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Abstract

This paper considers the mean variance portfolio management problem. We exam-
ine portfolios which contain both primary and derivative securities. The challenge in
this context is the well posedness of the optimization problem. We find examples in
which this problem is well posed. Numerical experiments provide the efficient frontier.
The methodology developed in this paper can be also applied to pricing and hedging
in incomplete markets.
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Keywords: Mean-Variance, Portfolios of Options, Quadratic Programming.

1 Introduction

The main objective in portfolio management is the tradeoff between risk and return.
Markovitz, [6] and [7] studied the problem of maximizing portfolio expected return for a
given level of risk, or equivalently minimize risk for a given amount of expected return.
One limitation of Markovitz’s model is that it considers portfolios of primary assets only.

Recent works consider the optimal management of portfolios containing primary and
derivative assets. Here we mention [8] and [1]. [8] introduces a technique of optimizing
CVaR (conditional value at risk) of a portfolio. [1] notices that the problem of minimizing
CVaR for a portfolio of derivative securities is ill-posed. [1] shows that this predicament
can be overcome by including transaction costs.

There are some works which consider portfolio optimization with non-standard asset
classes; we recall [2], [3], and [5]. In a continuous time model [2] looks at the problem of
maximizing expected exponential utility of terminal wealth, by trading a static position in
derivative securities and a dynamic position in stocks. In a one period model [3] analyses
the optimal investment and equilibrium pricing of primary and derivative instruments. [5]
shows how to approximate a dynamic position in options by a static one and this is done
by minimizing the mean-squared error.

By the best of our knowledge this paper is the first work to consider the mean vari-
ance Markovitz portfolio management problem in one period model with derivative assets.

1 Work supported by NSERC grants 371653-09 and MITACS grants 5-26761
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We work in a multivariate normally distributed returns framework. The first difficulty
encountered in such problems stems from the nonlinearity of derivative prices. This can
be overcome by considering delta gamma or related approximations. It is well known in
the industry practice that this approximation performs well for small time intervals. By
performing the delta gamma approximation the portfolio management problem is reduced
to a quadratic program. The second difficulty is the lack of convexity for the quadratic
program. We find two examples in which the quadratic program is convex: a portfolio of
instruments in which every instrument is written on one underlying only; a second example
is a portfolio which contains only two instruments.

The results of our paper can be applied to the problem of pricing and hedging in
incomplete markets. For instance we can consider instruments written on nontradable
factors (e.g. temperature) and they can be hedged with tradable instruments which are
highly correlated (this procedure is called cross hedging). Take as an example weather
derivatives (e.g. HDD or CDD); energy prices are considered as the traded correlated
instrument (in California a highly correlation can be observed between temperature and
energy prices). Perfect hedging is not possible in this paradigm. Minimizing the variance of
the hedging error can be captured as a special case of mean variance optimization problem
for a portfolio of primary and derivative instruments. A survey paper on mean-variance
hedging and mean-variance portfolio selection is [9].

Another possible application of our results is the hedging of long maturity instruments
with short maturities ones. As it is well known, the market for long maturity instruments
is illiquid, thus the issuers use (static) hedging portfolios of the more liquid short maturity
instruments. The interested reader can find out more about this in [4].

The paper is organized as follows: Section 2 presents the model. Section 3 introduces
the delta gamma approximation. Section 4 presents the reduction to quadratic programs.
Section 5 shows examples in which the quadratic programs are convex. Section 6 presents
the numerical results. Section 7 is an application to pricing and hedging in incomplete
markets. The paper ends with an appendix.

2 The Model

Portfolios returns are derived from the return of individual positions. In practice, it is
not good to model the positions individually because of their correlations. If we have m

instruments in our portfolio we would need m separate volatilities plus data on m(m−1)
2

correlations, so in total m(m+1)
2 pieces of information. This is hard to get for large m.

