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We present an argument based on the multidimensional and the uniform central limit theo-
rems, proving that, under some geometrical assumptions between the target function T and the
learning class F , the excess risk of the empirical risk minimization algorithm is lower bounded
by

E supq∈QGq
√

n
δ,

where (Gq)q∈Q is a canonical Gaussian process associated with Q (a well chosen subset of F )
and δ is a parameter governing the oscillations of the empirical excess risk function over a small
ball in F .
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1. Introduction

In this note, we study lower bounds on the empirical minimization algorithm. To explain
the basic setup of this algorithm, let (Ω, µ) be a probability space and set X to be a
random variable taking values in Ω, distributed according to µ. We are interested in
the function learning (noiseless) problem, in which one observes n independent random
variables X1, . . . ,Xn, distributed according to µ, and the values T (X1), . . . , T (Xn) of an
unknown target function T .
The goal is to construct a procedure that uses the data D = (Xi, T (Xi))1≤i≤n with a

risk as close as possible to the best one in F . That is, we want to construct a statistic
f̂n such that for every n, with high µn-probability,

R(f̂ |D)≤ inf
f∈F

R(f) + rn(F ), (1.1)
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where the risk of f is defined by R(f) = Eℓ(f(X), T (X)) and ℓ :R2 →R is the loss function
that measures the pointwise error between T and f . The residue rn(F ) somehow captures

the complexity or richness of the class F and the risk of a statistic f̂ is the conditional

expectation R(f̂ |D) = E(ℓ(f̂(X), T (X))|D).
It is well known (see, e.g., [10]) that if the class F is not too large, for example,

if it satisfies some kind of uniform central limit theorem, T is bounded by 1 and ℓ is
reasonable, then there are upper bounds on rn(F ) that are of the form

√

Comp(F )/n,
where Comp(F ) is a complexity term that is independent of n. The algorithm that is

used to produce the function f̂ is the empirical risk minimization algorithm, in which one
chooses a function in F that minimizes the empirical risk function f 7−→∑n

i=1 ℓ(f,T )(Xi)
in F .
There is a well developed theory concerning ways in which the complexity term may be

controlled, using various parameters associated with the geometry of the class (cf. [2, 8–
10] and references therein). It turns out that this type of error rate, ∼ 1/

√
n, is very

pessimistic in many cases. In fact, if the class is small enough, then, under some structural
assumptions (see, e.g., [1]), rn(F ) can be much smaller – of the order of Comp(F )/n.
In this note, we are going to focus on “small classes” in which empirical minimization

performs poorly, despite the size of the class. Recently, it has been shown (cf. [7]) that
under mild assumptions on ℓ and F , if there is more than a single function in

V :=
{

ℓ(f,T ): Eℓ(f,T ) = inf
f∈F

Eℓ(f,T )
}

,

then the following holds: for every n large enough, there will be a perturbation Tn of
T (with respect to the L∞-norm) for which Eℓ(·, Tn) has a unique minimizer in F , but
where the empirical minimization algorithm performs poorly trying to predict Tn on
samples of cardinality n. To be more exact, relative to the target Tn, with µn-probability
at least 1/12,

R(f̂ |D)≥ inf
f∈F

R(f) +
c√
n
, (1.2)

where c is a constant depending only on F .
Although it is reasonable to expect that the larger the set V is, the more likely it is

that the empirical minimization algorithm will perform poorly, this does not follow from
the analysis in [7]. Therefore, our goal here is to provide a bound on the constant c in
(1.2) that does take into account the complexity of the set of minimizers V .
Just as in [7], our method of analysis can be applied to a wide variety of losses. However,

for the sake of simplicity, we will only present here what is arguably the most important
case – that in which the risk is measured relative to the squared loss, ℓ(x, y) = (x− y)2.
To explain our result, we need several definitions from empirical processes theory.

