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Abstract

We derive asymptotic expansions up to ordern−1/2 for the nonnull distribution functions of

the likelihood ratio, Wald, score and gradient test statistics in the class of dispersion models, under

a sequence of Pitman alternatives. The asymptotic distributions of these statistics are obtained for

testing a subset of regression parameters and for testing the precision parameter. Based on these

nonnull asymptotic expansions it is shown that there is no uniform superiority of one test with re-

spect to the others for testing a subset of regression parameters. Furthermore, in order to compare

the finite-sample performance of these tests in this class ofmodels, Monte Carlo simulations are

presented. An empirical application to a real data set is considered for illustrative purposes.

Key words: Asymptotic expansions; Chi-square distribution; Dispersion models; Gradient test;

Likelihood ratio test; Local power; Score test; Wald test.

1 Introduction

The paper by Nelder and Wedderburn (1972) introduced the class of generalised linear models (GLMs)

and showed that a large variety of non-normal data may be analysed by a simple general technique

(see, for example, McCullagh and Nelder, 1989; Dobson and Barnett, 2008). The GLMs were orig-

inally developed for the exponential family of distributions, but the main ideas were extended to a

wider class of models called dispersion models (DMs) in sucha way that most of their good properties

were preserved. This class of models was introduced by Jørgensen (1987a) and studied in details in

Jørgensen (1997a). Some recent references about DMs are Kokonendji et al. (2004), Jørgensen et al.

(2010), Simas et al. (2010) and Rocha et al. (2010).

The class of DMs with position parameterθ (which vary in an interval of the real line) and preci-

sion parameterφ > 0 has probability density function of the form

π(y; θ, φ) = exp{φt(y, θ) + c(y, φ)}, (1)
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wheret(·, ·) andc(·, ·) are known functions. IfY is continuous,π is assumed to be a density with

respect to the Lebesgue measure, while ifY is discrete,π is assumed to be a density with respect

to the counting measure. The parameterθ may be generally interpreted as a kind of location param-

eter, not necessarily the mean of the distribution. Severalmodels of the form (1) are discussed by

Jørgensen (1987a,b, 1997a), who also examined their statistical properties. It is evident that some

special cases arise from (1). Exponential dispersion models (EDMs) represent a special case of DMs

with t(y, θ) = yθ − b(θ), whereE(Y ) = db(θ)/dθ; see Jørgensen (1992). An important subclass

of DMs of special interest, called proper dispersion models(PDMs), arise whenc(y, φ) is additive,

i.e. c(y, φ) = a1(y) + a2(φ), wherea1(·) anda2(·) are known functions (see, for instance, Jørgensen,

1997b). The class of PDMs covers important distributions which are not covered by the EDMs, such

as the log-gamma distribution, the McCullagh distribution(McCullagh, 1989), the reciprocal inverse

Gaussian distribution and the simplex distribution, whichis suitable for modeling continuous propor-

tions (Barndorff–Nielsen and Jørgensen, 1991). The von Mises distribution, which also belongs to

the class of PDMs and does not belong to the EDMs, is particularly useful for the analysis of circular

data; see Mardia and Jupp (2000). The PDMs have two importantgeneral properties. First, the dis-

tribution of the statisticT = t(Y, θ) does not depend onθ whenφ is known, that is,T is a pivotal

quantity forθ. Second, (1) is an exponential family with canonical statistic T whenθ is known.

Large-sample tests, such as the likelihood ratio, Wald and Rao score tests, are usually employed

for testing hypotheses in parametric models. A new criterion for testing hypotheses, referred to as the

gradient test, was proposed in Terrell (2002). Its statistic is very simple to compute when compared

with the other three classic statistics. Here, it is worthwhile to quote Rao (2005): “The suggestion by

Terrell is attractive as it is simple to compute. It would be of interest to investigate the performance

of the [gradient] statistic.” Also, Terrell’s statistic shares the same first order asymptotic properties

with the likelihood ratio, Wald and score statistics. That is, to the first order of approximation, the

likelihood ratio, Wald, score and gradient statistics havethe same asymptotic distributional properties

either under the null hypothesis or under a sequence of Pitman alternatives, i.e. a sequence of local

alternatives that shrink to the null hypothesis at a convergence raten−1/2. Additionally, it is known

that, up to an error of ordern−1, the likelihood ratio, Wald, score and gradient tests have the same

size properties but their local powers differ in then−1/2 term. Therefore, a meaningful comparison

among the criteria can be performed by comparing the nonnullasymptotic expansions to ordern−1/2

of the distribution functions of these statistics under a sequence of Pitman alternatives.

In this paper, our main objective is to derive nonnull asymptotic expansions to ordern−1/2 of the

distribution functions of the likelihood ratio, Wald, score and gradient statistics under a sequence of

local alternatives and to compare the local power of the corresponding tests in the class of DMs. In

order to compare the finite-sample performance of these tests in this class of models we also perform

a Monte Carlo simulation study. As far as we know, there is no mention in the statistical literature on

the use of the gradient test in DMs.

The nonnull asymptotic expansions up to ordern−1/2 for the distribution functions of the likeli-
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hood ratio and Wald statistics were derived by Hayakawa (1975), while an analogous result for the

score statistic was obtained by Harris and Peers (1980). Theasymptotic expansion up to ordern−1/2

for the distribution functions of the gradient statistic was derived by Lemonte and Ferrari (2010). The

expansions are very general, although being difficult or even impossible to particularize their formu-

las for specific regression models. As we shall see below, we have been capable to apply their results

for DMs. In particular, we derive closed-form expressions for the coefficients that define the nonnull

asymptotic expansions of these statistics in this class of models and show that there is no uniform

superiority of one test with respect to the others for testing a subset of regression parameters.

The rest of the paper is organized as follows. Section 2 briefly describes the likelihood ratio, Wald,

score and gradient tests. We present the class of DMs in Section 3. In Section 4 we derive the nonnull

asymptotic expansions of the likelihood ratio, Wald, scoreand gradient statistics for testing a subset of

regression parameters in DMs. The local power of the likelihood ratio, Wald, score and gradient tests

are compared in Section 5. In Section 6 we consider hypothesis testing on the precision parameter.

Monte Carlo simulation results are addressed in Section 7. We consider an empirical application in

Section 8 for illustrative purposes. Section 9 closes the paper with some concluding remarks.

