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Abstract

This article is devoted to nonlinear approximation and estimation via piecewise

polynomials built on partitions into dyadic rectangles. The approximation rate is

studied over possibly inhomogeneous and anisotropic smoothness classes that contain

Besov classes. Highlighting the interest of such a result in statistics, adaptation in the

minimax sense to both inhomogeneity and anisotropy of a related multivariate density

estimator is proved. Besides, that estimation procedure can be implemented with a

computational complexity simply linear in the sample size.
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1 Introduction

When estimating a multivariate function, it seems natural to consider that its smoothness is
likely to vary either spatially, or with the direction, or both. We will refer to the first feature
as (spatial) inhomogeneity. If the risk is measured in a Lq-norm, measuring the smoothness
in a Lp-norm with p < q allows to take into account such an inhomogeneity – all the greater
as p is smaller – in the sense that functions with some localized singularities and otherwise
flat parts may thus keep a high smoothness index. For the second feature, we will talk about
anisotropy, which is usually described by different indices of smoothness according to the
coordinate directions. Yet, statistical procedures that adapt both to possible inhomogeneity
and anisotropy remain rather scarce. Indeed, the existing literature seems to amount to
the following references. Neumann and Von Sachs [NvS97], for estimating the evolutionary
spectrum of a locally stationary time series, and Neumann [Neu00], in the Gaussian white
noise framework, study thresholding procedures in a tensor product wavelet basis. In a
Gaussian regression framework, Donoho [Don97] proposes the dyadic CART procedure, a
selection procedure among histograms built on partitions into dyadic rectangles, extended
to the density estimation framework by Klemelä [Kle09]. Last, Kerkyacharian, Lepski
and Picard [KLP01] introduce a kernel estimator with adaptive bandwidth in the Gaussian
white noise model. These authors study the performance of their procedures for the L2-risk,
apart from the latter who consider any Lq-risk for q ≥ 1. Neumann and Von Sachs [NvS97]
measure the smoothness of the function to estimate in the Sobolev scale, whereas the others
consider the finer Besov scale. Besides, the Lp-norm in which the smoothness is measured is
allowed to vary with the direction, except in [Don97], but always constrained to be greater
than 1. Common to those few procedures is the ability to reach the minimax rate over a
wide range of possibly inhomogeneous and anisotropic classes, up to a logarithmic factor,
the unknown smoothness being as usually limited by the a priori fixed smoothness of the
underlying wavelets, piecewise polynomials or kernel.

Adaptation results of the aforementioned type rely as much on Statistics as on Approx-
imation Theory, oracle-type inequalities reflecting the interplay between both domains.
Assume for instance that the function s to estimate lies in the set F([0, 1]d,R) of all real-
valued functions defined over the unit cube [0, 1]d, let (Sm)m∈M be a given family of linear
subspaces of F([0, 1]d,R) and s̃ a statistical procedure somehow based on that family. An
oracle-type inequality in the Lq-norm roughly takes the form

Es

[
‖s− s̃‖qq

]
≤ C inf

m∈M

{
inf
t∈Sm

‖s− t‖qq + (dim(Sm)/n)q/2
}
, (1)

where C is some positive constant, indicating that s̃ is able to choose a model Sm in the
family that approximately realizes the best compromise between the approximation error
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and the dimension of the model. Equivalently, it may be written as

Es

[
‖s− s̃‖qq

]
≤ C inf

D∈N⋆

{
inf

t∈∪m∈MD
Sm

‖s− t‖qq + (D/n)q/2
}
, (2)

where MD = {m ∈ M s.t. dim(Sm) = D}. On the other hand, the collection (Sm)m∈M

should be chosen so as to have good approximation properties over various classes S(α, p,R)
of functions with smoothness α measured in a Lp-norm and with semi-norm smaller than
R. Otherwise said, each approximating space ∪m∈MD

Sm – typically nonlinear to deal with
inhomogeneous functions– should satisfy, for a wide range of values of α, p and R,

sup
s∈S(α,p,R)

inf
t∈∪m∈MD

Sm

‖s − t‖q ≤ C(α, p)RD−α/d, (3)

for some positive real C(α, p) that only depends on α and p. Combining the oracle-type
inequality (2) and the approximation result (3) then provides an estimator s̃ with rate at
most of order (Rn−α/d)qd/(d+2α) over each class S(α, p,R), which is usually the minimax
rate. Having at one’s disposal spaces (Sm)m∈M that do no depend on any a priori knowl-
edge about the smoothness of the function to estimate – other than the scale of spaces it
belongs to – and reaching the approximation rate (3) is thus a real issue for statisticians. In
order to deal with inhomogeneity only, in a multivariate framework, such results appear for
instance in the following references. DeVore, Jawerth and Popov [DJP92], Birgé and Mas-
sart [BM00] or Cohen, Dahmen, Daubechies and DeVore [CDDD01] propose wavelet based
approximation algorithms aimed in particular at Besov type smoothness. Applications of
the approximation result of [BM00] to statistical estimation may be found in Birgé and
Massart [BM97] or Massart [Mas07] for instance. DeVore and Yu [DeV98] are concerned
with piecewise polynomials built on partitions into dyadic cubes, notably for functions with
Besov type smoothness. But their result will wait until Birgé [Bir06] to be used in Statistics.
More generally, such results are in fact hidden behind all adaptive procedures. Thus, for
both inhomogeneous and anisotropic functions, we refer in particular to the articles cited
in the first paragraph. Let us underline that the procedure studied by Donoho [Don97] and
Klemelä [Kle09], though based on dyadic rectangles instead of cubes, does not rely on a
nonlinear approximation result via piecewise polynomials such as [DY90]. Indeed, the adap-
tivity of that estimator follows from its characterization as a wavelet selection procedure
among some tree-structured subfamily of the Haar basis. Other nonlinear wavelet based
approximation results are proved in Hochmuth [Hoc02b] or [Lei03] for anisotropic Besov
spaces. Last, piecewise constant approximation based on dyadic rectangles is studied in
Cohen and Mirebeau [CM09] for nonstandard smoothness spaces under the constraint of
continuous differentiability.

Our aim here is to provide an approximation result tailored for statisticians, whose in-
terest is illustrated by a new statistical procedure. The first part of the article is devoted to
piecewise polynomial approximation based on partitions into dyadic rectangles. Thanks to
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an approximation algorithm inspired from DeVore and Yu [DY90], we obtain approxima-
tion rates akin to (3) over possibly inhomogeneous and anisotropic smoothness classes that
contain for instance the more traditional Besov classes. The approximation rate can be
measured in any Lq-norm, for 1 ≤ q ≤ ∞, and we allow an arbitrarily high inhomogeneity
in the sense that we measure the smoothness in a Lp-norm with p allowed to be arbitrarily
close to 0. Besides, we take into account a possible restriction on the minimal size of the
dyadic rectangles, which may arise in statistical applications. For estimating a multivari-
ate function, we then introduce a selection procedure that chooses from the data the best
partition into dyadic rectangles and the best piecewise polynomial built on that partition
thanks to a penalized least-squares type criterion. The degree of the polynomial may vary
from one rectangle to another, and also according to the coordinate directions, so as to
provide a good adaptation both to inhomogeneity and anisotropy. Thus, our procedure
extends the dyadic histogram selection procedures of Donoho [Don97], Klemelä [Kle09] or
Blanchard, Schäfer, Rozenholc and Müller [BSRM07], and the dyadic piecewise polyno-
mial estimation procedure proposed in a univariate or isotropic framework by Willett and
Nowak [WN07]. We study the theoretical performance of the procedure – with no need to
resort to the "wavelet trick" used in [Don97, Kle09] – for the L2-risk in the density estima-
tion framework, as [Kle09], but we propose a more refined form of penalty than [Kle09]. For
such a penalty, we provide an oracle-type inequality and adaptivity results in the minimax
sense over a wide range of possibly inhomogeneous and anisotropic smoothness classes that
contain Besov type classes. We emphasize that, if the maximal degree of the polynomials
does not depend on the sample size, we reach the minimax rate up to a constant factor
only, contrary to all the previously mentioned estimators. This results not only from the
good approximation properties of dyadic piecewise polynomials, but also from the moder-
ate number of dyadic partitions of the same size. We can also allow the maximal degree
of the polynomials to grow logarithmically with the sample size, in which case we reach
the minimax rate on a growing range of smoothness classes, up to a logarithmic factor.
Moreover, our procedure can be implemented with a computational complexity only linear
in the sample size, possibly up to a logarithmic factor, depending on the way we choose the
maximal degree.

The plan of the paper is as follows. Section 2 is devoted to piecewise polynomial
approximation based on partitions into dyadic rectangles. In Section 3, we are concerned
with density estimation based on a data-driven choice of a best dyadic piecewise polynomial.
We study there the theoretical properties of the procedure and briefly describe the algorithm
to implement it. Most proofs of Sections 2 and 3 are deferred respectively to Section 4 and
to Sections 5 and 6.
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2 Adaptive approximation by dyadic piecewise polynomials

In this section, we present an approximation algorithm by piecewise polynomials built on
partitions into dyadic rectangles. We study its rate of approximation over some classes of
functions that may present at the same time anisotropic and inhomogeneous smoothness.

2.1 Notation

Throughout the article, we fix d ∈ N⋆, and throughout this section, we fix some d-uple
of nonnegative integers r = (r1, . . . , rd) that represent the maximal degree of polynomial
approximation in each direction. We call dyadic rectangle of [0, 1]d any set of the form
I1 × . . .× Id where, for all 1 ≤ l ≤ d,

Il = [0, 2−jl ] or Il =]kl2
−jl , (kl + 1)2−jl ]

with jl ∈ N and kl ∈ {1, . . . , 2jl − 1}. Otherwise said, a dyadic rectangle of [0, 1]d is defined
as a product of d dyadic intervals of [0, 1] that may have different lengths. For a partition
m of [0, 1]d into dyadic rectangles, we denote by |m| the number of rectangles in m and
by S(m,r) the space of all piecewise polynomial functions on [0, 1]d which are polynomial
with degree ≤ rl in the l-th direction, l = 1, . . . , d, over each rectangle of m. Besides, for
0 < p ≤ ∞, we denote by Lp([0, 1]

d) the set of all real-valued and measurable functions s
on [0, 1]d such that the (quasi-)norm

‖s‖p =





(∫
[0,1]d |s(x)|

pdλd(x)
)1/p

if 0 < p < ∞

supx∈[0,1]d |s(x)| if p = ∞

is finite, where λd is the Lebesgue measure on [0, 1]d. Last, C(θ), Ci(θ) or C ′
i(θ), i ∈ N⋆

stand for a positive reals that only depend on the parameter θ. Their values may change
from one line to another, unless otherwise said.

2.2 Approximation algorithm

Let us fix 1 ≤ q ≤ ∞. In order to approximate a possibly anisotropic and inhomogeneous
function s in the Lq-norm, we propose an approximation algorithm inspired from [DY90].
We shall construct an adequate piecewise polynomial approximation on a partition into
dyadic rectangles adapted to s, beginning with the trivial partition of the unit square
[0, 1]d and proceeding to successive refinements. For doing so, we consider the criterion

Er(s,K)q = inf
P∈Pr

‖(s − P )1IK‖q (4)

measuring the error in approximating s on a rectangle K ⊂ [0, 1]d by some element from
the set Pr of all polynomials on [0, 1]d with degree ≤ rl in the l-th direction. We also
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fix some threshold ǫ > 0 – to be chosen later, according to the smoothness assumptions
on s. But contrary to [DY90], we allow the degrees of smoothness of s to vary with the
directions and describe them by a multi-index σ = (σ1, . . . , σd) ∈

∏d
l=1(0, rl+1), in a sense

that will be made precise in the next subsection. Thus, our algorithm is based on a special
subcollection of dyadic rectangles adapted to an anisotropic smoothness measured by σ.
Indeed, for j ∈ N, we define Dσ

j as the set of all dyadic rectangles I1 × . . . × Id ⊂ [0, 1]d

such that, for all 1 ≤ l ≤ d,

Il =
[
0, 2−⌊jσ/σl⌋

]
or Il =

]
kl2

−⌊jσ/σl⌋, (kl + 1)2−⌊jσ/σl⌋
]
,

with σ = min1≤l≤d σl and kl ∈ {1, . . . , 2⌊jσ/σl⌋ − 1}, and we set Dσ = ∪j∈ND
σ
j . It should

be noticed that, for all j ∈ N, any K ∈ Dσ
j can be partitioned into dyadic rectangles of

Dσ
j+1, that we call children of K. For d = 2 and σ2 = 2σ1 for instance, a partition of [0, 1]2

into dyadic rectangles from Dσ will thus be roughly twice as fine in the first direction, as
illustrated by Figure 1.

