪NR = N .

Since a node can be viewed as a collection of points, each term will be used interchangeably with
the other. A reference node is a collection of reference points and a query node is a collection of
query points. We use a variant of kd-trees [4] to form hierarchical groupings of points based on
their locations using the recursive procedure shown in Algorithm 2. In this procedure, the set of
points in each node N defines a bounding hyper-rectangle [N.b[1].l, N.b[1].u]× [N.b[2].l, N.b[2].u]×
· · · × [N.b[D].l, N.b[D].u] whose i-th coordinates for 1 ≤ i ≤ D are defined by: N.b[i].l = min

x∈N.P
x[i]

and N.b[i].u = min
x∈N.P

x[i] where N.P is the set of points owned by the node N . We also define the

7

Algorithm 2 BuildKdTree(P): Builds a mid-point kd-tree from P .
N ← empty node, N.P ← P , NL ← ∅, NR ← ∅
for each d ∈ [1, D] do
N.b[d].l ← min

x∈P
x[d], N.b[d].u← max

x∈P
x[d]

if |P| is above leaf threshold then
N.sd ← arg max

1≤d≤D
N.b[d].u−N.b[d].l

N.sc ← N.b[N.sd].l+N.b[N.sd].u
2

PL ← {x ∈ P|x[N.sd] ≤ N.sc}, PR ← {x ∈ P|x[N.sd] > N.sc}
NL ← BuildKdTree(PL), NR ← BuildKdTree(PR)

return N

geometric center of each node, which is

N.c =

[
N.b[1].l +N.b[1].u

2
,
N.b[2].l +N.b[2].u

2
, · · · , N.b[D].l +N.b[D].u

2

]T
∈ R

D

The node N is split along the widest dimension of the bounding hyper-rectangle N.sd into two
equal halves at the splitting coordinate N.sc. The algorithm continues splitting until the number
of points is below the leaf threshold. Computing a bounding hyper-rectangle requires O(|P|) cost.

2.2 Generalized N-body Approach

Recall that the computational task involved in KDE is defined as: ∀qi ∈ Q, compute G(qi,R) =
∑

rj∈R
e

−||qi−rj ||
2

2h2 . The general framework for computing a summation of this form is formalized

in [9, 6, 7]. This approach forms kd-trees for both the query and reference data and then perform a
dual-tree traversal over pairs of nodes, demonstrated in Figure 4 and Algorithm 3. This procedure is
called with Q and R as the root nodes of the query and the reference tree respectively. This allows
us to compare chunks of the query and reference data, using the bounding boxes and additional
information stored by the kd-tree to compute bounds on distances as shown in Figure 4. These
distance bounds can be computed in O(D) time using:

d
l(Q,R) =

1

2

√√√√
D∑

k=1

(
d
l,u
j,i [k] +

∣∣∣dl,uj,i [k]
∣∣∣+ d

l,u
i,j [k] +

∣∣∣dl,ui,j [k]
∣∣∣
)2

(6)

d
u(Q,R) =

√√√√
D∑

k=1

(
max

{
d
u,l
j,i [k], d

u,l
i,j [k]

})2
(7)

where d
l,u
j,i [k] = Rl[k]−Qu[k], dl,ui,j [k] = Ql[k]−Ru[k], du,lj,i [k] = Ru[k]−Ql[k],

d
u,l
i,j [k] = Qu[k] − Rl[k]. The CanSummarize function tests whether it is possible to summarize

the sum contribution of the given reference node for each query point in the given query node. If
possible, the Summarize function approximates the sum contribution of the given reference node;
we then say the given pair of the query node and the reference node has been pruned. The idea is
to prune unneeded portions of the dual-tree traversal, thereby minimizing the number of exhaustive
leaf-leaf computations.

8

Query tree Reference tree

Figure 4: Top: A kd-tree partitions 2-dimensional points. Each node in the kd-tree records the
bounding box for the subset of the dataset it contains (highlighted in color). In dual-tree recursion,
a pair of nodes chosen from the query tree and the reference tree is considered at a time. Bottom:
the lower and upper bound on pairwise distances between the points contained in each of the
query/reference node pair.

3 Dual-Tree Fast Gauss Transform

3.1 Mathematical Preliminaries

Univariate Taylor’s Theorem. The univariate Taylor’s theorem is crucial for the approximation
mechanism in Fast Gauss transform and our new algorithm:

Theorem 3.1. If n ≥ 0 is an integer and f is a function which is n times continuously differentiable
on the closed interval [c, x] and n+ 1 times differentiable on (c, x) then

f(x) =

n∑

i=0

f
(i)(c)

(x− c)i

i!
+Rn (8)

where the Lagrange form of the remainder term is given by

Rn = f (n+1)(ξ) (x−c)n+1

(n+1)! for some ξ ∈ (c, x).

Multi-index Notation. Throughout this paper, we will be using the multi-index notation. A
D-dimensional multi-index α is a D-tuple of non-negative integers. For any D-dimensional multi-
indices α, β and any x ∈ R

D,

• |α| = α[1] + α[2] + · · ·+ α[D]

• α! = (α[1])!(α[2])! · · · (α[D])!

• xα = (x[1])α[1](x[2])α[2] · · · (x[D])α[D]

• Dα = ∂
α[1]
1 ∂

α[2]
2 · · · ∂α[D]

D

• α+ β = (α[1] + β[1], · · · , α[D] + β[D])

9

Algorithm 3 DualTree(Q,R): The dual-tree main routine.

if CanSummarize(Q,R, ǫ) then
Summarize(Q,R)

else
if Q is a leaf node then
if R is a leaf node then
DualTreeBase(Q,R)

else
DualTree(Q,RL), DualTree(Q,RR)

else
if R is a leaf node then
DualTree(QL, R), DualTree(QR, R)

else
DualTree(QL, RL), DualTree(QL, RR)
DualTree(QR, RL), DualTree(QR, RR)

• α− β = (α[1] − β[1], · · · , α[D]− β[D]) for α ≥ β.

where ∂i is a i-th directional partial derivative. Define α > β if α[d] > β[d], and α ≥ p for
p ∈ Z

+ ∪ {0} if α[d] ≥ p for 1 ≤ d ≤ D (and similarly for α ≤ p).

Properties of the Gaussian Kernel. Based on the univariate Taylor’s Theorem stated above, [11]
develops the series expansion mechanism for the Gaussian kernel sum. Our development begins with
one-dimensional setting and generalizes to multi-dimensional setting. We first define the Hermite
polynomials by the Rodrigues’ formula:

Hn(t) = (−1)net
2

D
n
e
−t2

, t ∈ R
1 (9)

The first few polynomials include: H0(t) = 1, H1(t) = 2t, H2(t) = 4t2−2. The generating function
for Hermite polynomials is defined by:

e
2ts−s2 =

∞∑

n=0

sn

n!
Hn(t) (10)

Let us define the Hermite functions hn(t) by

hn(t) = e
−t2

Hn(t) (11)

Multiplying both sides by e−t2 yields:

e−(t−s)2 =

∞∑

n=0

sn

n!
hn(t) (12)

We would like to use a “scaled and shifted” version of this derivation for taking the bandwidth h
into account.

e
−(t−s)2

2h2 = e
−((t−s0)−(s−s0))2

2h2 =
∞∑

n=0

1

n!

(
s− s0√
2h2

)n

hn

(
t− s0√
2h2

)
(13)

10

Note that our D-dimensional multivariate Gaussian kernel can be expressed as a product of D
one-dimensional Gaussian kernel. Similarly, the multidimensional Hermite functions can be written
as a product of one-dimensional Hermite functions using the following identity for any t ∈ R

D.

Hα(t) = Hα[1](t[1]) · · ·Hα[D](t[D])

hα(t) = e
−||t||2

Hα(t) = hα[1](t[1]) · · ·hα[D](t[D])
(14)

where ||t||2 = (t[1])2 + · · ·+ (t[D])2.

e
−||t−s||2

2h2 = e
−(t[1]−s[1])2−(t[2]−s[2])2−···−(t[D]−s[D])2

2h2

= e
−(t[1]−s[1])2

2h2 e
−(t[2]−s[2])2

2h2 · · · e
−(t[D]−s[D])2

2h2

(15)

We can also express the multivariate Gaussian about another point s0 ∈ R
D as:

e
−||t−s||2

2h2 =
D∏

d=1




∞∑

nd=0

1

nd!

(
s[d]− s0[d]√

2h2

)nd

hnd

(
t[d]− s0[d]√

2h2

)



=
∑

α≥0

1

α!

(
s− s0√
2h2

)α

hα

(
t− s0√
2h2

) (16)

The representation which is dual to Equation (16) is given by:

e
−||t−s||2

2h2 =

D∏

d=1




∞∑

nd=0

(−1)nd

nd!
hnd

(
t0[d]− s(d)√

2h2

)(
t[d]− t0√

2h2

)β




=
∑

β≥0

(−1)β
β!

hβ

(
t0 − s√
2h2

)(
t− t0√
2h2

)β
(17)

The final property is the recurrence relation of the one-dimensional Hermite function:

hn+1(t) = 2t · hn(t)− 2n · hn−1(t), t ∈ R
1 (18)

and the Taylor expansion of the Hermite function hα(t) about t0 ∈ R
D.

hα(t) =
∑

β≥0

(t− t0)
β

β!
(−1)|β|

hα+β(t0) (19)

3.2 Notations in Algorithm Descriptions

Here we summarize notations used throughout the descriptions and the pseudocodes for our algo-
rithms. The followings are notations that are relevant to a query point qi ∈ Q or a query node Q

in the query tree.

• RE(·): The set of reference points rjn ∈ R whose pairwise interaction is computed exhaustively
for a query point qi ∈ Q or a query node Q.

• RT (·): The set of reference points rjn ∈ R whose contribution is pruned via centroid-based
approximation for a given query point qi ∈ Q.

11

The followings are notations relevant to a query point qi ∈ Q.

• G(qi, R): The true initially unknown kernel sum for a query point qi contributed by the
reference set R ⊆ R, i.e. ∑

rjn∈R

Kh(||qi − rjn ||).

• Gl(qi,R): A lower bound on G(qi,R).

• Gu(qi,R): An upper bound on G(qi,R).

• G̃(qi, R): An approximation to G(qi, R) for R ⊆ R. This obeys the additive property for a

family of pairwise disjoint sets {Ri}mi=1: G̃

(
qi,

m⋃
i=1

Ri

)
=

m∑
i=1

G̃(qi, Ri).

• G̃
(
qi, {(Rj , Aj)}mj=1

)
: A refined notation of G̃

(
qi,

m⋃
j=1

Rj

)
to specify the type of approxima-

tion used for each reference node Rj .

Here we define some notations for representing postponed bound changes toGl(qim ,R) andGu(qim ,R)
for all qim ∈ Q.

• Q.∆l: Postponed lower bound changes on Gl(qim ,R) for a query node Q in the query tree
and qi ∈ Q.

• Q.L: Postponed changes to G̃(qim ,RT (qim)) for qim ∈ Q.

• Q.∆u: Postponed upper bound changes on Gl(qim ,R) for a query node Q in the query tree
and qi ∈ Q.

These postponed changes to the upper and lower bounds must be incorporated into each individual
query qim belonging to the sub-tree under Q.