2 Background

Let ℓ(θ), Uθ andKθ denote the total log-likelihood function, the score function and the information

matrix for the parameter vectorθ = (θ1, . . . , θk)
⊤ of dimensionk, respectively. LetK−1

θ denote the

inverse ofKθ. Consider the partitionθ = (θ⊤
1 , θ

⊤
2 )

⊤, where the dimensions ofθ1 andθ2 areq and

k − q, respectively. Suppose the interest lies in testing the composite null hypothesisH0 : θ2 = θ20

againstH1 : θ2 6= θ20, whereθ20 is a specified vector. Hence,θ1 acts as a vector of nuisance

parameters. The likelihood ratio (S1), Wald (S2), score (S3) and gradient (S4) statistics for testingH0

versusH1 are given, respectively, by

S1 = 2
{
ℓ(θ̂)− ℓ(θ̃)

}
, S2 = (θ̂ − θ̃)⊤K̂θ(θ̂ − θ̃),

S3 = Ũ⊤
θ K̃

−1
θ Ũθ, S4 = Ũ⊤

θ (θ̂ − θ̃),

where θ̂ = (θ̂⊤
1 , θ̂

⊤
2 )

⊤ and θ̃ = (θ̃⊤
1 , θ

⊤
20)

⊤ denote the maximum likelihood estimators ofθ =

(θ⊤
1 , θ

⊤
2 )

⊤ underH1 andH0, respectively,̂Kθ = Kθ(θ̂), K̃θ = Kθ(θ̃) and Ũθ = Uθ(θ̃). The

limiting distribution ofS1, S2, S3 andS4 is χ2
k−q underH0 andχ2

k−q,λ, i.e. a noncentral chi-square

distribution withk − q degrees of freedom and an appropriate noncentrality parameterλ, underH1.

The null hypothesis is rejected for a given nominal level,γ say, if the test statistic exceeds the upper

100(1− γ)% quantile of theχ2
k−q distribution.

From the partition ofθ, we have the corresponding partitions

Uθ = (U⊤
θ1
,U⊤

θ2
)⊤, Kθ =

[
K11 K12

K21 K22

]
, K−1

θ =

[
K11 K12

K21 K22

]
.
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Thus, the statisticsS2, S3 andS4 can be rewritten as

S2 = (θ̂2 − θ20)
⊤K̂22−1

(θ̂2 − θ20), S3 = Ũ⊤
θ2
K̃22Ũθ2 , S4 = Ũ⊤

θ2
(θ̂2 − θ20),

whereK̂22 = K22(θ̂), K̃22 = K22(θ̃) andŨθ2 = Uθ2(θ̃).

Noticed thatS4 has a very simple form and does not involve the information matrix, neither

expected nor observed, unlikeS2 andS3. Terrell (2002) points out that the gradient statistic “is not

transparently non-negative, even though it must be so asymptotically.” His Theorem 2 implies that if

the log-likelihood function is concave and is differentiable at θ̃, thenS4 ≥ 0.

Recently, Lemonte and Ferrari (2011) obtained the nonnull asymptotic expansions of the likeli-

hood ratio, Wald, score and gradient statistics in Birnbaum–Saunders regression models (Rieck and Nedelman,

1991). An interesting finding is that, up to an error of ordern−1, the four tests have the same local

power in this class of models. Their simulation study evidenced that the score and the gradient tests

perform better than the likelihood ratio and Wald tests in small and moderate-sized samples and hence

they concluded that the gradient test is an appealing alternative to the three classic asymptotic tests in

Birnbaum–Saunders regressions.

3 Dispersion models

We assume that the random variablesy1, . . . , yn are independent and eachyl has a probability density

function of the form

π(yl; θl, φ) = exp{φt(yl, θl) + c(yl, φ)}, l = 1, . . . , n. (2)

The mean ofYl will be denoted byµl, and is not necessary equal toθl, the parameter of interest. In

order to introduce a regression structure in the class of models in (2), we assume that

d(θl) = ηl = f(xl;β), l = 1, . . . , n, (3)

whered(·) is a known one-to-one differentiable link function,xl = (xl1, . . . , xlm)
⊤ is anm-vector

of nonstocastic variables associated with thel-th response,β = (β1, . . . , βp)
⊤ is a set of unknown

parameters to be estimated (m ≤ p < n), andf(·; ·) is a possible nonlinear twice continuous differ-

enciable function with respect toβ. The regression structure links the covariatesxl to the parameter

of interestθl. Then × p matrix of derivatives ofη = (η1, . . . , ηn)
⊤ with respect toβ, specified by

X∗ = ∂η/∂β⊤, is assumed to be of full rank, i.e. rank(X∗) = p for all β. Further, it is assumed that

the precision parameter is unknown and it is the same for all observations. It is also assumed that the

usual regularity conditions for maximum likelihood estimation and large sample inference hold; see

Cox and Hinkley (1974, Ch. 9).

The class of regression models defined by (2) and (3) extends the class of generalised linear

models discussed by McCullagh and Nelder (1989) in two directions. First and as noted before, it
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includes important distributions which are not exponential family models. Second, it allows for a

nonlinear structure inη. The class of models in (2)-(3) is also a natural extension ofthe exponential

family nonlinear models (EFNLMs) introduced by Cordeiro and Paula (1989), which in turn extends

the well-known GLMs by allowing the regression structure tobe nonlinear. The EFNLMs are defined

by equations (2) and (3), witht(yl, θl) = ylθl − b(θl) andc(yl, φ) = a1(yl) + a2(φ) in (2).

Let ℓ = ℓ(β, φ) =
∑n

l=1{φt(yl, θl) + c(yl, φ)} be the total log-likelihood function forβ andφ,

whereθl is related toβ by (3). We defineDil = Dil(θl, φ) = E{∂it(Yl, φ)/∂θ
i
l}, for i = 1, 2, 3

and l = 1, . . . , n. From regularity conditions we have thatD1l = 0, for l = 1, . . . , n. Table 1

lists D2l andD3l for some dispersion models. The total score function and thetotal Fisher infor-

mation matrix forβ are given, respectively, byUβ = φX∗⊤ṫ andKβ = φX∗⊤WX∗, where

ṫ = ṫ(y, θ) = (ṫ1, . . . , ṫn)
⊤ is an n × 1 vector with ṫl = ∂t(yl, θl)/∂θl, y = (y1, . . . , yn)

⊤,

θ = (θ1, . . . , θn)
⊤ and W = diag{w1, . . . , wn} with wl = −D2l(dθl/dηl)

2. A simple calcu-

lation shows thatE(∂2ℓ/∂β∂φ) = 0 and then the parametersβ and φ are globally orthogonal

(Cox and Reid, 1987). Letαi =
∑n

l=1E{∂
ic(Yl, φ)/∂φ

i} =
∑n

l=1 E{c
(i)(Yl, φ)}, for i = 1, 2, 3.

The derivatives of theαi’s with respect toφ are written with primes, i.e.α′
i = dαi/dφ and so on. We

have that the joint information matrix for(β⊤, φ)⊤ is given bydiag{Kβ,−α2}.

Table 1: Expressions ofD2l andD3l (l = 1, . . . , n) for some dispersion models.†

Model D2l D3l

Normal −1 0

Inverse Gaussian −(−2θl)
−3/2 −3(−2θl)

−5/2

Reciprocal inverse Gaussian −1/θl 0

Gamma −1/θ2l 2/θ3l
Reciprocal gamma −1/θ2l 2/θ3l
Log-gamma −1 1

von Mises −I1(φ)/I0(φ) 0

generalised hyperbolic secant 2/(θ2l + 1)3 (2θ3l + 10θl)/(θ
2

l + 1)3

†Ij(φ) is the modified Bessel function of the first kind and orderj.