Figure 1: Example of partition of [0, 1]2 into dyadic rectangles from Dσ for σ2 = 2σ1.

The algorithm begins with the set I1(s, ǫ) that only contains [0, 1]d. If Er(s, [0, 1]
d)q < ǫ,

then the algorithm stops. Else, [0, 1]d is replaced with his children in I1(s, ǫ), hence a
new partition I2(s, ǫ). In the same way, the k-th step begins with a partition Ik(s, ǫ)
of [0, 1]d into dyadic rectangles that belong to Dσ. If maxK∈Ik(s,ǫ) Er(s,K)q < ǫ, then

the algorithm stops. Else, a dyadic rectangle K ∈ Ik(s, ǫ) such that Er(s,K)q ≥ ǫ is
chosen and replaced with his children in Ik(s, ǫ), hence a new partition Ik+1(s, ǫ). Since
s ∈ Lq([0, 1]

d), Er(s,K)q tends to 0 when the Lebesgue measure of K tends to 0, so the
algorithm finally stops. The final partition I(s, ǫ) only contains dyadic rectangles that
belong to Dσ and such that maxK∈I(s,ǫ) Er(s,K)q < ǫ. For all K ∈ I(s, ǫ), we approximate
s on K by QK(s), a polynomial function with degree ≤ rl in the l-th direction such that
‖(s −QK(s))1IK‖q = Er(s,K)q. Otherwise said, we approximate s on the unit cube by

A(s, ǫ) =
∑

K∈I(s,ǫ)

QK(s),
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thus committing the error

‖s −A(s, ǫ)‖q =


 ∑

K∈I(s,ǫ)

‖(s −QK(s))1IK‖qq




1/q

< |I(s, ǫ)|1/qǫ (5)

if 1 ≤ q < ∞, and

‖s −A(s, ǫ)‖∞ = max
K∈I(s,ǫ)

‖(s −QK(s))1IK‖∞ < ǫ (6)

if q = ∞.

2.3 Approximation rate over anisotropic function classes

In order to study the approximation rate of the previous algorithm, we introduce function
spaces that arise naturally from the way the algorithm proceeds. Let us fix σ ∈

∏d
l=1(0, rl+

1) and 0 < p, p′ ≤ ∞. For s ∈ Lp([0, 1]
d) and k ∈ N, we set

er,σ,p,k(s) = inf
P∈Πr,σ

k

‖s− P‖p (7)

where Πr,σ
k is the set of all piecewise polynomial functions on [0, 1]d that are polynomial with

degree ≤ rl in the l-th direction over each rectangle in Dσ
k . Then, we define N r,σ

p′ (Lp([0, 1]
d))

as the set of all functions s ∈ Lp([0, 1]
d) such that the quantity

Nr,σ,p,p′(s) =





(∑
k∈N

(
2kσer,σ,p,k(s)

)p′)1/p′
if 0 < p′ < ∞

supk∈N
(
2kσer,σ,p,k(s)

)
if p′ = ∞

is finite. One can easily verify that Nr,σ,p,p′ is a (quasi-)semi-norm on N r,σ
p′ (Lp([0, 1]

d)),

and that N r,σ
p′ (Lp([0, 1]

d)) gets larger as p′ increases since

Nr,σ,p,p′2
(s) ≤ Nr,σ,p,p′1

(s) for 0 < p′1 ≤ p′2 ≤ ∞. (8)

If p ≥ q, then N r,σ
p′ (Lp([0, 1]

d)) is obviously embedded in the space Lq([0, 1]
d) in which we

measure the quality of approximation. The same property still holds for p smaller than q,
under adequate assumptions on the harmonic mean H(σ) of σ1, . . . , σd, i.e.

H(σ) =

(
1

d

d∑

l=1

1

σl

)−1

.

Indeed, denoting by (x)+ = max{x, 0} for any real x, we prove in Section 4 the following
continuous embedding.
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Proposition 1 Let σ ∈
∏d

l=1(0, rl + 1), 0 < p, p′ ≤ ∞ and 1 ≤ q ≤ ∞. If

H(σ)/d > (1/p − 1/q)+ ,

then N r,σ
p′ (Lp([0, 1]

d)) ⊂ Lq([0, 1]
d) and, for all s ∈ N r,σ

p′ (Lp([0, 1]
d)),

‖s‖q ≤ C(d, r,σ, p, p′, q)
(
‖s‖p +Nr,σ,p,p′(s)

)
.

The reader familiar with classical function spaces will have noted the similarity between
the definition and the embedding properties of spaces N r,σ

p′ (Lp([0, 1]
d)) and those of Besov

spaces. Before going further, let us recall the definition of the latter according to [ST87],
for instance. We denote by (b1, . . . ,bd) the canonical basis of Rd and set R = [0, 1]d. For
all σ = (σ1, . . . , σd) ∈ (0,+∞)d, 0 < p, p′ ≤ ∞, s ∈ Lp([0, 1]

d), h > 0 and 1 ≤ l ≤ d, we
define

R(σl, h) = {x ∈ [0, 1]d s.t. x, x+ hbl, . . . , x+ (⌊σl⌋+ 1)hbl ∈ R},

∆σl

hbl
s(x) =

⌊σl⌋+1∑

k=0

(
⌊σl⌋+ 1

k

)
(−1)⌊σl⌋+1−ks(x+ khbl), for x ∈ R(σl, h),

ω(l)
σl
(s, y,R)p = sup

0<h≤y
‖∆σl

hbl
s1IR(σl,h)‖p, for y ≥ 0,

|s|σ,p,p′ =





∑d
l=1

(∫∞
0

[
y−σlω

(l)
σl
(s, y,R)p

]p′
dy
y

)1/p′

if 0 < p′ < ∞

∑d
l=1

(
supy>0 y

−σlω
(l)
σl
(s, y,R)p

)
if p′ = ∞.

For σ = (σ1, . . . , σd) ∈ (0,+∞)d, 0 < p, p′ ≤ ∞, we denote by Bσ
p′
(
Lp([0, 1]

d)
)

the space

of all measurable functions s ∈ Lp([0, 1]
d) such that |s|σ,p,p′ is finite. According to the

proposition below, Besov spaces Bσ
p′
(
Lp([0, 1]

d)
)

are embedded in spaces N r,σ
p′ (Lp([0, 1]

d)).

Proposition 2 Let σ ∈
∏d

l=1(0, rl + 1), 0 < p < ∞ and 0 < p′ ≤ ∞. For all s ∈
Bσ

p′
(
Lp([0, 1]

d)
)
,

Nr,σ,p,p′(s) ≤ C(d, r,σ, p, p′)|s|σ,p,p′.

We shall not give a proof of that proposition here, since it relies exactly on the same
arguments as those used by [Hoc02a] in the proof of Theorem 4.1 (beginning of page
197) combined with Inequality (14) in the same reference. It should be noticed that
the space N r,σ

p′ (Lp([0, 1]
d)) is in general larger than Bσ

p′(Lp([0, 1]
d)). Indeed, contrary

to Bσ
p′(Lp([0, 1]

d)), the space N r,σ
p′ (Lp([0, 1]

d)) contains discontinuous functions (piecewise
polynomials, for instance) even for H(σ)/d > 1/p.

We are now able to state approximation rates over anisotropic classes of the form

S(r,σ, p, p′, R) = {s ∈ Lp([0, 1]
d) s.t. Nr,σ,p,p′(s) ≤ R},
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where σ ∈
∏d

l=1(0, rl+1), 0 < p, p′ ≤ ∞ and R > 0, thus extending the result of DeVore and
Yu [DY90] (Corollary 3.3), which is only devoted to functions with isotropic smoothness.
The approximation rate is related to the harmonic mean H(σ) of σ1, . . . , σd, which in case
of isotropic smoothness of order σ, i.e. if σ1 = . . . = σd = σ, reduces to σ.

Theorem 1 Let R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1), 0 < p < ∞ and 1 ≤ q ≤ ∞
such that

H(σ)/d > (1/p − 1/q)+.

Assume that s ∈ S(r,σ, p, p′, R), where p′ = ∞ if 0 < p ≤ 1 or p ≥ q, and p′ = p
if 1 < p < q. Then, for all k ∈ N, there exists some partition m of [0, 1]d into dyadic
rectangles, that may depend on s, d, r,σ, p and q, such that

|m| ≤ C1(d,σ, p)2
kd

and

inf
t∈S(m,r)

‖s− t‖q ≤ C2(d, r,σ, p, q)R2−kH(σ). (9)

The same result still holds whatever 0 < p′ ≤ ∞ if 0 < p ≤ 1 or p ≥ q, and whatever
0 < p′ ≤ p if 1 < p < q, as a straightforward consequence of Theorem 1 and Inequal-
ity (8). Denoting by MD, D ∈ N⋆, the set of all the partitions of [0, 1]d into D dyadic
rectangles, we obtain uniform approximation rates simultaneously over a wide range of
classes S(r,σ, p, p′, R) by considering the nonlinear approximating space ∪m∈MD

S(m,r).
That property is stated more precisely in Corollary 1 below, which can be immediately
derived from Theorem 1.

Corollary 1 Let R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1), 0 < p < ∞, 0 < p′ ≤ ∞
and 1 ≤ q ≤ ∞ satisfying the assumptions of Theorem 1. For all D ≥ C1(d,σ, p), where
C1(d,σ, p) is given by Theorem 1,

sup
s∈S(r,σ,p,p′,R)

inf
t∈∪m∈MD

S(m,r)

‖s − t‖q ≤ C ′
2(d, r,σ, p, q)RD−H(σ)/d.

We also propose of a more refined version of Theorem 1 that allows to take into account
constraints on the minimal dimensions of the dyadic rectangles, which will prove most useful
for estimation purpose in the next section. We recall that σ = min1≤l≤d σl.

Theorem 2 Let J ∈ N, R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl+1), 0 < p < ∞, 0 < p′ ≤ ∞
and 1 ≤ q ≤ ∞ such that

H(σ)/d > (1/p − 1/q)+ .

Assume that s ∈ S(r,σ, p, p′, R), where p′ = ∞ if 0 < p ≤ 1 or p ≥ q, and p′ = p if
1 < p < q. Then, for all k ∈ N, there exists some partition m of [0, 1]d, that may depend
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on s, d, r,σ, p and q, only contains dyadic rectangles with sidelength at least 2−Jσ/σl in the
l-th direction, l = 1, . . . , d, and satisfies both

|m| ≤ C1(d,σ, p)2
kd

and

inf
t∈S(m,r)

‖s− t‖q ≤ C3(d, r,σ, p, q)R
(
2−Jd(H(σ)/d−(1/p−1/q)+)σ/H(σ) + 2−kH(σ)

)
. (10)

Remark: Given J ∈ N, that theorem relies on applying the approximation algorithm of
Section 2.2 to an approximation of s from S(mJ ,r), where mJ is the partition of [0, 1]d

into the dyadic rectangles from Dσ
J . Thus, the term 2−Jd(H(σ)/d−(1/p−1/q)+)σ/H(σ) in (10),

which is of order (dim(S(mJ ,r)))
−(H(σ)/d−(1/p−1/q)+), corresponds with an upper-bound for

the linear approximation error inft∈S(mJ ,r)
||s − t||q. The upper-bound (10) is of the same

order as (9) – up to a real that only depends on d, r,σ, p, q – as long as

k ≤ J
σ

H(σ)

(
H(σ)

d
−

(
1

p
−

1

q

)

+

)
d

H(σ)
. (11)

If p ≥ q and σ = H(σ), i.e. if s has homogeneous and isotropic smoothness, then that
condition simply amounts to k ≤ J . Otherwise, Condition (11) is all the more stringent
as p is small by comparison with q or as σ is small by comparison with H(σ), i.e. all the
more stringent as inhomogeneity or anisotropy are pronounced.