The resolution is to map our m instruments onto a smaller number of n risk factors.
The mapping can be nonlinear (e.g. BS for option). Let us assume that the factors
are represented by a stochastic vector process S = (S1, S2, · · · , Sn), which at all times
t ∈ (0,∞) is assumed to be of the form

St = µt+ΣWt. (2.1)

Here µ is the vector of returns, Σ is the variance-covariance matrix, and Wt is a standard
Brownian motion on a canonical probability space (Ω,Ft,F). The value of portfolio at
time t, denoted V (S, t), is of the form

V (S, t) =

m
∑

k=1

xk(t)Vk(S, t), (2.2)
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where Vk(S, t), k = 1, · · ·m, represents the value of the individual instruments (mapped
onto the risk factors), and xk(t), k = 1, · · ·m stands for the number of shares of instrument
k held in the portfolio at time t. At time t, we choose the portfolio mix xk(t), k = 1, · · ·m
such that the portfolio return ∆V over time interval [t, t+∆t]

∆V = V (S +∆s, t+∆t)− V (S, t), (2.3)

is optimized in a way which is described below. It turns out to be more convenient to work
with the vector of actual proportions of wealth invested in the different assets. Thus, at
time t ∈ (0,∞), we introduce the portfolio weights wk(t), k = 1, · · ·m, by

wk(t) =
xk(t)

V (S, t)
, k = 1, · · ·m. (2.4)

In the following we posit the following Markowitz mean-variance type problem; given
some exogenous benchmark return re(t), at time t an investor wants to choose among all
portfolios having the same return re(t), the one that has the minimal variance Var(∆V ) :

(P1) min
w

Var(∆V )

such that E(∆V ) = re(t),
m
∑

k=1

wk(t)Vk(S, t) = 1.

Another possible portfolio management problem is to choose the portfolio with the minimal
variance:

(P2) min
w

Var(∆V )

m
∑

k=1

wk(t)Vk(S, t) = 1,

There are some difficulties in solving (P1) and (P2). First, we might be short of information
of the moments of ∆V . Because ∆V nonlinearly depends on the change of asset prices,
it is not obvious what distribution ∆V would follow even if we perfectly learn the p.d.f of
∆S. The situation would not get much better if we only require the moment information
of ∆V . The integration for moments might be still hard to calculate explicitly. One way
what of this predicament is to use delta gamma approximation.

3 Delta-Gamma Approximation

This is a second order Taylor expansion

∆V ≈ δV =
∂V

∂t
∆t+ δT∆S +

1

2
∆STΓ∆S, (3.1)

where

δi =
∂V

∂Si

, Γij =
∂2V

∂Si∂Sj

, i = 1, · · · n.

Since

V (S, t) =

m
∑

k=1

xk(t)Vk(S, t),
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then

δi =
∂V

∂Si
=

m
∑

k=1

xk(t)δ
k
i , δki :=

∂Vk

∂Si
, i = 1, · · · n, k = 1, · · ·m, (3.2)

Γij =
∂2V

∂Si∂Sj
=

m
∑

k=1

xk(t)Γ
k
ij , Γk

ij :=
∂2Vk

∂Si∂Sj
, i = 1, · · · n, j = 1, · · · n, k = 1, · · ·m. (3.3)

It is well known that this approximation performs well as long as the time interval ∆t is
not too big. At this point we formulate the approximated versions of (P1) and (P2), as
follows:

(P3) min
w

Var(δV )

such that E(δV ) = re(t),
m
∑

k=1

wk(t)Vk(S, t) = 1,

(P4) min
w

Var(δV )

m
∑

k=1

wk(t)Vk(S, t) = 1.

The next step is to reduce (P3) and (P4) to quadratic programs and this is done in the
next section.

4 Quadratic Programs

Let us first consider the case of one asset, m = 1. In the light of (2.1), ∆S ∼ N (µ,Σ
√
∆t).

For computational convenience we assume µ is the zero vector and ∆t = 1. Next, replace
the vector of correlated normals, ∆S, with the vector of independent normals Z ∼ N (0, I).
This is done by setting

∆S = CZ with CCT = Σ.

In terms of Z, the quadratic approximation of ∆V becomes

∆V ≈ δV = a+ (CT δ)TZ +
1

2
ZT (CTΓC)Z,

with

a =
∂V

∂t
∆t. (4.1)

At this point it is convenient to choose the matrix C to diagonalize the quadratic term in
the above expression and this is done as follows. Let C̃ be a square matrix such that

C̃C̃T = Σ (4.2)

(e.g., the one given by the Cholesky factorization). The matrix 1
2C̃

TΓC̃ is symmetric and
thus admits the representation (more about this can be found in the appendix)

1

2
C̃TΓC̃ = UΛUT , (4.3)

4



where Λ = diag(λ1, · · · , λn), and U is an orthogonal matrix such that UUT = I. Next, set
C = C̃U and observe that

CCT = C̃UUT C̃T = Σ, (4.4)

1

2
CTΓC =

1

2
UT (C̃TΓC̃)U = UT (UΛUT )U = Λ.

Thus, with
b = CT δ, (4.5)

we get
∆V ≈ δV = a+ bTZ + ZTΛZ := Y.