Other standard notions we require from the theory of Gaussian processes can be found
in [2].
For every set F ⊂ L2(Ω, µ), let {Gf : f ∈ F} be the canonical Gaussian process indexed

by F (i.e., with the covariance structure EGtGs = 〈s, t〉) and set H(F ) = E supf∈F Gf –
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the expectation of the supremum of the Gaussian process indexed by F . Also, for every
integer n and δ, let

oscn(F, δ) :=
1√
n
E sup

{f,h∈F :‖f−h‖≤δ}

∣

∣

∣

∣

∣

n
∑

i=1

gi(f − h)(Xi)

∣

∣

∣

∣

∣

,

where (gi)
n
i=1 are standard, independent Gaussian random variables and (Xi)

n
i=1 are

independent, distributed according to µ. It is well known that if F is a class consisting of
uniformly bounded functions, then it is a µ-Donsker class if and only if for every δ > 0,
oscn(F, δ) tends to 0 as n tends to infinity (cf. [2], page 301). For any f ∈ F , let

oscn(F, f, δ) :=
1√
n
E sup

{h∈F :‖f−h‖≤δ}

∣

∣

∣

∣

∣

n
∑

i=1

gi(f − h)(Xi)

∣

∣

∣

∣

∣

,

that is, the oscillation in a ball around f . The quantity oscn(F, f
∗, δ) is a natural upper

bound for some intrinsic quantity of the problem we study here (cf. Lemma 2.3).
Let V be as above – the set of loss functions ℓ(f,T ) that minimize the risk in F – select

f∗ ∈ F for which ℓ(f∗, T ) ∈ V and consider the following subset of excess loss functions:

Q := {ℓ(f,T )− ℓ(f∗, T ): ℓ(f,T )∈ V }.

It turns out that the desired constant in (1.2) can be bounded from below by two
parameters: the expectation of the supremum of the canonical Gaussian process indexed
by Q and the oscillation around f∗. In particular, if Q is a rich set and one of the
minimizers of f → Eℓ(f,T ) is isolated, then for any n large enough, the error of the
empirical minimizer with respect to a wisely selected target (denoted by Tλn

in what
follows) which is a perturbation of T will be at least ∼H(Q)/

√
n. The core idea of this

work is that a small, wisely chosen perturbation of a target function T with multiple
oracles (functions achieving minf∈F Eℓ(t, T )) is badly estimated by the empirical risk
minimization procedure (for further discussion of this fact, we refer the reader to [7]).
Although the general philosophy of the proof presented here is similar to the proof

from [7], it is much simpler. And, in fact, it seems that the method used in the proof
from [7] cannot be directly extended to obtain the sharper estimate on the constant as
we do here. Naturally, this result recovers the previous estimates on lower bounds for the
empirical risk minimization algorithm from [3–6]
Next, a word about notation. Throughout, all absolute constants will be denoted by

c, c1 and C,C1, etcetera. Their values may change from line to line.
If Eℓ(·, T ) has a unique minimizer in F , then we denote it by f∗. If the minimizer is not

unique, then we will fix one function in the set of minimizers and denote it by f∗. For every
f ∈ F , let L(f) = ℓ(f,T )− ℓ(f∗, T ) be the excess loss function associated with the target
T . For every 0< λ≤ 1, set Tλ = (1− λ)T + λf∗ and define Lλ(f) = ℓ(f,Tλ)− ℓ(f∗, Tλ).
It is standard to verify (cf. [7] or Theorem 2.1 in what follows) that f∗ is a minimizer
of Eℓ(·, Tλ) and that under mild convexity assumptions on ℓ that clearly hold if ℓ is the
squared loss, it is the unique minimizer in F of f → Eℓ(f,Tλ).
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If X1, . . . ,Xn is an independent sample selected according to µ, we set Pnf = n−1 ×
∑n

i=1 f(Xi) and let Pf = Ef . Thus, E supf∈F |(Pn − P )(f)| is the expectation of the
supremum of the empirical process indexed by F . Finally, when the target function is
Tλ, we will denote the function produced by the empirical risk minimization algorithm
by f̂λ – which is one element of the set Argminf∈F Pnℓ(f,Tλ).
Finally, if E is a normed space, we denote its unit ball by B(E), the inner product of

L2(µ) will be denoted by 〈·, ·〉 and the corresponding norm by ‖ · ‖.
Let us now formulate our main result.

Theorem 1.1. Let F ⊂ L2(µ) ∩B(L∞), which is µ-pre-Gaussian (cf. [2]), and assume
that T ∈B(L∞). Set ℓ to be the squared loss and put Q= {L(f): f ∈ F,EL(f) = 0}.
There exist some absolute constants C1 and C2 and an integer N(F ) for which the

following holds. For every n≥N(F ), with µn-probability at least C1,

ELλn
(f̂λn

)≥C2
H(Q)√

n
δ2‖T − f∗‖,

where δ is such that for every integer n≥N(F ), oscn(F, f
∗, δ)≤C2H(Q)/

√
n and λn =

C2H(Q)/
√
n.