Given J ∈ N, let us denote by MJ
D the set of all the partitions into D dyadic rectangles

with sidelengths ≥ 2−J , for D ∈ N⋆. We can still obtain uniform approximation rates
simultaneously over a wide range of classes S(r,σ, p, p′, R) under the constraint that the
piecewise polynomial approximations are built over dyadic rectangles with sidelengths ≥
2−J , by introducing this time the nonlinear approximation space ∪m∈MJ

D
S(m,r). Indeed, as

for all σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl+1) and l = 1, . . . , d, 2−Jσ/σl ≥ 2−J , a straightforward
consequence of Theorem 2 is Corollary 2 below.

Corollary 2 Let J ∈ N, R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl+1), 0 < p < ∞, 0 < p′ ≤ ∞
and 1 ≤ q ≤ ∞ satisfying the assumptions of Theorem 2. For all D ≥ C1(d,σ, p), where
C1(d,σ, p) is given by Theorem 2,

sup
s∈S(r,σ,p,p′,R)

inf
t∈∪

m∈MJ
D
S(m,r)

‖s− t‖q

≤ C ′
3(d, r,σ, p, q)R

(
2−Jd(H(σ)/d−(1/p−1/q)+)σ/H(σ) + 2−kH(σ)

)
.
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3 Application to density estimation

This section aims at illustrating the interest of the previous approximation results in statis-
tics. More precisely, placing ourselves in the density estimation framework, we show that
combining estimation via dyadic piecewise polynomial selection and the aforementioned
approximation results leads to a new density estimator which is able to adapt to the un-
known smoothness of the function to estimate, even though it is both anisotropic and
inhomogeneous. Besides, we explain how such a procedure can be implemented efficiently.

3.1 Framework and notation

Let n ∈ N, n ≥ 4, we observe independent and identically distributed random variables
Y1, . . . , Yn defined on the same measurable space (Ω,A) and taking values in [0, 1]d. We
assume that Y1, . . . , Yn admit the same density s with respect to the Lebesgue measure λd

on [0, 1]d and that s ∈ L2([0, 1]
d). We denote by Ps the joint distribution of (Y1, . . . , Yn),

that is the probability measure with density

dPs

dλ⊗n
d

: (y1, . . . , yn) ∈ [0, 1]d × . . .× [0, 1]d 7−→
n∏

i=1

s(yi),

while Ps stands for the underlying probability measure on (Ω,A), so that for all product B
of n rectangles of [0, 1]d

Ps(B) = Ps({ω ∈ Ω s.t. (Y1(ω), . . . , Yn(ω)) ∈ B}).

The expectation and variance associated with Ps are denoted by Es and Vars.

3.2 Dyadic piecewise polynomial estimators

Let m be some partition of [0, 1]d into dyadic rectangles and ρ = (ρK)K∈m a sequence such
that, for all K ∈ m, ρK = (ρK(1), . . . , ρK(d)) ∈ Nd. We denote by S(m,ρ) the space of all

functions t : [0, 1]d → R such that, for all K ∈ m, t is polynomial with degree ≤ ρK(l) in
the l-th direction on the rectangle K. In particular, if ρ is constant and equal to r, then
S(m,ρ) coincides with the space S(m,r) introduced in Section 2. Let 〈., .〉 be the usual scalar

product on L2([0, 1]
d). We recall that s minimizes over t ∈ L2([0, 1]

d)

‖s− t‖22 − ‖s‖22 = ‖t‖22 − 2〈t, s〉 = Es[γ(t)],

where

γ(t) = ‖t‖22 −
2

n

n∑

i=1

t(Yi)

11



only depends on the observed variables. Thus, a natural estimator of s with values in S(m,ρ)

is
ŝ(m,ρ) = argmin

t∈S(m,ρ)

γ(t),

that we will call a dyadic piecewise polynomial estimator. Such an estimator is just
a projection estimator of s on S(m,ρ). Indeed, if for each dyadic rectangle K we set

Λ(ρK) =
∏d

l=1{0, . . . , ρK(l)} and denote by (ΦK,k)k∈Λ(ρK) an orthonormal basis of the
space of polynomial functions over K with degree ≤ ρK(l) in the l-th direction, then simple
computations lead to

ŝ(m,ρ) =
∑

K∈m

∑

k∈Λ(ρK)

(
1

n

n∑

i=1

ΦK,k(Yi)

)
ΦK,k.

For theoretical reasons, we shall choose in the remaining of the article an orthonormal basis
(ΦK,k)k∈Λ(ρK) derived from the Legendre polynomials in the following way. Let (Qj)j∈N

be the orthogonal family of the Legendre polynomials in L2([−1, 1]). For K =
∏d

l=1[ui, vi]
rectangle of [0, 1]d, k = (k(1), . . . , k(d)) ∈ Nd and x = (x1, . . . , xd) ∈ [0, 1]d, we set

π(k) =

d∏

l=1

(2k(l) + 1)

and

ΦK,k(x) =

√
π(k)

λd(K)

d∏

l=1

Qk(l)

(
2xl − ul − vl

vl − ul

)
1IK(x).

We recall that, for all j ∈ N, Qj satisfies

‖Qj‖∞ = 1 and ‖Qj‖
2
2 =

2

(2j + 1)
.

Therefore, for K rectangle in [0, 1]d and ρK ∈ Nd, (ΦK,k)k∈Λ(ρK) is a basis of the space of
piecewise polynomial functions with support K and degree ≤ ρK(l) in the l-th direction,
which is orthonormal for the norm ‖.‖2 and satisfies

‖ΦK,k‖
2
∞ =

π(k)

λd(K)
. (12)

For each partition m of [0, 1]d into dyadic rectangles and each ρ = (ρK)K∈m ∈ (Nd)|m|,
we can evaluate the performance of ŝ(m,ρ) by giving an upper-bound for its quadratic risk.
For that purpose, we introduce the orthogonal projection s(m,ρ) of s on S(m,ρ), the dimension
dim(S(m,ρ)) of S(m,ρ), i.e.

dim(S(m,ρ)) =
∑

K∈m

|Λ(ρK)| =
∑

K∈m

d∏

l=1

(ρK(l) + 1),

12



and define ρmax = (ρmax(1), . . . , ρmax(d)) by

ρmax(l) = max
K∈m

ρK(l), l = 1, . . . , d. (13)

Proposition 3 Let m be a partition of [0, 1]d into dyadic rectangles and ρ = (ρK)K∈m ∈
(Nd)|m|. If s ∈ L2([0, 1]

d), then

Es

[
‖s− ŝ(m,ρ)‖

2
2

]
= ‖s− s(m,ρ)‖

2
2 +

1

n

∑

K∈m

∑

k∈Λ(ρK)

Vars(ΦK,k(Y1)).

If ‖s‖∞ is finite, then

Es

[
‖s− ŝ(m,ρ)‖

2
2

]
≤ ‖s− s(m,ρ)‖

2
2 + π(ρmax)‖s‖∞

dim(S(m,ρ))

n
.

Proof: Pythagoras’ Equality gives

Es

[
‖s − ŝ(m,ρ)‖

2
2

]
= ‖s− s(m,ρ)‖

2
2 + Es

[
‖s(m,ρ) − ŝ(m,ρ)‖

2
2

]
.

Then, we deduce the first equality in Proposition 3 from the expressions of ŝ(m,ρ) and
s(m,ρ) in the orthonormal basis (ΦK,k)K∈m,k∈Λ(ρK) of S(m,ρ) and the fact that Y1, . . . , Yn

are independent and identically distributed.

If s is bounded, we deduce from (12) that, for all K ∈ m and k ∈ Λ(ρK),

Es

[
Φ2
K,k(Y1)

]
≤ 〈s, 1IK〉

π(k)

λd(K)
≤ ‖s‖∞π(ρmax),

hence the upper-bound for Es

[
‖s− ŝ(m,ρ)‖

2
2

]
. �

Thus, we recover that, for bounded densities at least, choosing a model S(m,ρ) that real-
izes a good compromise between the approximation error and the dimension of the model
leads to an estimator ŝ(m,ρ) with small risk. Such a choice reveals in fact optimal for
densities presenting the kind of smoothness described in Section 2.3. More precisely, for
σ ∈ (0,+∞)d, 0 < p, p′ ≤ ∞, R > 0 and L > 0, we set ⌊σ⌋ = (⌊σ1⌋, . . . , ⌊σd⌋) and consider
the class P(σ, p, p′, R, L) of all the probability densities s with respect to λd such that
s ∈ S(⌊σ⌋ + 1,σ, p, p′, R) and ‖s‖∞ ≤ L. Thanks to the upper-bound of Proposition 3,
we obtain in Proposition 4 below that any statistical procedure which is able to realize ap-
proximately infm∈M,ρ∈Nd Es

[
‖s − ŝ(m,ρ)‖

2
2

]
, where M is the collection of all the partitions

of [0, 1]d into dyadic rectangles, enjoys adaptivity properties: it also reaches approximately
the minimax risk over a wide range of classes P(σ, p, p′, R, L).

13



Proposition 4 For 0 < p < ∞, let p′ = ∞ when 0 < p ≤ 1 or p ≥ 2, and p′ = p when
1 < p < 2. For all L > 0 and R ≥ n−1/2, if σ ∈ (0,+∞)d and 0 < p < ∞ satisfy
H(σ)/d > (1/p − 1/2)+, then

sup
s∈P(σ,p,p′,R,L)

inf
m∈M,ρ∈Nd

Es

[
‖s − ŝ(m,ρ)‖

2
2

]

≤ C(d,σ, p, L)
(
Rn−H(σ)/d

)2d/(d+2H(σ))

≤ C(d,σ, p, L) inf
ŝ

sup
s∈P(σ,p,p′,R,L)

Es

[
‖s − ŝ‖22

]

where the last infimum is taken over all the estimators ŝ of s.

Proof: Let us fix σ, p, p′, R, L satisfying the assumptions of Proposition 4 and choose
ρ = ⌊σ⌋ + 1. For all s ∈ P(σ, p, p′, R, L), we deduce from Proposition 3 and Theorem 1
that

inf
m∈M,ρ∈Nd

Es

[
‖s − ŝ(m,ρ)‖

2
2

]
≤ C(d,σ, p, L) inf

k∈N

{
R22−2kH(σ) +

2kd

n

}
.

We then choose k⋆ as the greatest integer k ∈ N such that 2kd/n ≤ R22−2kH(σ), i.e. such
that 2k ≤ (nR2)1/(d+2H(σ)) so as to bound the infimum on the right-hand side, which
provides the first inequality in Proposition 4.

Let us define the Besov class B(σ, p, p′, R, L) of all the probability densities s with re-
spect to λd such that |s|σ,p,p′ ≤ R (where |.|σ,p,p′ is defined in Section 2.3) and ‖s‖∞ ≤ L.
We deduce from Proposition 2 that, for 0 < p ≤ 1 or p ≥ 2, there exists some pos-
itive real C(σ, p) such that P(σ, p,∞, R, L) contains B(σ,∞,∞, C(σ, p)R,L), and, for
1 < p < 2, there exists some positive real C(σ, p) such that P(σ, p, p,R,L) contains
B(σ, p, p, C(σ, p)R,L). Besides, according to Triebel [Tri11] (Proposition 10), for all ǫ > 0,
the Kolmogorov ǫ-entropy in L2([0, 1]

d) of the Besov space Bσ
q (Lq([0, 1]

d)) is ǫ−H(σ)/d for
H(σ)/d > (1/q − 1/2)+. Thus, the second inequality in Proposition 4 follows from the
lower-bounds for minimax risks proved in [YB99] (Proposition 1, ii)). �

In the sequel, our problem will thus be to build a statistical procedure that requires no
prior knowldege on s but whose risk behaves almost as infm∈M,ρ∈Nd Es

[
‖s − ŝ(m,ρ)‖

2
2

]
.