Our series-expansion based algorithm uses four different approximation methods, i.e. A ∈
{E, T (c, p), F (c, p), D(c, p)}. E again denotes the exhaustive computation of

∑
rjn∈R

Kh(||qi − rjn ||).

T (c, p) denotes the translation of the order p−1 far-field moments of R to the local moments in the
query node Q that owns qi about a representative centroid c inside Q. F (c, p) denotes the evaluation
of the order p− 1 far-field expansion formed by the moments of R expanded about a representative
point c inside R. D(c, p) denotes the p− 1th order direct accumulation of the local moments due to
R about a representative centroid c inside Q that owns qi. We discuss these approximation methods
in Section 3.3.

3.3 Series Expansion for the Gaussian Kernel Sums

We would like to point out to our readers that we present the series expansion in a way that sheds
light to a working implementation. [11] chose a theorem-proof format for explaining the essential
operations. We present the series expansion methods from the more informed computer science
perspective of divide-and-conquer and data structures, where the discrete aspects of the methods
are concerned.

One can derive the series expansion for the Gaussian kernel sums (defined in Equation (5)) using
Equation (16) and Equation (17). The basic idea is to express the kernel sum contribution of a

12

reference node as a Taylor series of infinite terms and truncate it after some number of terms, given
that the truncation error meets the desired absolute error tolerance.

The followings are two main types of Taylor series representations for infinitely differentiable
kernel functions Kh (·)’s. The key difference between two representations is the location of the
expansion center which is either in a reference region or a query region. The center of the expansion
for both types of expansions is conveniently chosen to be the geometric center of the region. For
the node region N bounded by [N.b[1].l, N.b[1].u]× · · · × [N.b[D].l, N.b[D].u], the center is N.c =[
N.b[1].l+N.b[1].u

2 , · · · , N.b[D].l+N.b[D].u
2

]T
.

1. Far-field expansion: A far-field expansion (derived from Equation (16)) expresses the kernel
sum contribution from the reference points in the reference node R for an arbitrary query
point. It is expanded about R.c, a representative point of R. Equation (16) is an infinite
series, and thus we impose a truncation order p in each dimension. Substituting qi for t, rj
for s and R.c for s0 into Equation (16) yields:

G(qi, R) =
∑

rjn∈R

e
−||qi−rjn

||2

2h2

=
∑

rjn∈R

D∏

d=1




∞∑

α[d]=0

1

α[d]!

(
rjn [d]−R.c[d]√

2h2

)α[d]

hα[d]

(
qi[d]−R.c[d]√

2h2

)


=
∑

rjn∈R

D∏

d=1

(
∑

α[d]<p

1

α[d]!

(
rjn [d]−R.c[d]√

2h2

)α[d]

hα[d]

(
qi[d]−R.c[d)]√

2h2

)
+

∑

α[d]≥p

1

α[d]!

(
rjn [d]−R.c[d]√

2h2

)α[d]

hα[d]

(
qi[d]−R.c[d]√

2h2

))

Truncating after p terms along each dimension yields:

G(qi, R) ≈ G̃(qi, {(R,F (R.c, p))})

=
∑

rjn∈R

D∏

d=1




∑

α[d]<p

1

α[d]!

(
rjn [d]−R.c[d]√

2h2

)α[d]

hα[d]

(
qi[d]−R.c[d]√

2h2

)



=
∑

rjn∈R

∑

α<p

1

α!

(
rjn −R.c√

2h2

)α

hα

(
qi −R.c√

2h2

)

=
∑

α<p



∑

rjn∈R

1

α!

(
rjn −R.c√

2h2

)α


hα

(
qi −R.c√

2h2

)

=
∑

α<p

Mα(R,R.c)hα

(
qi −R.c√

2h2

)

where we denote

Mα(R, c) =
∑

rjn∈R

1

α!

(
rjn − c√

2h2

)α

(20)

which is a function of a reference nodeR and an expansion center c. We denote G̃(qi, {R,F (c, p)})
as the far-field expansion of order p − 1 for the kernel sum contribution of R ex-
panded about c. Ideally, we would like to choose the smallest p such that the truncation

13

Figure 5: Given the query node Q containing the query points {qim}|Q|
m=1 and the reference node

R containing the reference points {rjn}|R|
n=1, evaluating the far-field expansion generated by the

reference points at the given query point qim up to four terms in each dimension, G(qim , R) ≈

G̃(qim , {(R,F (R.c, 4))}) =
∑
α<4

[
∑

rjn∈R

1
α!

(
rjn−R.c√

2h2

)α
]
hα

(
qim−R.c√

2h2

)
, involves computing the sum

of the element-wise product between the two-dimensional array of far-field coefficients with the
query-dependent two-dimensional array.

14

Figure 6: The Gaussian kernel sum series expansion represented by the far-field coefficients in R,∑
α<p

Mα(R,R.c)hα

(
rjn−R.c√

2h2

)
, is valid regardless of the location of the given query point, given the

size constraint on the reference node (see Section 3.5). However, each query point location will
incur different amount of error.

after the chosen order p incurs tolerable error; this will be discussed in Section 3.5. Note that
the far-field expansion for the Gaussian kernel separates the interaction between a reference
point and a query point (namely e−||qi−rjn ||2/(2h2)) into a summation of two product terms.
For each multi-index α, Mα(R,R.c), which depends only on the intrinsic information for the
reference node (the reference points rjn ∈ R and the reference centroid R.c which is con-
stant with respect to R), is called the far-field moments/coefficients of the reference region R.
Because Mα(R,R.c) part of the far-field expansion of the Gaussian kernel sums is the same
regardless of the query point qi used for evaluation, they can be computed only once and
stored within R for efficiently approximating the contribution of R for different query points
(see Figure 5). Precomputing the far-field moments for a reference node R up to pD terms

(i.e. computing
∑

rjn∈R

1
α!

(
rjn−R.c√

2h2

)α
for each α < p) requires O(|R|pD) operations.

The far-field expansion of order p − 1 for the Gaussian kernel sums is valid for any query
locations qi given that the reference node meets the certain size constraint (see Section 3.5).
However, for a fixed order p, evaluating on query points that are far away from the reference
centroid in general incur smaller amount of error.

2. Local expansion: A local expansion (derived from Equation (17)) is a Taylor expansion of
the kernel sums about a representative point Q.c in a query region Q. After substituting qi
for t, Q.c for t0 and rjn for s, the kernel sum contribution of all reference points in a reference

15

region R to a query point qi ∈ Q is given by:

G(qi, R) =
∑

rjn∈R

e
−||qi−rjn

||2

2h2

=
∑

rjn∈R

D∏

d=1




∞∑

nd=0

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qi[d]−Q.c[d]√

2h2

)β





=
∑

rjn∈R

D∏

d=1

(
∑

nd<p

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qi[d]−Q.c[d]√

2h2

)β

+

∑

nd≥p

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qi[d]−Q.c[d]√

2h2

)β
)

Again, truncating after p terms along each dimension yields:

G̃(qi, {(R,D(Q.c, p))})

=
∑

rjn∈R

D∏

d=1



∑

nd<p

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qi[d]−Q.c[d]√

2h2

)β




=
∑

rjn∈R

∑

β<p

(−1)β
β!

hβ

(
Q.c− rjn√

2h2

)(
qi −Q.c√

2h2

)β

=
∑

β<p




∑

rjn∈R

(−1)β
β!

hβ

(
Q.c− rjn√

2h2

)


(
qi −Q.c√

2h2

)β

=
∑

β<p

Lβ({(R,D(Q.c, p))})
(
qi −Q.c√

2h2

)β

where we denote:

Lβ({(R,D(c, p))}) =





∑
rjn∈R

(−1)β

β!
hβ

(
c−rjn√

2h2

)
, β < p

0 , otherwise
(21)

{Lβ({(R,D(Q.c, p))})}β are the direct local moments of R for Q. The error bound criterion
will be discussed in Section 3.5. Note that:

G̃

(
qi,
⋃

a

{(Ra, D(pa))}
)

=
∑

a

G̃(qi, {(Ra, D(pa))})

=
∑

a

∑

β<pa




∑

rjn∈Ra

(−1)β
β!

hβ

(
Q.c− rjn√

2h2

)


(
qi −Q.c√

2h2

)β

=
∑

β<max
a

pa

[
∑

a

Lβ({(Ra, D(Q.c, pa))})
](

qi −Q.c√
2h2

)β

=
∑

β<max
a

pa

Lβ

(
⋃

a

{(Ra, D(Q.c, pa))}
)(

qi −Q.c√
2h2

)β

16

Figure 7: Given the query node Q containing the query points {qim}|Q|
m=1 and the reference node

R containing the reference points {rjn}|R|
n=1, evaluating the local expansion generated by the ref-

erence points at the given query point qim up to third terms in each dimension, G(qim , R) ≈

G̃(qim , {(R,D(Q.c, 3))}) =
∑
β<3

[
∑

rjn∈R

(−1)β

β! hβ

(
Q.c−rjn√

2h2

)](
qim−Q.c√

2h2

)β
, involves taking the dot-

product between the two-dimensional array of local coefficients with the query-dependent two-
dimensional array.

In other words, the local moments for a fixed query node Q are additive (see Figure 8) across

a set of disjoint portions of the reference dataset R since its basis functions

{(
qi−Q.c√

2h2

)β}

β

remain the same for all reference points regardless of their locations. For a given reference
node R, accumulating the local moments of R up to pD terms (that is, evaluating for each
β < p) requires O(|R|pD) operations. These local coefficients are accumulated and stored
within the given query node. The local expansion represented by the local coefficients is valid
for all query points within the query node under certain constraints.

3.4 Gaussian Sum Approximation Using Series Expansion

Now again assume we are given a query node Q and a reference node R. Here we describe three
main methods that use the two expansion types for approximating Gaussian summation, G̃(q, R),
for each q ∈ Q.

17

Figure 8: Accumulating direct local moments from three reference nodes with the
nodes R1, R2, and R3 contributing nine terms, four terms, and one term respec-
tively to form the local moments containing the contribution from R1, R2, and R3:
L({(R1, D(Q.c, 3)), (R2, D(Q.c, 2)), (R3, D(Q.c, 1))}). Zeros denote the positions that are not ex-
plicitly computed using Equation (21). L({(R1, D(Q.c, 3)), (R2, D(Q.c, 2)), (R3, D(Q.c, 1))}) =
L({(R1, D(Q.c, 3))}) + L({(R2, D(Q.c, 2))}) + L({(R3, D(Q.c, 1))}) is added to the total local mo-
ments for Q.

1. Evaluating a far-field expansion of R: Given the pre-computed far-field moments Mα(R)
up to pD terms, one could evaluate the far-field expansion for a given query point q (that is,

approximate G̃(q, R)) by forming a dot-product between the query-dependent vector and the

far-field moments, as shown in Figure 5 and Figure 6. Approximating G̃(q, R) for all q ∈ Q

requiresO(|Q|pD) operations since evaluating the far-field expansion each time requires O(pD)
operations.

2. Computing and evaluating a local expansion inside Q due to the contribution
of R: one could iterate over each reference point rjn ∈ R and compute the local moments
Lβ({(R,D(Q.c, p))}) due to R up to pD terms, as shown in Figure 7 and Figure 8. The local
accumulation of the contribution of the reference node R requires O(|R|pD) operations, and
evaluating the local expansion for each qim ∈ Q requires a total of O(|Q|pD) operations.