4.1 Moment Generating Function

In this subsection, we explore the moment generating function of Y and further derive the
mean and variance of Y . Since the random variable Y is student distributed, it is well
known that

E(θY ) = exp(η(θ)), (4.6)

where

η(θ) = aθ +

n
∑

j=1

ηj(θ) = aθ +

n
∑

j=1

1

2

(

θ2b2j

1− 2θλj
− log (1− 2θλj)

)

, (4.7)

for all θ satisfying maxj θλj <
1
2 . Direct computations lead to

d
(

eη(θ)
)

dθ
= exp(η(θ))

dη

dθ

= exp(η(θ))



a+
1

2

n
∑

j=1

(

2θb2j(1− 2θλj)− θ2(−2λj)

(1− 2θλj)2
− −2λj

1− 2θλj

)





and

d2
(

eη(θ)
)

dθ2
= exp(η(θ))



a+
1

2

n
∑

j=1

(

2θb2j (1− 2θλj)− θ2(−2λj)

(1− 2θλj)2
− −2λj

1− 2θλj

)





2

+exp(η(θ))

[

1
2

n
∑

j=1

(

2λj
−2λj

−(1− 2θλj)2
+

(2b2j − 8θb2jλj + 4θb2jλj)(1− 2θλj)
2 − (2θb2j (1− 2θλj) + θ2b2j2λj)((−2λj)2(1 − 2θλj))

(1− 2θλj)4

)]

Thus, the first and second moments of Y are

E(Y ) =
d
(

eη(θ)
)

dθ

∣

∣

∣

∣

θ=0

= a+
n
∑

j=1

λj

and

E(Y 2) =
d2
(

eη(θ)
)

dθ2 θ=0
= (a+

n
∑

j=1

λj)
2 +

n
∑

j=1

(b2j + 2λ2
j ).
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Hence,

Var(Y ) = E(Y 2)− E2(Y ) =

n
∑

j=1

(b2j + 2λ2
j ).

In order to ease the notations we assume that V (S, t) = 1, so the vector of shares x equals
the vector of proportions w (also notice that for simplicity we dropped the t dependence
of w). Next, we would like to express the mean and variance of Y in terms of x. In the
light of (4.3), (4.2), (3.3) and (8.1) it follows that

E(Y ) = a+

n
∑

j=1

λj = a+ tr
(

UΛUT
)

(4.8)

= a+
1

2
tr
(

C̃TΓC̃
)

= a+
1

2
tr





n
∑

j=1

xjΓjΣ





= a+ xT p,

where the vector p is defined by

p :=
1

2

(

tr
(

Γ1Σ
)

, tr
(

Γ2Σ
)

, . . . , tr (ΓnΣ)
)T

.

As for the variance, recall that with b of (4.5) it follows that (see (3.2) and (4.4))

m
∑

k=1

b2k = bT b = (CT δ)TCT δ = δTCTCδ =
1

2
xT Σ̂x, (4.9)

where

Σ̂ = 2(δ1, · · · , δn) Σ (δ1, · · · , δn)T .
Σ̂ is positive semidefinite by Lemma 8.1 (see appendix). Next, in the light of (4.4) and
(8.1) it follows that

m
∑

k=1

λ2
j =

1

4
tr
(

(CTΓC)T (CTΓC)
)

=
1

4
tr
(

ΓCCTΓCCT
)

=
1

4
tr (ΓΣΓΣ)

=
1

4
tr









n
∑

j=1

xjΓ
jΣ





2



=
1

4





n
∑

j=1

x2j tr
(

(Γj)2Σ2
)

+ 2
∑

i 6=j

xixjtr
(

ΓiΣΓjΣ
)





=
1

4
xTQx,
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where the matrix Q is defined by

Qij = tr
(

ΓiΣΓjΣ
)

, i = 1, · · · n, j = 1, · · · n. (4.10)

Therefore, we end up with

Var(Y ) =
m
∑

j=k

(b2k + 2λ2
k) =

1

2
xT (Σ̂ +Q)x. (4.11)

Thus, from (4.8) and (4.11), the portfolio problem (P3) (recall that x = w) becomes

(P5) min
x

1

2
xT (Σ̂ +Q)x

s.t. a+ xT p = re,
n
∑

k=1

Vk(t, S)xk = 1.

and (P4) turns into

(P6) min
x

1

2
xT (Σ̂ +Q)x

s.t.

n
∑

k=1

Vk(t, S)xk = 1.