3.3 Dyadic piecewise polynomial selection

Let us fix r⋆ ∈ Nd, J⋆ ∈ N, and denote by M⋆ the set of all partitions of [0, 1]d into dyadic
rectangles with sidelengths at least 2−J⋆ . We consider the family Mdeg

⋆ of all couples
(m,ρ) with m ∈ M⋆ and ρ = (ρK)K∈m such that, for all K ∈ m, ρK ∈ Λ(r⋆). Ideally,
we would like to choose the couple (m,ρ) that minimizes Es

[
‖s− ŝ(m,ρ)‖

2
2

]
among the

elements of Mdeg
⋆ . This is hopeless without knowing s, but from Pythagora’s Equality and
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Proposition (3.2), we have, for all (m,ρ) ∈ Mdeg
⋆ ,

Es

[
‖s− ŝ(m,ρ)‖

2
2

]
− ‖s‖22 = −‖s(m,ρ)‖

2
2 +

1

n

∑

K∈m

∑

k∈Λ(ρK)

Vars(ΦK,k(Y1)).

Thus, we propose to select an adequate partition m̂ and the associated sequence of maximal
degrees ρ̂ = (ρ̂K)K∈m̂ from the data so that

(m̂, ρ̂) = argmin
(m,ρ)∈M

deg
⋆

{−‖ŝ(m,ρ)‖
2
2 + pen(m,ρ)}

= argmin
(m,ρ)∈Mdeg

⋆

{γ(ŝ(m,ρ)) + pen(m,ρ)}

where pen : Mdeg
⋆ → R+ is a so-called penalty function. We then estimate the density s

by

s̃ = ŝ(m̂,ρ̂).

According to the proof of Proposition 4, in view of proving the adaptivity of the penalized
estimator s̃, the penalty pen should be chosen so that s̃ satisfies an inequality akin to

Es[‖s− s̃‖22] ≤ C min
(m,ρ)∈M

deg
⋆

{
‖s − s(m,ρ)‖

2
2 +

dim(S(m,ρ))

n

}
(14)

where C is a positive real that does not depend on n.

In order to define an adequate form of penalty, we introduce the set D⋆ of all dyadic
rectangles of [0, 1]d with sidelengths ≥ 2−J⋆ and, for all K ∈ D⋆ and k ∈ Λ(r⋆), we set

σ̂2
K,k =

1

n(n− 1)

n∑

i=2

i−1∑

j=1

(ΦK,k(Yi)− ΦK,k(Yj))
2 ,

which is an unbiased estimator of Vars(ΦK,k(Y1)). We also set

M̂1,⋆ =
1

n
max
K∈D⋆

∑

k∈Λ(r⋆)

√
π(k)

λd(K)

∣∣∣∣∣
n∑

i=1

ΦK,k(Yi)

∣∣∣∣∣ and M̂2,⋆ =
1

n
max
K∈D⋆

max
k∈Λ(r⋆)

n∑

i=1

Φ2
K,k(Yi),

that overestimate respectively

max
(m,ρ)∈M

deg
⋆

‖s(m,ρ)‖∞ and max
K∈D⋆

max
k∈Λ(r⋆)

Es

[
Φ2
K,k(Y1)

]
.

The following theorem suggests a form of penalty yielding an inequality close to (14).
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Theorem 3 Let r⋆ ∈ Nd and J⋆ ∈ N be such that |Λ(r⋆)| ≤ max{exp(n)/n, nd} and
2dJ⋆ ≤ n/ log(n|Λ(r⋆)|). Let (L(m,ρ))(m,ρ)∈Mdeg

⋆
be a family of nonnegative real numbers,

that may depend on n, satisfying

∑

(m,ρ)∈Mdeg
⋆

exp(−L(m,ρ)|m|) ≤ 1. (15)

If s is bounded and pen is defined on Mdeg
⋆ by

pen(m,ρ) =
1

n

∑

K∈m

∑

k∈Λ(ρK)

(
κ1σ̂

2
K,k + κ2π(k)

)

+
((

κ3M̂2,⋆ + κ4π(r⋆)
)
|Λ(r⋆)|+ κ5M̂1,⋆

) L(m,ρ)|m|

n

where κ1, . . . , κ5 are large enough positive constants, then

Es

[
‖s− s̃‖22

]
≤ min

(m,ρ)∈Mdeg
⋆

{
κ′1‖s− s(m,ρ)‖

2
2 + κ′2

1

n

∑

K∈m

∑

k∈Λ(ρK)

Vars(ΦK,k(Y1))

+ κ′3π(r⋆)
dim(S(m,ρ))

n
+ κ′4π(r⋆)|Λ(r⋆)|‖s‖∞

L(m,ρ)|m|

n

}

+ κ′5‖s‖
2
∞π(r⋆)|Λ(r⋆)|

1

n
.

where κ′1, . . . , κ
′
5 are positive reals, κ′1, . . . , κ

′
4 only depend on κ1, . . . , κ5, and κ′5 also depends

on d.

Thus, the penalty associated to each (m,ρ) ∈ Mdeg
⋆ is composed of two terms: an additive

term that overestimates the variance over the model S(m,ρ), and a term linear in the size
of the partition m, up to the weight L(m,ρ), that overestimates the upper-bound given in
Proposition 3 for the variance over S(m,ρ). There remains to choose those weights under the

constraint (15). According to Proposition 5 below, each model in Mdeg
⋆ can be assigned

the same weight that only depends on d and r⋆.

Proposition 5 If κ1, . . . , κ5 are large enough positive constants, then the penalty defined
on Mdeg

⋆ by

pen(m,ρ) =
1

n

∑

K∈m

∑

k∈Λ(ρK)

(
κ1σ̂

2
K,k + κ2π(k)

)

+
((

κ3M̂2,⋆ + κ4π(r⋆)
)
|Λ(r⋆)|+ κ5M̂1,⋆

) log(8d|Λ(r⋆)|)|m|

n
(16)
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satisfies the assumptions of Theorem 3. Moreover, if |Λ(r⋆)| ≤ max{exp(n)/n, nd}, 2dJ⋆ ≤
n/ log(n|Λ(r⋆)|) and s is bounded, then for such a penalty

Es

[
‖s − s̃‖22

]
≤ κ′′ min

(m,ρ)∈Mdeg
⋆

{
‖s− s(m,ρ)‖

2
2 + π(r⋆)|Λ(r⋆)|‖s‖

2
∞

log(8ed|Λ(r⋆)|)|m|

n

}
.

where κ′′ is a positive real that only depends on κ1, . . . , κ5 and d.

Proof: First, for all D ∈ N⋆, the number of partitions of [0, 1]d into D dyadic rectangles
satisfies

|MD| ≤ (4d)D . (17)

Indeed, as illustrated by Figure 2, each partition in MD can be described by a complete
dyadic tree with D leaves whose edges are labeled with a sequence of D − 1 integers in
{1, . . . , d} giving the cutting directions to obtain the partition from the unit square.

[0, 1] × [0, 1]

[0, 1] ×
[
0, 12
](2)

[
0, 12
]
×
[
0, 12
](1) (

1
2 , 1
]
×
[
0, 12
]

(
1
2 , 1
]
×
[
0, 14
](2) (

1
2 , 1
]
×
(
1
4 ,

1
2

]

[0, 1] ×
(
1
2 , 1
]

[0, 1] ×
(
1
2 ,

3
4

](2)

[0, 1] ×
(
3
4 , 1
]

Figure 2: Top: Partition of [0, 1]2 into dyadic rectangles. Bottom: Binary tree labeled with
the sequence of cutting directions (2, 1, 2, 2) corresponding with that partition.

The number of complete dyadic trees with D leaves is given by the Catalan number

1

D

(
2(D − 1)

D − 1

)
≤ 4D,
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hence (17). We deduce from (17) that, for all positive real L,

∑

(m,ρ)∈M
deg
⋆

exp(−L|m|) ≤
∑

D∈N⋆

∑

m∈MD

∑

ρ∈Λ(r⋆)D

exp(−L|m|)

≤
∑

D∈N⋆

(4d|Λ(r⋆)|)
D exp(−LD)

≤ 1/ (exp (L− log(4d|Λ(r⋆)|))− 1)

So, we can choose L ≥ log(8d|Λ(r⋆)|) for Condition (15) to be fulfilled.
Since ‖s‖∞ ≥ 1, the upper-bound for Es

[
‖s − s̃‖22

]
is then a straightforward conse-

quence of Theorem 3. �

It is worth pointing out that penalty (16) is more refined than the penalties proposed
by [Kle09] or [AD10] for density estimation via dyadic histogram selection based on a least-
squares type criterion. Indeed, when r⋆ is null, penalty (16) is not simply proportional to
the dimension of the partition.

With a penalty chosen as above, we recover an inequality close to (14), that allows
to prove the adaptivity of s̃ over a wide range of classes P(σ, p, p′, R, L) as defined in
Section 3.2. For that purpose, we introduce

q(d,σ, p) =
σ

H(σ)

d+ 2H(σ)

H(σ)

(
H(σ)

d
−

(
1

p
−

1

2

)

+

)

and
w(r⋆) = π(r⋆)|Λ(r⋆)| log (8ed|Λ(r⋆)|) .

Theorem 4 Let r⋆ ∈ Nd and J⋆ ∈ N be such that |Λ(r⋆)| ≤ max{exp(n)/n, nd} and J⋆ =
max{J ∈ N s.t. 2Jd ≤ n/ log(n|Λ(r⋆)|)}, and pen be the penalty given by Proposition 5.
For all p > 0, let p′ = ∞ if 0 < p ≤ 1 or p ≥ 2, and p′ = p if 1 < p < 2. For all L > 0,
σ ∈

∏d
l=1(0, r⋆(l) + 1), p > 0 such that H(σ)/d > (1/p − 1/2)+ and q(d,σ, p) > 1, for all

R such that w(r⋆)/n ≤ R2 ≤ (n/ log(n|Λ(r⋆)|))
q(d,σ,p)−1,

sup
s∈P(σ,p,p′,R,L)

Es

[
‖s − s̃‖22

]
≤ Cw(r⋆)

2H(σ)/(d+2H(σ)) inf
ŝ

sup
s∈P(σ,p,p′,R,L)

Es

[
‖s− ŝ‖22

]
,

where C only depends on d,σ, p, L and the penalty constants κ1, . . . , κ5 and the above infi-
mum is taken over all the estimators of s.

Thus, if r⋆ is chosen as a constant with respect to n, then s̃ reaches the minimax risk,
up to a constant factor, over a wide range of classes that contain functions with possibly
anisotropic and inhomogeneous smoothness limited by the maximal degrees r⋆. Another
strategy consists in allowing the maximal degrees r⋆ to increase with the sample size n,
while w(r⋆) varies slowly with n. For instance, with r⋆(l) = log(n) for all l = 1, . . . , d,
our estimator s̃ still approximately reaches the minimax risk over a range of classes all
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the wider as n increases. The price to pay is only a logarithmic factor, proportional to
(log(log(n)) log2d(n))2H(σ)/(d+2H(σ)) over classes with smoothness H(σ). Thus, such a re-
sult may be seen as a nonasymptotic and multivariate counterpart of Theorem 1 in Willett
and Nowak [WN07].

Remark: Contrary to [NvS97, Neu00, KLP01, Kle09], we have chosen here the smooth-
ing parameter J⋆ independently of the smoothness of s, hence the restriction on q(d,σ, p),
that could disappear otherwise. Setting µσ = H(σ)/σ, the condition q(d,σ, p) > 1 is
equivalent to H(σ)/d > ν(σ, p), where

ν(σ, p) =
1

2

(
1

2
(µσ − 1) +

(
1

p
−

1

2

)

+

+

√(
1

2
(µσ − 1) +

(
1

p
−

1

2

)

+

)2

+ 2

(
1

p
−

1

2

)

+

)
.