The maximum likelihood estimate (MLE)̂β of β can be obtained iteratively using standard

reweighted least squares method (Jørgensen, 1983, 1984):

X∗(m)⊤W (m)X∗(m)β(m+1) = X∗(m)⊤W (m)y∗(m), m = 0, 1, . . . ,

wherey∗(m) = X∗(m)β(m) +N (m)ṫ(m) is an adjusted dependent variable andN is a diagonal matrix

given byN = −diag{D−1
21 (dθ1/dη1)

−1, . . . , D−1
2n (dθn/dηn)

−1}. The estimatêβ depends directly on

the distribution only through the functionD2l and does not depend on the parameterφ. The maximum

likelihood estimatêφ of φ is the solution of

n∑

l=1

{t(yl, θ̂l) + c(1)(yl, φ̂)} = 0. (4)
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The maximum likelihood estimatorŝβ andφ̂ are asymptotically independent due to their asymptotic

normality and the block diagonal structure of the joint information matrix. If the model is a PDM the

αi’s can be expressed as functions ofφ only, namelyαi = na
(i)
2 (φ) for i = 1, 2, 3, wherea(i)2 (φ) is

the i-th derivative ofa2(φ) with respect toφ. In this case, the(p + 1, p + 1)-th element of the joint

information matrix is simply−na(2)2 (φ) and equation (4) reduces toa(1)2 (φ̂) = −
∑n

l=1 t(yl, θ̂l)/n.

In what follows, we shall consider tests based on the likelihood ratio (S1), Wald (S2), Rao score

(S3) and gradient (S4) statistics in the class of DMs for testing a composite null hypothesisH0 :

β2 = β20. This hypothesis will be tested against the alternative hypothesisH1 : β2 6= β20, where

β is partitioned asβ = (β⊤
1 ,β

⊤
2 )

⊤, with β1 = (β1, . . . , βq)
⊤ andβ2 = (βq+1, . . . , βp)

⊤. Here,β20

is a fixed column vector of dimensionp − q. The partition of the parameter vectorβ induces the

corresponding partitionsUβ = (U⊤
β1
,U⊤

β2
)⊤, with Uβ1

= φX∗⊤
1 ṫ andUβ2

= φX∗⊤
2 ṫ,

Kβ =

[
Kβ11 Kβ12

Kβ21 Kβ22

]
= φ

[
X∗⊤

1 WX∗
1 X∗⊤

1 WX∗
2

X∗⊤
2 WX∗

1 X∗⊤
2 WX∗

2

]
,

with the matrixX∗ partitioned asX∗ =
[
X∗

1 X∗
2

]
, X∗

1 beingn× q andX∗
2 beingn× (p− q). Let

(β̂1, β̂2, φ̂) and(β̂1,β20, φ̃) be the unrestricted and restricted MLEs of(β1,β2, φ), respectively. The

likelihood ratio, Wald, score and gradient statistics for testingH0 can be expressed, respectively, as

S1 = 2
{
ℓ(β̂1, β̂2, φ̂)− ℓ(β̃1,β20, φ̃)

}
, S2 = φ̂(β̂2 − β20)

⊤(R̂⊤Ŵ R̂)(β̂2 − β20),

S3 = s̃⊤W̃ 1/2X̃∗
2 (R̃

⊤W̃ R̃)−1X̃∗⊤
2 W̃ 1/2s̃, S4 = φ̃1/2s̃⊤W̃ 1/2X̃∗

2 (β̂2 − β20),

wheres = (s1, . . . , sn)
⊤ with sl = φ1/2ṫl(−D2l)

−1/2 andR = X∗
2 −X∗

1 (X
∗⊤
1 WX∗

1 )
−1X∗⊤

1 WX∗
2 .

Here, tildes and hats indicate evaluation at the restrictedand unrestricted MLEs, respectively. The

limiting distribution of all these statistics underH0 is χ2
p−q. Note that, unlike the Wald and score

statistics, the gradient statistic does not involve any matrix inversion.

4 Nonnull asymptotic distributions in DMs

We present in this section expressions for the nonnull asymptotic expansions up to ordern−1/2 for

the nonnull distribution of the likelihood ratio, Wald, score and gradient statistics for testing a sub-

set of regression parameters in DMs. It should be mentioned that the general nonnull asymptotic

expansions derived in Hayakawa (1975), Harris and Peers (1980) and Lemonte and Ferrari (2010)

were developed for continuous distributions. It implies that the results derived in this section are

only valid for continuous DMs. Here, we shall assume the following local alternative hypothesis

H1n : β2 = β20 + ǫ, whereǫ = (ǫq+1, . . . , ǫp)
⊤ with ǫr = O(n−1/2) for r = q + 1, . . . , p.

We introduce the following quantities:

ǫ∗ =

[
K−1

β11Kβ12

−Ip−q

]
ǫ, A =

[
K−1

β11 0

0 0

]
, M = K−1

β −A,

6



whereIp−q is a(p − q)× (p − q) identity matrix. Additionally, letZ = X∗(X∗⊤WX∗)−1X∗⊤ =

{zlm}, Z1 = X∗
1 (X

∗⊤
1 WX∗

1 )
−1X∗⊤

1 = {z1lm},

X∗
l =

{
∂2ηl

∂βr∂βs

}
=

[
X∗

11l X∗
12l

X∗
21l X∗

22l

]
, r, s = 1, . . . , p, l = 1, . . . , n,

Zd = diag{z11, . . . , znn},Z1d = diag{z111, . . . , z1nn},F = diag{f1, . . . , fn},G = diag{g1, . . . , gn},

E = diag{e1, . . . , en}, t = (t1, . . . , tn)
⊤ = X∗ǫ∗, b = (b1, . . . , bn)

⊤ = X∗
2ǫ, T = diag{t1, . . . , tn},

T (2) = T ⊙ T , T (3) = T (2) ⊙ T andB = diag{b1, . . . , bn}, where “⊙” denotes the Hadamard

(direct) product of matrices, and

fl = −
dθl
dηl

d2θl
dη2l

D2l −

(
dθl
dηl

)3

D3l, gl = −
dθl
dηl

d2θl
dη2l

D2l, el = −

(
dθl
dηl

)3

D′
2l, l = 1, . . . , n,

whereD′
2l denotes the first derivative ofD2l with respect toθl, for l = 1, . . . , n.

The nonnull distributions ofS1, S2, S3 andS4 under Pitman alternatives for testingH0 : β2 = β20

in DMs can be expressed as

Pr(Si ≤ x) = Gp−q,λ(x) +
3∑

k=0

bikGp−q+2k,λ(x) +O(n−1), i = 1, 2, 3, 4,

whereGm,λ(x) is the cumulative distribution function of a non-central chi-square variate withm

degrees of freedom and non-centrality parameterλ. Here,λ = φtr{K22.1ǫǫ
⊤}/2, whereK22.1 =

Kβ22 −Kβ21K
−1
β11Kβ12 and tr(·) denotes the trace operator. The coefficientsbik’s (i = 1, 2, 3, 4 and

k = 0, 1, 2, 3) can be written in matrix notation, after extensive algebra, as

b11 =
φ

2
tr{(E + 2G)BT (2) + (2E − F + 2G)T (3) +WT (C + 2P )}

+
1

2
tr{(2E − F + 2G)Z1dT +WJT },

b12 = −
φ

6
tr{(3E − 2F + 2G)T (3)}, b13 = 0,

b21 =
φ

2
tr{(E + 2G)BT (2) + (2E − F + 2G)T (3) +WT (C + 2P )}

+
1

2
tr{(2E − F + 2G)ZdT + 2(F −E)(Zd −Z1d)T +W (UT + 2H)},

b22 =
φ

2
tr{(F −E)T (3) +WTC} −

1

2
tr{(F + 2G)(Zd −Z1d)T +WT (U − J) + 2WH},

b23 = −
φ

6
tr{(F + 2G)T (3) + 3WTC},
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b31 =
φ