3. Converting far-field moments of R to a local expansion of Q: Suppose R has pre-
computed far-field moments up to pD terms. From the far-field moments, we can approximate
the local moments of R but with some amount of error. This can be seen as a generalization of
centroid-based approximation. [11] describes this method as one of the translation operators,
called far-field to local translation operator, stated below:

Lemma 3.2. Far-field to local (F2L) translation operator for Gaussian kernel (as
presented in Lemma 2.2 in [11]): Given a reference node R, a query node Q, and the truncated
far-field expansion centered at a centroid R.c of R up to pD terms:

18

Figure 9: Two-dimensional far-field coefficients truncated after the first two terms in each dimension
can be converted into a set of local moments using Equation (22). Computing Lβ({(R, T (Q.c, 2))})
involves summing up the element-wise product between the matrix (or tensor in higher dimensions)
consisting of the far-field moments and the two-by-two window over the Hermite functions whose
upper left multi-index is β. This figure shows how to compute L(1,1)({(R, T (Q.c, 2))}).

G̃(qim , {(R,F (R.c, p))}) = ∑
α<p

Mα(R,R.c)hα

(
qim−R.c√

2h2

)
,

the Taylor expansion of the far-field expansion at the centroid Q.c in Q is given by G̃(qim , {(R,F (R.c, p))}) =
∑
β≥0

Lβ({(R, T (Q.c, p))})
(
qim−Q.c√

2h2

)β
where for qim ∈ Q,

Lβ({(R, T (Q.c, p))}) = (−1)|β|

β!

∑

α<p

Mα(R,R.c)hα+β

(
Q.c−R.c√

2h2

)
(22)

Proof. The proof consists of replacing the Hermite function portion of the expansion with its
Taylor series:

G̃(qim , {(R,F (R.c, p))}) =
∑

α<p

Mα(R,R.c)hα

(
qim −R.c√

2h2

)

=
∑

α<p

Mα(R,R.c)
∑

β≥0

(−1)|β|

β!
hα+β

(
Q.c−R.c√

2h2

)(
qim −Q.c√

2h2

)β

=
∑

β≥0

[
(−1)|β|

β!

∑

α<p

Mα(R,R.c)hα+β

(
Q.c−R.c√

2h2

)](
qim −Q.c√

2h2

)β

19

However, note G̃(qim , {(R,F (R.c, p))}) has an infinite number of terms, and must be truncated
after pD terms. In other words, the local moments accumulated for Q are the coefficients

for G̃(qim , {(R, T (Q.c, p))}) =
∑
β<p

Lβ({(R, T (Q.c, p))})
(
qim−Q.c√

2h2

)β
, as shown in Figure 9.

To compute {Lβ({(R, T (Q.c, p))})}β<p, we need to iterate over all of pD far-field moments
{Mα(R,R.c)}α<p for each Lβ({(R, T (Q.c, p))}). This operation runs in O(Dp2D) operations.

In general, these approximations are valid only under certain conditions which depend on how the
error bounds associated with these approximation methods are derived. Moreover, we have not
discussed how to choose the method of approximation given a query and reference node pair, and
how to determine the order of approximation, i.e. the number of terms required to achieve a given
level of error. We discuss the details in Section 3.5.

3.5 Truncation Error Bounds

Because the far-field and the local expansions are truncated after taking pD terms, we incur an
error in approximation. The original error bounds for the Gaussian kernel in [11] were wrong and
corrections were shown in [3]. Here we present the error bounds for (1) evaluating a truncated
far-field expansion of a reference node for any query point q ∈ R

D (2) evaluating a truncated local
expansion of Q due to the contribution of a reference node R for any query point qim ∈ Q (3)
evaluating a truncated local expansion formed from converting a truncated far-field expansion of a
reference node R for any query point qim ∈ Q. Note that these error bounds place restrictions on
the size of the nodes in consideration: reference node, query node, or both. First we start with the
truncation error bound for evaluating the far-field expansion formed for a given reference node.

Lemma 3.3. Error bound for evaluating a truncated far-field expansion (as presented in
[3]): Suppose we are given a far-field expansion of a reference node R about its centroid R.c:

G̃(q, {(R,F (R.c, p))}) = ∑
α<p

Mα(R,R.c)hα

(
q−R.c√

2h2

)
where

Mα(R,R.c) =
∑

rjn∈R

1
α!

(
rjn−R.c√

2h2

)α
. If ∀rjn ∈ R satisfies ||rjn − R.c||∞ < rh for r < 1, then for

any q ∈ R
D,

∣∣∣G̃(q, {(R,F (R.c, p))})−G(q,R)
∣∣∣ ≤ |R|

(1− r)D

D−1∑

k=0

(
D

k

)
(1− r

p)k
(

rp√
p!

)D−k

(23)

Proof. We expand the far-field expansion as a product of one-dimensional Hermite functions, and

utilize a bound on one-dimensional Hermite functions due to [17]: 1
n! |hn(x)| ≤ 2

n
2√
n!
e

−x2

2 , n ≥ 0, x ∈
R

1.

upd(q[d], rjn [d], R.c[d]) =

p−1∑

ni=0

1

ni!

(
rjn [d]−R.c[d]√

2h2

)ni

hni

(
q[d]−R.c[d]√

2h2

)

vpd(q[d], rjn [d], R.c[d]) =
∞∑

ni=p

1

ni!

(
rjn [d]−R.c[d]√

2h2

)ni

hni

(
q[d]−R.c[d]√

2h2

)

e
−||q−rjn

||2

2h2 =

D∏

d=1

(upd(q[d], rjn [d], R.c[d]) + vpd (q[d], rjn [d], R.c[d]))

20

We obtain for 1 ≤ d ≤ D:

upd(q[d], rjn [d], R.c[d]) ≤
p−1∑

ni=0

1

ni!

∣∣∣∣
rjn [d]−R.c[d]√

2h2

∣∣∣∣
ni
∣∣∣∣hni

(
q[d]−R.c[d]√

2h2

)∣∣∣∣

≤
p−1∑

ni=0

∣∣∣∣
rh√
2h2

∣∣∣∣
ni 2

ni
2

√
ni!

(
e
− (q[d]−R.c[d])2

4h2

)
≤

p−1∑

ni=0

r
ni ≤ 1− rp

1− r

vpd(q[d], rjn [d], R.c[d]) ≤
∞∑

ni=p

1

ni!

∣∣∣∣
rjn [d]−R.c[d]√

2h2

∣∣∣∣
ni
∣∣∣∣hni

(
q[d]−R.c[d]√

2h2

)∣∣∣∣

≤
∞∑

ni=p

∣∣∣∣
rh√
2h2

∣∣∣∣
ni 2

ni
2

√
ni!

(
e
− (q[d]−R.c[d])2

4h2

)
≤ 1√

p!

∞∑

ni=p

r
ni ≤ 1√

p!

rp

1− r

Therefore,
∣∣∣∣∣

D∏

d=1

upd(q[d], rjn [d], R.c[d]) − e
−||q−rjn

||2

2h2

∣∣∣∣∣

≤(1− r)−D

D−1∑

k=0

(
D

k

)
(1− r

p)k
(

rp√
p!

)D−k

∣∣∣∣∣∣

∑

α<p

Mα(R,R.c)hα

(
q −R.c√

2h2

)
−
∑

rjn∈R

e
−||q−rjn

||2

2h2

∣∣∣∣∣∣

≤ |R|
(1− r)D

D−1∑

k=0

(
D

k

)
(1− r

p)k
(

rp√
p!

)D−k

Intuitively, this theorem implies that evaluating a truncated far-field expansion for a query point
(regardless of its location) requires that the reference points used to form the expansion are within
the bandwidth h in each dimension from the centroid R.c (i.e. the reference node has a maximum
side length of 2h).

The following gives the truncation bound for the local expansion formed inside a query node
whose bound is within a hypercube of some side length.

Lemma 3.4. Error bound for evaluating a truncated local expansion: Suppose we are given
the local expansion about the centroid Q.c of the given query node Q accounting for the kernel sum

contribution of the given reference node R: G̃(qim , {(R,D(Q.c, p))}) = ∑
β<p

Lβ({(R,D(Q.c, p))})
(

qim−Q.c√
2h2

)β

where qim ∈ Q and Lβ(Q, {(R,D(p))}) = ∑
rjn∈R

(−1)|β|

β! hβ

(
Q.c−rjn√

2h2

)

If ∀qim ∈ Q satisfies ||qim −Q.c||∞ < rh for r < 1, then for any qim ∈ Q:

∣∣∣G̃(qim , {(R,D(Q.c, p))})−G(qim , R)
∣∣∣ ≤ |R|

(1− r)D

D−1∑

k=0

(
D

k

)
(1− r

p)k
(

rp√
p!

)D−k

(24)

21

Proof. Taylor expansion of the Hermite function yields:

e
−||qim

−rjn
||2

2h2 =
∑

β≥0

(−1)|β|

β!

∑

α≥0

1

α!

(
rjn −R.c√

2h2

)α

hα+β

(
Q.c−R.c√

2h2

)(
qim −Q.c√

2h2

)β

=
∑

β≥0

(−1)|β|

β!

∑

α≥0

1

α!

(
R.c− rjn√

2h2

)α

(−1)|α|
hα+β

(
Q.c−R.c√

2h2

)(
qim −Q.c√

2h2

)β

=
∑

β≥0

(−1)|β|

β!
hβ

(
Q.c− rjn√

2h2

)(
qim −Q.c√

2h2

)β

Use e
−||qim

−rjn
||2

2h2 =
D∏

d=1

(up(qim [d], rjn [d], Q.c[d]) + vp(qim [d], rjn [d], Q.c[d])) for 1 ≤ d ≤ D, where

upd(qim [d], rjn [d], Q.c[d]) =

p−1∑

nd=0

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qmi [d]−Q.c[d]√

2h2

)nd

vpd(qim [d], rjn [d], Q.c[d]) =

∞∑

ni=p

(−1)nd

nd!
hnd

(
Q.c[d]− rjn [d]√

2h2

)(
qmi [d]−Q.c[d]√

2h2

)nd

These univariate functions respectively satisfy upd
(qim [d], rjn [d], Q.c[d]) ≤ 1−rp

1−r and vpd
(qim [d], rjn [d], Q.c[d]) ≤

1√
p!

rp

1−r , for 1 ≤ d ≤ D, achieving the multivariate bound. The proof is similar as in the one given

in Lemma 3.3.

Lastly, we present the error bound for evaluating a truncated local expansion formed from a
truncated far-field expansion, which requires that both the query node and the reference node are
“small”:

Lemma 3.5. Error bound for evaluating a truncated local expansion converted from
an already truncated far-field expansion: A truncated far-field expansion centered about the
centroid R.c of a reference node R,

Ĝ(q, {(R,F (R.c, p))}) =
∑

α<p

Mα(R,R.c)hα

(
q −R.c√

2h2

)

has the following local expansion about the centroid Q.c of a query node Q for qim ∈ Q: Ĝ(qim , {(R,F (R.c, p))}) =
∑
β≥0

Lβ({(R, T (Q.c, p))})
(
qim−Q.c√

2h2

)β
where: Lβ({(R, T (Q.c, p))}) = (−1)|β|

β!