In case of isotropic and homogeneous smoothness, i.e. when µσ = 1 and p ≥ 2, q(d,σ, p) >
1 is simply equivalent to H(σ)/d > 0. In case of isotropic and inhomogeneous smoothness,
i.e. when µσ = 1 and p < 2, q(d,σ, p) > 1 is equivalent to H(σ)/d > ν(σ, p) where
ν(σ, p) ∈ (1/p−1/2, 1/p). This is slightly stronger than H(σ)/d > 1/p−1/2, but still better
than the restriction H(σ)/d > 1/p which is often encountered in the literature. Otherwise,
ν(σ, p) increases with µσ and 1/p, i.e. with the anisotropy and the inhomogeneity.

3.4 Implementing the dyadic piecewise polynomial selection procedure

We end this article with a brief discussion about the implementation of our estimator s̃ for
the penalty defined in Proposition 5. Let us fix the penalty constants κ1, . . . , κ5 and set,
for all dyadic rectangle K ∈ D⋆ and all r ∈ Λ(r⋆),

Ŵ (K, r) =
∑

k∈Λ(r)


−

(
1

n

n∑

i=1

ΦK,k(Yi)

)2

+ κ1
σ̂2
K,k

n
+ κ2

π(k)

n




+
log(8d|Λ(r⋆)|)

n

((
κ3M̂2,⋆ + κ4π(r⋆)

)
|Λ(r⋆)|+ κ5M̂1,⋆

)

and
r̂K = argmin

r∈Λ(r⋆)
Ŵ (K, r).

Given the decomposition of ŝ(m,ρ) in the basis (ΦK,k)K∈m,k∈Λ(ρK), the model (m̂, ρ̂) to

select in Mdeg
⋆ is characterized by

(m̂, ρ̂) = argmin
(m,ρ)∈Mdeg

⋆

∑

K∈m

Ŵ (K,ρK),

so
m̂ = argmin

m∈M⋆

∑

K∈m

Ŵ (K, r̂K) and, for all K ∈ m̂, ρ̂K = r̂K .

Thus, the steps leading to s̃ are
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1. Compute M̂1,⋆ and M̂2,⋆.

2. For all K ∈ D⋆ and all k ∈ Λ(r⋆), compute σ̂2
K,k.

3. For all K ∈ D⋆, compute r̂K and Ŵ (K, r̂K).

4. Determine the best partition m̂ = argminm∈M⋆

∑
K∈m Ŵ (K, r̂K).

5. Set, for all K ∈ m̂, ρ̂K = r̂K .

6. Compute s̃ = ŝ(m̂,ρ̂).

Since m̂ is the partition in M⋆ that minimizes a given additive criterion, it can be deter-
mined via the algorithm inspired from Donoho [Don97] and described in [BSR04] (beginning
of Section 3), with a computational complexity at most of order O(|D⋆|). Therefore, one
easily verifies that the whole steps only require a computational complexity at most of order
O(|Λ(r⋆)||D⋆|). Since |D⋆| = (2J⋆+1 − 1)d, if we choose J⋆ as prescribed by Theorem 3,
then determining s̃ requires at most O(n) computations when r⋆ is constant, and at most
O(n logd(n)) when r⋆(l) = log(n) for all l = 1, . . . , d. Last, regarding the choice of the
penalty constants κ1, . . . , κ5, they can be calibrated via simulations over a wide collection
of test densities. Such a method has already proved to yield good results in practice, even
though several constants have to be chosen, as shown for instance in [CR04].

4 Proofs of the approximation results

For j ∈ N and K ∈ Dσ
j , we recall that the children of K are all the dyadic rectangles of

Dσ
j+1 that are included in K. We will also refer to K as the parent of its children and will

often use the fact that the children of K form a partition of K into

d∏

l=1

2⌊(j+1)σ/σl⌋−⌊jσ/σl⌋ ≤ 2d2dσ/H(σ) (18)

dyadic rectangles from Dσ
j+1.

In all the proofs, the notation C(θ) stands for a positive real that only depends on the
parameter θ, and whose value is allowed to change from one occurrence to another.

4.1 Proof of Proposition 1

For p ≥ q, Proposition 1 follows from the continuous embedding of Lp([0, 1]
d) in Lq([0, 1]

d).
For p < q, it corresponds with the second point in the more general result below.
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Proposition 6 Let R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1), 1 ≤ q ≤ ∞ and 0 < p < q
such that H(σ)/d > 1/p − 1/q. For s ∈ Lp([0, 1]

d), k ∈ N, and any dyadic rectangle
K ∈ Dσ

k , we set
er,σ,p,k(s,K) = inf

P∈Πr,σ

k

‖(s − P )1IK‖p.

If Nr,σ,p,∞(s) ≤ R, then

i) for all j ∈ N and all K ∈ Dσ
j ,

Er(s,K)q ≤ C(d, r,σ, p, q)
∑

k≥j

2−kd(H(σ)/d+1/q−1/p)σ/H(σ)2kσer,σ,p,k(s,K). (19)

ii) s ∈ Lq([0, 1]
d) and ‖s‖q ≤ C(d, r,σ, p, q)(‖s‖p +R).

Proof: Let us fix 1 ≤ q ≤ ∞, 0 < p < q, j ∈ N and K ∈ Dσ
j . For all k ≥ j, we denote by

Ck(K) the set of all rectangles from Dσ
k that are included in K. Thus, Cj(K) is reduced to

{K}, Cj+1(K) is the set of all the children of K, etc. . . . For any rectangle I ⊂ [0, 1]d, we
denote by PI(s) a polynomial function on I with degree ≤ rl in the l-th direction such that

‖(s − PI(s))1II‖p = Er(s, I)p,

where Er(s, I)p is defined as in (4). For all k ≥ j, we set

Σk(s,K) =
∑

I∈Ck(K)

PI(s)1II

and, in order to alleviate the notation, we simply write ek(s,K) instead of er,σ,p,k(s,K) in
the whole proof. It should be noticed that ek(s, [0, 1]

d) = er,σ,p,k(s) as defined by (7), and
that

ek(s,K) = ‖(s − Σk(s,K))1IK‖p =


 ∑

I∈Ck(K)

Ep
r(s, I)p




1/p

.

Therefore,

‖(s − Σk(s,K))1IK‖p ≤


∑

I∈Dσ
k

Ep
r(s, I)p




1/p

= er,σ,p,k(s) ≤ 2−kσR

so that the sequence (Σk(s,K))k≥j converges to s1IK in Lp([0, 1]
d).

Let us prove that (Σk(s,K))k≥j also converges to s1IK in Lq([0, 1]
d). We now fix k ≥ j.

When 0 < p < q ≤ ∞ as assumed here, Markov Inequality for polynomials asserts that, for
all rectangle I of [0, 1]d, and all polynomial function P ∈ Pr,

‖P1II‖q ≤ C(d, r, p, q)(λd(I))
(1/q−1/p)‖P1II‖p. (20)
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We refer to Lemma 5.1 in [Hoc02a] for a proof (that still holds for q = ∞). Let us first
assume that 0 < p < q < ∞. We then deduce from (20) that

‖Σk+1(s,K)− Σk(s,K)‖qq

=
∑

I∈Ck+1(K)

‖(Σk+1(s,K)− Σk(s,K))1II‖
q
q

≤ C(d, r, p, q)
∑

I∈Ck+1(K)

(λd(I))
q(1/q−1/p)‖(Σk+1(s,K)− Σk(s,K))1II‖

q
p

≤ C(d, r, p, q)2q(k+1)d(1/p−1/q)σ/H(σ)
∑

I∈Ck+1(K)

‖(Σk+1(s,K)− Σk(s,K))1II‖
q
p. (21)

Let us also fix I ∈ Ck+1(K). Then

(Σk+1(s,K)− Σk(s,K))1II = (PI(s)− PĨ(s))1II

where Ĩ ∈ Ck(K) is the parent of I. Let κ(p) = 21/p if p < 1, and κ(p) = 1 otherwise. From
the (quasi-)triangle inequality satisfied by ‖.‖p, we then get

‖(Σk+1(s,K)− Σk(s,K))1II‖p ≤ κ(p)
(
‖(s − PI(s))1II‖p + ‖(s − PĨ(s))1II‖p

)

≤ κ(p)
(
Er(s, I)p + Er(s, Ĩ)p

)
,

hence, by convexity of x 7→ xq,

‖(Σk+1(s,K)− Σk(s,K))1II‖
q
p ≤ 2q−1κq(p)

(
Eq
r(s, I)p + Eq

r(s, Ĩ)p

)
.

By grouping all the rectangles I ∈ Ck+1(K) that have the same parent, we obtain

∑
I∈Ck+1(K) ‖(Σk+1(s,K)− Σk(s,K))1II‖

q
p

≤ 2q−1κq(p)
(∑

I∈Ck+1(K) E
q
r(s, I)p + 2d(1+σ/H(σ))

∑
Ĩ∈Ck(K) E

q
r(s, Ĩ)p

)
.

The classical inequality between ℓp and ℓq-(quasi-)norms

(∑

i

|ai|
q

)1/q

≤

(∑

i

|ai|
p

)1/p

, for 0 < p ≤ q < ∞ (22)

then provides

∑

I∈Ck+1(K)

‖(Σk+1(s,K)− Σk(s,K))1II‖
q
p ≤ 2q−1κq(p)

(
eqk+1(s,K) + 2d(1+σ/H(σ))eqk(s,K)

)
.
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Since (ek(s,K))k ∈ N is a decreasing sequence, by setting τ = H(σ)/d + 1/q − 1/p and
combining Inequality (21) with the above inequality, we obtain

‖Σk+1(s,K)− Σk(s,K)‖q ≤ C(d, r,σ, p, q)
(
2kσek(s,K)

)
2−kdτσ/H(σ)

≤ C(d, r,σ, p, q)R2−kdτσ/H(σ).

We can prove in the same way that such an upper-bound still holds for q = ∞. Since τ > 0,
for all 0 < p < q ≤ ∞, (Σk(s,K))k≥j also converges in Lq([0, 1]

d) to s1IK . In particular, we
have thus proved that s ∈ Lq([0, 1]

d).
From the definition of Er(s,K)q and the triangle inequality, it follows that

Er(s,K)q ≤ ‖(s − PK(s))1IK‖q

≤
∑

k≥j

‖Σk+1(s,K)− Σk(s,K)‖q

≤ C(d, r,σ, p, q)
∑

k≥j

2−kdτσ/H(σ)2kσek(s,K). (23)

We have thus proved (19), and the above inequality for K = [0, 1]d combined with Markov
Inequality (20) also provides

‖s‖q ≤ ‖P[0,1]d(s)‖q + ‖s − P[0,1]d(s)‖q

≤ C(d, r,σ, p, q)(‖P[0,1]d(s)‖p +R)

≤ C(d, r,σ, p, q)(‖s‖p + Er(s, [0, 1]
d)p +R)

≤ C(d, r,σ, p, q)(‖s‖p +R).

�

4.2 Proofs of Theorems 1 and 2

A first approximation result for the algorithm decsribed in Section 2 can be stated as
follows.

Proposition 7 Let k ∈ N, R > 0, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1), 0 < p < ∞,
1 ≤ q ≤ ∞ and s ∈ Lq([0, 1]

d). Assume that

H(σ)/d > (1/p − 1/q)+

and that

sup
j∈N

2jd(σ/H(σ))(H(σ)/d−(1/p−1/q)+)


 ∑

K∈Dσ
j

Ep
r(s,K)q




1/p

≤ R. (24)
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Then, there exists some partition m of [0, 1]d that only contains dyadic rectangles from Dσ

and s(m,r) ∈ S(m,r) such that

|m| ≤ C1(d,σ, p)2
kd

and

‖s − s(m,r)‖q ≤ C2(d,σ, p, q)R2−kH(σ).

Besides, if for some J ∈ N, s is polynomial with coordinate degree ≤ r over each rectangle
of Dσ

J , then m only contains dyadic rectangles from ∪J
j=0D

σ
j .