Thus, two parameters control the behavior of the constant in (1.2): the complexity of
the set of excess loss functions of the oracles of T and the parameter δ. When one of the
oracles f∗ of T is isolated, one can take δ as an absolute constant. This leads to a lower
bound of the order of H(Q)/

√
n, which is optimal in the sense that an upper bound can

be obtained of the order of H(Q0)/
√
n for some set Q0 such that Q⊂Q0 ⊂LF (see, e.g.,

[1] or [3]). In other settings, the lower bound obtained in Theorem 1.1 may fail to match
exactly with an upper bound. For instance, in settings where the oscillation function
oscn(F, f

∗, ·) of all the oracles f∗ of T decreases to zero very slowly and at the same
convergence rate, the factor δ2 should break down the lower bound, whereas it seems
that it should not appear in the lower bound. From a technical point of view, this comes
from the fact that we did not take into account the complexity “around” the points in
Q′ (cf. Theorem 2.2 and equation (2.2) in what follows).
Finally, the noiseless model considered here is the worst case scenario to prove the

lower bound. Indeed, adding some noise to the target function would increase the lower
bound.

2. The lower bound

The core of the proof is to find a set that can “compete” with a set Br = {f ∈ F : ELλ(f)≤
r} that contains f∗, in the sense that the empirical excess risk function

En :f ∈ F 7−→ 1

n

n
∑

i=1

Lλ(f)(Xi)
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will be more negative on the set than it can possibly be on Br. Once this task is achieved,
it is obvious that the empirical risk minimization algorithm will produce a function f̂λ
which is outside Br and, thus, with a certain probability,

E[Lλ(f̂λ)|D]> r.

Hence, the proof consists of two parts. First, we will show that the empirical excess
risk function En is likely to be very negative on Q and we will then find some r on which
the oscillations in Br are small.
The first result we need is the following lower estimate on the expectation of the

excess loss relative to the target Tλ = (1−λ)T +λf∗, according to the distance of f from
f∗. This proposition is based on the fact that the functional (f, g) 7−→ Eℓ(f, g) inherits
a strong convex structure from the norm and was proven in [7] in a far more general
situation.

Theorem 2.1. Let D = supf∈F ‖T − f‖ and ρ = ‖T − f∗‖. There exists an absolute
constant c such that for any function f ∈ F , if 0≤ λ≤ 1/2, r > 0 and

r

λ
≤ c

ρ

D
‖f − f∗‖2,

then

r ≤ELλ(f).

Recall that Q= {L(f): EL(f) = 0, f ∈ F} is the set of excess loss functions associated
with the true minimizers of f → Eℓ(f,T ) in F . We will show that if Q′ ⊂Q is a finite set,
then for n large enough, with a non-trivial µn-probability there will be some L(f) ∈Q′

for which the empirical error PnLλn
(f) is very negative (for a well chosen λn).

Theorem 2.2. There exist constants c1, c2 and c3, depending only on the L∞(µ)-
diameter of F ∪ {T }, for which the following holds. If Q′ is a finite subset of Q that
contains 0, then there exists an integer n0 = n0(Q

′) such that for every integer n≥ n0,
with µn-probability at least c1,

inf
L(f)∈Q′

1

n

n
∑

i=1

(Lλn
(f))(Xi)≤−c2

H(Q′)√
n

,

where λn = c3H(Q′)/
√
n and H(Q′) = E supq∈Q′ Gq is the expectation of the canonical

Gaussian process associated with Q′.

Proof. Let M = |Q′| and recall that each q ∈ Q′ = {q1, . . . , qM} has mean zero. Con-
sider the random vector U = (q1(X), . . . , qM (X)) ∈ R

M and let (Ui)
∞
i=1 be independent

copies of U (i.e., Ui = (q1(Xi), . . . , qM (Xi))). By the vector-valued central limit theorem



610 G. Lecué and S. Mendelson

(see, e.g., [2]), n−1/2
∑n

i=1Ui converges weakly to the canonical Gaussian process indexed
by Q′, which we denote by G. Fix t≤ 0 and 0< c< 1, to be given later, for which

At = {x ∈R
M : ∀1≤ j ≤M,xj > t}

is such that p := Pr(G ∈At)≤ c. Set n0 = n0(t, c) to be such that for n≥ n0,

∣

∣

∣

∣

∣

Pr(G ∈At)−Pr

(

n−1/2
n
∑

i=1

Ui ∈At

)
∣

∣

∣

∣

∣

≤ 1− p

2
,

which clearly exists by weak convergence. Since

Pr

(

∃1≤ j ≤M : n−1/2
n
∑

i=1

〈Ui, ej〉 ≤ t

)

= 1−Pr

(

n−1/2
n
∑

i=1

Ui ∈At

)

≥ 1− p

2
≥ 1− c

2
=: c1 > 0,

it follows that, with probability at least c1,

inf
q∈Q′

1

n

n
∑

i=1

q(Xi)≤
t√
n
.