∑
α<p

Mα(R,R.c)hα+β

(
Q.c−R.c√

2h2

)

Let G̃(qim , {(R, T (Q.c, p))}) = ∑
β<p

Lβ({(R, T (Q.c, p))})
(
qim−Q.c√

2h2

)β
, a

truncation of the local expansion of Ĝ(qim , {(R,F (R.c, p))}) after pD terms.
If ∀qim ∈ Q satisfies ||qim −Q.c||∞ < rh and ∀rjn ∈ R satisfies ||rjn − R.c||∞ < rh for r < 1

2 ,
then for any qim ∈ Q:

∣∣∣G̃(qim , {(R, T (Q.c, p))}) −G(qim , R)
∣∣∣

≤ |R|
(1− 2r)2D

D−1∑

k=0

(D
k

)
((1 − (2r)p)2)k

(
((2r)p)(2 − (2r)p)√

p!

)D−k

(25)

22

Proof. We define for 1 ≤ d ≤ D:

upd = up(qim [d], rjn [d], Q.c[d], R.c[d])

vpd = vp(qim [d], rjn [d], Q.c[d], R.c[d])

wpd = wp(qim [d], rjn [d], Q.c[d], R.c[d])

upd
=

p−1∑

ni=0

(−1)ni

ni!

p−1∑

nj=0

1

nj !

(
R.c[d]− rjn [d]

√
2h2

)nj

(−1)nj

hni+nj

(
Q.c[d]− R.c[d]√

2h2

)(
qim [d]− Q.c[d]√

2h2

)ni

vpd =

p−1∑

ni=0

(−1)ni

ni!

∞∑

nj=p

1

nj !

(
R.c[d]− rjn [d]√

2h2

)nj

(−1)nj

hni+nj

(
Q.c[d]− R.c[d]

√
2h2

)(
qim [d]− Q.c[d]

√
2h2

)ni

wpd
=

∞∑

ni=p

(−1)ni

ni!

∞∑

nj=0

1

nj !

(
R.c[d]− rjn [d]√

2h2

)nj

(−1)nj

hni+nj

(
Q.c[d]− R.c[d]

√
2h2

)(
qim [d]− Q.c[d]

√
2h2

)ni

Note that e
−||qim

−rjn
||2

2h2 =
D∏

d=1

(upd
+ vpd

+ wpd
) for 1 ≤ d ≤ D. Using the bound for Hermite

functions and the property of geometric series, we obtain the following upper bounds:

upd ≤
p−1∑

ni=0

p−1∑

nj=0

(2r)ni(2r)nj =

(
1− (2r)p)

1− 2r

)2

vpd ≤
1√
p!

p−1∑

ni=0

∞∑

nj=p

(2r)ni(2r)nj =
1√
p!

(
1− (2r)p

1− 2r

)(
(2r)p

1− 2r

)

wpd ≤
1√
p!

∞∑

ni=p

∞∑

nj=0

(2r)ni(2r)nj =
1√
p!

(
1

1− 2r

)(
(2r)p

1− 2r

)

Therefore,

∣∣∣∣∣∣

D∏

d=1

upd
− e

−||qim
−rjn

||2

2h2

∣∣∣∣∣∣

≤(1 − 2r)−2D
D−1∑

k=0

(D
k

)
((1 − (2r)p)2)k

(
((2r)p)(2 − (2r)p)

√
p!

)D−k

∣∣∣G̃(qim , {(R, T (Q.c, p))}) − G(qim , R)
∣∣∣

≤ |R|
(1 − 2r)2D

D−1∑

k=0

(D
k

)
((1 − (2r)p)2)k

(
((2r)p)(2 − (2r)p)

√
p!

)D−k

[16] proposes an interesting idea of using Stirling’s formula (for any non-negative integer n,(
n+1
e

)n ≤ n!) to lift the node size constraint. This could allow approximation of larger regions that

23

Algorithm 4 FarFieldOrder(Q,R, τ): Determines the order of approximation needed for eval-
uating a far-field expansion of the reference node R.

r ← max
1≤d≤D

R.b[d].u−R.b[d].l
2h

if r ≥ 1 then
return ∞

else
p← 0
while p < pmax do
p← p+ 1

if |R|
(1−r)D

D−1∑
k=0

(
D
k

)
(1− rp)k

(
rp√
p!

)D−k

≤ τ then

return p

return ∞

possibly contain more points. Unfortunately, the error bounds derived in [16] were also incorrect.
We have derived the necessary corrected error bounds based on the techniques in [3]. However, we
do not include the derivations here since using these bounds actually degraded performance in our
algorithm.

3.6 Determining the Approximation Order

Note that Lemma 3.3, Lemma 3.4, and Lemma 3.5 answer the question of the following form:
given that we use pD terms in the appropriate expansion type, what is the upper bound on the

approximation error,
∣∣∣G̃(q, R)−G(q, R)

∣∣∣? Nevertheless, all three lemmas can be re-phrased to

answer the question in reverse: given the maximum user-desired absolute error, what is the order
of approximation/number of terms required to achieve it? This question rises naturally within
our dual-tree based algorithm that bounds the kernel sum approximation error on each part in a
partition of the reference dataset R.

Algorithm 4 shows how to determine the necessary order of the far-field expansion for the given

reference node R such that
∣∣∣G̃(q, R)−G(q, R)

∣∣∣ ≤ τ . That is, the approximation error due to the

far-field expansion of R is bounded by the error allocated for approximating the contribution of
the reference node R. Using far-field expansion based approximation requires a “small” reference
node. Thus, the algorithm first computes the ratio of the maximum side length of R to twice the
bandwidth h, and determines the least order required for achieving the maximum absolute error τ
by evaluating the right-hand side of Equation (23) iteratively on different values of p.

Algorithm 5 shows how to determine the necessary order of the local expansion formed by
directly accumulating the contribution of the given reference node R onto the given query node Q.
This approximation method requires the query node Q to have the maximum side length within
twice the bandwidth. The algorithm determines the least order required for achieving the maximum
absolute error τ by evaluating the right-hand side of Equation (24) iteratively on different values
of p.

Finally, Algorithm 6 determines the necessary order of local expansion formed by converting
a truncated far-field expansion of the given reference node R. In contrast to the two previous
algorithms, this one requires both the query node Q and the reference node R to have a maximum

24

Algorithm 5 LocalAccumulationOrder(Q,R, τ): Determining the order of approximation
needed for forming a local expansion of the contribution from the given reference node R for the
query node Q.

r ← max
1≤d≤D

Q.b[d].u−Q.b[d].l
2h

if r ≥ 1 then
return ∞

else
p← 0
while p < pmax do
p← p+ 1

if |R|
(1−r)D

D−1∑
k=0

(
D
k

)
(1− rp)k

(
rp√
p!

)D−k

≤ τ then

return p

return ∞

Algorithm 6 ConvertFarFieldToLocalOrder(Q,R, τ): Determining the order of approxi-
mation needed for evaluating a far-field expansion of the given reference node R.

r ← max
1≤d≤D

max{Q.b[d].u−Q.b[d].l
4h ,

R.b[d].u−R.b[d].l
4h }

if r ≥ 1
2 then

return ∞
else
p← 0
while p < pmax do
p← p+ 1

if |R|
(1−2r)2D

D−1∑
k=0

(
D
k

)
((1 − (2r)p)2)k

(
((2r)p)(2−(2r)p)√

p!

)D−k

≤ τ then

return p

return ∞

side length less than the bandwidth h. After the node size requirements are satisfied, the least order
required for achieving the maximum absolute error τ is obtained by evaluating the right-hand side
of Equation (25) iteratively on different values of p.

3.7 Deriving the Hierarchical FGT

Until now, we have discussed the approximation methods developed for a non-hierarchical version
of fast Gauss transform described in [11]. In this section, we derive the two additional translation
operators that extend the original fast Gauss transform to use a hierarchical data structure. Here we
consider the reference tree, which enables the consideration of the different portions of the reference
set R at a different granularity. Given the computed far-field moments of RL and RR, each centered
at RL.c and RR.c, how can we efficiently compute the far-field moments of R centered at R.c, the
parent of RL and RR? The first operator allows the efficient bottom-up pre-computation of the
Hermite moments in the reference tree.

25

Figure 10: The solid arrows mark the flow of contribution from the reference tree to the query tree
in case of a prune via a far-field to local translation between the reference node R and query node
Q. On the reference side, the far-field moments are formed in the bottom-up fashion; on the query
side, the accumulated local moments will be propagated downwards during a post-processing step
via local-to-local translations.

Lemma 3.6. Shifting a far-field expansion of a reference node to a new center (F2F
translation operator for the Gaussian kernel): Given the far-field expansion centered at R.c
in a reference node R:

G̃(q, {(R, F (R.c, p))}) =
∑

α<p

Mα(R,R.c)hα

(
q −R.c√

2h2

)

this same far-field expansion shifted to a new location c′ is given by:

G̃(q, {(R,F (R.c, p))}) = G̃(q, {(R,F (c′, p))}) =
∑

γ≥0

Mγ(R, c
′)hγ

(
q − c′√
2h2

)

where

Mγ(R, c
′) =

∑

0≤α≤γ

1

(γ − α)!
Mα(R,R.c)

(
R.c− c′√

2h2

)γ−α

(26)

Proof. Replace the Hermite part of the expansion by a new Taylor series:

G̃(q, {(R,F (R.c, p))})

=
∑

α<p

Mα(R,R.c)hα

(
q −R.c√

2h2

)

26

Figure 11: Given the far-field moments of RL and RR illustrated in the first two tables, Theorem 3.6
can re-center each set of far-field moments of RL and RR at centroid R.c. The re-centered far-field
moments are shown in the third table with two numbers, each contributed by RL and RR. The
far-field moments of R are then computed by adding up the two re-centered moments entry-wise.

=
∑

α<p

Mα(R,R.c)
∑

β≥0

1

β!

(
c′ −R.c√

2h2

)β

(−1)|β|
hα+β

(
q − c′√
2h2

)

=
∑

α<p

∑

β≥0

Mα(R,R.c)
1

β!

(
c′ −R.c√

2h2

)β

(−1)|β|
hα+β

(
q − c′√
2h2

)

=
∑

α<p

∑

β≥0

Mα(R,R.c)
1

β!

(
R.c− c′√

2h2

)β

hα+β

(
q − c′√
2h2

)

=
∑

γ<p



∑

0≤α≤γ

1

(γ − α)!
Mα(R,R.c)

(
R.c− c′√

2h2

)γ−α


hγ

(
q − c′√
2h2

)

where γ = α+ β.

Using Lemma 3.6, we can compute the far-field moments of Q centered at Q.c by translating the
moments {Mγ(R

L, RL.c)}γ<p and {Mγ(R
R, RR.c)}γ<p to form the moments {Mγ(R

L, R.c)}γ<p and
{Mγ(R

R, R.c)}γ<p. Then, the far-field moments of R = R1∪R2 are {Mγ(R
L, R.c)+Mγ(R

R, R.c)}
and

G̃(q, {(R, F (R.c, p))}) =
∑

γ<p

(Mγ(R
L
, R.c) +Mγ(R

R
, R.c))hγ

(
q −R.c√

2h2

)

Computing each Mγ(R
L, R.c) from Mγ(R

L, RL.c) (and each Mγ(R
R, R.c) from Mγ(R

R, RR.c)) re-
quires iterating over at most pD terms. This operation runs in O(Dp2D), which can be more efficient
than computing the far-field moments of R centered at R.c from scratch (which is O(|R|DpD)).