Proof: For k = 0, we can just choose m as the trivial partition of [0, 1]d and s(m,r) as the

polynomial of best Lq-approximation over [0, 1]d in Pr. Indeed, we then have

‖s− s(m,r)‖q = Er(s, [0, 1]
d)q ≤ R,

where the last inequality follows from (24). Let us now fix k ≥ 1, set

τ = H(σ)/d− (1/p − 1/q)+ and λ = 2(1+(1+τp)σ/H(σ))d/p,

and choose

ǫ = λR2−kd(τ+1/p).

If I(s, ǫ) is trivial, then the upper-bound (5) provides

‖s−A(s, ǫ)‖q ≤ ǫ ≤ λR2−kH(σ).

Let us now assume that I(s, ǫ) is not trivial and fix j ≥ 1 such that I(s, ǫ) ∩ Dσ
j is not

empty. If K ∈ I(s, ǫ) ∩ Dσ
j , then K is a child of a dyadic rectangle K̃ ∈ Dσ

j−1 such that

ǫ ≤ Er(s, K̃)q,

hence

ǫp ≤ 2−(j−1)dpτσ/H(σ)2(j−1)dpτσ/H(σ)Ep
r(s, K̃)q.

By grouping all the rectangles K ∈ I(s, ǫ)∩Dσ
j having the same parent in Dσ

j−1, and taking
into account Remark (18), we obtain

|I(s, ǫ) ∩ Dσ
j |ǫ

p ≤ 2d(1+(1+pτ)σ/H(σ))2−jdpτσ/H(σ)Rp.

Replacing ǫ by its value, we deduce that

|I(s, ǫ) ∩ Dσ
j | ≤ 2kd(1+pτ)2−jdpτσ/H(σ). (25)

Besides, for all j ≥ 1,

|I(s, ǫ) ∩ Dσ
j | ≤ |Dσ

j | ≤ 2jdσ/H(σ).
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Let us denote by J the greatest integer j ≥ 1 such that

2jdσ/H(σ) ≤ 2kd(1+pτ)2−jdpτσ/H(σ),

i.e. such that

2jdσ/H(σ) ≤ 2kd.

Since σ/H(σ) ≤ 1, the last inequality is satisfied by k ≥ 1 for instance, so that J is
well-defined. Besides, J is characterized by

2Jdσ/H(σ) ≤ 2kd < 2(J+1)dσ/H(σ).

Therefore,

|I(s, ǫ)| =
∑

j≥1

|I(s, ǫ) ∩ Dσ
j |

≤
J∑

j=1

2jdσ/H(σ) + 2kd(1+pτ)
∑

j≥J+1

2−jdpτσ/H(σ)

≤ C1(d,σ, p)2
kd

where

C1(d,σ, p) =
2dσ/H(σ)

2dσ/H(σ) − 1
+

1

1− 2−dpτσ/H(σ)
.

Moreover, we deduce from (5) that, if 1 ≤ q < ∞, then

‖s−A(s, ǫ)‖q ≤ |I(s, ǫ)|1/qǫ ≤ C
1/q
1 (d,σ, p)R2−kH(σ),

and we deduce from (6) that, if q = ∞, then

‖s −A(s, ǫ)‖∞ < ǫ ≤ λR2−kH(σ).

So Proposition 7 is satisfied for

C2(d,σ, p, q) =

{
C

1/q
1 (d,σ, p)λ if 1 ≤ q < ∞

λ if q = ∞,

m = I(s, ǫ) and s(m,r) = A(s, ǫ). The last assertion in Proposition 7 is a straightforward
consequence of the approximation algorithm. �

The following lemma allows to link Assumption (24) with the (quasi-)semi-norm Nr,σ,p,p′.
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Lemma 1 Let R > 0, 0 < p < ∞, 1 ≤ q ≤ ∞ and σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1) such
that H(σ)/d > (1/p − 1/q)+. Assume that s ∈ S(r,σ, p, p′, R), where p′ = ∞ if 0 < p ≤ 1
or p ≥ q and p′ = p if 1 < p < q, then

sup
j∈N

2jd(σ/H(σ))(H(σ)/d−(1/p−1/q)+)


 ∑

K∈Dσ
j

Ep
r(s,K)q




1/p

≤ C(d, r,σ, p, q)R. (26)

Proof: If p ≥ q, then the left-hand side of Inequality (26) is upper-bounded by

sup
j∈N

2jσ


 ∑

K∈Dσ
j

Ep
r(s,K)p




1/p

= sup
j∈N

2jσer,σ,p,j(s) ≤ R.

Let us now assume that p < q and set τ = H(σ)/d + 1/q − 1/p. From Inequality (19) in
Proposition 6, we deduce that

2jdτσ/H(σ)


 ∑

K∈Dσ
j

Ep
r(s,K)q




1/p

≤ C(d, r,σ, p, q)2jdτσ/H(σ)


 ∑

K∈Dσ
j


∑

k≥j

2−kdτσ/H(σ)2kσek(s,K)




p


1/p

. (27)

If 0 < p ≤ 1, then the classical inequality between ℓp and ℓ1-(quasi-)norms recalled in (22)
leads to

2jdτσ/H(σ)


 ∑

K∈Dσ
j

Ep
r(s,K)q




1/p

≤ C(d, r,σ, p, q)2jdτσ/H(σ)


 ∑

K∈Dσ
j

∑

k≥j

2−kpdτσ/H(σ)2kpσepk(s,K)




1/p

≤ C(d, r,σ, p, q)2jdτσ/H(σ)


∑

k≥j

2−kpdτσ/H(σ)2kpσepk(s, [0, 1]
d)




1/p

≤ C(d, r,σ, p, q) sup
k≥j

(
2kσek(s, [0, 1]

d)
)
2jdτσ/H(σ)


∑

k≥j

2−kpdτσ/H(σ)




1/p
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hence Inequality (26). If 1 < p < ∞, then there exists 1 < p⋆ < ∞ such that 1/p+1/p⋆ = 1,
so we obtain by applying Hölder inequality to (27) that

2jdτσ/H(σ)


 ∑

K∈Dσ
j

Ep
r(s,K)q




1/p

≤ C(d, r,σ, p, q)2jdτσ/H(σ)



∑

K∈Dσ
j


∑

k≥j

2−p⋆kdτσ/H(σ)




p/p⋆
∑

k≥j

2kpσepk(s,K)







1/p

≤ C(d, r,σ, p, q)


∑

k≥j

2kpσ
∑

K∈Dσ
j

epk(s,K)




1/p

≤ C(d, r,σ, p, q)


∑

k≥j

2kpσepk(s, [0, 1]
d)




1/p

hence Inequality (26). �

Last, Lemma 2 provides an upper-bound for the linear approximation error of S(r,σ, p, p′, R)
by Πr,σ

J in the Lq-norm.

Lemma 2 Let R > 0, 0 < p < ∞, 1 ≤ q ≤ ∞, σ = (σ1, . . . , σd) ∈
∏d

l=1(0, rl + 1) such
that H(σ)/d > (1/p − 1/q)+, and κ(p) = 21/p if 0 < p ≤ 1, and 1 otherwise. Assume that
s ∈ S(r,σ, p, p′, R) where p′ = ∞ if 0 < p ≤ 1 or p ≥ q, and p′ = p if 1 < p < q. Then, for
all J ∈ N, there exists a function sJ ∈ Πr,σ

J such that sJ ∈ S(r,σ, p, p′, 2κ(p)R) and

‖s − sJ‖q ≤ C(d, r,σ, p, q)2−Jd(H(σ)/d−(1/p−1/q)+)σ/H(σ)R. (28)

Proof: For all K ∈ Dσ
J , we denote by PK(s) a polynomial function on K with degree

≤ rl in the l-th direction such that

‖(s− PK(s))1II‖p = Er(s,K)p,

and we set

sJ =
∑

K∈Dσ
J

PK(s)1IK .

In order to alleviate the notation, we simply write ek(s) instead of er,σ,p,k(s), and ek(s,K)
instead of er,σ,p,k(s,K), as in the proof of Proposition 6.
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Since sJ ∈ Πr,σ
J , ek(sJ) = 0 for k ≥ J . If k < J , then the (quasi-)triangle inequality,

the definition of sJ and the inclusion Πr,σ
k ⊂ Πr,σ

J provide successively

ek(sJ) ≤ κ(p) (‖s− sJ‖p + ek(s))

≤ κ(p) (eJ(s) + ek(s))

≤ 2κ(p)ek(s).

Therefore, Nr,σ,p,p′(sJ) ≤ 2κ(p)Nr,σ,p,p′(s), so that sJ ∈ S(r,σ, p, p′, 2κ(p)R).
If p ≥ q, then

‖s− sJ‖q ≤ ‖s − sJ‖p =


 ∑

K∈Dσ
J

Ep
r(s,K)p




1/p

= er,σ,p,J(s) ≤ 2−JσR.

If p < q < ∞, then we deduce from Inequality (23) in the proof of Proposition 6 and from
Inequality (22) between ℓp and ℓq-(quasi-)norms that

‖s− sJ‖q =


 ∑

K∈Dσ
J

‖(s− PK(s))1IK‖qq




1/q

≤ C(d, r,σ, p, q)


 ∑

K∈Dσ
J


∑

k≥J

2−kd(H(σ)/d+1/q−1/p)σ/H(σ)2kσek(s,K)




p


1/p

.

We then obtain Inequality (28) either thanks to the inequality between ℓ1 and ℓp-(quasi-
)norms in case 0 ≤ p ≤ 1, or thanks to Hölder Inequality otherwise. Last, if q = ∞, then
we still deduce from Inequality (23) that

‖s− sJ‖∞ = max
K∈Dσ

J

‖(s − PK(s))1IK‖∞

≤ C(d, r,σ, p, q) max
K∈Dσ

J


∑

k≥J

2−kd(H(σ)/d+1/q−1/p)σ/H(σ)2kσek(s,K)




≤ C(d, r,σ, p, q)2−Jd(H(σ)/d+1/q−1/p)σ/H(σ)R.

�

Theorem 1 is then a straightforward consequence of Proposition 7 and Lemma 1. To
prove Theorem 2, for each J ∈ N, we just have to apply Proposition 7 and Lemma 1 to the
function sJ given by Lemma 2 and use the triangle inequality

inf
t∈S(m,r)

‖s− t‖q ≤ ‖s − sJ‖q + inf
t∈S(m,r)

‖sJ − t‖q

where m can be any partition of [0, 1]d into dyadic rectangles.
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5 Proof of Theorem 3

In the following proof, we denote by (w(m,ρ))(m,ρ)∈Mdeg
⋆

a family of nonnegative reals and

set Σ =
∑

(m,ρ)∈Mdeg
⋆

exp(−w(m,ρ)). We fix (m,ρ) ∈ Mdeg
⋆ as well as some positive reals

ζ, θ1, . . . , θ8 such that 2θ1(1 + θ2) < 1 and θ8 < 1.

From the definition of s̃ = ŝ(m̂,ρ̂), it follows that

γ(s̃) + pen(m̂, ρ̂) ≤ γ(ŝ(m,ρ)) + pen(m,ρ). (29)

For all t, u ∈ L2([0, 1]
d),

γ(t)− γ(u) = ‖s− t‖22 − ‖s− u‖22 − 2ν(t− u), (30)

where

ν(t) =
1

n

n∑

i=1

(t(Yi)− 〈t, s〉) .