2
tr{(E + 2G)BT (2) + (2E − F + 2G)T (3) +WT (C + 2P )}

+
1

2
tr{(2E − F + 2G)Z1dT + (3E − 2F + 2G)(Zd −Z1d)T +WTJ},

b32 = −
1

2
tr{(3E − 2F + 2G)(Zd −Z1d)T }, b33 = −

φ

6
tr{(3E − 2F + 2G)T (3)},

b41 =
φ

2
tr{(E + 2G)BT (2) + (2E − F + 2G)T (3) +WT (C + 2P )}

+
1

4
tr{(6G− F + 4E)Z1dT − (F + 2G)ZdT +WT (3J −U)− 2WH},

b42 = −
φ

4
tr{(2E − F + 2G)T (3) +WTC}

+
1

4
tr{(F + 2G)(Zd −Z1d)T +WT (U − J) + 2WH},

b43 =
φ

12
tr{(F + 2G)T (3) + 3WTC},

whereU = diag{u1, . . . , un} with ul = tr{X∗
l (X

∗⊤WX∗)−1}, J = diag{j1, . . . , jn} with jl =

tr{X∗
11l(X

∗⊤
1 WX∗

1 )
−1},C = diag{c1, . . . , cn} with cl = tr{X∗

l ǫ
∗ǫ∗⊤},P = diag{p1, . . . , pn} with

pl = tr{X∗
l ǫ

∗δ⊤}, H = diag{h1, . . . , hn} with hl = φtr{MX∗
l ǫ

∗x∗⊤
l }, δ⊤ = (0⊤, ǫ⊤) andx∗⊤

l is

the lth line ofX∗. The coefficientsbi0 are obtained frombi0 = −(bi1 + bi2 + bi3), for i = 1, 2, 3, 4.

The bik’s are of ordern−1/2 and all quantities exceptǫ are evaluated under the null hypothesisH0.

The detailed derivation of these expressions is long and extremely tedious but may be obtained from

the authors upon request.

It is interesting to note that thebik’s are functions of the local derivative matrix and of the (pos-

sibly unknown) precision parameter. These coefficients depend on the second derivative of the (pos-

sibly nonlinear) functionf(xl;β) and involve the link function and its first and second derivatives.

Unfortunately, they are very difficult to interpret. The matricesC, H, J , P andU may be consid-

ered the nonlinear contribution of the dispersion model since they vanish if the regression model is

linear. Obviously, these coefficients depend heavily on theparticular dispersion model under con-

sideration. In particular, these coefficients do not changefor the class of PDMs, since the only dif-

ference between PDMs and DMs is the form of the functionc(·, ·), which can be decomposed as

c(y, φ) = a1(y) + a2(φ) for PDMs. By replacingE by F − G in these coefficients, we obtain the

nonnull asymptotic distributions of the four statistics inthe class of EFNLMs (see Lemonte, 2011).

Some simplifications in the coefficientsbik (i = 1, 2, 3, 4 andk = 0, 1, 2, 3) can be achieved

by examining special cases. For example, consider the null hypothesisH0 : β = β0 (i.e. q = 0)

and an identity link function (d(θl) = θl), which implies thatfl = −D3l, gl = 0 andel = −D′
2l

(l = 1, . . . , n). Therefore, thebik’s can be written as

b11 =
φ

2
tr{EBT (2) + (2E − F )T (3) +WT (C + 2P )}+

1

2
tr{WJT },

8



b12 = b33 = −
φ

6
tr{(3E − 2F )T (3)}, b13 = 0, b32 = −

1

2
tr{(3E − 2F )ZdT },

b21 =
φ

2
tr{EBT (2) + (2E − F )T (3) +WT (C + 2P )}

+
1

2
tr{FZdT +W (UT + 2H)},

b22 =
φ

2
tr{(F −E)T (3) +WTC} −

1

2
tr{FZdT +WT (U − J) + 2WH},

b23 = −2b43 = −
φ

6
tr{FT (3) + 3WTC},

b31 =
φ

2
tr{EBT (2) + (2E − F )T (3) +WT (C + 2P )}

+
1

2
tr{(3E − 2F )ZdT +WTJ},

b41 =
φ

2
tr{EBT (2) + (2E − F )T (3) +WT (C + 2P )}

+
1

4
tr{−FZdT +WT (3J −U)− 2WH},

b42 = −
φ

4
tr{(2E − F )T (3) +WTC}+

1

4
tr{FZdT +WT (U − J) + 2WH},

andbi0 = −(bi1+bi2+bi3), for i = 1, 2, 3, 4. For the log-gamma model, the above coefficients reduce

to

b11 =
φ

2
tr{−FT (3) +WT (C + 2P )}+

1

2
tr{WJT }, b12 = b33 =

φ

3
tr{FT (3)}, b13 = 0,

b21 =
φ

2
tr{−FT (3) +WT (C + 2P )}+

1

2
tr{FZdT +W (UT + 2H)},

b22 =
φ

2
tr{FT (3) +WTC} −

1

2
tr{FZdT +WT (U − J) + 2WH},

b23 = −2b43 = −
φ

6
tr{FT (3) + 3WTC}, b32 = tr{FZdT },

b31 =
φ

2
tr{−FT (3) +WT (C + 2P )}+

1

2
tr{−2FZdT +WTJ},

b41 =
φ

2
tr{−FT (3) +WT (C + 2P )}+

1

4
tr{−FZdT +WT (3J −U)− 2WH},

b42 = −
φ

4
tr{−FT (3) +WTC} +

1

4
tr{FZdT +WT (U − J) + 2WH},

Also, for the von Mises model we have

b11 = b31 =
φ

2
tr{WT (C + 2P )}+

1

2
tr{WJT }, b12 = b13 = b32 = b33 = 0,
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b21 =
φ

2
tr{WT (C + 2P )}+

1

2
tr{W (UT + 2H)}, b23 = −2b43 = −

φ

2
tr{WTC},

b22 = −2b42 =
φ

2
tr{WTC} −

1

2
tr{WT (U − J) + 2WH},

b41 =
φ

2
tr{WT (C + 2P )}+

1

4
tr{WT (3J −U)− 2WH},

Note that for the von Mises linear regression model, thebij ’s above vanish and hence we can write

Pr(Si ≤ x) = Gp,λ(x) +O(n−1), i = 1, 2, 3, 4.

This is a very interesting result, which implies that the likelihood ratio, score, Wald and gradient tests

for testing the null hypothesisH0 : β = β0 have exactly the same local power up to an error of order

n−1 when we consider an identity link function. It should be noticed that this result also happens for

testing the composite null hypothesisH0 : β2 = β20, i.e Pr(Si ≤ x) = Gp−q,λ(x) + O(n−1), for

i = 1, 2, 3, 4.