27

The next translation operator acts as a “clean-up” routine in a hierarchical algorithm. Since we
can approximate at different scales in the query tree, we must somehow combine all the approxi-
mations at the end of the computation. By performing a breadth-first traversal of the query tree,
the L2L operator shifts a node’s local expansion to the centroid of each child.

Lemma 3.7. Shifting a combined local expansion of a query node to a new center (L2L
translation operator for Gaussian kernel): Given a combined local expansion centered at Q.c
of the given query node Q:

G̃(q,RD(Q) ∪RT (Q)) =
∑

β<p

Lβ(Q.c,RD(Q) ∪RT (Q))

(
q −Q.c√

2h2

)β

Shifting this local expansion to the new center c′ ∈ Q yields:

G̃(q,RD(Q) ∪RT (Q))

=
∑

α<p



∑

β≥α

β!

α!(β − α)!
Lβ(Q.c,RD(Q) ∪RT (Q))

(
c′ −Q.c√

2h2

)β−α



(
q − c′√
2h2

)α

where we denote

Lβ(c
′
,RD(Q) ∪ RT (Q)) =

∑

β≥α

β!

α!(β − α)!
Lβ(Q.c,RD(Q) ∪RT (Q))

(
c′ −Q.c√

2h2

)β−α

(27)

Proof. Use the multinomial theorem to expand about the new center c′:

G̃(q,RD(Q) ∪RT (Q)) =
∑

β<p

Lβ(Q.c,RD(Q) ∪RT (Q))

(
q −Q.c√

2h2

)β

=
∑

β<p

∑

α≤β

Lβ(Q.c,RD(Q) ∪RT (Q))
β!

α!(β − α)!

(
c′ −Q.c√

2h2

)β−α (
q − c′√
2h2

)α

whose summation order can be interchanged to achieve the result.

Using Lemma 3.7, we can shift the local moments of Q centered at Q.c to a different expan-
sion center, such as an expansion center of one of the child nodes of Q. Let p be the maximum
approximation order used among the reference nodes pruned via far-to-local translation (RT (Q))
and direct local accumulation (RD(Q)). The local moment propagation to both child nodes of Q
is achieved by the following operations:

{Lβ(Q
L
.c,RD(QL) ∪ RT (QL))}β<p ←{Lβ(Q

L
.c,RD(QL) ∪ RT (QL))}β<p+

{Lβ(Q
L
.c,RD(Q) ∪RT (Q))}β<p

{Lβ(Q
R
.c,RD(QR) ∪ RT (QR))}β<p ←{Lβ(Q

R
.c,RD(QR) ∪ RT (QR))}β<p+

{Lβ(Q
L
.c,RD(Q) ∪RT (Q))}β<p

where the addition operation is an element-wise operation that combines the two scalars with the
same multi-index position.

28

Figure 12: Given the local moments centered at Q.c, Theorem 3.7 can re-center them at the two
centroids QL.c and QR.c.

3.8 Choosing the Best Approximation Method

Suppose we are given a query node Q and a reference node R pair during the invocation of Algo-
rithm 13. CanSummarize function for the higher-order DFGT algorithm has four approximation
methods available: A ∈ {E, T (c, p), F (c, p), D(c, p)} (see Section 3.2). Because we would like to
avoid exhaustive computations, the higher-order DFGT algorithm uses only three of the approxima-
tion methods and defers exhaustive computations until query/reference leaf pairs are encountered.
Algorithm 7 tests whether the given query node and reference node pair can be approximated by
evaluating the far-field moments of R, computing direct local accumulation due to R, and trans-
lating some of the terms that constitute the far-field moments of R (far-field-to-local translation
operator) and evaluates the asymptotic cost of each approximation. Algorithm 7 then determines
the approximation method with the lowest asymptotic cost. This idea was originally introduced
in [11] in the description of the original fast Gauss transform algorithm. The key difference is that
even if Algorithm 7 returns E (when none of the other approximation methods can beat the cost of
the exhaustive method), our hierarchical algorithm will not default to exhaustive evaluations and
will consider the query points and reference points at a finer granularity, as shown in Algorithm 13.

3.9 Hierarchical FGT

Given the analytical machinery developed in the previous section, we now describe how to extend
the centroid-based dual-tree [7, 9] to do higher-order approximations. The main structure of the

29

Algorithm 7 ChooseBestMethod(Q,R, τ): Chooses the FMM-type approximation with the
least cost for a query and reference node pair.

pF ← FarFieldOrder(Q,R, τ)
pD ← LocalAccumulationOrder(Q,R, τ)
pT ← ConvertFarFieldToLocalOrder(Q,R, τ)
cF ← NQD

pF+1, cD ← NRD
pD+1, cT ← D2pT+1, cE ← DNQNR

if cF = min{cF , cD, cT , cE} then
return F (R.c, pF)

else if cD = min{cF , cD, cT , cE} then
return D(Q.c, pD)

else if cT = min{cF , cD, cT , cE} then
return T (Q.c, pT)

else
return E

Figure 13: Four ways of approximating the contribution of a reference node to a query node.
Top left: exhaustive computations (few reference points/few query points); Top right: far-
field moment evaluating (many reference points/few query points); Bottom left: direct local
moment accumulation (few reference points/many query points); Bottom right: far-field-to-local
translation (many reference points/many query points).

algorithm is shown in Algorithm 8. We provide only a high-level overview of our algorithm and
defer the discussion on the implementation details to Appendix.
Initialization of the query tree. Each query node maintains a vector storing (pmax)

D
terms,

where pmax is a pre-determined limit on the approximation order1 depending on the dimensionality
of the query set Q and the reference set R. For the experimental results, we have fixed pmax = 6
for D = 2, pmax = 4 for D = 3, pmax = 2 for D = 4 and D = 5, pmax = 1 for D ≥ 6.

Pre-computation of far-field moments. Before the main KDE computation can begin, we pre-
compute the far-field moments of each reference node in the reference tree up to (pmax)

D terms. We
show how to efficiently pre-compute the far-field moments of each reference node in the reference
tree in Algorithm 10. The algorithm uses Equation (20) for the leaf node and Equation (26) for

1We impose this limit because the number of terms scales exponentially with the dimensionality D, O(pD).

30

Algorithm 8 DFGTMain(Q,R): The main KDE routine.

Qroot ← BuildKdTree(Q), Rroot ← BuildKdTree(R)
DFGTInitQ(Qroot), DFGTInitR(Rroot)
DFGT(Qroot , Rroot), DFGTPost(Qroot)

Algorithm 9 DFGTInitQ(Q): Initializes query bound summary statistics.

{Initialize the node bound summary statistics.}
Gl(Q,R)← 0, Gu(Q,R)← |R|, Q.∆l ← 0, Q.∆u ← 0
{Initialize translated local moments to be a vector of length

(
pD
max

)
.}

Q.L0≤i<(pmax)
D ← 0

if Q is a leaf node then
{Initialize for each query point.}
for each qim ∈ Q do
Gl(qim ,R)← 0, Gu(qim ,R)← |R|
G̃(qim ,R)← 0, G̃(qim ,RE(qim))← 0

G̃(qim ,RF (qim))← 0, G̃(qim ,RD(qim) ∪RT (qim))← 0
else
DFGTInitQ(QL), DFGTInitQ(QR)

translating the moments of the child nodes for the internal node case. We describe the implemen-
tation details in Appendix.

Determining the prunability of the given query and reference pair (shown in Algo-
rithm 12). Note that the function Summarize includes calls to the following functions (see Ap-
pendix):

1. EvalFarFieldExpansion: evaluates the far-field moments stored in R at each query point
in Q up to (pF)

D terms. See Algorithm 23.

2. AccumulateDirectLocalMoment: computes direct local moment contribution of R cen-
tered at Q.c in Q. See Algorithm 25.

3. TransFarToLocal: translates the far-field moments of R up to (pT)
D terms to the local

moment centered Q.c in Q. See Algorithm 24.

Dual-tree Recursion. Algorithm 13 shows the basic structure of the dual-tree based KDE
computation (see Figure 4). This procedure is first called with Q and R as the root nodes of the
query and the reference tree respectively. CanSummarize takes three parameters: the current
query node Q, the current reference node R, and the global relative error tolerance ǫ. This function
tests whether the the contribution of the given reference node for each query point in the given
query node can be approximated within the error tolerance. If the approximation is not possible,
then the algorithm continues to consider the query and the reference data at a finer granularity.
The basic idea is to terminate the recursion as soon as possible by considering large “chunks” of the
query data and the reference data and avoiding the number of exhaustive leaf-leaf computations.

31

Algorithm 10 DFGTInitR(R): Pre-computes far-field moments.

{Initialize the far-field moments of R to be empty.}
for i = 0 to i < (pmax)

D do
MPositionToMultiindex(i,pmax)

(R,R.c)← 0

if R is a leaf node then
{Accumulate far-field moment from each point (Equation (20)).}
AccumulateFarFieldMoment(R)

else
{Recursively compute the moments of the child nodes and combine them.}
DFGTInitR(RL), DFGTInitR(RR)
TransFarToFar(RL, R), TransFarToFar(RR, R)

Algorithm 11 CanSummarize(Q,R, ǫ): Determines the prunability of the given query node Q

and reference node R

return ChooseBestMethod
(
Q,R,

ǫ|R|Gl,new(Q,R)
|R|

)
6= E

We can achieve this if we utilize approximation schemes that yield high accuracy and have cheap
computational costs.

Each prune made for a pair of a query and a reference node is summarized in the given query
node by incorporating the lower and the upper bound changes δl(Q,R) and δu(Q,R) contributed
by the reference node into Q.∆l and Q.∆u. These two bound updates due to a prune can be
regarded as a new piece of information which is known only locally to the given query node Q. All
of the bounds in the entire subtree of Q should reflect this information. One way to achieve this
effect is to pass the lower bound and the upper bound changes owned by Q (i.e., Q.∆l and Q.∆u)
to Q’s immediate children, whenever the algorithm needs to consider the query dataset at a finer
granularity by recursing to the left and the right child of Q.

Base-case Computation. If a given leaf query and leaf reference node pair could not be pruned,
then DFGTBase (shown in Algorithm 14) is called. Because all kernel evaluations are computed
exactly, we can refine the bound summary statistics of the given query node Q (that is, Gl(Q,R)
and Gu(Q,R)) further and hence we reset them to ∞ and −∞ respectively. For each query point
qim ∈ Q, we first incorporate the postponed bound changes passed down from the ancestor node of

Algorithm 12 Summarize(Q,R): Summarizes the contribution of R.

{Add bound changes.}
Q.∆l ← Q.∆l + δl(Q,R), Q.∆u ← Q.∆u + δu(Q,R)
if A is of the form F (R.c, pF) then
EvalFarFieldExpansion(R,Q, pF)

else if A is of the form D(Q.c, pD) then
AccumulateDirectLocalMoment(R,Q, pD)

else
TransFarToLocal(R,Q, pT)

32

Algorithm 13 DFGT(Q,R): The core dual-tree routine for computing KDE.