It remains to show that one may take t=−(E supq∈Q′ Gq)/4. Indeed, by the symmetry
of the Gaussian process, it follows that (for this choice of t)

p=Pr(G ∈At) = Pr
(

sup
q∈Q′

Gq <
(

E sup
q∈Q′

Gq

)

/4
)

.

Let Z = supq∈Q′ Gq and σ2 = supq∈Q′ EG2
q . Since 0 ∈Q′, it follows that if EZ = 0, then it

is clear that p= 1/2. Otherwise, using the concentration property of Z around its mean
(see, e.g., [9]) and since σ ≤ c0EZ (where c0 is an absolute constant), there exists an
absolute constant A> 0 such that

E[Z1[Z≥EZ+Aσ]]≤ (EZ)/4.

Therefore,

EZ = E(Z(1[Z≤(EZ)/4] + 1[(EZ)/4≤Z≤EZ+Aσ] + 1[Z≥EZ+Aσ]))

≤ (EZ)/2 + (EZ)(1 + c0A)Pr((EZ)/4≤ Z).

Thus, Pr((EZ)/4 ≤ Z)≥ [2(1 + c0A)]
−1 and so p≤ 1− [2(1 + c0A)]

−1 := c (which is an
absolute constant), implying that, with probability greater than c1,

inf
L(f)∈Q′

1

n

n
∑

i=1

(L(f))(Xi)≤−c2
E supq∈Q′ Gq√

n
.
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Next, observe that for small values of λ (as we will have in our construction), L(f)
is a good approximation of Lλ(f) with respect to the L∞(µ)-norm. Indeed, Lλ(f) =
ℓ(f,Tλ)− ℓ(f∗, Tλ) and L(f) = ℓ(f,T )− ℓ(f∗, T ); hence, for every f ∈ F ,

‖Lλ(f)−L(f)‖∞ ≤ ‖ℓ(f,Tλ)− ℓ(f,T )‖∞ + ‖ℓ(f∗, Tλ)− ℓ(f∗, T )‖∞
≤ 2‖ℓ‖lip‖T − Tλ‖∞ = 2λ‖ℓ‖lip‖T − f∗‖∞ ≤ c3λ.

Thus, if one selects λn = (c2/(2c3))n
−1/2

E supq∈Q′ Gq , then, with probability greater
than c1,

inf
L(f)∈Q′

PnLλn
(f)≤−c2

E supq∈Q′ Gq

2
√
n

. �

Fix a finite set Q′ ⊂Q for which H(Q′)≥H(Q)/2 and 0∈Q′. Clearly, such a set exists
because Q is a pre-Gaussian as a subset of the pre-Gaussian class {L(f): f ∈ F}. Let
V ′ = {f ∈ F : L(f) ∈Q′}.
Recall that a bounded class of functions F is µ-Donsker if and only if for every u> 0,

there exist δ > 0 and an integer n0 such that for every n≥ n0,oscn(F, δ)≤ u. Also, note
that oscn(F, f

∗, δ)≤ oscn(F, δ). Let u= ηH(Q′), where η is an absolute constant, to be
fixed later, and set δ and n1 to be such that for n≥ n1,

oscn(F, f
∗, δ)≤ ηH(Q′) (2.1)

(such δ and n1 necessarily exist because F is µ-Donsker).
The next lemma is standard and follows from a symmetrization argument combined

with Slepian’s lemma. Its proof may be found in, for example, [7].

Lemma 2.3. There exists an absolute constant c for which the following holds. For any
F ′ ⊂ F such that f∗ ∈ F ′ and any 0≤ λ≤ 1,

E sup
f∈F ′

|(P − Pn)(Lλ(f))| ≤ cE sup
f∈F ′

∣

∣

∣

∣

∣

1

n

n
∑

i=1

gi(f − f∗)(Xi)

∣

∣

∣

∣

∣

,

where (gi)
n
i=1 are independent, standard Gaussian variables.

We are now ready to control the oscillation of the empirical excess risk function in the
set Br = {f ∈ F : ELλ ≤ r}.