Now, we present the coefficients that define the nonnull asymptotic distributions of the likelihood

ratio, Wald, score and gradient statistics for testing the composite null hypothesisH0 : β2 = β20

in GLMs. We havet(yl, θl) = ylθl − b(θl) andµl = E(Yl) = db(θl)/dθl. The class of GLMs

is characterized by its variance functionVl = dµl/dθl, which plays a key role in the study of its

mathematical properties and estimation. The variance ofYl can be written as var(Yl) = φ−1Vl. For

the GLMs, we haveD2l = −V −1
l andD3l = 2V −1

l (dVl/dµl) and hence we can rewrite

fl =
1

Vl

dµl

dηl

d2µl

dη2l
, gl =

1

Vl

dµl

dηl

d2µl

dη2l
−

1

V 2
l

dVl
dµl

(
dµl

dηl

)3

, l = 1, . . . , n,

and redefine the matricesF andG given before. Additionally, the link function isd(µl) = ηl = x⊤
l β

with m = p. Also, η = Xβ with X = (x1, . . . ,xn)
⊤, i.e. hereX∗ = X. Hence, in this class of

models we have

b11 =
φ

2
tr{(F +G)BT (2) + FT (3)}+

1

2
tr{FZ1dT }, b12 = b33 = −

φ

6
tr{(F −G)T (3)},

b21 =
φ

2
tr{(F +G)BT (2) + FT (3)}+

1

2
tr{FZdT + 2G(Zd −Z1d)T },

b22 =
φ

2
tr{GT (3)} −

1

2
tr{(F + 2G)(Zd −Z1d)T }, b13 = 0,

b23 = −2b43 = −
φ

6
tr{(F + 2G)T (3)}, b32 = −

1

2
tr{(F −G)(Zd −Z1d)T },

b31 =
φ

2
tr{(F +G)BT (2) + FT (3)}+

1

2
tr{FZ1dT + (F −G)(Zd −Z1d)T },

b41 =
φ

2
tr{(F +G)BT (2) + FT (3)}+

1

4
tr{(3F + 2G)Z1dT − (F + 2G)ZdT },

b42 = −
φ

4
tr{FT (3)}+

1

4
tr{(F + 2G)(Zd −Z1d)T },
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By considering the identity link function, these coefficients reduce to

b11 =
φ

2
tr{GBT (2)}, b12 = b33 =

φ

6
tr{GT (3)}, b32 = b42 =

1

2
tr{G(Zd −Z1d)T },

b13 = 0, b23 = −2b43 = −2b12, b21 = b11 + 2b32, b22 = 3b12 − 2b32, b31 = b41 = b11 − b32.

As expected, the above coefficients vanish for the normal model since the nonnull distributions of all

the four criteria agree with theχ2
p−q,λ distribution.

5 Power comparisons

It is known that, to the first order of approximation, the likelihood ratio, Wald, score and gradient

statistics have the same asymptotic distributional properties either under the null hypothesis or under a

sequence of local alternatives. On the other hand, up to an error of ordern−1 the corresponding criteria

have the same size properties but their local powers differ in then−1/2 term. A meaningful comparison

among the criteria can then be performed by comparing the nonnull asymptotic expansions to order

n−1/2, i.e. ignoring terms or order less thann−1/2.

In what follows, we shall compare the local powers of the rival tests based on the general nonnull

asymptotic expansions derived in Section 4 for testing the null hypothesisH0 : β2 = β20 in the class

of DMs. Let Πi be the power function, up to ordern−1/2, of the test that uses the statisticSi, for

i = 1, 2, 3, 4. We have

Πi −Πj =

3∑

k=0

(bjk − bik)Gp−q+2k,λ(x), (5)

for i 6= j. It is well known that

Gm,λ(x)−Gm+2,λ(x) = 2gm+2,λ(x), (6)

wheregν,λ(x) is the probability density function of a non-central chi-square random variable withν

degrees of freedom and non-centrality parameterλ. From (5) and (6) we have after some algebra

Π1 − Π4 = k1gp−q+4,λ(x) + k2gp−q+6,λ(x), Π2 −Π4 = k3gp−q+4,λ(x) + k4gp−q+6,λ(x),

Π3 − Π4 = k5gp−q+4,λ(x) + k6gp−q+6,λ(x), Π1 −Π2 = k7gp−q+4,λ(x) + k8gp−q+6,λ(x),

Π1 − Π3 = k9gp−q+4,λ(x) + k10gp−q+6,λ(x), Π2 − Π3 = k11gp−q+4,λ(x) + k12gp−q+6,λ(x),

(7)

where

k1 = −
1

2
tr{(F + 2G)(Zd −Z1d)T } +

1

2
tr{WT (J −U)− 2WH},

k2 = −
φ

6
tr{(F + 2G)T (3)} −

φ

2
tr{WTC}, k3 = 3k1, k4 = 3k2,

k5 = k1 − tr{(3E − 2F + 2G)(Zd −Z1d)T },

k6 = −
φ

2
tr{(2E − F + 2G)T (3)} −

φ

2
tr{WTC},
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k7 = −2k1, k8 = −2k2, k9 = k1 − k5, k10 =
φ

3
tr{(3E − 2F + 2G)T (3)},

k11 = −3tr{(F −E)(Zd −Z1d)T } − tr{WT (U − J) + 2WH},

k12 = −φtr{(F −E)T (3)} − φtr{WTC}.

For proper dispersion models, the above expressions are thesame. ReplacingE by F − G we

obtain these quantities for exponential family nonlinear models. From equations (7) we haveΠ1 > Π3

if k9 ≥ 0 andk10 ≥ 0 with k9 + k10 > 0, and if k9 ≤ 0 andk10 ≤ 0 with k9 + k10 < 0, we have

Π1 < Π3. Also,Π1 = Π3 if k9 = k10 = 0, i.e.F = G andE = 0, which occurs only for von Mises

and normal models with any link function. Additionally, equations (7) show that with the exception

of the likelihood ratio and score tests, is not possible to have any other equality among the power

functions in the class of DMs for testing the null hypothesisH0 : β2 = β20. The reason is thatC,

H, J andU , which may be considered as the nonlinear contribution of the dispersion model, vanish

only for linear regression models. It implies that only strict inequality holds for any other power

comparison among the power functions of the tests that are based on the statisticsS1, S2, S3 andS4.

For example, from (7) we haveΠ1 > Π4 (Π1 < Π4) if k1 ≥ 0 andk2 ≥ 0 with k1 + k2 > 0 (if k1 ≤ 0

andk2 ≤ 0 with k1 + k2 < 0), and so on.

We now move to the class of GLMs, in whichC = H = J = P = U = 0. By using the

coefficients derived for this class of models in Section 4, the quantities that define equation (7) reduce

to

k1 = −
1

2
tr{(F + 2G)(Zd −Z1d)T }, k2 = −

φ

6
tr{(F + 2G)T (3)}, k3 = 3k1,

k5 = k1 − tr{(F −G)(Zd −Z1d)T }, k6 = −
φ

2
tr{FT (3)}, k4 = 3k2,

k7 = −2k1, k8 = −2k2, k9 = k1 − k5, k10 =
φ

3
tr{(F −G)T (3)},

k11 = −3tr{G(Zd −Z1d)T }, k12 = −φtr{GT (3)}.