δl(Q,R) = |R|Kh(d
u(Q,R)), δu(Q,R) = |R|(Kh(d

l(Q,R))− 1)
{Add postponed contributions/bound changes from the current pair.}
Gl,new (Q,R)← Gl(Q,R) +Q.∆l + δl(Q,R)
Gu,new (Q,R)← Gu(Q,R) +Q.∆u + δu(Q,R)
if CanSummarize(Q,R, ǫ) then
Summarize(Q,R)

else
if Q is a leaf node then
if R is a leaf node then
DFGTBase(Q,R)

else
DFGT(Q,RL),DFGT(Q,RR)

else
{Push down postponed bound changes owned by Q to the children.}
QL.∆l ← QL.∆l +Q.∆l, QR.∆l ← QR.∆l +Q.∆l

QL.∆u ← QL.∆u +Q.∆u, QR.∆u ← QR.∆u +Q.∆u

Q.∆l ← 0, Q.∆u ← 0
if R is a leaf node then
DFGT(QL, R), DFGT(QR, R)

else
DFGT(QL, RL),DFGT(QL, RR),DFGT(QR, RL),DFGT(QR, RR)
{Refine the bounds based on the recursion results.}
Gl(Q,R)← min{Gl(QL,R) +QL.∆l, Gl(QR,R) +QR.∆l}
Gu(Q,R)← max{Gu(QL,R) +QL.∆u, Gu(QR,R) +QR.∆u}

Q. We loop over each reference point rjn ∈ R and compute the kernel value between qim and rjn and

accumulate the lower bound Gl(qim ,R), the kernel sum computed exhaustively G̃(qim ,RE(qim)),
and the upper bound Gu(qim ,R)

Note that we subtract one for updating Gu(qim ,R) for correcting the prior assumption that

Kh(||qim − rjn ||) = 1, while the lower bound Gl(qim ,R) and G̃(qim ,RE(qim)) are incremented by
Kh(||qim − rjn ||). As the contribution of the reference node R is added onto the query point qim ’s
sum, we can refine the bound summary statistics owned byQ such thatGl(Q,R) = min

qim∈Q
Gl(qim ,R)

and Gu(Q,R) = max
qim∈Q

Gu(qim ,R). Finally, we reset the postponed bound changes stored in Q to

zero.

Post-processing (shown in Algorithm 15). For the non-leaf case, the local-to-local translation
operator (TransLocalToLocal) is called to re-center the local moments at the current level and
passes them down to the child nodes. For the leaf-case, EvalLocalExpansion is called to convert
local moments to a single scalar that represents the contribution to a given query point.

33

Algorithm 14 DFGTBase(Q,R): Computes exact contribution of R to Q.

Gl(Q,R)←∞, Gu(Q,R)← −∞
for each qim ∈ Q do
{Add postponed changes passed down from the ancestor node of Q.}
Gl(qim ,R)← Gl(qim ,R) +Q.∆l, Gu(qim ,R)← Gu(qim ,R) +Q.∆u

for each rjn ∈ R do
v ← Kh(‖qim − rjn‖), Gl(qim ,R)← Gl(qim ,R) + v

G̃(qim ,RE (qim))← G̃(qim ,RE(qim)) + v

Gu(qim ,R)← Gu(qim ,R) + (v − 1)
{Refine the bound summary statistics owned by Q.}
Gl(Q,R)← min{Gl(Q,R), Gl(qim ,R)}
Gu(Q,R)← max{Gu(Q,R), Gu(qim ,R)}

Q.∆l ← 0, Q.∆u ← 0

3.10 Basic Properties of DFGT Algorithms

Theorem 3.8. Lower/upper bounds are maintained properly at all times for each q ∈ Q and each
query node Q during the function call DFGTMain.

Proof. We show that the bounds are maintained properly for three main parts in the function
DFGTMain: DFGTInitQ, DFGT, and DFGTPost.
The function call DFGTInitQ: It is clear that for all qi ∈ Q, 0 = Gl(qi,R) ≤ G(qi,R) ≤
Gu(qi,R) = |R|. Furthermore, for each query node Q, 0 = Gl(Q,R) ≤ G(qim ,R) ≤ Gu(Q,R) =
|R| for each qim ∈ Q.

The function call DFGTBase: Let Q and R be the query node and the reference node respectively.
For each query point qim ∈ Q, Gl(qim ,R) is incremented by Q.∆l +

∑
rjn∈R

Kh(||qim − rjn ||), and

Gu(qim ,R) by Q.∆u+∑
rjn∈R

(Kh(||qim − rjn ||)− 1); this operation incorporates the passed-down contribution for qim ∈ Q,

and un-does the assumption made during the initialization phase of DFGTInitQ. Gl(Q,R) and
Gu(Q,R) are updated to be the minimum among Gl(qim ,R) and the maximum among Gu(qim ,R)
respectively. The postponed bound changes Q.∆l and Q.∆u are cleared to avoid double-counting
when Q may be visited later.

The function call DFGT: We induct on the number of points owned by the query node Q and the
reference node R in consideration (i.e. |Q|+ |R|). The only possible places that change Gl(qim ,R),
Gu(qim ,R), Gl(Q,R) and Gu(Q,R) are the call to the base case function DFGTBase and the last
two lines of the function DFGT. The correctness of DFGTBase function is proven already, so we
consider the second case. The two function calls DFGT(QL, R) and DFGT(QR, R) (in case R is
a leaf node) and the four function calls
DFGT(QL, RL), DFGT(QL, RR), DFGT(QR, RL), and DFGT(QR, RR) (in case R is an internal
node) are smaller subproblems than (Q,R) pair. By the induction hypothesis, these calls maintain
the lower and the upper bounds properly. The lower bound is set to the minimum of the “best”
lower bound owned by the children of Q: min{Gl(QL,R)+QL.∆l, Gl(QR,R)+QR.∆l}. Similarly,

34

Algorithm 15 DFGTPost(Q): The post-processing routine.

if Q is a leaf node then
Gl(Q,R)←∞, Gu(Q,R)← −∞
for each qim ∈ Q do
{Add bound changes for the query node at the given query point qim .}
Gl(qim ,R)← Gl(qim ,R) +Q.∆l, Gu(qim ,R)← Gu(qim ,R) +Q.∆u

{Refine summary statistics for lower and upper bounds.}
Gl(Q,R)← min{Gl(Q,R), Gl(qim ,R)}
Gu(Q,R)← max{Gu(Q,R), Gu(qim ,R)}
{Compute the contributions from the accumulated local moments.}
G̃(qim ,RT (qim))← EvalLocalExpansion(Q)
{Sum the contribution from the local moments (direct or translated), the far-field evaluations,
and exhaustive evaluations.}
G̃(qim ,R)← G̃(qim ,RD(qim) ∪RT (qim)) + G̃(qim ,RF (qim)) + G̃(qim ,RE)

∆l(Q)← 0, ∆u(Q)← 0, Q.L← 0
else
TransLocalToLocal(Q,QL), TransLocalToLocal(Q,QR)
QL.∆l ← QL.∆l +Q.∆l, QR.∆l ← QR.∆l +Q.∆l

QL.∆u ← QL.∆u +Q.∆u, QR.∆u ← QR.∆u +Q.∆u

Q.L← 0, Q.∆l ← 0, Q.∆u ← 0
DFGTPost(QL), DFGTPost(QR)
{Refine the bounds based on the results of the recursion.}
Gl(Q,R)← min{Gl(QL,R), Gl(QR,R)}
Gu(Q,R)← max{Gu(QL,R), Gu(QR,R)}

the upper bound is set to the maximum of the “best” upper bound owned by the children of Q:
max{Gu(QL,R) +QL.∆u, Gu(QR,R) +QR.∆u}.

The function call DFGTPost: We again induct on the number of points owned by the query
node Q passed in as the argument to this function. If the query node Q is a leaf node, each query
point qim ∈ Q incorporates the passed-down bound changes Q.∆l and Q.∆u. The bounds Gl(Q,R)
and Gu(Q,R) are (correctly) set to the minimum among Gl(qim ,R) and the maximum among
Gu(qim ,R). If Q is not a leaf node: we know the sub-calls DFGTPost(QL) and DFGTPost(QR)
maintains correct lower and upper bounds by the induction hypothesis since QL and QR contain a
smaller number of points. Setting the lower and upper bounds for Q by the operations: Gl(Q,R)←
min{Gl(QL,R), Gl(QR,R)}, Gu(Q,R)← max{Gu(QL,R), Gu(QR,R)} is valid.

Theorem 3.9. After calling DFGTPost (Algorithm 15) in DFGTMain (Algorithm 8), each
query point qi ∈ Q accounts for every reference point rj ∈ R in its Gaussian kernel sum approxi-

mation G̃(qi,R).

Proof. In Algorithm 13, for each qi ∈ Q, each rj ∈ R is either accounted by an exhaustive compu-
tation in DFGTBase or a prune in Summarize. All exhaustive computations for qi ∈ Q directly
update G̃(qi,RE(qi)), while any pruned contributions will be incorporated into each G̃(qi,RT (qi))

35

(hence into G̃(qi,R(qi))) and when they are pushed down (to the leaf node to which qi belongs)
during the DFGT recursion or DFGTPost.

Theorem 3.10. For each query point qi ∈ Q, the approximated kernel sum G̃(qi,R) satisfies the
global relative error tolerance ǫ.

Proof. For simplicity, let us limit the available approximation methods to A ∈ {E, T (c, 1)} where
E denotes the exhaustive computation and T (c, 1) denotes the centroid-based approximation about
c.

Given qi ∈ Q, let Q′ be the (unique) leaf node that owns qi. Let {RTa
}Na

a=1 denote the set
of reference nodes whose kernel sum contribution were accounted via centroid approximation and
{REb

}Nb

b=1 the set of reference nodes whose kernel sum contribution were computed exhaustively.

Then it is clear that R =

(
Na⋃
a=1

RTa

)
∪
(

Nb⋃
b=1

REb

)
with RTa′ ∩ RTa′′ = ∅, REb′

∩ REb′′
= ∅,

RTa′ ∩ REb′
= ∅ for 1 ≤ a′, a′′ ≤ Na and 1 ≤ b′, b′′ ≤ Nb. Let QTa

be the query node that owns qi
and is considered with the reference node RTa

and pruned. Let Gl(a)(QTa
,R) be a “snapshot” of

the running lower bound on the kernel sum for query points owned by QTa
at the time the query

node QTa
and the reference node RTa

were considered (and subsequently pruned). By the triangle
inequality:

∣∣∣G̃(qi,R)−G(qi,R)
∣∣∣

=

∣∣∣∣∣G̃



qi,




Na⋃

a=1

{(RTa , T (Q.c, 1))}



 ∪




Nb⋃

b=1

{
(REb

, E)
}






−

G



qi,




Na⋃

a=1

RTa



 ∪




Nb⋃

b=1

REb








∣∣∣∣∣

≤
∣∣∣∣∣




Na∑

a=1

G̃ (qi, {(RTa , T (Q.c,1))}) −G(qi, RTa)


+




Nb∑

b=1

G̃
(
qi, {(REb

, E)}
)
−G(qi, REb

)




∣∣∣∣∣

≤
Na∑

a=1

∣∣∣G̃ (qi, {(RTa , T (Q.c,1))}) −G(qi, RTa)
∣∣∣ +

Nb∑

b=1

∣∣∣G̃
(
qi, {(REb

, E)}
)
−G(qi, REb

)
∣∣∣

≤
Na∑

a=1

|RTa |max

{
|Kh(d

u(QTa , RTa))−Kh(||QTa .c−RTa .c||)| ,∣∣Kh(d
l(QTa , RTa)) −Kh(||QTa .c− RTa .c||)

∣∣
}

+

Nb∑

b=1

|REb
| · 0

≤
Na∑

a=1

|RTa |ǫ
|R|

Gl(a)(QTa ,R) +

Nb∑

b=1

|REb
|ǫ

|R|
Gl(b)(Q′,R)

≤
Na∑

a=1

|RTa |ǫ
|R|

G(qi,R) +

Nb∑

b=1

|REb
|ǫ

|R|
G(qi,R) ≤ ǫG(qi,R)

The proof can be easily extended to the case with four available approximation methods A ∈
{E, T (c, p), F (c, p), D(c, p)}.