It turns out that the problem (P5) has a similar form with the classical mean variance
portfolio problem. However, the essential difference is that (P5) is not always tractable.
Depending on the data, (P5) could be either a convex quadratic programming or NP-hard.
The following is a well known result in quadratic programming.

Theorem 4.1. (P5) is a convex quadratic program (thus solvable in polynomial time) as
long as the matrix Σ̂ +Q is positive semidefinite. Else, (P5) is NP-hard.

In the following we want to find examples in which (P5) is convex, and this is done in the
next section.

5 Convex Quadratic Programs

As Theorem 4.1 states, (P5) is not always tractable. We found two instances in which
(P5) is convex.

5.1 Case 1

Let us consider a portfolio in which every instrument is a map of one factor (possible
different from instrument to instrument) only. Take for example a portfolio of options
written on one (possible different) underlying. Thus,

V (S, t) =

m
∑

k=1

xkVk(Sk, t).

7



Since Vk only depends on the factor Sk, the matrix Γk (see (3.3)) has a nonzero element
(Γk

kk) only. We prove that in this case (P5) is a convex quadratic program. Given this
special structure it follows that Qij of (4.10) becomes

Qij = tr
(

ΓiΣΓjΣ
)

= Γi
iiΓ

j
jjΣijΣji. (5.1)

After some algebra manipulation one gets

Q = DT (Σ ◦Σ)D, (5.2)

where D = Diag(Γ1,Γ2, . . . ,Γm) and ◦ denotes the Hadamard product. Recall that for
two matrices A ∈ R

m×n and B ∈ R
m×n, the Hadamard product is the matrix A ◦B with

the entries
(A ◦B)ij := AijBij.

According to Schur Product Theorem (see appendix) it follows that Σ ◦ Σ is positive
semidefinite. Next, by Lemma 8.1 it follows that DT (Σ◦Σ)D is also positive semidefinite.
At this point we can state the result

Theorem 5.1. (P5) is a convex quadratic program.

Proof. So far we proved that the matrices Σ̄ and Q are positive semidefinite. Hence (P5)
is a convex quadratic program, since Σ̄ +Q is positive semidefinite.

Let us move to the second case in which we can establish convexity of (P5).

Case 2

Let us consider a portfolio containing two instruments only. That is,

V (S, t) =
2
∑

k=1

xkVk(S, t).

Thus

Q =

(

tr
(

Γ1ΣΓ1Σ
)

tr
(

Γ1ΣΓ2Σ
)

tr
(

Γ2ΣΓ1Σ
)

tr
(

Γ2ΣΓ2Σ
)

)

=

(

tr
(

(CTΓ1C)TCTΓ1C
)

tr
(

(CTΓ1C)TCTΓ2C
)

tr
(

(CTΓ1C)TCTΓ2C
)

tr
(

(CTΓ2C)TCTΓ2C
)

)

.

We claim that the matrix Q is positive semidefinite. First, tr
(

(CTΓ1C)TCTΓ1C
)

is
nonnegative. For the determinant condition we apply the Cauchy-Schwarz inequality

|〈X1,X2〉| ≤ ‖X1‖ · ‖X2‖,

with X1 = CTΓ1C and X2 = CTΓ2C. Here the inner product 〈X1,X2〉 is defined by

〈X1,X2〉 = tr
(

X1X
T
2

)

.

Consequently, Σ̂ +Q is positive definite, which lead to the following Theorem.