For GLMs with canonical link (G = 0), we havek11 = k12 = 0 and henceΠ2 = Π3. It is possible to

show thatΠ1 = Π2 = Π4 if F = −2G, that is

d2µl

dη2l
=

2

3Vl

(
dµl

dηl

)2

, l = 1, . . . , n.

The GLMs for which this equality holds have the link functiondefined byηl =
∫
V

−3/2
l dµl (l =

1, . . . , n). For the gamma model this function isηl = µ
−1/3
l (l = 1, . . . , n). Additionally, we have

thatΠ3 = Π4 for any GLM with identity link function, i.e.F = 0. Also,Π1 = Π3 if k9 = k10 = 0,

i.e.F = G, which occurs only for normal models with any link. Finally,the equalityΠ1 = Π2 =

Π3 = Π4 holds only for normal models with identity link function.

We can conclude that there is no uniform superiority of one test with respect to the others for

testing the null hypothesisH0 : β2 = β20 in the class of DMs. Hence, if the sample size is large, all

tests could be recommended, since their type I error probabilities do not significantly deviate from the
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true nominal level and their local powers are approximatelyequal. The natural question is how these

tests perform when the sample size is small or of moderate size, and which one is the most reliable.

In Section 7, we shall use Monte Carlo simulations to shed some light on this issue.

6 Tests for the precision parameter

In this section we derive asymptotic expansions for the nonnull distribution of the four statistics for

testing the precision parameterφ in DMs. We are interested in testing the null hypothesisH0 : φ = φ0

against a two-sided alternative hypothesisH1 : φ 6= φ0, whereφ0 is a positive specified value forφ.

Here,β acts as a nuisance parameter. The likelihood ratio, Wald, score and gradient statistics are

expressed as follows:

S1 =

n∑

l=1

{(φ̂− φ0)t(yl, θ̂l) + c(yl, φ̂)− c(yl, φ0)}, S2 = (φ̂− φ0)
2{−α2(φ̂)},

S3 = {−α2(φ0)}
−1

[
n∑

l=1

{t(yl, θ̂l) + c(1)(yl, φ0)}

]2

, S4 = (φ̂− φ0)

n∑

l=1

{t(yl, θ̂l) + c(1)(yl, φ0)}.

For PDMs, these statistics can be expressed as

S1 = 2n{a2(φ̂)− a2(φ0)− (φ̂− φ0)a
(1)
2 (φ̂)}, S2 = −n(φ̂ − φ0)

2a
(2)
2 (φ̂),

S3 = −
n{a

(1)
2 (φ̂)− a

(1)
2 (φ0)}

2

a
(2)
2 (φ0)

, S4 = n{a
(1)
2 (φ0)− a

(1)
2 (φ̂)}(φ̂− φ0).

For example, for the von Mises modela2(φ) = − log{I0(φ)}. Also,a(1)2 (φ) = −r(φ) anda(2)2 (φ) =

r(φ)2 + r(φ)/φ− 1, wherer(φ) = I1(φ)/I0(φ). Thus, we can write

S1 = 2n[log{I0(φ0)/I0(φ̂)}+ (φ̂− φ0)r(φ̂)], S2 = −n(φ̂ − φ0)
2{r(φ̂)2 + r(φ̂)/φ̂− 1},

S3 = −
n{r(φ0)− r(φ̂)}2

r(φ0)2 + r(φ0)/φ̂0 − 1
, S4 = n{r(φ̂)− r(φ0)}(φ̂− φ0).

Also, for normal and inverse Gaussian models we havea2(φ) = log(φ)/2. Hence

S1 = 2n

{
log

(
φ̂

φ0

)
−

(
φ̂− φ0

φ̂

)}
, S2 = S3 =

n

2

{
φ̂− φ0

φ̂

}2

, S4 =
n

2

{
φ̂− φ0

φ0
−
φ̂− φ0

φ̂

}
.

We havea2(φ) = φ log(φ)− log{Γ(φ)} for the gamma model and therefore these statistics reduce to

S1 = 2n

{
φ0 log

(
φ̂

φ0

)
− log

(
Γ(φ̂)

Γ(φ0)

)
− (φ̂− φ0)(1− ψ(φ̂))

}
,

S2 = n{φ̂ψ′(φ̂)− 1}
(φ̂− φ0)

2

φ̂
, S3 =

nφ0{log(φ̂/φ0)− (ψ(φ̂)− ψ(φ0))}

φ0ψ′(φ0)− 1
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and

S4 = n(φ̂− φ0)

{
log

(
φ̂

φ0

)
+ ψ(φ̂)− ψ(φ0)

}
,

whereΓ(·), ψ(·) andψ′(·) are the gamma, digamma and trigamma functions, respectively.

The nonnull asymptotic distributions ofS1, S2, S3 andS4 for testingH0 : φ = φ0 in DMs under

the local alternativeH1n : φ = φ0 + ǫ, whereǫ = φ− φ0 is assumed to beO(n−1/2), is

Pr(Si ≤ x) = G1,λ(x) +

3∑

k=0

bikG1+2k,λ(x) +O(n−1), i = 1, 2, 3, 4.

The noncentrality parameter is given byλ = −α2ǫ
2 and the the coefficientsbik ’s can be written as

b11 =
(α′

2 − α3)ǫ
3

2
+
pǫ

2φ
, b12 =

(2α3 − 3α′
2)ǫ

3

6
, b13 = 0,

b21 =
(α′

2 − α3)ǫ
3

2
−
α3ǫ

2α2
+
pǫ

2φ
, b22 = −

(α′
2 − α3)ǫ

3

2
+
α3ǫ

2α2
, b23 = −

α3ǫ
3

6
,

b31 =
(α′

2 − α3)ǫ
3

2
+

(2α3 − 3α′
2)ǫ

2α2

+
pǫ

2φ
, b32 = −

(2α3 − 3α′
2)ǫ

2α2

, b33 =
(2α3 − 3α′

2)ǫ
3

6
,

b41 =
(α′

2 − α3)ǫ
3

2
+
α3ǫ

4α2
+
pǫ

2φ
, b42 = −

(2α′
2 − α3)ǫ

3

4
−
α3ǫ

4α2
, b43 =

α3ǫ
3

12
,

with bi0 = −(bi1 + bi2 + bi3), for i = 1, 2, 3, 4. It should be noticed that the above expressions depend

on the parameterφ and depend on the local derivative matrixX∗ only through its rankp. Since

α′
2 = α3 = na

(3)
2 (φ) for PDMs, these coefficients reduce to

b11 =
pǫ

2φ
, b12 = b23 = b33 = −

na
(3)
2 (φ)ǫ3

6
, b13 = 0, b21 = b31 =

pǫ

2φ
−
a
(3)
2 (φ)ǫ

2a
(2)
2 (φ)

,

b22 = b32 = b11 − b21, b41 = b11 +
1

2
(b11 − b21), b42 = −

1

2
(b11 − b21 − 3b12), b43 = −

b12
2
,

with bi0 = −(bi1 + bi2 + bi3), for i = 1, 2, 3, 4. These coefficients do not change for the class of

GLMs.