36

Alg\Scale 0.001 0.01 0.1 1 10 100 1000 Σ

sj2-50000-2, D = 2, N = 50000, h∗
CVLS

= 0.00139506

Naive 241 241 241 241 241 241 241 1687

FFT ∞ ∞ ∞ ∞ ∞ 1.02 0.03 ∞
FGT X X X 2.63 1.48 0.33 0.18 X

IFGT ∞ ∞ ∞ 155 7.26 0.40 0.03 ∞
DFD 1.58 1.63 2.14 4.33 39.7 29.5 1.51 80.39

DFGT 0.43 0.47 1.00 3.48 21 2.48 0.96 29.8

colors50k, D = 2, N = 50000, h∗
CVLS

= 0.0016911

Naive 241 241 241 241 241 241 241 1687

FFT ∞ ∞ ∞ ∞ ∞ ∞ 0.16 ∞
FGT X X X 120 10 4 0.22 X

IFGT ∞ ∞ ∞ ∞ ∞ 0.54 0.07 ∞
DFD 1.62 1.76 2.36 12.5 102 17.0 2.41 139.65

DFGT 0.44 0.60 1.21 15.6 20 4.20 0.67 42.7

bio5, D = 5, N = 103010, h∗
CVLS

= 0.000308646

Naive 1310 1310 1310 1310 1310 1310 1310 9170

FFT X X X X X X X X

FGT X X X X X X X X

IFGT ∞ ∞ ∞ ∞ ∞ ∞ 1.04 ∞
DFD 0.34 0.36 0.92 6.31 113 643 125 888.93

DFGT 0.35 0.37 0.94 6.51 102 304 121 535.17

Figure 14: Empirical comparison of six different algorithms on different magnitudes of bandwidths
on three different datasets. Each entry in the table has a timing number (if finite), ∞ symbol (if
no parameter tweaking could achieve the error tolerance), X symbol (if the algorithm segfaulted).

4 Experimental Results

We evaluated empirical performance of six algorithms:

• Naive: the brute-force algorithm (Algorithm 1).

• FFT: Fast fourier transform based kernel density estimate [18].

• FGT: Fast Gauss transform [11].

• IFGT: improved fast Gauss transform [19, 13].

• DFD: the dual-tree centroid-based approximation method [7, 9].

• DFGT: our new algorithm (Algorithm 8).

We used the following six real-world datasets:

• sj2-50000-2: two-dimensional astronomy position dataset.

• colors50k: two-dimensional astronomy color dataset.

• bio5: five-dimensional pharmaceutical dataset.

37

Alg\Scale 0.001 0.01 0.1 1 10 100 1000 Σ

edsgc-radec, D = 2, N = 1495877, h∗
CVLS

= 0.000473061

Naive 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 1.5e6

DFD 4.9e1 4.9e1 6.3e1 1e2 1.5e3 2e4 1.3e3 2.3e4

DFGT 6.8e0 7.4e0 2.1e1 5.9e1 1.7e3 3.5e3 1.4e2 5.4e3

mockgalaxy-D-1M, D = 3, N = 1000000, h∗
CVLS

= 0.00010681

Naive 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 6.7e5

DFD 2.4e0 2.4e0 2.6e0 1.5e1 9.7e1 1.7e2 4.4e3 4.7e3

DFGT 2.4e0 2.4e0 2.6e0 1.5e1 1.1e2 2.1e2 4e3 4.3e3

psf1-psf4-stargal-2d-only, D = 2, N = 3056092, h∗
CVLS

= 0.00489463

Naive 9e5 9e5 9e5 9e5 9e5 9e5 9e5 6.3e6

DFD 1.1e2 1.5e2 1.2e3 2.2e4 3.9e4 2.9e3 1.1e2 6.5e4

DFGT 3.9e1 8.1e1 1.4e3 1.6e4 2.3e3 1.9e2 4.2e1 1.9e4

Figure 15: Empirical comparison of three algorithms on different magnitudes of bandwidths on
three larger datasets. All timings are reported in seconds.

• edgsc-radec: two-dimensional astronomy angle dataset.

• mockgalaxy-D-1M: three-dimensional astronomy position dataset.

• psf1-psf4-stargal-2d-only: two-dimensional astronomy dataset.

Note that the last three datasets contain over 1 million points and demonstrate the scalability
of our fast algorithm. For each dataset, we evaluated the empirical performance on computing
kernel density estimates at seven different bandwidths ranging from 10−3 to 103 times the optimal
bandwidths according to the standard least-squares cross-validation score [15]. We measured the
time required for computing KDE estimates that guarantee the global relative error criterion:∣∣∣G̃(qi,R)−G(qi,R)

∣∣∣ ≤ ǫG(qi,R). We used ǫ = 0.01. Each entry in the table has a timing number

(if finite), ∞ symbol (if no parameter tweaking could achieve the error tolerance), X symbol (if the
algorithm segfaulted; this is common in grid-based algorithms in higher dimension). The entries
under Σ symbol denote the total time for least-squares cross-validation. Note that the FGT ensures:∣∣∣G̃(qi,R)−G(qi,R)

∣∣∣ ≤ τ . Therefore, we first set τ = ǫ, halving τ until the error tolerance ǫ was

met; the time for verifying the global error guarantee (which includes comparison against the naively
computed results) was not included in the timing. For the FFT, we started with 16 grid points
along each dimension, and doubled the number of grid points until the error guarantee was met.
For the IFGT, we took the most recent version of the algorithm that does automatic parameter
tuning described in [13]. Our algorithms based on dual-tree methods guarantees the error bound
automatically via a direct parameter ǫ.

The naive timings for the last datasets have been extrapolated from the performances on the
smaller datasets. Our results demonstrate that our new algorithm can be as 15 times as fast as
the original dual-tree algorithm. As expected, the grid-based original fast Gauss transform and the
fast Fourier transformed based method fails in dimensions above two.

38

Figure 16: Top: It is conceptually easy to visualize the moments to be stored in a multi-dimensional
array conceptually. Each dimension iterates over pmax scalars, giving a total count of (pmax)

D

scalars. Bottom: The linear layout for the storing the coefficients.

5 Conclusion

In this paper, we combined the two methods: the dual-tree KDE [8] and the original fast Gauss
transform [11] to form the hierarchical form of the fast Gauss transform, the Dual-tree Fast Gauss
Transform. Our results demonstrate that the O(pD) expansion helps reduce the computational
time on datasets of dimensionality up to 5.

Appendix: Implementing the Gaussian Series-expansion

This section explains how to implement the series-expansion mechanisms in computer languages
such as C/C++.
Storing the far-field/local moments as a linear array. Although the moments are inherently
multi-dimensional, we store all coefficients in a C-style one-dimensional array. Each query node
stores (pmax)

D
local moment terms. Similarly, each reference node stores (pmax)

D
far-field moment

terms. These are allocated as a linear array during the construction of the two trees, as shown
in Figure 16 which implies a bijective mapping between D-digit radix-pmax numbers and decimal
numbers between 0 and pDmax - 1 inclusive.

Converting between a position and a multi-index in the linear array. Algorithm 16 shows
the mapping from a position in the linear array of (pmax)

D
terms to its corresponding multi-index.

The algorithm converts the given position (given in base 10) to a number in base p. Algorithm 17

converts the given multi-index to its corresponding position in the linear array of length (pmax)
D
.

39

Algorithm 16 PositionToMultiindex(i, p): Converts the position of a linear array of length
pD to its multi-index.

{i-th position maps to the multi-index α.}
αi=1,··· ,D ← 0
for d = D to d = 1 do
α[d− (D − 1)]←

⌊
i
p

⌋

i← i mod p

return α

It is basically an algorithm to convert a radix-pmax number to its decimal representation.

Algorithm 17 MultiIndexToPosition(α): Converts the given multi-index to its corresponding

position in the linear array of length (pmax)
D.

{Converted position from the multi-index.}
x← 0, f ← 1
for d = D to d = 1 do
x← x+ f · α[d]
f ← f · pmax

return x

Computing a multi-index expansion of a vector. A multi-index expansion of a vector
x ∈ R

D up to pD terms is basically the set of coefficients {xα}α<p. See Figure 17. This is
used in the process of forming a far-field moment contribution of a single reference point in
AccumulateFarFieldMoment and evaluating a local expansion in EvalLocalExpansion.

Figure 17: The multi-index expansion of a 2-D vector x = [x[1], x[2]]T up to 16 terms.

Implementing the far-field moment accumulation (Equation (20)). This is straightforward
given the implementation of the function
MultiIndexExpansion. Basically, it computes the multi-index of each reference point in the given
reference node and accumulates each contribution and normalizes the sum. See Algorithm 19.

Implementing the far-to-far translation operator (shown in Algorithm 20). This consists of
a doubly-nested for-loop over accumulated far-field moments.

Computing the multivariate Hermite functions. We exploit the fact that the multivariate

40

Algorithm 18 MultiIndexExpansion(x, p,M ′): Computes M ′ = {xα}α<p.

M ′[0]← 1
for each i = 0 to i = pD − 1 do
{Retrieve the multi-index mapping of the current position.}
α← PositionToMultiindex(i, p)
j ← the first index of α such that α[j] ≥ 1.
{Found a direct ancestor of the multiindex map α.}
α′ ← α, α′[j]← α′[j]− 1
{Recursively compute the α-th multi-index component based on α′-th.}
M ′[i]←M ′[MultiIndexToPosition(α′)] · x[j]

Algorithm 19 AccumulateFarFieldMoment(R): Implements Equation (20).

{Temporary space that is equal in size to {Mα(R,R.c)}α<pmax
.}

M ′
i=0,··· ,(pmax)

D−1
← 0

for each rjn ∈ R do

{Add M ′ =
{(

rjn−R.c√
2h2

)α}
α<pmax

onto {Mα(R,R.c)}α<pmax
.}

MultiIndexExpansion
(

rjn−R.c√
2h2

, pmax ,M
′
)

{Mα(R,R.c)}α<pmax
← {Mα(R,R.c)}α<pmax

+M ′

for i = 0 to i = (pmax)
D − 1 do

Mα(R,R.c)←Mα(R,R.c) · 1
α!