Theorem 2.4. Let c1, c2 and λn be defined as in Theorem 2.2, and let δ and n1 be
as above. There exists an absolute constant c3 such that for any integer n ≥ n1, with
µn-probability at least 1− c1/2,

inf
{f∈F :ELλn

(f)≤rn}
PnLλn

(f)≥−c2H(Q′)

2
√
n

,
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where

rn = c3
H(Q′)√

n
δ2‖T − f∗‖2.

Proof. By Theorem 2.1, for any r, λ > 0, if f ∈ F is such that ELλ(f)< r, then

r

λ
> c

ρ

D
‖f − f∗‖2,

where D and ρ were defined in Theorem 2.1. Thus,

{f ∈ F : ELλ(f)< r} ⊂ {f ∈ F : ‖f − f∗‖< c4
√

r/λ},

where c4 = c4(ρ,D). Hence, by Lemma 2.3, for n≥ n1,

E sup
{f∈F :ELλ(f)<r}

−PnLλ(f) ≤ c5E sup
{f∈F :‖f−f∗‖≤c4

√
r/λ}

∣

∣

∣

∣

∣

1

n

n
∑

i=1

gi(f − f∗)(Xi)

∣

∣

∣

∣

∣

≤ c5√
n
oscn(F, f

∗, c4
√

r/λ)≤ c5√
n
ηH(Q′),

provided that c4
√

r/λ ≤ δ. Thus, for an appropriate choice of η (e.g., η = c1c2/(4c5)
would do) and setting rn := (c3/(2c

2
4))n

−1/2H(Q′)δ2 (which is smaller than δ2λn/c
2
4), it

is evident that

E sup
{f∈F :ELλn

(f)<rn}

−PnLλn
(f)≤ c1c2

4
√
n
H(Q′).

Therefore, with µn-probability at least 1− c1/2,

sup
{f∈F :ELλn

(f)<rn}

−PnLλn
(f)≤ c2H(Q′)

2
√
n

,

as claimed. �

We can now prove our main result.

Proof of Theorem 1.1. By Theorem 2.2 applied to the set Q′, there exists some integer
n0 = n0(Q

′) such that for every n≥ n0, with µn-probability at least c1,

inf
L(f)∈Q′

PnLλn
(f)≤−c2

H(Q′)√
n

, (2.2)

where c1 and c2 are two absolute constants.
By Theorem 2.4, for any integer n≥ n1, with µn-probability at least 1− c1/2,

inf
{f∈F :ELλn

(f)<rn}
PnLλn

(f)≥−c2H(Q′)

2
√
n

. (2.3)
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Hence, combining equations (2.2) and (2.3), with µn-probability at least c1/2, the

excess risk of f̂λn
is such that E[Lλn

(f̂λn
)|D] ≤ −c2H(Q′)/(

√
n), while for every

function f ∈ F with ELλn
(f) < rn, the empirical excess risk satisfies PnLλn

(f) ≥
−c2H(Q′)/(2

√
n). Therefore, the empirical risk minimization algorithm has an excess

risk (conditionally on the data D) larger than rn, with probability greater than c1/2, as
claimed. �
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[6] Massart P. and Nédélec, É. (2006). Risk bounds for statistical learning. Ann. Statist. 34

2326–2366. MR2291502
[7] Mendelson, S. (2008). Lower bounds for the empirical minimization algorithm. IEEE Trans.

Inform. Theory. 54 3797–3803. MR2451042
[8] Talagrand, M. (2005). The Generic Chaining. Springer Monographs in Mathematics. Berlin:

Springer-Verlag. MR2133757
[9] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes.

Springer Series in Statistics. New York: Springer-Verlag. MR1385671
[10] Vapnik, V.N. (1998). Statistical Learning Theory. Adaptive and Learning Systems for Signal

Processing, Communications, and Control. New York: Wiley. MR1641250

Received October 2008 and revised May 2009

http://www.ams.org/mathscinet-getitem?mr=2240689
http://www.ams.org/mathscinet-getitem?mr=1720712
http://www.ams.org/mathscinet-getitem?mr=2329442
http://www.ams.org/mathscinet-getitem?mr=2397584
http://www.ams.org/mathscinet-getitem?mr=1664079
http://www.ams.org/mathscinet-getitem?mr=2291502
http://www.ams.org/mathscinet-getitem?mr=2451042
http://www.ams.org/mathscinet-getitem?mr=2133757
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1641250

	1 Introduction
	2 The lower bound
	Acknowledgements
	References