In what follows, we present an analytical comparison among the local powers of the four tests for

testing the null hypothesisH0 : φ = φ0. We have

Πi − Πj =

3∑

k=0

(bjk − bik)G1+2k,λ(x).

After some algebra, we can write

Π1 − Π2 = −
α3ǫ

α2
g5,λ(x) +

α3ǫ
3

3
g7,λ(x),

Π1 −Π3 =
(2α3 − 3α′

2)ǫ

α2
g5,λ(x)−

(2α3 − 3α′
2)ǫ

3

3
g7,λ(x),
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Π1 −Π4 =
α3ǫ

2α2

g5,λ(x)−
α3ǫ

3

6
g7,λ(x),

Π2 −Π3 =
3(α3 − α′

2)ǫ

α2
g5,λ(x)− (α3 − α′

2)ǫ
3g7,λ(x),

Π2 − Π4 =
3α3ǫ

2α2
g5,λ(x)−

α3ǫ
3

2
g7,λ(x),

Π3 − Π4 = −
3(α3 − 2α′

2)ǫ

α2
g5,λ(x) +

(α3 − 2α′
2)

2
ǫ3g7,λ(x).

From the above expressions, we can obtain the following general conclusions. By assumingφ > φ0

(opposite inequalities hold ifφ < φ0), we have thatΠ3 < Π2 < Π1 < Π4 if α3 > 0 with α′
2 > α3.

Also, Π2 = Π3 < Π1 < Π4 if α′
2 = α3 > 0. For example, for normal and inverse Gaussian models

we havea2(φ) = log(φ)/2, which implies thata(1)2 (φ) = 1/(2φ), a(2)2 (φ) = −1/(2φ2) anda(3)2 (φ) =

1/φ3. Sinceα′
2 = α3 = n/φ3 > 0, we arrive at the following inequalities:Π2 = Π3 < Π1 < Π4 if

φ > φ0, andΠ2 = Π3 > Π1 > Π4 if φ < φ0.

7 Monte Carlo simulation

In this section we conduct Monte Carlo simulations in order to compare the performance of the

likelihood ratio, Wald, score and gradient tests in small- and moderate-sized samples.

We consider the von Mises regression model, which is quite useful for modeling circular data; see

Fisher (1993) and Mardia and Jupp (2000). Here,

π(y; θ, φ) =
exp{φ cos(y − θ)}

2πI0(φ)
, y ∈ (−π, π),

whereθ ∈ (−π, π) andφ > 0. This density function is symmetric aroundy = θ, which is the mode

and the circular mean of the distribution. Also,φ is a precision parameter in the sense that the larger

the value ofφ the more concentrated the density function aroundθ. It is evident the density function

above is a special case of (1) witht(y, θ) = cos(y − θ) andc(y, φ) = − log(I0(φ)).

We assume that

tan(θl/2) = ηl = β1xi1 + β2xi2 + · · ·+ βpxip,

wherexi1 = 1 andθl = 2 arctan(ηl), l = 1, . . . , n. The covariate values were selected as random

draws from theU(0, 1) distribution and for fixedn those values were kept constant throughout the

experiment. The number of Monte Carlo replications was 10,000, the nominal levels of the tests

were γ = 10%, 5% and 1%, and all simulations were carried out using the Ox matrix program-

ming language (Doornik, 2007).Ox is freely distributed for academic purposes and available at

http://www.doornik.com.

First, the null hypothesis isH0 : βp−1 = βp = 0, which is tested against a two-sided alternative.

The sample size isn = 50, φ = 1.5, 2.5, 4 andp = 3, 4, . . . , 8. The values of the response were
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generated usingβ1 = · · · = βp−2 = 1. The null rejection rates of the four tests are presented in

Table 1. It is clear that the likelihood ratio (S1) and Wald (S2) tests are markedly liberal, more so

as the number of regressors increases. The score (S3) and gradient (S4) tests are also liberal in most

of the cases, but much less size distorted than the likelihood ratio and Wald tests in all cases. For

instance, whenφ = 2.5, p = 4 andγ = 5%, the rejection rates are 7.05% (S1), 8.28% (S2), 5.15%

(S3) and 6.30% (S4). We note that the score test is much less liberal than the likelihood ratio and

Wald tests and slightly less liberal than the gradient test.Additionally, the Wald test is much more

liberal than the other tests. Note that asφ increases the tests become less size distorted, as expected,

since the von Mises distribution approaches a normal distribution asφ increases.

Table 2: Null rejection rates (%);φ = 1.5, 2.5 and 4, withn = 50.
φ = 1.5

γ = 10% γ = 5% γ = 1%

p S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

3 13.31 15.42 10.12 10.42 6.90 9.93 4.65 5.04 1.75 4.13 0.79 1.20

4 14.48 16.31 10.26 12.49 7.75 10.86 4.83 6.83 1.93 4.62 0.59 2.08

5 16.65 19.34 10.92 12.46 9.55 12.36 5.05 6.62 2.67 4.87 0.84 1.83

6 19.04 21.93 11.94 14.8111.78 15.00 5.90 8.26 3.62 6.50 1.03 2.40

7 22.09 26.39 12.44 15.9413.71 18.12 6.12 8.87 4.27 7.67 1.27 2.21

8 24.16 26.58 13.03 17.6615.87 17.42 6.63 9.82 5.23 6.82 1.39 2.76

φ = 2.5

γ = 10% γ = 5% γ = 1%

p S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

3 12.02 12.96 10.56 10.50 6.21 7.35 5.17 5.29 1.39 2.31 0.78 1.04

4 12.97 13.66 11.05 11.77 7.05 8.28 5.15 6.30 1.73 3.05 0.90 1.52

5 14.28 16.38 10.97 11.68 7.96 10.31 4.94 6.25 2.11 4.28 0.85 1.65

6 14.83 15.33 11.90 13.02 8.36 9.82 5.71 7.27 2.09 3.85 1.01 1.80

7 15.93 18.00 12.60 13.87 9.20 11.30 6.66 7.60 2.72 3.71 1.53 1.87

8 18.12 19.53 13.45 16.1211.16 12.29 7.02 9.38 3.31 4.79 1.55 2.68

φ = 4

γ = 10% γ = 5% γ = 1%

p S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

3 11.99 12.59 10.72 10.81 6.32 7.19 5.02 5.25 1.37 2.20 0.82 1.12

4 13.15 14.48 11.49 11.74 7.19 8.66 5.50 5.83 1.67 2.89 0.84 1.13

5 13.59 13.67 11.87 12.26 7.21 7.64 5.72 6.25 1.68 2.50 0.96 1.35

6 14.08 15.60 11.85 12.65 7.57 9.04 5.88 6.30 1.73 2.88 1.00 1.21

7 15.16 16.42 12.79 13.52 8.34 9.55 6.42 7.03 2.28 3.16 1.43 1.71

8 16.14 17.36 13.53 14.57 9.28 10.31 7.13 7.84 2.42 2.96 1.28 1.61

Table 3 reports results forφ = 3, p = 4 and sample sizes ranging from 20 to 150. As expected, the

null rejection rates of all the tests approach the corresponding nominal levels as the sample size grows.