Besides, for all (m′,ρ′) ∈ Mdeg
⋆ , setting

χ(m′,ρ′) = ‖s(m′,ρ′) − ŝ(m′,ρ′)‖2,

we obtain by developing s(m′,ρ′) and ŝ(m′,ρ′) in the orthonormal basis (ΦK,k)K∈m′,k∈Λ(ρ′
K
)

and using the linearity of ν

χ2(m′,ρ′) =
∑

K∈m′

∑

k∈Λ(ρ′
K
)

ν2(ΦK,k) = ν
(
ŝ(m′,ρ′) − s(m′,ρ′)

)
. (31)

From Equalities (30), (31), Pythagoras’ Equality and the linearity of ν, we deduce

γ(s̃)− γ(ŝ(m,ρ)) = ‖s− s̃‖22 − ‖s − s(m,ρ)‖
2
2 + χ2(m,ρ)− 2χ2(m̂, ρ̂)− 2ν

(
s(m̂,ρ̂) − s(m,ρ)

)
,

which, combined with Inequality (29), leads to

‖s− s̃‖22 ≤ ‖s− s(m,ρ)‖
2
2 + pen(m,ρ)− χ2(m,ρ)

+ 2χ2(m̂, ρ̂) + 2ν
(
s(m̂,ρ̂) − s(m,ρ)

)
− pen(m̂, ρ̂). (32)

We shall now provide an upper-bound for the term 2ν
(
s(m̂,ρ̂) − s(m,ρ)

)
on an event with

great probability. From Bernstein’s Inequality, as stated for instance in [Mas07] (Section
2.2.3), for all bounded function t : [0, 1]d → R and all x > 0,

Ps

(
ν(t) ≥

√
2Es[t2(Y1)]

x

n
+

‖t‖∞
3

x

n

)
≤ exp(−x). (33)
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Let us fix (m′,ρ′) ∈ Mdeg
⋆ and apply Bernstein’s Inequality to t = s(m′,ρ′) − s(m,ρ). Since

ΦK,k has support K,

‖s(m′,ρ′)‖∞ = max
K∈m′

∥∥∥∥∥∥
∑

k∈Λ(ρ′
K
)

〈s,ΦK,k〉ΦK,k

∥∥∥∥∥∥
∞

≤ M1,⋆

where

M1,⋆ = max
K∈D⋆

∑

k∈Λ(r⋆)

√
π(k)

λd(K)
|〈s,ΦK,k〉|,

so
‖s(m′,ρ′) − s(m,ρ)‖∞ ≤ 2M1,⋆.

Since S(m,ρ) and S(m′,ρ′) are both subspaces of S(m⋆,r⋆),

Es

[(
s(m′,ρ′) − s(m,ρ)

)2
(Y1)

]
=

∫

[0,1]d
s(m⋆,r⋆)

(
s(m′,ρ′) − s(m,ρ)

)2
dλd

≤ M1,⋆‖s(m′,ρ′) − s(m,ρ)‖
2
2.

From (33), there exists a set Ω(m,ρ,m′,ρ′, ζ) such that Ps (Ω(m,ρ,m′,ρ′, ζ)) ≥ 1 −
exp(−(w(m′,ρ′) + ζ)) and over which

ν
(
s(m′,ρ′) − s(m,ρ)

)
≤

√
2M1,⋆‖s(m′,ρ′) − s(m,ρ)‖

2
2

w(m′,ρ′) + ζ

n
+

2

3
M1,⋆

w(m′,ρ′) + ζ

n
.

We recall that, for all a, b ≥ 0 and θ > 0,

2ab ≤ θa2 + θ−1b2. (34)

Thus, on Ω(m,ρ,m′,ρ′, ζ), we have

ν
(
s(m′,ρ′) − s(m,ρ)

)
≤ θ1‖s(m′,ρ′) − s(m,ρ)‖

2
2 +

(
2/3 + θ−1

1

)
M1,⋆

w(m′,ρ′) + ζ

n
.

Besides, using the triangle inequality, (34), and Pythagoras’ Equality, we obtain

‖s(m′,ρ′) − s(m,ρ)‖
2
2 ≤

(
‖s− s(m′,ρ′)‖2 + ‖s− s(m,ρ)‖2

)2

≤ (1 + θ2)‖s − s(m′,ρ′)‖
2
2 +

(
1 + θ−1

2

)
‖s − s(m,ρ)‖

2
2

≤ (1 + θ2)‖s − ŝ(m′,ρ′)‖
2
2 − (1 + θ2)χ

2(m′,ρ′) +
(
1 + θ−1

2

)
‖s − s(m,ρ)‖

2
2.

Therefore, the set Ω(m,ρ)(ζ) = ∩
(m′,ρ′)∈Mdeg

⋆
Ω(m,ρ,m′,ρ′, ζ) is an event with probability

Ps

(
Ω(m,ρ)(ζ)

)
≥ 1− exp(−ζ)Σ (35)
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over which

2ν
(
s(m̂,ρ̂) − s(m,ρ)

)
≤ 2θ1(1 + θ2)‖s − s̃‖22 + 2θ1

(
1 + θ−1

2

)
‖s− s(m,ρ)‖

2
2

− 2θ1(1 + θ2)χ
2(m̂, ρ̂) + 2

(
2/3 + θ−1

1

)
M1,⋆

w(m̂,ρ̂) + ζ

n
. (36)

Let us now provide a concentration inequality for χ2(m̂, ρ̂). For that purpose, we first
prove the following result.

Proposition 8 Let (m′,ρ′) ∈ Mdeg
⋆ , x > 0,

V(m′,ρ′) =
1

n

∑

K∈m′

∑

k∈Λ(ρ′
K
)

Vars
(
Φ2
K,k(Y1)

)
= Es

[
‖ŝ(m′,ρ′) − s(m,ρ)‖

2
2

]

and
M2,⋆ = max

K∈D⋆,k∈Λ(r⋆)
Es[Φ

2
K,k(Y1)].

There exist an event Ω⋆ that does not depend on (m′,ρ′) and an event Ω(m′,ρ′)(x) such that

Ps(Ω
c
⋆) ≤ 2d+1/(n2 log(n)), (37)

Ps(Ω
c
(m′,ρ′)(x)) ≤ exp(−x),

and, on Ω(m′,ρ′)(x),

χ2(m′,ρ′)1IΩ⋆ ≤ (1 + θ3)(1 + θ4)V(m′,ρ′)

+ 4
(
1 + θ−1

4

)
|Λ(r⋆)|

((
4/3 + θ−1

3

)
M2,⋆ + (5/3)

(
1 + 3θ−1

3

)
π(r⋆)

) x
n
.

Proof: Let us fix x > 0, and set, for all K ∈ D⋆ and k ∈ Λ(r⋆),

σ2
K,k = Vars (ΦK,k(Y1)) , εK,k =

√
6σ2

K,k + 2
√

π(k),

Ω⋆ =
⋂

K∈D⋆

⋂

k∈Λ(r⋆)

{
|ν(ΦK,k)| < εK,k

√
λd(K)

}
.

From Bernstein’s Inequality (see for instance [Mas07], Section 2.2.3), for all K ∈ D⋆,
k ∈ Λ(r⋆) and x > 0,

Ps

(
|ν(ΦK,k)| ≥

√
2σ2

K,k

x

n
+

2
√

π(k)

3
√

λd(K)

x

n

)
≤ 2 exp(−x),

so
Ps

(
|ν(ΦK,k)| ≥ εK,k

√
λd(K)

)
≤ 2 exp(−3nλd(K)) ≤ 2 exp(−3n2−dJ⋆).
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Besides, there are 2J⋆+1−1 dyadic intervals of [0, 1] with length ≥ 2−J⋆ , so |D⋆| ≤ 2d(1+J⋆).
And we assume that 2dJ⋆ ≤ n/ log(n|Λ(r⋆)|), hence the upper-bound for Ps(Ω

c
⋆).

Let us also fix (m′,ρ′) ∈ Mdeg
⋆ , set

v(m′,ρ′) = max
K∈m′

∑

k∈Λ(ρ′
K
)

εK,k

√
π(k) and b(m′,ρ′)(x) =

√
nv(m′,ρ′)

2(1/3 + θ−1
3 )x

,

choose T(m′,ρ′) a countable and dense subset of T(m′,ρ′) =
{
t ∈ S(m′,ρ′)/‖t‖2 = 1, ‖t‖∞ ≤ b(m′,ρ′)(x)

}
,

and define

Z(m′,ρ′) = sup
t∈T(m′,ρ′)

ν(t) = sup
t∈T(m′,ρ′)

ν(t).

Since ΦK,k has support K, for all t ∈ S(m′,ρ′),

Es

[
t2(Y1)

]
= Es


 ∑

K∈m′


 ∑

k∈Λ(ρ′

K)

〈t,ΦK,k〉ΦK,k




2


≤
∑

K∈m′

|Λ(ρ′
K)|

∑

k∈Λ(ρ′
K
)

〈t,ΦK,k〉
2Es

[
Φ2
K,k(Y1)

]

≤ |Λ(r⋆)|M2,⋆‖t‖
2
2.

So Talagrand’s Inequality, as stated for instance in [Mas07] (Chapter 5, Inequality (5.50)),
ensures that there exists an event Ω(m′,ρ′)(x) such that Ps(Ω(m′,ρ′)(x)) ≥ 1− exp(−x) and
over which

Z(m′,ρ′) ≤ (1 + θ3)Es

[
Z(m′,ρ′)

]
+

√
2|Λ(r⋆)|M2,⋆

x

n
+

√
2(1/3 + θ−1

3 )v(m′,ρ′)
x

n
.

Since ν is linear, we deduce from Cauchy-Scwharz Inequality and its equality case that

χ(m′,ρ′) = sup
t∈S(m′,ρ′),‖t‖2=1

ν(t) = ν(t•(m′,ρ′))

where

t•(m′,ρ′) =
∑

K∈m′

∑

k∈Λ(ρ′
K
)

ν(ΦK,k)

χ(m′,ρ′)
ΦK,k.

Therefore,

Es

[
Z(m′,ρ′)

]
≤ Es

[
χ(m′,ρ′)

]
≤
√

Es [χ2(m′,ρ′)] =
√

V(m′,ρ′).
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Moreover, on the set Ω(m′,ρ′)(x)∩Ω⋆, either χ(m′,ρ′) ≥
√

2(1/3 + θ−1
3 )v(m′,ρ′)x/n, in which

case t•(m′,ρ′) ∈ T(m′,ρ′), so that

χ(m′,ρ′) = Z(m′,ρ′)

≤ (1 + θ3)
√

V(m′,ρ′) +

√
2|Λ(r⋆)|M2,⋆

x

n
+

√
2(1/3 + θ−1

3 )v(m′,ρ′)
x

n
,

or χ(m′,ρ′) <
√

2(1/3 + θ−1
3 )v(m′,ρ′)x/n, and the above inequality is still satisfied. Apply-

ing Inequality (34) with θ = 1, we get

v(m′,ρ′) ≤ max
K∈m′

∑

k∈Λ(ρ′
K
)

(
σ2
K,k + 5π(k)

)
≤ |Λ(r⋆)| (M2,⋆ + 5π(r⋆)) .

Consequently, on Ω(m′,ρ′)(x),

χ(m′,ρ′)1IΩ⋆ ≤ (1 + θ3)
√

V(m′,ρ′)

+

(√
M2,⋆ +

√
(1/3 + θ−1

3 )(M2,⋆ + 5π(r⋆)

)√
2|Λ(r⋆)|

x

n
.

Thus, applying twice Inequality (34), with θ = θ4 and θ = 1, we get the concentration
inequality for χ(m′,ρ′) stated in Proposition 8. �

From Proposition 8, we deduce that Ωχ(ζ) = ∩
(m′,ρ′)∈Mdeg

⋆
Ω(m′,ρ′)(w(m′,ρ′)+ ζ) is an event

with probability
Ps (Ωχ(ζ)) ≥ 1− exp(−ζ)Σ

over which

χ2(m̂, ρ̂)1IΩ⋆ ≤ (1 + θ3)(1 + θ4)V(m̂,ρ̂)

+ 4
(
1 + θ−1

4

)
|Λ(r⋆)|

((
4/3 + θ−1

3

)
M2,⋆ + (5/3)

(
1 + 3θ−1

3

)
π(r⋆)

) w(m̂,ρ̂) + ζ

n
. (38)

Our main task is then to estimate the unknown variance terms V(m′,ρ′),M1,⋆,M2,⋆.
Lemma 1 in [RBRTM10] remains valid with the same constants even though the Yi’s take
values in Rd with d ≥ 1. Let us set γ = 3 + log |Λ(r⋆)|/ log(n). Since |Λ(r⋆)| ≤ nd,
γ is bounded independently of n ( 3 ≤ γ ≤ 3 + d)). So, from the proof of Lemma 1
in [RBRTM10], for all K ∈ D⋆ and k ∈ Λ(r⋆), there exists an event ΩK,k such that
Ps(Ω

c
K,k) ≤ C(θ5, d)/(n

3|Λ(r⋆)|) and over which

Vars (ΦK,k(Y1)) ≤ (1 + θ5)

(
σ̂2
K,k + 2‖ΦK,k‖∞

√
2γσ̂2

K,k

log(n)

n
+ 8γ‖ΦK,k‖

2
∞

log(n)

n

)

≤ (1 + θ5)
(
σ̂2
K,k + 2

√
8σ̂2

K,kπ(k) + 32π(k)
)
.
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Applying Inequality (34) with a = σ̂K,k, b =
√

8π(k) and θ = θ6, we get, on ΩK,k,

σ2
K,k ≤ (1 + θ5)

(
(1 + θ6)σ̂

2
K,k + 8(4 + θ−1

6 )π(k)
)
.