Hermite functions is a product of D univariate Hermite functions. Algorithm 21 computes partial
derivatives of the Gaussian kernel evaluated at the given point x along each dimension up to p-th

order. hα(x) =
D∏

d=1

hα[d](x) is a simple product of the univariate functions (see Algorithm 22).

Evaluating a far-field expansion. Once the functions for computing the Hermite functions
(Algorithm 21 and Algorithm 22), we can implement the function for evaluating a far-field expansion
up to pD terms, as shown in Algorithm 23. The basic structure is one outer-loop over each query
point and the inner loop iterating over each far-field moment. The contribution to each query point
is computed as a dot-product between the far-field moment and the computed Hermite functions
(see Figure 5).

Implementing the far-to-local translation operator. The basic structure of the algorithm
is a doubly nested for-loop, each over the coefficients. The doubly-nested for-loop first translate a
portion of the accumulated far-field moments of R up to pD terms into the local moments. The
final step of the algorithm is to add the translated moments {Lβ({(R, T (Q.c, p))})} to the local
moments stored in Q, Lβ(Q.c,RD(Q) ∪RT (Q)). See Algorithm 24.

Implementing the direct local accumulation operation. The basic structure is a doubly-
nested for-loop, the outer-loop over the reference points whose moments are to be accumulated as
local moments and the inner loop over the coefficient positions. See Algorithm 25.

41

Algorithm 20 TransFarToFar(R′, R): Implements Equation (26).

{Allocate space for and compute
{(

R′.c−R.c√
2h2

)α}
α<pmax

.}
Ci=0,··· ,(pmax)

D−1 ← 0

MultiIndexExpansion
(

R′.c−R.c√
2h2

, pmax , C
)

for i = 0 to i < (pmax)
D do

γ ← PositionToMultiindex(i, pmax)
for j = 0 to j < (pmax)

D do
α← PositionToMultiindex(j, pmax)
if α ≤ γ then
Mγ(R,R.c)←Mγ(R,R.c)+

1
(γ−α)!Mα(R

′, R′.c) · C[MultiIndexToPosition(γ − α)]

Algorithm 21 ComputePartialDerivatives(a, p,H): Evaluates the partial derivatives of

e−x2/(2h2) up to (p− 1)-th order at each coordinate of a.

for d = 1 to D do
H [d][0]← e−(a[d])2

if p > 1 then
H [d][1]← 2 · a[d] · e−(a[d])2

if p > 2 then
for k = 1 to k = p− 2 do
H [d][k + 1]← 2 · a[d] ·H [d][k]− 2 · k ·H [d][k − 1]

Implementing the local-to-local translation operator. We direct readers’ attention to the
first step of the algorithm, which retrieves the maximum order among used in local moment ac-
cumulation/translation. Then the algorithm proceeds with a doubly-nested for-loop over the local
moments applies Equation (27). See Algorithm 26.

Evaluating the local expansion of the given query node. This function (see Algorithm 27)
is consisted of one outer-loop over reference points and the inner-loop over the local moments up
to pD terms, where p is the maximum approximation order used among the reference nodes pruned
via far-to-local and direct local accumulations for Q.

References

[1] A. Appel. An efficient program for many-body simulation. SIAM Journal on Scientific and
Statistical Computing, 6:85, 1985.

[2] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature, 324,
1986.

[3] B. Baxter and G. Roussos. A new error estimate of the fast Gauss transform. SIAM Journal
on Scientific Computing, 24:257, 2002.

42

Algorithm 22 ComputeHermiteFunction(H,α): Computes the Hermite function hα(·) using
the pre-computed partial derivatives H .

f ← 1
for d = 1 to D do
f ← f ·H [d][α[d]]

return f

Algorithm 23 EvalFarFieldExpansion(R,Q, p): Evaluates the far-field expansion of the given
reference node R up to pD terms.

{Allocate space for holding the partial derivatives.}
H d=1,··· ,D

k=0,··· ,p−1
← 0

for each qim ∈ Q do
{Compute partial derivatives up to (p− 1)-th order along each dimension.}
ComputePartialDerivatives

(
qim−R.c√

2h2
, p,H

)

w ← 0
for i = 0 to i = pD − 1 do
α← PositionToMultiindex(i, p)
f ← ComputeHermiteFunction(H,α)
w ← w +Mα(R,R.c) · f

G̃(qim ,RF (qim))← G̃(qim ,RF (qim)) + w

[4] J. L. Bentley. Multidimensional Binary Search Trees used for Associative Searching. Commu-
nications of the ACM, 18:509–517, 1975.

[5] P. B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair Decomposition and
its Applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland, 1995.

[6] A. Gray and A. Moore. Rapid evaluation of multiple density models. Artificial Intelligence
and Statistics, 2003.

[7] A. Gray and A. Moore. Very fast multivariate kernel density estimation via computational
geometry. In Joint Stat. Meeting, 2003.

[8] A. Gray and A. W. Moore. N-Body Problems in Statistical Learning. In T. K. Leen, T. G.
Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13 (De-
cember 2000). MIT Press, 2001.

[9] A. G. Gray and A. W. Moore. Nonparametric Density Estimation: Toward Computational
Tractability. In SIAM International Conference on Data Mining 2003, 2003.

[10] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal of Compu-
tational Physics, 73, 1987.

[11] L. Greengard and J. Strain. The Fast Gauss Transform. SIAM Journal of Scientific and
Statistical Computing, 12(1):79–94, 1991.

43

Algorithm 24 TransFarToLocal(R,Q, p): Implements Equation (22).

H d=1,··· ,D
k=0,··· ,2(p−1)

← 0

ComputePartialDerivatives
(

Q.c−R.c√
2h2

, 2p− 1, H
)

for i = 0 to i = pD − 1 do
β ← PositionToMultiindex(i, p)
for j = 0 to j = pD − 1 do
α← PositionToMultiindex(j, p)
f ← ComputeHermiteFunction(H,α+ β)
Lβ({(R, T (Q.c, p))})← Lβ({(R, T (Q.c, p))}) +Mα(R,R.c) · f

Lβ({(R, T (Q.c, p))})← (−1)|β|

β! Lβ({(R, T (Q.c, p))})
{Lβ(Q.c,RD(Q) ∪RT (Q))}β<p ← {Lβ(Q.c,RD(Q) ∪RT (Q))}β<p + {Lβ({(R, T (Q.c, p))})}β<p

Algorithm 25 AccumulateDirectLocalMoment(R,Q, p): Implements Equation (21).

H d=1,··· ,D
k=0,··· ,p−1

← 0, {Lβ({(R,D(Q.c, p))})}β<p ← 0

for each rjn ∈ R do

ComputePartialDerivatives
(

Q.c−rjn√
2h2

, p,H
)

for i = 0 to pD − 1 do
α← PositionToMultiindex(i, p)
f ← ComputeHermiteFunction(H, β)
Lβ({(R,D(Q.c, p))})← Lβ({(R,D(Q.c, p))}) + f

{Lβ({(R,D(Q.c, p))})}β<p ← {Lβ({(R,D(Q.c, p))})}β<p ∗ (−1)|β|

β!

{Lβ(Q.c,RD(Q) ∪RT (Q))}β<p ← {Lβ(Q.c,RD(Q) ∪RT (Q))}β<p + {Lβ({(R,D(Q.c, p))})}β<p

[12] D. Lee, A. Gray, and A. Moore. Dual-tree fast gauss transforms. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 747–754.
MIT Press, Cambridge, MA, 2006.

[13] V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast computation of sums of
gaussians in high dimensions. Technical Report CS-TR-4767, Department of Computer Science,
University of Maryland, CollegePark, 2005.

[14] B. Silverman. Kernel Density Estimation using the Fast Fourier Transform. Journal of the
Royal Statistical Society Series C: Applied Statistics, 33, 1982.

[15] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall/CRC, 1986.

[16] J. Strain. The fast Gauss transform with variable scales. SIAM Journal on Scientific and
Statistical Computing, 12(5):1131–1139, 1991.

[17] O. Szász. On the relative extrema of the hermite orthogonal functions. J. Indian Math. Soc.,
15:129–134, 1951.

44

Algorithm 26 TransLocalToLocal(Q′, Q): Implements Equation (27).

{p is the maximum approximation order used among the reference nodes pruned via far-to-local
and direct local accumulations for Q′.}
p← max

{
max

R∈RD(Q′)
pD, max

R∈RT (Q′)
pT

}

{Temporary space that is equal in size to {Lβ}.}
X ← 0
MultiIndexExpansion

(
Q.c−Q′.c√

2h2
, p,X

)

for j = 0 to pD − 1 do
α← PositionToMultiindex(j, p)
for k = 0 to pD − 1 do
β ← PositionToMultiindex(k, p)
if β ≥ α then
Lβ(Q.c,RD(Q′) ∪RT (Q′))← Lβ(Q.c,RD(Q′) ∪RT (Q′))+

β!
α!(β−α)!Lβ(Q

′.c,RD(Q′) ∪RT (Q′))Xβ−α

{Lβ(Q.c,RD(Q) ∪ RT (Q))}β<p ← {Lβ(Q.c,RD(Q) ∪ RT (Q))}β<p + {Lβ(Q.c,RD(Q′) ∪
RT (Q′))}β<p

[18] M. P. Wand. Fast Computation of Multivariate Kernel Estimators. Journal of Computational
and Graphical Statistics, 1994.

[19] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss transform and
efficient kernel density estimation. International Conference on Computer Vision, 2003.

45

Algorithm 27 EvalLocalExpansion(Q): Evaluates the accumulated local expansion of the
given query node Q.

{p is the maximum approximation order used among the reference nodes pruned via far-to-local
and direct local accumulations for Q.}
p← max

{
max

R∈RD(Q)
pD, max

R∈RT (Q)
pT

}

{Temporary space to hold the multi-index expansion of each
(

qim−Q.c√
2h2

)α
.}

Xi=0,··· ,pD−1 ← 0

for each qim ∈ Q do
z ← 0
{Compute the multi-index expansion of

qim−Q.c√
2h2

up to pD terms.}
MultiIndexExpansion

(
qim−Q.c√

2h2
, p,X

)

for i = 0 to i = pD − 1 do
β ← PositionToMultiindex(i, p)
z ← z + Lβ(Q.c,RD(Q) ∪RT (Q)) · z

G̃(qim ,RD(qim) ∪RT (qim))← G̃(qim ,RD(qim) ∪RT (qim)) + z

46

	1 Introduction
	1.1 Efficient Computation of Gaussian Kernel Sums
	1.2 Previous Approaches
	1.3 Our Contribution
	1.4 Structure of This Paper
	1.5 Notations

	2 Computational Technique
	2.1 Spatial Trees
	2.2 Generalized N-body Approach

	3 Dual-Tree Fast Gauss Transform
	3.1 Mathematical Preliminaries
	3.2 Notations in Algorithm Descriptions
	3.3 Series Expansion for the Gaussian Kernel Sums
	3.4 Gaussian Sum Approximation Using Series Expansion
	3.5 Truncation Error Bounds
	3.6 Determining the Approximation Order
	3.7 Deriving the Hierarchical FGT
	3.8 Choosing the Best Approximation Method
	3.9 Hierarchical FGT
	3.10 Basic Properties of DFGT Algorithms

	4 Experimental Results
	5 Conclusion