Again, the score and gradient tests present the best performances. In Table 4 we present the first two

moments ofS1, S2, S3 andS4 and the corresponding moments of the limitingχ2 distribution. Note
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that the gradient and score statistics present a good agreement between the true moments (obtained

by simulation) and the moments of the limiting distribution.

Table 3: Null rejection rates (%);φ = 3, p = 4 and different sample sizes.
γ = 10% γ = 5% γ = 1%

n S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

20 17.33 19.18 13.71 13.8910.50 11.95 6.92 7.04 3.33 4.38 1.16 1.14

30 15.04 16.33 11.65 12.76 8.29 10.19 5.10 6.66 2.05 4.14 0.75 1.50

40 13.49 15.23 11.44 11.44 7.56 9.43 5.72 5.96 1.81 3.07 0.92 1.18

50 12.51 13.78 10.77 11.05 6.65 7.79 5.40 5.59 1.66 2.31 1.02 1.25

70 12.01 12.46 11.00 11.17 6.20 6.90 5.41 5.58 1.48 2.18 1.12 1.28

100 11.30 12.13 10.74 10.69 5.86 6.65 4.92 5.44 1.22 2.04 0.94 1.07

150 10.51 11.01 10.02 10.10 5.05 6.03 4.59 4.63 1.08 1.66 0.94 0.95

Table 4: Moments;φ = 2, n = 35, p = 4.
S1 S2 S3 S4 χ2

2

Mean 2.50 2.68 2.16 2.23 2.0

Variance 6.23 8.73 4.14 4.63 4.0

We also performed Monte Carlo simulations considering hypothesis testing onφ. To save space,

the results are not shown. The score and gradient tests exhibited superior behaviour than the likelihood

ratio and Wald tests. For example, whenn = 35, p = 3, γ = 10% andH0 : φ = 2, we obtained the

following null rejection rates: 13.23% (S1), 14.75% (S2), 10.61% (S3) and 9.97% (S4). Again, the

best performing tests are the score and gradient tests.

Overall, in small to moderate-sized samples the best performing tests are the score and the gradient

tests. They are less size distorted than the other two. Hence, these tests may be recommended for

testing hypotheses on the regression parameters in the von Mises regression model. The gradient test

has a slight advantage over the score test because the gradient statistic is simpler to calculate than

the score statistic for testing a subset of regression parameters. In particular, no matrix needs to be

inverted; see Section 3.

8 Application

In this section we shall illustrate an application of the likelihood ratio, Wald, score and gradient tests

in a real data set. We consider the data described in Fisher and Lee (1992) regarding the distance

traveled by 31 small blue periwinkles (Nodilittorina unifasciata) after they have moved down-shore

from the height at which they normally live. Following Fisher and Lee (1992) we assume a von Mises
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distribution for the animals’ path, but with the assumptionof constant dispersion and link function

tan(θl/2) = β1 + β2xl, l = 1, . . . , 31,

whereθl = 2 arctan(β1+β2xl) denotes the mean direction for a given distance movedxl (cm). These

data have been previously analysed by Paula (1996) and Souzaand Paula (2002) with emphasis on

local influence and residual analysis, respectively. The angular responses were transformed to the

range(−π, π). The maximum likelihood estimates of the parameters (asymptotic standard errors in

parentheses) are:̂β1 = −0.323 (0.151), β̂2 = −0.013 (0.004) and φ̂ = 3.265 (0.726). The values

of the likelihood ratio (S1), Wald (S2), score (S3) and gradient (S4) statistics for testing the null

hypothesisH0 : β2 = 0 are 9.526 (p-value: 0.002), 11.031 (p-value: 0.001), 7.126 (p-value: 0.008)

and 8.280 (p-value: 0.004), respectively. At any usual significance level, all tests lead to the same

conclusion, i.e. the null hypothesis should be rejected.

Now, we consider different values forβ20 and we wish to testH0 : β2 = β20 againstH1 :

β2 6= β20. Table 5 lists the observed values of the different test statistics and the corresponding

p-values forβ20 = −0.026,−0.024,−0.022,−0.020 and−0.018. The asterisks indicate that the

null hypothesis is rejected at respectively the 1% (***), the 5% (**) or at the 10% (*) significance

level. Notice that the same decision is reached by all the tests whenβ20 = −0.018 but not when

β20 = −0.026,−0.024,−0.022 and−0.020. In all cases considered here, the score and gradient tests

lead to the same conclusion. Additionally, the likelihood ratio and Wald tests display the smallest

p-values in all cases, in accordance with their liberal behaviours observed in our simulation study.

Table 5: Test statistics forH0 : β2 = β20 againstH1 : β2 6= β20 (p-values between parentheses).
β20

statistic −0.026 −0.024 −0.022 −0.020 −0.018

S1 7.314 (0.007)∗∗∗ 5.606 (0.018)∗∗ 4.011 (0.045)∗∗ 2.591 (0.107) 1.411 (0.235)

S2 11.409 (0.001)∗∗∗ 8.193 (0.004)∗∗∗ 5.509 (0.019)∗∗ 3.355 (0.067)∗ 1.733 (0.188)

S3 5.872 (0.015)∗∗ 4.636 (0.031)∗∗ 3.407 (0.065)∗ 2.251 (0.134) 1.249 (0.264)

S4 5.728 (0.017)∗∗ 4.611 (0.032)∗∗ 3.458 (0.063)∗ 2.332 (0.127) 1.321 (0.250)

Notice that the sample size isn = 31, but if n were smaller, the tests could lead to different

conclusions. To illustrate this, a randomly chosen subset of the data set withn = 10 was drawn. The

null hypothesis to be tested isH0 : β2 = 0. The observed value of the test statistics areS1 = 2.939

(p-value: 0.086),S2 = 2.980 (p-value: 0.084),S3 = 2.491 (p-value: 0.114) andS4 = 2.682 (p-value

= 0.101). Hence, at the 10% significance level, the score and gradient tests do not reject the null

hypothesis unlike the likelihood ratio and Wald tests, which are much more oversized than the score

and gradient tests as evidenced by our simulation results.
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9 Concluding remarks

The dispersion models (DMs) extend the well-known generalised linear models (Nelder and Wedderburn,

1972) and also the exponential family nonlinear models (Cordeiro and Paula, 1989). Additionally, the

class of DMs covers a comprehensive range of non-normal distributions. In this paper, we dealt with

the issue of performing hypothesis testing in DMs. We considered the three classic tests, likelihood

ratio, Wald and score tests, and a recently proposed test, the gradient test. We have derived formulae

for the asymptotic expansions up to ordern−1/2 of the distribution functions of the likelihood ratio,

Wald, score and gradient statistics, under a sequence of Pitman alternatives, for testing a subset of

regression parameters and for testing the dispersion parameter. The formulae derived are simple to be

used analytically to obtain closed-form expressions for these expansions in special models. Also, the

power of all four criteria, which are equivalent to first order, were compared under specific conditions

based on second order approximations. Additionally, we present Monte Carlo simulations in order to

compare the finite-sample performance of these tests. From the simulation results we can conclude

that the score and gradient tests should be preferred. Finally, we present an empirical application for

illustrative purposes.
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