For all (m′,ρ′) ∈ Mdeg
⋆ , let us introduce

V̂(m′,ρ′)(θ6) =
1

n

∑

K∈m′

∑

k∈Λ(ρ′
K
)

(
(1 + θ6)σ̂

2
K,k + 8(4 + θ−1

6 )π(k)
)
.

We have just proved that the set Ωσ = ∩K∈D⋆ ∩k∈Λ(r⋆) ΩK,k is an event with probability

Ps (Ωσ) ≥ 1− 2dC(θ5, d)/(n
2 log(n)) (39)

over which

V(m̂,ρ̂) ≤ (1 + θ5)V̂(m̂,ρ̂)(θ6). (40)

Let us now fix K ∈ D⋆ and k ∈ Λ(r⋆). According to Bernstein’s Inequality and Inequal-
ity (34), there exist events Ω1

K,k and Ω2
K,k, each with Ps-measure ≥ 1− 2 exp(−3nλd(K)),

such that on Ω1
K,k

√
π(k)

λd(K)

∣∣∣∣∣
1

n

n∑

i=1

ΦK,k(Yi)− Es [ΦK,k(Y1)]

∣∣∣∣∣ ≤
√

6Es

[
Φ2
K,k(Y1)

]
π(k) + π(k)

≤ θ7Es

[
Φ2
K,k(Y1)

]
+ (1 + 3θ−1

7 )π(k),

and on Ω2
K,k

∣∣∣∣∣
1

n

n∑

i=1

Φ2
K,k(Yi)− Es

[
Φ2
K,k(Y1)

]
∣∣∣∣∣ ≤

√
6‖ΦK,k‖2∞Es

[
Φ2
K,k(Y1)

]
λd(k) + ‖ΦK,k‖

2
∞λd(k)

≤ θ8Es

[
Φ2
K,k(Y1)

]
+ (1 + 3θ−1

8 )π(k).

We thus obtain that ΩM = ∩K∈D⋆ ∩k∈Λ(r⋆) (Ω
1
K,k ∩ Ω2

K,k) is an event with probablity

Ps(ΩM ) ≥ 1− 4× 2d/(n2 log(n)) (41)

over which

M1,⋆ ≤ M̂1,⋆ + θ7(1− θ8)
−1|Λ(r⋆)|M̂2,⋆ +

(
θ7(1− θ8)

−1(1 + 3θ−1
8 ) + (1 + 3θ−1

7 )
)
π(r⋆)|Λ(r⋆)|

M̂1,⋆ ≤ M1,⋆ + θ7|Λ(r⋆)|M2,⋆ + (1 + 3θ−1
7 )π(r⋆)|Λ(r⋆)|

M2,⋆ ≤ (1− θ8)
−1M̂2,⋆ + (1 + 3θ−1

8 )(1− θ8)
−1π(r⋆)

M̂2,⋆ ≤ (1 + θ8)M2,⋆ + (1 + 3θ−1
8 )π(r⋆). (42)
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Let us set Ω• = Ω⋆ ∩ Ωσ ∩ ΩM and

C0 = 1− 2θ1(1 + θ2)

C1 = 1 + 2θ1(1 + θ−1
2 )

C2 = (1 + C0)(1 + θ3)(1 + θ4)(1 + θ5)

C3 = 4(1 + C0)(4/3 + θ−1
3 )(1 + θ−1

4 )(1− θ8)
−1 + C7θ7(1− θ8)

−1

C4 = 3C3 + (20/3)(1 + C0)(1 + 3θ−1
3 )(1 + θ−1

4 ) + C7

(
1 + 3θ−1

7 + θ7(1 + 3θ−1
8 )(1− θ8)

−1
)

C5 = 2(2/3 + θ−1
1 )

C6 = C7 + 4(1 + C0)(4/3 + θ−1
3 )(1 + θ−1

4 )

C7 = (20/3)(1 + C0)(1 + 3θ−1
3 )(1 + θ−1

4 ).

We choose pen such that, on Ω• and for all (m′,ρ′) ∈ Mdeg
⋆ ,

pen(m′,ρ′) = C2V̂(m′,ρ′)(θ6) +
((

C3M̂2,⋆ +C4π(r⋆)
)
|Λ(r⋆)|+ C5M̂1,⋆

) w(m′,ρ′)

n
.

Thus, combining Inequalities (32), (36), (38), (40), (42) with the upper-bounds

M1,⋆ ≤ π(r⋆)|Λ(r⋆)|‖s‖∞ and M2,⋆ ≤ π(r⋆)‖s‖∞,

we obtain, on Ωm(ζ) ∩Ωχ(ζ) ∩ Ω•,

C0‖s− s̃‖22 ≤ C1‖s− s(m,ρ)‖
2
2 + pen(m,ρ) + (C6‖s‖∞ + C7)π(r⋆)|Λ(r⋆)|

ζ

n
.

Setting

C ′
3 = C3(1 + θ8) +C5(1 + θ7)

C ′
4 = C3(1 + 3θ−1

8 ) + C5(1 + 3θ−1
7 )

we deduce from (42) that, on Ω•,

pen(m,ρ) ≤ C2V̂(m,ρ)(θ6) +
(
C ′
3‖s‖∞ + C ′

4

)
π(r⋆)|Λ(r⋆)|

w(m,ρ)

n
,

so that, on Ωm(ζ) ∩ Ωχ(ζ),

C0‖s − s̃‖221IΩ•
≤ C1‖s− s(m,ρ)‖

2
2 + C2V̂(m,ρ)(θ6)

+
(
C ′
3‖s‖∞ + C ′

4

)
π(r⋆)|Λ(r⋆)|

w(m,ρ)

n

+ (C6‖s‖∞ + C7) π(r⋆)|Λ(r⋆)|
ζ

n
.
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Last, we recall that Fubini’s Theorem yields, for all random variable U ,

E[U ] ≤ E[U+] =

∫ ∞

0
P(U+ > ζ)dζ =

∫ ∞

0
P(U > ζ)dζ,

and we underline that

Es

[
V̂(m,ρ)(θ6)

]
≤ (1 + θ6)Es

[
‖ŝ(m,ρ) − s(m,ρ)‖

2
2

]
+ 8(4 + θ−1

6 )π(r⋆)
dim(S(m,ρ))

n
.

Therefore,

C0Es

[
‖s− s̃‖221IΩ•

]
≤ C1‖s − s(m,ρ)‖

2
2 + (1 + θ6)C2Es

[
‖ŝ(m,ρ) − s(m,ρ)‖

2
2

]

+ 8(4 + θ−1
6 )C2π(r⋆)

dim(S(m,ρ))

n

+
(
C ′
3‖s‖∞ + C ′

4

)
π(r⋆)|Λ(r⋆)|

w(m,ρ)

n

+ 2 (C6‖s‖∞ +C7)π(r⋆)|Λ(r⋆)|
Σ

n
. (43)

There remains to bound the risk of s̃ on Ωc
•. According to (37), (39) and (41),

p• := Ps(Ω
c
•) ≤ Ps(Ω

c
⋆) + Ps(Ω

c
σ) + Ps(Ω

c
M ) ≤ C(θ5, d)/(n

2 log(n)).

From Pythagoras’ Equality and the inclusion of S(m̂,ρ̂) into S(m⋆,r⋆), we deduce

‖s− s̃‖22 = ‖s− ŝ(m̂,ρ̂)‖
2
2 + χ2(m̂, ρ̂) ≤ ‖s‖22 + χ2(m⋆, r⋆).

Therefore, it follows from Cauchy-Scwharz Inequality that

Es

[
‖s− s̃‖221IΩ•

]
≤ p•‖s‖

2
2 +

√
p•Es [χ4(m⋆, r⋆)].

Let S⋆ be some countable and dense subset of {t ∈ S(m⋆,r⋆) s.t. ‖t‖2 = 1}. Since χ(m⋆, r⋆) =
supt∈S⋆

|ν(t)|, we deduce from Theorem 12 in [BBLM05] that

√
Es [χ4(m⋆, r⋆)] ≤ C

(
Es

[
χ2(m⋆, r⋆)

]
+ σ2/n +M/n2

)
,

where M is any upper-bound for supt∈S⋆
max1≤i≤n |t(Yi)−〈t, s〉| and σ2, any upper-bound

for n supt∈S⋆
Vars(t(Y1)). Therefore, we obtain

√
Es [χ4(m⋆, r⋆)] ≤ C

(
π(r⋆)|Λ(r⋆)|‖s‖∞

log(n)
+

‖s‖∞
n

+
π(r⋆)|Λ(r⋆)|

n log(n)

)
≤ C

π(r⋆)|Λ(r⋆)|‖s‖∞
log(n)

,

hence

Es

[
‖s − s̃‖221IΩ•

]
≤ C(θ5, d)

π(r⋆)|Λ(r⋆)|‖s‖
2
∞

n log3/2(n)
. (44)
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Since ‖s‖∞ ≥ 1, we conclude thanks to (43) and (44)

Es

[
‖s − s̃‖22

]
≤ C ′′

1 ‖s− s(m,ρ)‖
2
2 + C ′′

2Es

[
‖ŝ(m,ρ) − s(m,ρ)‖

2
2

]
+ C ′′

3π(r⋆)
D(m,ρ)

n

+ ‖s‖∞π(r⋆)|Λ(r⋆)|

(
C ′′
4

w(m,ρ)

n
+ C ′′

5

Σ

n
+ C ′′

6

‖s‖∞

n log3/2(n)

)
(45)

where

C ′′
1 = C1/C0, C ′′

2 = (1 + θ6)C2/C0, C ′′
3 = 8(4 + θ−1

6 )C2/C0,

C ′′
4 = (C ′

3 + C ′
4)/C0, C ′′

5 = 2(C6 + C7)/C0, C ′′
6 = C(θ5, d).

Choosing, for all (m,ρ) ∈ Mdeg
⋆ , w(m,ρ) = L(m,ρ)|m|, and taking in (45) the minimum over

(m,ρ) ∈ Mdeg
⋆ allows to complete the proof.

6 Proof of Theorem 4

Let us fix σ, p, p′, R, L satisfying the assumptions of the theorem and s ∈ P(σ, p, p′, R, L).
For J = J⋆, all the partitions given by Theorem 2 belong to M⋆, so according to Proposi-
tion 5 and Theorem 2 applied with r = ⌊σ⌋+ 1,

Es

[
‖s − s̃‖22

]

≤ C(κ′′, d,σ, p, L)

(
inf
k∈N

{
R22−2kH(σ) + w(r⋆)

2kd

n

}
+R22−2J⋆d(H(σ)/d−(1/p−1/2)+)σ/H(σ)

)
.

In order to minimize approximately the above infimum, we choose

k⋆ = max{k ∈ N s.t. w(r⋆)2
kd/n ≤ R22−2kH(σ)}

which is well defined since R2n/w(r⋆) ≤ 1, and thus obtain

Es

[
‖s − s̃‖22

]

≤ C(κ′′, d,σ, p, L)

((
R (n/w(r⋆))

−H(σ)/d)
)2d/(d+2H(σ))

+R22−2J⋆d(H(σ)/d−(1/p−1/2)+)σ/H(σ)

)
.

Given the assumptions on J⋆ and R, the leading term in the right-hand sand is the first
one. We then conclude thanks to Propostion 4.
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