Theorem 5.2. (P5) is a convex quadratic program.
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6 Numerical Results

Assume that there is one riskless asset, SC 91 Day T-Bills, and four risky assets, SC Uni-
verse Bonds, S&P/TSX, S&P 500, and MSCI EAFE. Further, assume that the arithmetic
returns are multivariate normally distributed. The expected return, standard deviation
and the covariance matrix is obtained from the historical data (this is taken from Jan.
1993 to Dec. 2002).2 Next, consider a vanilla call option on SC Universe Bonds, a vanilla

Table 1: Expected Return and Standard Deviation

SC91TBIL SCUNOVER SP/TSX SP500 MSEAFEC

Return 4.85% 8.91% 9.07% 11.68% 6.54%
STDEV 0.44% 5.08% 16.80% 13.90% 14.35%

Table 2: Covariance Matrix

SC91TBIL SCUNOVER SP/TSX SP500 MSEAFEC

SC91TBIL 0.00% 0.01% 0.01% 0.01% 0.00%
SCUNOVER 0.01% 0.26% 0.24% 0.10% 0.02%
SP/TSX 0.01% 0.24% 2.82% 1.64% 1.49%
SP500 0.01% 0.10% 1.64% 1.93% 1.30%

MSEAFEC 0.00% 0.02% 1.49% 1.30% 2.06%

call option on S&P/TSX, a binary put option on BiS&P 500, and a binary put option on
MSCI EAFE. The initial asset prices, strike prices and maturity dates are given in Table
3. The derivatives are priced using BS type formulas.

Table 3: Initial prices, strike prices, and expire date

SCUNOVER SP/TSX SP500 MSEAFEC

Initial Price 100 50 80 100
Strike Price 80 51.25 100 150

Expire Date (days) 20 40 60 80

7 Quadratic Hedging

The results we established so far can also be applied to hedging. The motivation comes from
incomplete markets. Indeed, financial markets are fundamentally incomplete. It is well known
that in incomplete markets perfect hedging is not possible. One way to solve this problem is to
consider quadratic hedging; that is, minimize the variance of the hedging error. Let F be a payoff
of the form F = V1(St+∆t, t +∆t), for some map V1. We would like to hedge this payoff by some
instruments which are of the form Vk(S, t), k = 2, · · · , l (with l possible less than n, whence the
incompleteness). For simplicity assume that in this market borrowing and lending of cash is done

2Data from http://www.math.mcmaster.ca/∼grasselli/john.pdf. For the covariance matrix, we only
take 4 decimals.
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at zero interest rate (this can be easily achieved if one takes the zero coupon bonds as numeraire).
Given the number of shares (x1, x2, · · · , xl) in the hedging portfolio, the hedging error is

−
l+1
∑

k=1

xk∆Vk(S, t),

with x1 = −1, and ∆Vl+1(S, t) = 1. Therefore, the problem of minimizing the variance of hedging
error is of the form (P2). The initial amount needed to finance the hedging portfolio is

xl+1 + V1(St, t).

8 Appendix

8.1 Trace and its Properties

In linear algebra, the trace of a square matrix A is defined to be the sum of the elements on the
main diagonal (the diagonal from the upper left to the lower right) of A, i.e.,

tr(A) = a11 + a22 + · · ·+ ann =
n
∑

i=1

aii.

Property 8.1. If A ∈ Rm×n and B ∈ Rn×m, then

tr(AB) = tr(BA). (8.1)

Property 8.2. If P is an invertible matrix, then

tr(P−1AP ) = tr((AP )P−1) = tr(A). (8.2)

Property 8.3. If A ∈ Rn×n with real or complex entries and if λ1, λ2, . . . , λn are the (complex
and distinct) eigenvalues of A (listed according to their algebraic multiplicities), then

tr(A) =

n
∑

i=1

λi. (8.3)

8.2 Symmetric Matrices and Semidefinite Positive Matrices

Property 8.4 (Eigenvalue Decomposition). Let M be a symmetric real matrix. Then, there
exists an Eigenvalue Decomposition such that

M = QΛQT =

n
∑

i=1

λiqiq
T

i , (8.4)

where Λ is a diagonal matrix with all the eigenvalues of M along its diagonal, Q is an orthonormal
matrix, i.e., QQT = I, and each column qi of Q is an eigenvector of M corresponding to the
eigenvalue λi.

Lemma 8.1. Let P ∈ Rn×n and A ∈ Rn×n be a semidefinite positive matrix. Then the matrix
PAPT is also semidefinite positive..

Proof. According to the definition, we have

xTPAPTx = (PTx)A(PTx) ≥ 0,

for any x 6= 0.

10



8.3 Schur Product Theorem

Property 8.5 (Schur Product Theorem). Suppose A,B ∈ Rn×n are positive semidenite ma-
trices. Then A ◦B is also positive semidenite.

�
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